

Beginning Databases
with PostgreSQL

From Novice to Professional, Second Edition

NEIL MATTHEW AND RICHARD STONES

MatthewStones_4789Front.fm Page i Wednesday, March 9, 2005 9:28 AM

Beginning Databases with PostgreSQL: From Novice to Professional, Second Edition

Copyright © 2005 by Neil Matthew and Richard Stones

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-478-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore
Contributing Author: Jon Parise
Technical Reviewer: Robert Treat
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Assistant Publisher: Grace Wong
Project Manager: Sofia Marchant
Copy Manager: Nicole LeClerc
Copy Editor: Marilyn Smith
Production Manager: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Susan Glinert
Proofreader: Elizabeth Berry
Indexer: John Collin
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergar-
tenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads section.

MatthewStones_4789Front.fm Page ii Wednesday, March 9, 2005 9:28 AM

iii

Contents at a Glance

About the Authors . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

CHAPTER 1 Introduction to PostgreSQL . 1

CHAPTER 2 Relational Database Principles . 17

CHAPTER 3 Getting Started with PostgreSQL . 43

CHAPTER 4 Accessing Your Data . 73

CHAPTER 5 PostgreSQL Command-Line and Graphical Tools 113

CHAPTER 6 Data Interfacing . 149

CHAPTER 7 Advanced Data Selection . 173

CHAPTER 8 Data Definition and Manipulation . 201

CHAPTER 9 Transactions and Locking . 243

CHAPTER 10 Functions, Stored Procedures, and Triggers 267

CHAPTER 11 PostgreSQL Administration . 309

CHAPTER 12 Database Design . 357

CHAPTER 13 Accessing PostgreSQL from C Using libpq . 385

CHAPTER 14 Accessing PostgreSQL from C Using Embedded SQL 419

CHAPTER 15 Accessing PostgreSQL from PHP . 445

CHAPTER 16 Accessing PostgreSQL from Perl . 465

CHAPTER 17 Accessing PostgreSQL from Java . 491

CHAPTER 18 Accessing PostgreSQL from C# . 517

APPENDIX A PostgreSQL Database Limits . 543

APPENDIX B PostgreSQL Data Types . 545

MatthewStones_4789Front.fm Page iii Wednesday, March 9, 2005 9:28 AM

iv ■C O N T E N T S A T A G L A N C E

APPENDIX C PostgreSQL SQL Syntax Reference . 551

APPENDIX D psql Reference . 573

APPENDIX E Database Schema and Tables . 577

APPENDIX F Large Objects Support in PostgreSQL . 581

INDEX . 589

MatthewStones_4789Front.fm Page iv Wednesday, March 9, 2005 9:28 AM

v

Contents

About the Authors . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

■CHAPTER 1 Introduction to PostgreSQL . 1

Programming with Data . 1

Constant Data . 2

Flat Files for Data Storage . 2

Repeating Groups and Other Problems . 3

What Is a Database Management System? . 4

Database Models . 4

Query Languages . 8

Database Management System Responsibilities 10

What Is PostgreSQL? . 11

A Short History of PostgreSQL . 12

The PostgreSQL Architecture . 13

Data Access with PostgreSQL . 15

What Is Open Source? . 15

Resources . 16

■CHAPTER 2 Relational Database Principles . 17

Limitations of Spreadsheets . 17

Storing Data in a Database . 21

Choosing Columns . 21

Choosing a Data Type for Each Column . 21

Identifying Rows Uniquely . 22

Accessing Data in a Database . 23

Accessing Data Across a Network . 24

Handling Multiuser Access . 25

Slicing and Dicing Data . 26

Contents

MatthewStones_4789Front.fm Page v Wednesday, March 9, 2005 9:28 AM

vi ■C O N T E N T S

Adding Information . 28

Using Multiple Tables . 28

Relating a Table with a Join Operation. 29

Designing Tables . 32

Understanding Some Basic Rules of Thumb 33

Creating a Simple Database Design . 34

Extending Beyond Two Tables . 35

Completing the Initial Design. 37

Basic Data Types . 40

Dealing with the Unknown: NULLs . 41

Reviewing the Sample Database . 42

Summary . 42

■CHAPTER 3 Getting Started with PostgreSQL . 43

Installing PostgreSQL on Linux and UNIX Systems 43

Installing PostgreSQL from Linux Binaries . 44

Anatomy of a PostgreSQL Installation . 47

Installing PostgreSQL from the Source Code. 49

Setting Up PostgreSQL on Linux and UNIX . 53

Installing PostgreSQL on Windows . 59

Using the Windows Installer . 59

Configuring Client Access . 64

Creating the Sample Database . 64

Creating User Records . 65

Creating the Database . 65

Creating the Tables . 67

Removing the Tables . 68

Populating the Tables . 69

Summary . 72

■CHAPTER 4 Accessing Your Data . 73

Using psql . 74

Starting Up on Linux Systems . 74

Starting Up on Windows Systems . 74

Resolving Startup Problems . 75

Using Some Basic psql Commands . 78

MatthewStones_4789Front.fm Page vi Wednesday, March 9, 2005 9:28 AM

■C O N T E N T S vii

Using Simple SELECT Statements . 78

Overriding Column Names . 81

Controlling the Order of Rows . 81

Suppressing Duplicates . 83

Performing Calculations . 86

Choosing the Rows . 87

Using More Complex Conditions . 89

Pattern Matching . 91

Limiting the Results . 92

Checking for NULL . 93

Checking Dates and Times . 94

Setting the Time and Date Style . 94

Using Date and Time Functions . 98

Working with Multiple Tables . 100

Relating Two Tables . 100

Aliasing Table Names . 105

Relating Three or More Tables . 106

The SQL92 SELECT Syntax . 110

Summary . 112

■CHAPTER 5 PostgreSQL Command-Line and Graphical Tools 113

psql . 113

Starting psql . 114

Issuing Commands in psql. 114

Working with the Command History . 115

Scripting psql . 115

Examining the Database . 117

psql Command-Line Quick Reference . 118

psql Internal Commands Quick Reference. 119

ODBC Setup . 121

Installing the ODBC Driver . 121

Creating a Data Source . 123

pgAdmin III . 125

Installing pgAdmin III . 125

Using pgAdmin III . 126

phpPgAdmin . 129

Installing phpPgAdmin . 130

Using phpPgAdmin . 130

MatthewStones_4789Front.fm Page vii Wednesday, March 9, 2005 9:28 AM

viii ■C O N T E N T S

Rekall . 133

Connecting to a Database . 134

Creating Forms . 135

Building Queries . 136

Microsoft Access . 137

Using Linked Tables . 137

Entering Data and Creating Reports . 141

Microsoft Excel . 142

Resources for PostgreSQL Tools . 146

Summary . 147

■CHAPTER 6 Data Interfacing . 149

Adding Data to the Database . 149

Using Basic INSERT Statements . 149

Using Safer INSERT Statements . 152

Inserting Data into Serial Columns . 154

Inserting NULL Values . 158

Using the \copy Command. 159

Loading Data Directly from Another Application 162

Updating Data in the Database . 165

Using the UPDATE Statement . 165

Updating from Another Table . 168

Deleting Data from the Database . 169

Using the DELETE Statement. 169

Using the TRUNCATE Statement . 170

Summary . 171

■CHAPTER 7 Advanced Data Selection . 173

Aggregate Functions . 173

The Count Function . 174

The Min Function . 182

The Max Function . 183

The Sum Function. 184

The Avg Function . 184

The Subquery . 185

Subqueries That Return Multiple Rows . 187

Correlated Subqueries . 188

Existence Subqueries . 191

MatthewStones_4789Front.fm Page viii Wednesday, March 9, 2005 9:28 AM

■C O N T E N T S ix

The UNION Join . 192

Self Joins . 194

Outer Joins . 196

Summary . 200

■CHAPTER 8 Data Definition and Manipulation . 201

Data Types . 201

The Boolean Data Type . 202

Character Data Types . 204

Number Data Types . 206

Temporal Data Types . 209

Special Data Types . 209

Arrays . 210

Data Manipulation . 212

Converting Between Data Types . 212

Functions for Data Manipulation . 214

Magic Variables. 215

The OID Column . 216

Table Management . 217

Creating Tables . 217

Using Column Constraints . 218

Using Table Constraints . 222

Altering Table Structures . 223

Deleting Tables . 227

Using Temporary Tables . 227

Views . 228

Creating Views . 228

Deleting and Replacing Views . 231

Foreign Key Constraints . 232

Foreign Key As a Column Constraint . 233

Foreign Key As a Table Constraint . 234

Foreign Key Constraint Options . 240

Summary . 242

■CHAPTER 9 Transactions and Locking . 243

What Are Transactions? . 243

Grouping Data Changes into Logical Units. 244

Concurrent Multiuser Access to Data . 244

ACID Rules . 246

Transaction Logs . 247

MatthewStones_4789Front.fm Page ix Wednesday, March 9, 2005 9:28 AM

x ■C O N T E N T S

Transactions with a Single User . 247

Transactions Involving Multiple Tables . 250

Transactions and Savepoints . 251

Transaction Limitations . 254

Transactions with Multiple Users . 255

Implementing Isolation . 255

Changing the Isolation level. 261

Using Explicit and Implicit Transactions. 261

Locking . 262

Avoiding Deadlocks . 262

Explicit Locking . 264

Summary . 266

■CHAPTER 10 Functions, Stored Procedures, and Triggers 267

Operators . 268

Operator Precedence and Associativity . 269

Arithmetic Operators . 270

Comparison and String Operators. 272

Other Operators. 273

Built-in Functions . 273

Procedural Languages . 276

Getting Started with PL/pgSQL . 277

Function Overloading . 279

Listing Functions. 281

Deleting Functions . 281

Quoting. 281

Anatomy of a Stored Procedure . 282

Function Arguments . 283

Comments . 284

Declarations . 284

Assignments . 288

Execution Control Structures . 289

Dynamic Queries. 297

SQL Functions . 298

Triggers . 299

Defining a Trigger Procedure . 300

Creating Triggers . 300

Why Use Stored Procedures and Triggers? . 306

Summary . 307

MatthewStones_4789Front.fm Page x Wednesday, March 9, 2005 9:28 AM

■C O N T E N T S xi

■CHAPTER 11 PostgreSQL Administration . 309

System Configuration . 309

The bin Directory . 310

The data Directory . 311

Other PostgreSQL Subdirectories . 316

Database Initialization . 317

Server Control . 318

Running Processes on Linux and UNIX. 318

Starting and Stopping the Server on Linux and UNIX 319

PostgreSQL Internal Configuration . 320

Configuration Methods . 320

User Configuration . 321

Group Configuration . 325

Tablespace Management. 326

Database Management . 328

Schema Management . 331

Privilege Management . 337

Database Backup and Recovery . 338

Creating a Backup . 339

Restoring from a Backup . 341

Backing Up and Restoring from pgAdmin III 343

Database Performance . 347

Monitoring Behavior . 347

Using VACUUM . 348

Creating Indexes . 352

Summary . 356

■CHAPTER 12 Database Design . 357

What Is a Good Database Design? . 357

Understanding the Problem . 357

Taking Design Aspects into Account . 358

Stages in Database Design . 360

Gathering Information. 361

Developing a Logical Design . 361

Determining Relationships and Cardinality 366

Converting to a Physical Model . 371

Establishing Primary Keys . 372

Establishing Foreign Keys . 373

Establishing Data Types . 375

MatthewStones_4789Front.fm Page xi Wednesday, March 9, 2005 9:28 AM

xii ■C O N T E N T S

Completing the Table Definitions . 377

Implementing Business Rules . 377

Checking the Design . 378

Normal Forms . 378

First Normal Form . 378

Second Normal Form . 379

Third Normal Form . 379

Common Patterns . 380

Many-to-Many. 380

Hierarchy . 381

Recursive Relationships . 382

Resources for Database Design . 384

Summary . 384

■CHAPTER 13 Accessing PostgreSQL from C Using libpq 385

Using the libpq Library . 386

Making Database Connections . 387

Creating a New Database Connection . 387

Using a Makefile . 390

Retrieving Information About Connection Errors 391

Learning About Connection Parameters. 391

Executing SQL with libpq . 392

Determining Query Status . 392

Executing Queries with PQexec. 394

Creating a Variable Query . 396

Updating and Deleting Rows . 396

Extracting Data from Query Results . 397

Handling NULL Results . 400

Printing Query Results . 401

Managing Transactions . 404

Using Cursors . 404

Fetching All the Results at Once . 406

Fetching Results in Batches . 408

Dealing with Binary Values . 411

Working Asynchronously . 411

Executing a Query in Asynchronous Mode. 412

Canceling an Asynchronous Query . 415

Making an Asynchronous Database Connection 415

Summary . 417

MatthewStones_4789Front.fm Page xii Wednesday, March 9, 2005 9:28 AM

■C O N T E N T S xiii

■CHAPTER 14 Accessing PostgreSQL from C Using Embedded SQL . . . 419

Using ecpg . 419

Writing an esqlc Program . 420

Using a Makefile . 423

Using ecpg Arguments . 424

Logging SQL Execution . 425

Making Database Connections . 425

Error Handling . 427

Reporting Errors . 428

Trapping Errors . 431

Using Host Variables . 432

Declaring Fixed-Length Variable Types . 432

Working with Variable-Length Data . 434

Retrieving Data with ecpg . 436

Dealing with Null-Terminated Strings . 437

Dealing with NULL Database Values. 438

Handling Empty Results . 439

Implementing Cursors in Embedded SQL . 441

Debugging ecpg Code . 443

Summary . 444

■CHAPTER 15 Accessing PostgreSQL from PHP . 445

Adding PostgreSQL Support to PHP . 445

Using the PHP API for PostgreSQL . 446

Making Database Connections . 447

Creating a New Database Connection . 447

Creating a Persistent Connection . 448

Closing Connections . 449

Learning More About Connections . 449

Building Queries . 450

Creating Complex Queries . 451

Executing Queries . 452

Working with Result Sets . 452

Extracting Values from Result Sets . 453

Getting Field Information . 456

Freeing Result Sets. 457

Type Conversion of Result Values . 458

Error Handling . 458

Getting and Setting Character Encoding . 459

MatthewStones_4789Front.fm Page xiii Wednesday, March 9, 2005 9:28 AM

xiv ■C O N T E N T S

Using PEAR . 459

Using PEAR’s Database Abstraction Interface 460

Error Handling with PEAR. 461

Preparing and Executing Queries with PEAR 462

Summary . 463

■CHAPTER 16 Accessing PostgreSQL from Perl . 465

Installing Perl Modules . 466

Using CPAN . 466

Using PPM . 467

Installing the Perl DBI . 468

Installing DBI and the PostgreSQL DBD on Windows 469

Installing DBI and the PostgreSQL DBD from Source 471

Using DBI . 472

Making Database Connections . 473

Executing SQL . 477

Working with Result Sets . 478

Binding Parameters . 481

Using Other DBI Features. 483

Using DBIx::Easy . 484

Creating XML from DBI Queries . 485

SQL to XML . 487

XML to SQL . 488

Summary . 489

■CHAPTER 17 Accessing PostgreSQL from Java . 491

Using a PostgreSQL JDBC Driver . 491

Installing a PostgreSQL JDBC Driver . 493

Using the Driver Interface and DriverManager Class 493

Making Database Connections . 498

Creating Database Statements . 498

Handling Transactions . 499

Retrieving Database Meta Data. 500

Working with JDBC Result Sets . 502

Getting the Result Set Type and Concurrency 502

Traversing Result Sets . 503

Accessing Result Set Data . 504

Working with Updatable Result Sets . 505

Using Other Relevant Methods . 507

MatthewStones_4789Front.fm Page xiv Wednesday, March 9, 2005 9:28 AM

■C O N T E N T S xv

Creating JDBC Statements . 507

Using Statements . 508

Using Prepared Statements . 512

Summary . 516

■CHAPTER 18 Accessing PostgreSQL from C# . 517

Using the ODBC .NET Data Provider on Windows 517

Setting Up the ODBC .NET Data Provider . 517

Connecting to the Database . 518

Retrieving Data into a Dataset. 519

Using Npgsql in Mono . 520

Connecting to the Database . 521

Retrieving Data from the Database. 525

Using Parameters and Prepared Statements with Npgsql 532

Changing Data in the Database. 536

Using Npgsql in Visual Studio . 539

Summary . 540

■APPENDIX A PostgreSQL Database Limits . 543

■APPENDIX B PostgreSQL Data Types . 545

Logical Types . 545

Exact Number Types . 546

Approximate Number Types . 546

Temporal Types . 547

Character Types . 547

Geometric Types . 548

Miscellaneous PostgreSQL Types . 548

■APPENDIX C PostgreSQL SQL Syntax Reference . 551

PostgreSQL SQL Commands . 551

PostgreSQL SQL Syntax . 552

■APPENDIX D psql Reference . 573

Command-Line Options . 573

Internal Commands . 574

MatthewStones_4789Front.fm Page xv Wednesday, March 9, 2005 9:28 AM

xvi ■C O N T E N T S

■APPENDIX E Database Schema and Tables . 577

■APPENDIX F Large Objects Support in PostgreSQL 581

Using Links . 581

Using Encoded Text Strings . 582

Using BLOBs . 583

Importing and Exporting Images . 583

Remote Importing and Exporting . 585

Programming BLOBs . 586

■INDEX . 589

MatthewStones_4789Front.fm Page xvi Wednesday, March 9, 2005 9:28 AM

xvii

About the Authors

■NEIL MATTHEW has been interested in and has programmed computers
since 1974. A mathematics graduate from the University of Nottingham,
Neil is just plain keen on programming languages and likes to explore
new ways of solving computing problems. He has written systems to
program in BCPL, FP (Functional Programming), Lisp, Prolog, and a
structured BASIC. He even wrote a 6502 microprocessor emulator to run
BBC microcomputer programs on UNIX systems.
In terms of UNIX experience, Neil has used almost every flavor since the

late 1970s, including BSD UNIX, AT&T System V, Sun Solaris, IBM AIX, and many others. Neil
has been using Linux since August 1993, when he acquired a floppy disk distribution of Soft
Landing (SLS) from Canada, with kernel version 0.99.11. He has used Linux-based computers
for hacking C, C++, Icon, Prolog, Tcl, and Java, at home and at work. Most of Neil’s home projects
were originally developed using SCO UNIX, but they’ve all ported to Linux with little or no trouble.
He says Linux is mush easier because it supports quite a lot of features from other systems, so
that both BSD- and System V-targeted programs will generally compile with little or no change.

As the head of software and principal engineer at Camtec Electronics in the 1980s, Neil
programmed in C and C++ for real-time embedded systems. Since then, he has worked on soft-
ware development techniques and quality assurance. After a spell as a consultant with Scientific
Generics, he is currently working as a systems architect with Celesio AG.

Neil is married to Christine and has two children, Alexandra and Adrian. He lives in a converted
barn in Northamptonshire, England. His interests include solving puzzles by computer, music,
science fiction, squash, mountain biking, and not doing it yourself.

■RICK STONES started programming at school, more years ago than he
cares to remember, on a 6502-powered BBC micro, which with the help
of a few spare parts, continued to function for the next 15 years. He grad-
uated from the University of Nottingham with a degree in Electronic
Engineering, but decided software was more fun.
 Over the years, he has worked for a variety of companies, from the very
small, with just a dozen employees, to the very large, including the IT
services giant EDS. Along the way, he has worked on a range of projects,

from real-time communications to accounting systems, very large help desk systems, and more
recently, as the technical authority on a large EPoS and retail central systems program.

MatthewStones_4789Front.fm Page xvii Wednesday, March 9, 2005 9:28 AM

xviii ■A B O U T T H E A U T H O R S

A bit of a programming linguist, Rick has programmed in various assemblers, a rather neat
proprietary telecommunications language called SL-1, some FORTRAN, Pascal, Perl, SQL, and
smidgeons of Python and C++, as well as C. (Under duress, he even admits that he was once
reasonably proficient in Visual Basic, but tries not to advertise this aberration.)

Rick lives in a village in Leicestershire, England, with his wife Ann, children Jennifer and
Andrew, and two cats. Outside work, his main interest is classical music, especially early religious
music, and he even does his best to find time for some piano practice. He is currently trying to
learn to speak German.

MatthewStones_4789Front.fm Page xviii Wednesday, March 9, 2005 9:28 AM

xix

About the Technical Reviewer

■ROBERT TREAT is a long-time open-source user, developer, and advocate.
He has worked with a number of projects, but his favorite is certainly
PostgreSQL. His current involvement includes helping maintain the
postgresql.org web sites, working on phpPgAdmin, and contributing to
the PostgreSQL core whenever he can. He has contributed several articles
to the PostgreSQL “techdocs” site, was a presenter at OSCon 2004, worked
as the PHP Foundry Admin on sourceforge.net, and has been recognized as
a Major Developer for his work within the PostgreSQL community.

Outside the free software world, Robert enjoys spending time with his three children, Robert,
Dylan, and Emma, and with his high school sweetheart-turned-wife, Amber.

MatthewStones_4789Front.fm Page xix Wednesday, March 9, 2005 9:28 AM

MatthewStones_4789Front.fm Page xx Wednesday, March 9, 2005 9:28 AM

xxi

Acknowledgments

We would like to thank the many people who helped to make this book possible.
Neil would like to thank his wife, Christine, for her understanding, and children Alex and

Adrian for not complaining too loudly at dad spending so long in The Den writing.
Rick would like to thank his wife, Ann, and children, Jennifer and Andrew, for their very

considerable patience during the evenings and weekends while dad was yet again “doing
book work.”

Special thanks must go to Robert Treat, our technical reviewer. We are indebted to him for
his excellent, detailed reviewing of our work and the many helpful comments and suggestions
he made.

We would also like to thank Jon Parise for writing the PHP chapter for us, and Meeraj and
Gavin for their kind permission to reuse some earlier material.

We are grateful to the entire Apress team for providing a smooth road from writing to produc-
tion. To Gary Cornell and Jason Gilmore for getting the project off the ground, Sofia Marchant
for coping admirably with a project schedule that initially appeared to require time travel,
Nancy Wright for the transfer of material from the first edition, Marilyn Smith for first-class
copy editing, Katie Stence for production editing, and Jason (again) for his editor role. We’ve
learned a lot more about how books get made, and this one is certainly a better book than it
would have been without this team’s efforts.

Thanks are also due to the PostgreSQL development team for creating such a strong data-
base system, allowing us to cover a great deal of SQL with an open-source product.

We would also like to thank our employer, Celesio, for support during the production of
both editions of this book.

MatthewStones_4789Front.fm Page xxi Wednesday, March 9, 2005 9:28 AM

MatthewStones_4789Front.fm Page xxii Wednesday, March 9, 2005 9:28 AM

xxiii

Introduction

Welcome to Beginning Databases with PostgreSQL.
Early in our careers, we came to recognize the qualities of open-source software. Not only

is it often completely free to use, but it can also be of extremely high quality. If you have a problem,
you can examine the source code to see how it works. If you find a bug, you can fix it yourself or
pass it on to someone else to fix it for you. We have been working with open-source software
since 1978 or so, including using the wonderful GNU tools, including GNU Emacs and GCC.
We started using Linux in 1993 and have been delighted to be able to create a complete, free
computing environment using a Linux kernel and the GNU tools, together with the X Window
System, to provide a graphical user interface. PostgreSQL fits beautifully with this, providing an
exceptional database system that adheres to the same open-source principles. (For more on
open source and the freedom it can bring, please visit http://www.opensource.org.)

Databases are remarkably useful things. Many people find a “desktop database” useful for
small applications in the office and around the home. Many web sites are data-driven, with
content being extracted from databases behind the web server. As databases are becoming
ubiquitous, we feel that there is a need for a book that includes some database theory and
teaches good practice.

We have written this book to be a general introduction to databases, with broad coverage
of the range of capabilities that modern, relational database systems have and how to use them
effectively. With PostgreSQL as their database system, no one has an excuse for not doing
things “properly.” It supports good database design, is resilient and scalable, and runs on just
about every type of computer you can think of, including Linux, UNIX, Windows, Mac OS X,
AIX, Solaris, and HP-UX.

Oh, in case you were wondering, PostgreSQL is pronounced “post-gres-cue-el” (not
“post-gray-ess-cue-el”).

The book is roughly divided into thirds. The first part covers getting started, both with data-
bases in general (what they are and what they are useful for) and with PostgreSQL in particular
(how to obtain it, install it, start it, and use it). If you follow along with the examples, by the end
of Chapter 5, you will have built your first working database and be able to use several tools to
do useful things with it, such as entering data and executing queries.

The second part of the book explores in some depth the heart of relational databases: the
query language SQL. Through sample programs and “Try It Out” sections, you will learn many
aspects of database programming, ranging from simple data insertions and updates, through
powerful types of queries, to extending the database server functionality with stored procedures
and triggers. A great deal of the material in this section is database-independent, so knowledge
gained here will stand you in good stead if you need to develop with another type of database.
Of course, all of the material is illustrated with examples using PostgreSQL and a sample data-
base. Chapters on PostgreSQL system administration and good practice in database design
complete this section.

MatthewStones_4789Front.fm Page xxiii Wednesday, March 9, 2005 9:28 AM

xxiv ■I N T R O D U C T I O N

The third part of the book concentrates on harnessing the power of PostgreSQL in your
own programs. These chapters cover connecting to a database, executing queries, and dealing
with the results using a wide range of programming languages. Whether you are developing a
dynamic web site with PHP or Perl, an enterprise application in Java or C#, or a client program
in C, you will find a chapter to help you.

This is the second edition of Beginning Databases with PostgreSQL; the first edition was
published by Wrox Press in 2001. Since then, every chapter has been updated with material to
cover the latest version of PostgreSQL, version 8. We have taken the opportunity in this edition
to add a new chapter on accessing PostgreSQL from the C# language to complement revised
chapters covering C, Perl, PHP, and Java.

MatthewStones_4789Front.fm Page xxiv Wednesday, March 9, 2005 9:28 AM

1

■ ■ ■

C H A P T E R 1

Introduction to PostgreSQL

This book is all about one of the most successful open-source software products of recent
times, a relational database called PostgreSQL. PostgreSQL is finding an eager audience among
database aficionados and open-source developers alike. Anyone who is creating an application
with nontrivial amounts of data can benefit from using a database. PostgreSQL is an excellent
implementation of a relational database, fully featured, open source, and free to use.

PostgreSQL can be used from just about any major programming language you care to
name, including C, C++, Perl, Python, Java, Tcl, and PHP. It very closely follows the industry
standard for query languages, SQL92, and is currently implementing features to increase
compliance with the latest version of this standard, SQL:2003. PostgreSQL has also won several
awards, including the Linux Journal Editor’s Choice Award for Best Database three times (for
the years 2000, 2003, and 2004) and the 2004 Linux New Media Award for Best Database System.

We are perhaps getting a little ahead of ourselves here. You may be wondering what exactly
PostgreSQL is, and why you might want to use it.

In this chapter, we will set the scene for the rest of the book and provide some background
information about databases in general, the different types of databases, why they are useful,
and where PostgreSQL fits into this picture.

Programming with Data
Nearly all nontrivial computer applications manipulate large amounts of data, and a lot of
applications are written primarily to deal with data rather than perform calculations. Some
writers estimate that 80% of all application development in the world today is connected in
some way to complex data stored in a database, so databases are a very important foundation
to many applications.

Resources for programming with data abound. Most good programming books will
contain chapters on creating, storing, and manipulating data. Three of our previous books
(published by Wrox Press) contain information about programming with data:

• Beginning Linux Programming, Third Edition (ISBN 0-7645-4497-7) covers the DBM
library and the MySQL database system.

• Professional Linux Programming (ISBN 1-861003-01-3) contains chapters on the
PostgreSQL and MySQL database systems.

• Beginning Databases with MySQL (ISBN 1-861006-92-6) covers the MySQL database
system.

MatthewStones_4789C01.fm Page 1 Tuesday, February 1, 2005 7:25 AM

2 C H A P T E R 1 ■ I N T R O D U C T I O N T O P O S T G R E S Q L

Constant Data
Data comes in all shapes and sizes, and the ways that we deal with it will vary according to the
nature of the data. In some cases, the data is simple—perhaps a single number such as the
value of π that might be built into a program that draws circles. The application itself may have
this as a hard-coded value for the ratio of the circumference of a circle to its diameter. We call
this kind of data constant, as it will never need to change.

Another example of constant data is the exchange rates used for the currencies of some Euro-
pean countries. In so-called “Euro Land,” the countries that are participating in the single
European currency (euro) fixed the exchange rates between their national currencies to six
decimal places. Suppose we developed a Euro Land currency converter application. It could
have a hard-coded table of currency names and base exchange rates, the numbers of national
units to the euro. These rates will never change. We are not quite finished though, as it is
possible for this table of currencies to grow. As countries sign up for the euro, their national
currency exchange rate is fixed, and they will need to be added to the table. When that
happens, the currency converter needs to be changed, its built-in table changed, and the
application rebuilt. This will need to be done every time the currency table changes.

A better method would be to have the application read a file containing some simple
currency data, perhaps including the name of the currency, its international symbol, and
exchange rate. Then we can just alter the file when the table needs to change, and leave the
application alone.

The data file that we use has no special structure; it’s just some lines of text that mean
something to the particular application that reads it. It has no inherent structure. Therefore we
call it a flat file. Here’s what our currency file might look like:

France FRF 6.559570
Germany DEM 1.955830
Italy ITL 1936.270020
Belgium BEF 40.339901

Flat Files for Data Storage
Flat files are extremely useful for many application types. As long as the size of the file remains
manageable, so that we can easily make changes, a flat file scheme may be sufficient for our
needs.

Many systems and applications, particularly on UNIX platforms, use flat files for their data
storage or data interchange. An example is the UNIX password file, which typically has lines
that look like this:

neil:*:500:100:Neil Matthew:/home/neil:/bin/bash
nick:*:501:100:Rick Stones:/home/rick:/bin/bash

These examples consist of a number of elements of information, or attributes, together
making up a record. The file is arranged so that each line represents a single record, and the
whole file acts to keep the related records together. Sometimes this scheme is not quite good
enough, however, and we need to add extra features to support the job the application must do.

MatthewStones_4789C01.fm Page 2 Tuesday, February 1, 2005 7:25 AM

C H A P T E R 1 ■ I N T R O D U C T I O N T O P O S T G R E S Q L 3

Repeating Groups and Other Problems
Suppose that we decide to extend the currency exchange rate application (introduced earlier in
the chapter) to record the language spoken in each country, together with its population and
area. In a flat file, we essentially have one record per line, each record made up of several
attributes. Each individual attribute in a record is always in the same place; for example, the
currency symbol is always the second attribute. So, we could think of looking at the data by
columns, where a column is always the same type of information.

To add the language spoken in a particular country, we might think that we just need to
add a new column to each of our lines. We hit a snag with this as soon as we realize that some
countries have more than one official language. So, in our record for Belgium, we would need
to include both Flemish and French. For Switzerland, we would need to add four languages.
The flat file would now look something like this:

France FRF 6.559570 French 60424213 547030
Germany DEM 1.955830 German 82424609 357021
Italy ITL 1936.270020 Italian 58057477 301230
Belgium BEF 40.339901 Flemish French 10348276 30528
Switzerland CHF 1.5255 German French Italian Romansch 7450867 41290

This problem is known as repeating groups. We have the situation where a perfectly valid
item (language) can be repeated in a record, so not only does the record (row) repeat, but the
data in that row repeats as well. Flat files do not cope with this, as it is impossible to determine
where the languages stop and the rest of the record starts. The only way around this is to add
some structure to the file, and then it would not be a flat file anymore.

The repeating groups problem is very common and is the issue that really started the drive
toward more sophisticated database management systems. We can attempt to resolve this
problem by using ordinary text files with a little more structure. These are still often referred to
as flat files, but they are probably better described as structured text files.

Here’s another example. An application that stores the details of DVDs might need to
record the year of production, director, genre, and cast list. We could design a file that looks a
little like a Windows .ini file to store this information, like this:

[2001: A Space Odyssey]
year=1968
director=Stanley Kubrick
genre=science fiction
starring=Keir Dullea
starring=Leonard Rossiter
…
[Toy Story]
…

We have solved the repeating groups problem by introducing some tags to indicate the
type of each element in the record. However, now our application must read and interpret a
more complex file just to get its data. Updating a record and searching in this kind of structure
can be quite difficult. How can we make sure that the descriptions for genre or classification are
chosen from a specific subset? How can we easily produce a sorted list of Kubrick-directed films?

MatthewStones_4789C01.fm Page 3 Tuesday, February 1, 2005 7:25 AM

4 C H A P T E R 1 ■ I N T R O D U C T I O N T O P O S T G R E S Q L

As data requirements become increasingly complex, we are forced to write more and more
application code for reading and storing our data. If we extend our DVD application to include
information useful to a DVD rental store owner—such as membership details, rentals, returns,
and reservations—the prospect of maintaining all of that information in flat files becomes
very unappealing.

Another common problem is simply that of size. Although the structured text file could be
scanned by brute force to answer complex queries such as, “Tell me the addresses of all my
members who have rented more than one comedy movie in the last three months,” not only
will it be very difficult to code, but the performance will be dire. This is because the application
has no choice but to process the whole file to look for any piece of information, even if the
question relates to just a single entry, such as “Who starred in 2001: A Space Odyssey?”

What we need is a general-purpose way of storing and retrieving data, not a solution
invented many times to fit slightly different, but very similar, problems as in a generic data-
handling system.

What we need is a database and a database management system.

What Is a Database Management System?
The Merriam-Webster online dictionary (http://www.merriam-webster.com) defines a database
as a usually large collection of data organized especially for rapid search and retrieval (as by
a computer).

A database management system (DBMS) is usually a suite of libraries, applications, and
utilities that relieve an application developer from the burden of worrying about the details of
storing and managing data. It also provides facilities for searching and updating records. DBMSs
come in a number of flavors developed over the years to solve particular kinds of data-storage
problems.

Database Models
During the 1960s and 1970s, developers created databases that solved the repeating groups
problem in several different ways. These methods result in what are termed models for database
systems. Research performed at IBM provided much of the basis for these models, which are
still in use today.

A main driver in early database system designs was efficiency. One of the common ways to
make systems more efficient was to enforce a fixed length for database records, or at least have
a fixed number of elements per record (columns per row). This essentially avoids the repeating
group problem. If you are a programmer in just about any procedural language, you will readily
see that in this case, you can read each record of a database into a simple C structure. Real life
is rarely that accommodating, so we need to find ways to deal with inconveniently structured
data. Database systems designers did this by introducing different database types.

MatthewStones_4789C01.fm Page 4 Tuesday, February 1, 2005 7:25 AM

C H A P T E R 1 ■ I N T R O D U C T I O N T O P O S T G R E S Q L 5

Hierarchical Database Model

The IMS database system from IBM in the late 1960s introduced the hierarchical model for
databases. In this model, considering data records to be composed of collections of others
solves the repeating groups problem.

The model can be compared to a bill of materials used to describe how a complex manu-
factured product is composed. For example, let’s say a car is composed of a chassis, a body, an
engine, and four wheels. Each of these major components is broken down further. An engine
comprises some cylinders, a cylinder head, and a crankshaft. These components are broken
down further until we get to the nuts and bolts that make up every part in an automobile.

Hierarchical model databases are still in use today, including Software AG’s ADABAS.
A hierarchical database system is able to optimize the data storage to make it more efficient
for particular questions; for example, to determine which automobile uses a particular part.

Network Database Model

The network model introduces the idea of pointers within the database. Records can contain
references to other records. So, for example, you could keep a record for each of your company’s
customers. Each customer has placed many orders with you over time (a repeating group). The
data is arranged so that the customer record contains a pointer to just one order record. Each
order record contains both the order data for that specific order and a pointer to another
order record.

Returning to our currency application, we might end up with record structures that look a
little like those shown in Figure 1-1.

Figure 1-1. Currency application record types

Once the data is loaded, we end up with a linked (hence, the name network model) list
used for the languages, as shown in Figure 1-2. The two different record types shown here
would be stored separately, each in its own table.

Of course, to be more efficient in terms of storage, the actual database would not repeat
the language names over and over again, but would probably contain a third table of language
names, together with an identifier (often a small integer) that would be used to refer to the
language name table entry in the other record types. This is called a key.

MatthewStones_4789C01.fm Page 5 Tuesday, February 1, 2005 7:25 AM

6 C H A P T E R 1 ■ I N T R O D U C T I O N T O P O S T G R E S Q L

Figure 1-2. Currency application data structure

A network model database has some strong advantages. If you need to discover all of the
records of one type that are related to a specific record of another type (in this example, the
languages spoken in a country), you can find them extremely quickly by following the pointers
from the starting record.

There are, however, some disadvantages, too. If you want to list the countries that speak
French, you need to follow the links from all of the country records, which for large databases
will be extremely slow. This can be fixed by having other linked lists of pointers specifically for
languages, but it rapidly becomes very complex and is clearly not a general-purpose solution,
since you need to decide in advance how the pointers will be designed. Writing applications
that use a network model database can also be very tiresome, as the application typically must
take responsibility for setting up and maintaining the pointers as records are updated and deleted.

Relational Database Model

The theory of DBMSs took a gigantic leap forward in 1970 with the publication of “A Relational
Model of Data for Large Shared Data Banks,” a paper by E. F. Codd (see http://www.acm.org/
classics/nov95/toc.html). This revolutionary paper introduced the idea of relations and showed
how tables could be used to represent facts that relate to real-world objects, and therefore, hold
data about them.

By this time, it had also become clear that the initial driving force behind database design,
efficiency, was often less important than another concern: data integrity. The relational model
emphasizes data integrity much more than either of the earlier models. Referential integrity
refers to making sure that data in the database makes sense at all times, so that, for example, all
orders have customers. (We will have much more to say about integrity in Chapter 12, when we
cover database design.)

Records in a table in a relational database are known as tuples, and this is the terminology
you will see used in some parts of the PostgreSQL documentation. A tuple is an ordered group
of components, or attributes, each of which has a defined type.

MatthewStones_4789C01.fm Page 6 Tuesday, February 1, 2005 7:25 AM

C H A P T E R 1 ■ I N T R O D U C T I O N T O P O S T G R E S Q L 7

Several important rules define a relational database management system (RDBMS). All tuples
must follow the same pattern, in that they all have the same number and types of components.
Here is an example of a set of tuples:

{"France", "FRF", 6.56}
{"Belgium", "BEF", 40.34}

Each of these tuples has three attributes: a country name (string), a currency (string), and
an exchange rate (a floating-point number). In a relational database, all records that are added
to this set, or table, must follow the same form, so the following are disallowed:

{"Germany", "DEM"}

This has too few attributes.

{"Switzerland", "CHF", "French", "German", "Italian", "Romansch"}

This has too many attributes.

{1936.27, "ITL", "Italy"}

This has incorrect attribute types (wrong order).
Furthermore, in any table of tuples, there should be no duplicates. This means that in any

table in a properly designed relational database, there cannot be any identical rows or records.
This might seem to be a rather draconian restriction. For example, in a system that records
orders placed by customers, it would appear to disallow the same customer from ordering the
same product twice. In the next chapter, we will see that there is an easy way to work around
this requirement, by adding an attribute.

Each attribute in a record must be atomic; that is, it must be a single piece of data, not
another record or a list of other attributes. Also, the type of corresponding attributes in every
record in the table must be the same. Technically, this means that they must be drawn from the
same set of values or domain. In practical terms, it means they will all be a string, an integer, a
floating-point value, or some other type supported by the database system.

The attribute (or attributes) used to distinguish a particular record in a table from all the
other records in a table is called a primary key. In a relational database, each relation, or table,
must have a primary key for each record to make it unique—different from all the others in that
table.

One last rule that determines the structure of a relational database is referential integrity.
As we noted earlier, this is a desire that all of the records in the database make sense at all times.
Database application programmers must be careful to make sure that their code does not
break the integrity of the database. Consider what happens when we delete a customer. If we
try to remove the customer from the customer relation, we also need to delete all of his orders
from the orders table. Otherwise, we will be left with records about orders that have no valid
customer.

We will see much more on the theory and practice of relational databases in later chapters.
For now, it is enough to know that the relational model for databases is based on some mathe-
matical concepts of sets and relations, and that there are some rules that need to be observed
by systems that are based on this model.

MatthewStones_4789C01.fm Page 7 Tuesday, February 1, 2005 7:25 AM

8 C H A P T E R 1 ■ I N T R O D U C T I O N T O P O S T G R E S Q L

Query Languages
RDBMSs offer ways to add and update data, of course, but their real power stems from their
ability to allow users to ask questions about the data stored, in the form of queries. Unlike many
earlier database designs, which were often structured around the type of question that the data
needed to answer, relational databases are much more flexible at answering questions that
were not known at the time the database was designed.

Codd’s proposals for the relational model use the fact that relations define sets, and sets
can be manipulated mathematically. He suggested that queries might use a branch of theoretical
logic called the predicate calculus, and that query languages would use this as their base. This
would bring unprecedented power for searching and selecting data sets. Modern database
systems, including PostgreSQL, hide all the mathematics behind an expressive and easy-to-
learn query language.

One of the first implementations of a query language was QUEL, used in the Ingres data-
base developed in the late 1970s. Another query language that takes a different approach is
QBE (Query By Example). At around the same time a team at IBM’s research center developed
SQL (Structured Query Language), usually pronounced “sequel.”

SQL Standards and Variations

SQL has become very widely adopted as a standard for database query languages and is defined
in a series of international standards. The most commonly used definition is ISO/IEC 9075:1992,
“Database Language SQL.” This is more simply referred to as SQL92. These standards replaced
an earlier standard, SQL89. The latest version of the SQL standard is ISO/IEC 9075:2003, more
simply referred to as SQL:2003.

At present, most RDBMSs comply with the SQL92 version of the standard, or sometimes
ANSI X3.135-1992, which is an identical United States standard differing only in some cover
pages. There are three levels of conformance to SQL92: Entry SQL, Intermediate SQL, and Full
SQL. By far, the most common conformance level is Entry SQL.

■Note PostgreSQL is very close to SQL92: Entry SQL conformance, with only a few slight differences.
The developers keep a close eye on standards compliance, and PostgreSQL becomes more compliant with
each release.

Today, just about every useful database system supports SQL to some extent. In theory,
SQL acts as a good unifier, since database applications written to use SQL as the interface to the
database can be ported to other database systems with little cost in terms of time and effort.
Commercial pressures however, dictate that database manufacturers distinguish their products
one from another. This has led to SQL variations, not helped by the fact that the standard for
SQL does not define commands for many of the database administration tasks that are an
essential part of using a database in the real world. So, there are differences between the SQL
used by Oracle, SQL Server, PostgreSQL, and other database systems.

MatthewStones_4789C01.fm Page 8 Tuesday, February 1, 2005 7:25 AM

C H A P T E R 1 ■ I N T R O D U C T I O N T O P O S T G R E S Q L 9

SQL Command Types

The SQL language comprises three types of commands:

• Data Manipulation Language (DML): This is the part of SQL that you will use 90% of the
time. It is made up of the commands for inserting, deleting, updating, and selecting data
from the database.

• Data Definition Language (DDL): These are the commands for creating tables, defining
relationships, and controlling other aspects of the database that are more structural
than data related.

• Data Control Language (DCL): This is a set of commands that generally control permis-
sions on the data, such as defining access rights. Many database users will never use
these commands, because they work in larger company environments where one or
more database administrators are employed specifically to manage the database, and
usually one of their roles is to control permissions.

A Brief Introduction to SQL

You will see a lot of SQL in this book. Here, we will take a brief look at some examples as an
introduction. We will see that we do not need to worry about the formal basis of SQL to be able
to use it.

Here is some SQL for creating a new table in a database. This example creates a table
for customers:

CREATE TABLE customer
(
 customer_id serial,
 title char(4),
 fname varchar(32),
 lname varchar(32) not null,
 addressline varchar(64),
 town varchar(32),
 zipcode char(10) not null,
 phone varchar(16),
);

We state that the table requires an identifier, which will act as a primary key, and that this
is to be generated automatically by the database system. It has type serial, which means that
every time a customer is added, a new, unique customer_id will be created in sequence. The
customer title is a text attribute of four characters, and zipcode has ten characters. The other
attributes are variable-length strings up to a defined maximum length, some of which must be
present (those marked not null).

Next, we have some SQL statements that can be used to populate the table we have just
created. These are very straightforward:

MatthewStones_4789C01.fm Page 9 Tuesday, February 1, 2005 7:25 AM

10 C H A P T E R 1 ■ I N T R O D U C T I O N T O P O S T G R E S Q L

INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
 VALUES('Mr','Neil','Matthew','5 Pasture Lane','Nicetown','NT3 7RT','267 1232');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
 VALUES('Mr','Richard','Stones','34 Holly Way','Bingham','BG4 2WE','342 5982');

The heart of SQL is the SELECT statement. It is used to create result sets that are groups of
records (or attributes from records) that match a particular set of criteria. The criteria can be
quite complex if required. These result sets can then be used as the targets for changes with an
UPDATE statement or deleted with a DELETE statement.

Here are some examples of SELECT statements:

SELECT * FROM customer

SELECT * FROM customer, orderinfo
 WHERE orderinfo.customer_id = customer.customer_id GROUP BY customer_id

SELECT customer.title, customer.fname, customer.lname,
 COUNT(orderinfo.orderinfo_id) AS "Number of orders"
FROM customer, orderinfo
 WHERE customer.customer_id = orderinfo.customer_id
 GROUP BY customer.title, customer.fname, customer.lname

These SELECT statements list all the customers, all the customer orders, and count the
orders each customer has made, respectively. We will see the results of these SQL statements in
Chapter 2, and learn much more about SELECT in Chapter 4.

■Note SQL command keywords such as SELECT and INSERT are case-insensitive, so they can be written
in either uppercase or lowercase. In this book, we have used uppercase to aid readability.

As you read through this book, we will be teaching you SQL, so by the time you get to the
end, you will be comfortable with a wide range of SQL statements and how to use them.

Database Management System Responsibilities
As we stated earlier, a DBMS is a suite of programs that allow the construction of databases and
applications that use them. The responsibilities of a DBMS include the following:

• Creating the database: Some systems will manage one large file and create one or more
databases inside it; others may use many operating system files or use a raw disk partition
directly. Users need not worry about the low-level structure of these files, as the DBMS
provides all of the access developers and users need.

• Providing query and update facilities: A DBMS will have a method of asking for data
that matches certain criteria, such as all orders made by a particular customer that have
not yet been delivered. Before the widespread introduction of the SQL standard, the way
that queries like this were expressed varied from system to system.

MatthewStones_4789C01.fm Page 10 Tuesday, February 1, 2005 7:25 AM

C H A P T E R 1 ■ I N T R O D U C T I O N T O P O S T G R E S Q L 11

• Multitasking: If a database is used in several applications, or is accessed concurrently by
several users at the same time, the DBMS will make sure that each user’s request is
processed without impacting the others. This means that users need to wait in line only
if someone else is writing to the precise item of data that they wish to read (or write). It is
possible to have many simultaneous reads of data going on at the same time. In practice,
different database systems support different degrees of multitasking, and may even have
configurable levels, as we will see in Chapter 9.

• Maintaining an audit trail: A DBMS will keep a log of all the changes to the data for a
period of time. This can be used to investigate errors, but perhaps even more important,
can be used to reconstruct data in the event of a fault in the system, perhaps an unscheduled
power down. A data backup and an audit trail of transactions can be used to completely
restore the database in case of disk failure.

• Managing the security of the database: A DBMS will provide access controls so that only
authorized users can manipulate the data held in the database and the structure of the
database itself (the attributes, tables, and indices). Typically, there will be a hierarchy of
users defined for any particular database, from a superuser who can change anything,
through users with permission to add or delete data, down to users who can only read
data. The DBMS will have facilities to add and delete users, and specify which features of
the database system they are able to use.

• Maintaining referential integrity: Many database systems provide features that help to
maintain referential integrity—the correctness of the data, as mentioned earlier. They
will report an error when a query or update would break the relational model rules.

What Is PostgreSQL?
Now we are in a position to say what PostgreSQL actually is. It is a DBMS that incorporates the
relational model for its databases and supports the SQL standard query language.

PostgreSQL also happens to be very capable and very reliable, and it has good performance
characteristics. It runs on just about any UNIX platform, including UNIX-like systems, such as
FreeBSD, Linux, and Mac OS X. It can also run on Microsoft Windows NT/2000/2003 servers,
or even on Windows XP for development. And, as we mentioned at the beginning of this chapter,
it’s free and open source.

PostgreSQL can be compared favorably to other DBMSs. It contains just about all the
features that you would find in other commercial or open-source databases, and a few extras
that you might not find elsewhere.

PostgreSQL features (as listed in the PostgreSQL FAQ) include the following:

• Transactions

• Subselects

• Views

• Foreign key referential integrity

• Sophisticated locking

MatthewStones_4789C01.fm Page 11 Tuesday, February 1, 2005 7:25 AM

12 C H A P T E R 1 ■ I N T R O D U C T I O N T O P O S T G R E S Q L

• User-defined types

• Inheritance

• Rules

• Multiple-version concurrency control

Since release 6.5, PostgreSQL has been very stable, with a large series of regression tests
performed on each release to ensure its stability. The release of the 7.x series brought conform-
ance to SQL92 closer than ever, and an irksome row-size restriction was removed.

The release of PostgreSQL that we used in this book, version 8, added several new features:

• Native Microsoft Windows version

• Table spaces

• Ability to alter column types

• Point-in-time recovery

PostgreSQL has proven to be very reliable in use. Each release is very carefully controlled,
and beta releases are subject to at least a month’s testing. With a large user community and
universal access to the source code, bugs can get fixed very quickly.

The performance of PostgreSQL has been improving with each release, and the latest
benchmarks show that, in some circumstances, it compares well with commercial products.
Some less fully featured database systems will outperform it at the cost of lower overall function-
ality. Then again, for simple enough applications, so will a flat-file database!

A Short History of PostgreSQL
PostgreSQL can trace its family tree back to 1977 at the University of California at Berkeley
(UCB). A relational database called Ingres was developed at UCB between 1977 and 1985.
Ingres was a popular UCB export, making an appearance on many UNIX computers in the
academic and research communities. To serve the commercial marketplace, the code for
Ingres was taken by Relational Technologies/Ingres Corporation and became one of the first
commercially available RDBMSs.

■Note Today, Ingres has become CA-INGRES II, a product from Computer Associates. Interestingly, it has
been recently released under an Open Source license.

MatthewStones_4789C01.fm Page 12 Tuesday, February 1, 2005 7:25 AM

C H A P T E R 1 ■ I N T R O D U C T I O N T O P O S T G R E S Q L 13

Meanwhile, back at UCB, work on a relational database server called Postgres continued
from 1986 to 1994. Again, this code was taken up by a commercial company and offered for sale
as a product. This time it was Illustra, since swallowed up by Informix. Around 1994, SQL features
were added to Postgres, and its name was changed to Postgres95.

By 1996, Postgres was becoming very popular, and the developers decided to open up its
development to a mailing list, starting what has become a very successful collaboration of
volunteers driving Postgres forward. At this time, Postgres underwent its final name change,
ditching the dated “95” tag for a more appropriate “SQL,” to reflect the support Postgres now
has for the query language standard. PostgreSQL was born.

Today, a team of Internet developers develops PostgreSQL in much the same manner as
other open-source software such as Perl, Apache, and PHP. Users have access to the source
code and contribute fixes, enhancements, and suggestions for new features. The official
PostgreSQL releases are made via http://www.postgresql.org.

Commercial support is available from several companies. See the list at http://
techdocs.postgresql.org/companies.php.

The PostgreSQL Architecture
One of PostgreSQL’s strengths derives from its architecture. In common with commercial
database systems, PostgreSQL can be used in a client/server environment. This has many
benefits for both users and developers.

The heart of a PostgreSQL installation is the database server process. It runs on a single
server. Applications that need to access the data stored in the database are required to do so via
the database process. These client programs cannot access the data directly, even if they are
running on the same computer as the server process.

■Note PostgreSQL does not yet have the high-availability features of a few enterprise-class commercial
database systems that can spread the load across several servers, giving additional scalability and resilience.
There are some PostgreSQL-sanctioned projects underway at http://gborg.postgresql.org that aim
to add these features, and there are some commercial solutions available.

This separation into client and server allows applications to be distributed. You can use a
network to separate your clients from your server and develop client applications in an envi-
ronment that suits the users. For example, you might implement the database on UNIX and
create client programs that run on Microsoft Windows. Figure 1-3 shows a typical distributed
PostgreSQL application.

MatthewStones_4789C01.fm Page 13 Tuesday, February 1, 2005 7:25 AM

14 C H A P T E R 1 ■ I N T R O D U C T I O N T O P O S T G R E S Q L

Figure 1-3. PostgreSQL architecture

In Figure 1-3, you can see several clients connecting to the server across a network. For
PostgreSQL, this needs to be a TCP/IP network—a local area network (LAN) or possibly even
the Internet. Each client connects to the main database server process (shown as postmaster in
Figure 1-3), which creates a new server process specifically for servicing access requests for this
client.

Concentrating the data handling in a server, rather than attempting to control many clients
accessing the same data stored in a shared directory on a server, allows PostgreSQL to efficiently
maintain the data’s integrity, even with many simultaneous users.

The client programs connect using a message protocol specific to PostgreSQL. It is possible,
however, to install software on the client that provides a standard interface for the application
to work to, such as the Open Database Connectivity (ODBC) standard or the Java Database
Connectivity (JDBC) standard used by Java programs. The availability of an ODBC driver allows
many existing applications to use PostgreSQL as a database, including Microsoft Office products
such as Excel and Access. You will see examples of different PostgreSQL connection methods
in Chapters 3, 5, and 13 through 18.

The client/server architecture for PostgreSQL allows a division of labor. A server machine
well suited to the storage and access of large amounts of data can be used as a secure data
repository. Sophisticated graphical applications can be developed for the clients. Alternatively,
a web-based front-end can be created to access the data and return results as web pages to a
standard web browser, with no additional client software at all. We will return to these ideas in
Chapters 5 and 15.

MatthewStones_4789C01.fm Page 14 Tuesday, February 1, 2005 7:25 AM

C H A P T E R 1 ■ I N T R O D U C T I O N T O P O S T G R E S Q L 15

Data Access with PostgreSQL
With PostgreSQL, you can access your data in several ways:

• Use a command-line application to execute SQL statements. We will do this throughout
the book.

• Embed SQL directly into your application (using embedded SQL). We will see how to do
this for C applications in Chapter 14.

• Use function calls (APIs) to prepare and execute SQL statements, scan result sets, and
perform updates from a large variety of different programming languages. Chapter 13
covers C language APIs for PostgreSQL.

• Access the data in a PostgreSQL database indirectly using a driver such as ODBC (see
Chapter 3) or the JDBC standard (see Chapter 17), or by using a standard library such as
Perl’s DBI (see Chapter 16).

What Is Open Source?
As we start the twenty-first century, much is being made of open-source software, of which
PostgreSQL is such a good example. But what does open source mean exactly?

The term open source has a very specific meaning when applied to software. It means that
the software is supplied with the source code included. It does not necessarily mean that there
are no conditions applied to the software’s use. It is still licensed in that you are given permission to
use the software in certain ways.

An Open Source license will grant you permission to use the software, modify it, and redis-
tribute it without paying license fees. This means that you may use PostgreSQL in your
organization as you see fit.

If you have problems with open-source software, because you have the source code, you
can either fix them yourself or give the code to someone else to try to fix. There are now many
commercial companies offering support for open-source products, so that you do not have to
feel neglected if you choose to use an open-source product.

There are many different variations on Open Source licenses, some more liberal than others.
All of them adhere to the principle of source code availability and allowing redistribution.

The most liberal license is the Berkeley Software Distribution (BSD) license, which says in
effect, “Do what you will with this software. There is no warranty.” The license for PostgreSQL
(http://www.postgresql.org/about/licence) echoes the BSD license sentiments and takes the
form of a copyright statement that says, “Permission to use, copy, modify, and distribute this
software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following
two paragraphs appear in all copies.” The paragraphs that follow this statement disclaim
liability and warranty.

MatthewStones_4789C01.fm Page 15 Tuesday, February 1, 2005 7:25 AM

16 C H A P T E R 1 ■ I N T R O D U C T I O N T O P O S T G R E S Q L

Resources
There are many printed and online sources of further information about databases in general
and about PostgreSQL.

For more on the theory of databases, check out the Database Theory section of David Frick’s
site at http://www.frick-cpa.com/ss7/default.htm.

The official PostgreSQL site is http://www.postgreSQL.org, where you can find more on
the history of PostgreSQL, download copies of PostgreSQL, browse the official documentation,
and much more besides (including learning how to pronounce PostgreSQL).

PostgreSQL is also the foundation of the former Red Hat Database, now known as PostgreSQL-
Red Hat Edition. You can find more on this version of PostgreSQL and tools developed for it
by Red Hat at http://sources.redhat.com/rhdb/.

For more information about open-source software and the principle of freedom in software,
take a few moments to visit these two sites: http://www.gnu.org and http://www.opensource.org.

MatthewStones_4789C01.fm Page 16 Tuesday, February 1, 2005 7:25 AM

17

■ ■ ■

C H A P T E R 2

Relational Database Principles

In this chapter, we will examine what makes a database system, particularly a relational one
like PostgreSQL, so useful for real-world data. We will start by looking at spreadsheets, which
have much in common with relational databases but also have significant limitations. We will
learn how a relational database, such as PostgreSQL, has many advantages over spreadsheets.
Along the way, we will continue our rather informal look at SQL.

In particular, this chapter will cover the following topics:

• Spreadsheets: their problems and limitations

• How databases store data

• How to access data in a database

• Basic database design, with multiple tables

• Relationships between tables

• Some basic data types

• The NULL token, used to indicate an unknown value

Limitations of Spreadsheets
Spreadsheet applications, such as Microsoft Excel, are widely used as a way of storing and
inspecting data. It’s easy to sort the data in different ways, and see the features and patterns in
the data just by looking at it.

Unfortunately, people often mistake a tool that is good for inspecting and manipulating
data for a tool suitable for storing and sharing complex and perhaps business-critical data. The
two needs are often very different.

Most people will be familiar with one or more spreadsheets and quite at home with data
being arranged in a set of rows and columns. Figure 2-1 shows a typical example—an OpenOffice
(http://www.openoffice.org/) spreadsheet holding data about customers.

MatthewStones_4789C02.fm Page 17 Monday, January 24, 2005 4:18 PM

18 C H A P T E R 2 ■ R E LA T I O N A L D A T A B A S E P R I N C I P LE S

Figure 2-1. A simple spreadsheet

Certainly, such information is easy to see and modify. Each customer has a separate row,
and each piece of information about the customer is held in a separate column, as labeled in
Figure 2-2. The intersection of a column and a row is a cell.

Figure 2-2. Some spreadsheet terminology

MatthewStones_4789C02.fm Page 18 Monday, January 24, 2005 4:18 PM

C H A P T E R 2 ■ R E L A T I O N A L D A T A B A S E P R I N C I P L E S 19

This simple spreadsheet incorporates several features that will be handy to remember
when we start designing databases. For example, the first and last names are held in separate
columns, which makes it easy to sort the data by last name if required.

So what is wrong with storing customer information in a spreadsheet? Spreadsheets are
fine, as long as you:

• Don’t have too many customers

• Don’t have many complex details for each customer

• Don’t need to store any other repeating information, such as the various orders each
customer has placed

• Don’t want several people to be able to update the information simultaneously

• Do ensure the spreadsheet gets backed up regularly if it holds important data

Spreadsheets are a fantastic idea, and they are great tools for many types of problems.
However, just as you wouldn’t (or at least shouldn’t) try to hammer in a nail with a screwdriver,
sometimes spreadsheets are not the right tool for the job.

Just imagine what it would be like if a large company, with tens of thousands of customers,
kept the master copy of its customer list in a simple spreadsheet. In a big company, it’s likely
that several people would need to update the list. Although file locking can ensure that only
one person updates the list at any one time, as the number of people trying to update the list
grows, they will spend longer and longer waiting for their turn to edit the list. What we would
like is to allow many people to simultaneously read, update, add, and delete rows, and let the
computer ensure there are no conflicts. Clearly, simple file locking will not be adequate to effi-
ciently handle this problem.

Another problem with spreadsheets is their strict two dimensions. Suppose we also wanted
to store details of each order a customer placed. We could start putting order information next
to each customer, but as the number of orders per customer grew, the spreadsheet would get
more and more complex. Consider the outcome when we start trying to add some basic order
information for each customer, as shown in Figure 2-3.

Unfortunately, it’s not looking quite so elegant anymore. We now have rows of arbitrary
length, which does not give us an easy way to calculate how much each customer has spent
with us. Eventually, we will exceed the number of columns allowed in each row. It’s the repeating
groups problem we saw in the previous chapter. Multiple sheets inside a spreadsheet can help,
but they are not an ideal solution to the problem.

MatthewStones_4789C02.fm Page 19 Monday, January 24, 2005 4:18 PM

20 C H A P T E R 2 ■ R E LA T I O N A L D A T A B A S E P R I N C I P LE S

Figure 2-3. Spreadsheet with repeating order information

A SPREADSHEET CHALLENGE

Here is an example of how easily you can exceed the capabilities of a spreadsheet. An acquaintance was trying
to set up a spreadsheet as a favor for friends who run a small business. This small business makes leather
items, and the price of the item depended not only on the time and effort required to make the item, but also
on the unit cost of the leather used in the manufacture. The owners would buy leather in batches of different
types, each of which would have a unit price that varied significantly depending on both the grade and the
timing of the purchase. Then they would use their stock on a first in, first used basis as they made items for
sale, normally many per batch of leather purchased. The challenge was to create a spreadsheet to do the following:

• Track the overall current stock value.

• Track how many batches of leather are in stock of each grade.

• Track how much had been paid for the batch and grade currently being used on a particular item
being made.

After days of effort, they discovered that this apparently straightforward stockkeeping requirement is a
surprisingly difficult problem to transfer to a spreadsheet. The variable nature of the number of stock records
does not fit well with the spreadsheet philosophy.

The point we are making here is that spreadsheets are great in their place, but there are limits to their
usefulness.

MatthewStones_4789C02.fm Page 20 Monday, January 24, 2005 4:18 PM

C H A P T E R 2 ■ R E L A T I O N A L D A T A B A S E P R I N C I P L E S 21

Storing Data in a Database
When you look at it superficially, a relational database, such as PostgreSQL, has many similar-
ities to a spreadsheet. However, when you know about a database’s underlying structure, you
can see that it is much more flexible, principally because of its ability to relate tables together
in complex ways. It can efficiently store much more complex data than a spreadsheet, and it
also has many other features that make it a better choice as a data store. For example, a data-
base can manage multiple simultaneous users.

Let’s first look at storing our simple, single-sheet customer list in a database, to see what
benefits this might have. Later in the chapter, we will extend this and see how PostgreSQL can
help us solve our customer orders problem.

As we saw in the previous chapter, databases are made up of tables, or in more formal
terminology, relations. We will stick to using the term tables in this book. A table contains rows
of data (more formally called tuples), and each data row consists of a number of columns, or
attributes.

First, we need to design a table to hold our customer information. The good news is that a
spreadsheet of data is often an almost ready-made solution, since it holds the data in a number
of rows and columns. To get started with a basic database table, we need to decide on three things:

• How many columns do we need to store the attributes associated with each item?

• What type of data goes in each attribute (column)?

• How can we distinguish different rows containing different items?

Note that the order of rows doesn’t matter in a database table. In a spreadsheet, the order
of the rows is normally very important, but in a database table, there is no order. That’s because
when you ask to look at the data in a database table, the database is free to give you the rows of
data in any order it chooses, unless you specifically ask for it ordered in a particular way. If you
need to see the data in a particular order, you achieve this by the way it is retrieved from the
database, rather than how it is stored. We will see how to retrieve ordered data in Chapter 4,
when we look at the ORDER BY clause of the SELECT statement.

Choosing Columns
If you look back at our original spreadsheet for our customer information in Figure 2-1, you can
see that we have already decided on what seems a sensible set of columns for each customer:
first name, last name, ZIP code, and so on. So, we’ve already answered the question of how
many columns we should have.

An important difference between spreadsheet rows and database rows is that the number
of columns in a database table must be the same for all the rows. That’s not a problem in our
original version of the spreadsheet.

Choosing a Data Type for Each Column
The second criterion is to determine what type of data goes in each column. While spreadsheets
allow each cell to have a different type, in a database table, each column must have the same

MatthewStones_4789C02.fm Page 21 Monday, January 24, 2005 4:18 PM

22 C H A P T E R 2 ■ R E LA T I O N A L D A T A B A S E P R I N C I P LE S

type. Just like most programming languages, databases use types to classify different data values.
Most of the time, the basic types are all you need to know. The main choices are integer numbers,
floating-point numbers, fixed-length text, variable-length text, and dates. Often, the easiest
way to decide the appropriate type is simply to look at some sample data.

In our customer data, it might be appropriate to use a text type for all the columns, even
though the phone numbers are numbers. Storing the phone number as a simple number often
presents some problems: it could easily result in the loss of leading zeros, prevent us from
storing international dial codes (+), disallow using brackets around area codes, and so on.
Obviously, a phone number can be much more than a simple string of numerals. Then again,
using a character string to store the phone number might not be the best decision, since we
could also accidentally store all sorts of strange characters, but it seems a better starting
point than a number type. The initial design can always be refined later.

We can see that the length of the title (Mr, Mrs, Dr) is always very short—probably never
longer than four characters. Similarly, ZIP codes also have a fixed maximum length. Therefore,
we will make both of these columns fixed-length fields, but leave all the other columns as
variable length, since there is no easy way of knowing how long a person’s last name might be,
for example.

We will come back to PostgreSQL data types in the “Basic Data Types” section later in this
chapter and also in Chapter 8.

Identifying Rows Uniquely
Our last problem in transforming our spreadsheet into a database table is a little more subtle,
as it comes from the way databases manage relations between tables. We need to decide what
makes each row of customer data different from any other customer row in the database. In
other words, how do we tell our customers apart? In a spreadsheet, we tend not to worry about
the exact details of what distinguishes customers. However, in a database design, this is a key
question, since relational database rules require each row to be unique in some way.

The obvious solution to distinguishing customers might seem to be by name, but unfortu-
nately, that’s often not good enough. It is quite possible that two customers will have the same
name. Another item you might choose is the phone number, but that fails when two customers
live at the same address. At this point, you might suggest using a combination of name and
phone number.

Certainly, it’s unlikely that two customers will have both the same name and the same
phone number, but quite apart from being inelegant, another problem is lurking. What happens
if a customer changes to a new phone provider and subsequently the phone number changes?
By our definition, a unique customer must then be a new customer, because it is different from
the customer we had before. Of course, we know that it is the same customer, with a new phone
number. In a database, it’s generally bad practice to pick a unique identifying feature for a
customer that might subsequently change, as it’s hard to manage changes to unique identifiers.

This sort of problem, identifying uniqueness, turns up frequently in database design. What
we have been doing is looking for a primary key—an easy way to distinguish one row of customer
data from all the other rows. Unfortunately, we have not yet succeeded, but all is not lost, since
the standard solution is to assign a unique number to each customer.

MatthewStones_4789C02.fm Page 22 Monday, January 24, 2005 4:18 PM

C H A P T E R 2 ■ R E L A T I O N A L D A T A B A S E P R I N C I P L E S 23

We simply give each customer a unique number, and bingo, we have a distinct way to tell
customers apart, regardless of whether they change their phone number, move to a new resi-
dence, or even change their name. This type of addition to a row to provide a unique key when
no good choice exists in the actual data is called adding a surrogate key. This is such a common
occurrence in real-world data that there is even a special data type in most databases, the
serial data type, to help solve the problem. We will discuss this type later in the chapter, in the
“Basic Data Types” section.

Now that we have decided on a database design for our initial table, it’s time to store our
data in a database. Figure 2-4 shows our data in a PostgreSQL database being viewed using a
simple command-line tool, psql, in a terminal window on a Linux machine.

Figure 2-4. Command-line viewing of customer data from a database

Notice that we have added an extra column, customer_id, as our unique way of referencing
a customer. It is our primary key for the table. As you can see, the data looks much as it did in a
spreadsheet, laid out in rows and columns. In later chapters, we will explain the actual mechanics
of defining a database table, storing, and accessing the data, but rest assured, it’s not difficult.

Accessing Data in a Database
You can easily view your PostgreSQL data using the psql tool from the command line, as you
saw in Figure 2-4. However, PostgreSQL is not restricted to command-line use. Figure 2-5
shows the more user-friendly graphic approach of pgAdmin III, a free tool available from
http://www.pgadmin.org/, and also bundled with the Windows distributions of PostgreSQL
from version 8. We will see more about graphical interfaces in Chapter 5.

MatthewStones_4789C02.fm Page 23 Monday, January 24, 2005 4:18 PM

24 C H A P T E R 2 ■ R E LA T I O N A L D A T A B A S E P R I N C I P LE S

Figure 2-5. Viewing customer data from a database with pgAdmin III

Accessing Data Across a Network
Of course, if we could only access our data on the machine on which it was physically stored,
the situation really wouldn’t have improved much over the single spreadsheet file being shared
among different users.

PostgreSQL is a server-based database, and as described in the previous chapter, once
configured, will accept requests from clients across a network. Although the client can be on
the same machine as the database server, for multiuser access, this won’t normally be the case.
For Microsoft Windows users, an ODBC driver is available, so we can arrange to connect any
Windows desktop application that supports ODBC across a network to a server holding our
data. Figure 2-6 shows Microsoft Access on a Windows PC accessing a PostgreSQL database
running on a Linux machine. This is done using linked external tables via an ODBC connection
across the network.

MatthewStones_4789C02.fm Page 24 Monday, January 24, 2005 4:18 PM

C H A P T E R 2 ■ R E L A T I O N A L D A T A B A S E P R I N C I P L E S 25

Figure 2-6. Accessing the same data from Microsoft Access

Now we can access the same data from many machines across the network at the same
time. We have one copy of the data, securely held on a central server, accessible to multiple
desktops running different operating systems, across a network.

We will see the technical details of configuring an ODBC connection in Chapter 5.

Handling Multiuser Access
PostgreSQL, like all relational databases, can automatically ensure that conflicting updates to
the database can never occur. It looks to the users as though they all have unrestricted access
to all the information at the same time, but behind the scenes, PostgreSQL is monitoring changes
and preventing conflicting updates.

This ability to allow many people to apparently have simultaneous read and write access
to the same data, but ensure that it remains consistent, is a very important feature of databases.
When a user changes a column, you either see it before it changes or after it changes; you never
see partial updates.

A classic example is a bank database transferring money between two accounts. If, while
the money was being transferred, someone were to run a report on the amount of money in all
the accounts, it’s very important that the total be correct. It may not matter in the report which
account the money was in at the instant the report was run, but it is important that the report
doesn’t see the in-between point, where one account has been debited but the other not credited.

MatthewStones_4789C02.fm Page 25 Monday, January 24, 2005 4:18 PM

26 C H A P T E R 2 ■ R E LA T I O N A L D A T A B A S E P R I N C I P LE S

Relational databases like PostgreSQL hide any intermediate states, so they cannot be seen
by other users. This is termed isolation. The report operation is isolated from the money-transfer
operation, so it appears to happen either before or after, but never at exactly the same instant.
We will come back to this concept of isolation in Chapter 9 when we look at Transactions.

Slicing and Dicing Data
Now that we have seen how easy it is to access the data once it is in a database table, let’s have
a first look at how we might actually process that data. We frequently need to perform two very
basic operations on big sets of data: selecting rows that match a particular set of values and
selecting a subset of the columns of the data. In database terminology, these are called selection
and projection respectively. That may sound somewhat complex, but accomplishing selection
and projection is actually quite simple.

Selection

Let’s start by looking at selection, where we are selecting a subset of the rows. Suppose we want
to see all our customers who live in the town Bingham. Let’s return to PostgreSQL’s standard
command-line tool, psql, to see how we can use the SQL language to ask PostgreSQL to get the
data we want. The SQL command we need is very simple:

SELECT * FROM customer WHERE town = 'Bingham'

If you are typing in your SQL statements (using a command-line tool like psql or a graph-
ical tool such as pgAdmin III), you also need to add a semicolon at the end. The semicolon tells
psql that this is the end of a command, because longer commands might extend over more
than one line. Generally, in this book, we will show the semicolon.

PostgreSQL responds by returning all the rows in the customer table, where the town column
contains Bingham, as shown in Figure 2-7.

Figure 2-7. Selecting a subset of the data rows

MatthewStones_4789C02.fm Page 26 Monday, January 24, 2005 4:18 PM

C H A P T E R 2 ■ R E L A T I O N A L D A T A B A S E P R I N C I P L E S 27

So that was selection, where we choose particular rows from a table. As you can see, that
was pretty easy. Don’t worry about the details of the SQL statement yet. We will come back to
that more formally in Chapter 5.

Projection

Now let’s look at projection, where we are selecting particular columns from a table. Suppose
we wanted to select just the first name and last names from our customer table. You will remember
that we called those columns fname and lname. The command to retrieve the names is also quite
simple:

SELECT fname, lname FROM customer;

PostgreSQL responds by returning the appropriate columns, as shown in Figure 2-8.

Figure 2-8. Selecting a subset of the data columns

You might reasonably suppose that sometimes we want to do both operations on the data
at the same time; that is, select particular column values but only from particular rows. That’s
pretty easy in SQL as well. For example, suppose we wanted to know only the first names and
last names of all our customers who live in Bingham. We can simply combine our two SQL
statements into a single command:

SELECT fname, lname FROM customer WHERE town = 'Bingham';

PostgreSQL responds with our requested data, as shown in Figure 2-9.

MatthewStones_4789C02.fm Page 27 Monday, January 24, 2005 4:18 PM

28 C H A P T E R 2 ■ R E LA T I O N A L D A T A B A S E P R I N C I P LE S

Figure 2-9. Selecting a subset of both columns and rows

There is one very important thing to notice here. In many traditional programming languages,
such as C or Java, when searching for data in a file, we would have written some code to scan
through all the lines in the file, printing out names each time we came across one with the town
we were searching for. Although it might be possible to squeeze that much logic onto a physical
single line of code, it would be a very long and complex line, unlike the succinct line of SQL
shown here. This is because C, Java, and similar languages are essentially procedural languages.
You specify in the language how the computer should behave. In SQL, which is termed a
declarative language, you tell the computer what you are trying to achieve, and PostgreSQL
works some internal magic to handle this task for you.

This might seem a little strange if you have never used a declarative language before, but
once you get used to the idea, it seems obvious that it’s a much better idea to tell the computer
what you want, rather than how to do it. You will wonder how you have managed without such
languages till now.

Adding Information
So far, all we have looked at is our database emulating a single worksheet in a spreadsheet, and
we’ve just touched the surface of SQL’s features. As we will see in this book, however, relational
databases such as PostgreSQL are very rich in useful features, which take them well beyond the
realms of spreadsheet capabilities. One of the most important capabilities of databases is their
ability to link data together across tables, and that is what we will look at now.

Using Multiple Tables
Recall our customer order problem, where our simple customer spreadsheet suddenly became
very untidy once additional order information was stored for each customer. How do we store
information about orders from customers when we don’t know in advance how many orders a
customer might make? As you can probably guess from the title of this section, the way to solve
this problem with a relational database is to add another table to store this information.

MatthewStones_4789C02.fm Page 28 Monday, January 24, 2005 4:18 PM

C H A P T E R 2 ■ R E L A T I O N A L D A T A B A S E P R I N C I P L E S 29

Just as we designed our customer table, we start by deciding what information we want to
store about each order. For now, let’s assume that we want to store the name of the customer
who placed the order, the date the order was placed, the date it was shipped, and how much we
charged for delivery. As in our customer table, we will also add a unique reference number for
each order, rather than try to make any assumptions about what might be unique. There is
obviously no need to store all the customer details again. We already know that given a
customer_id, we can find all the details of that customer in the customer table.

You might be wondering why we’ve omitted the details of what was ordered. Certainly,
that is an important aspect of orders to most customers—they like to get what they ordered.
If you’re thinking that it’s a similar problem to not knowing in advance how many orders a
customer will place, you’re quite right. We have no idea how many items will be on each order.
The repeating groups problem is never far away. We will leave this aside for now and deal with
it in the “Creating a Simple Database Design” section later in this chapter.

Figure 2-10 shows our order information table with some sample data, again shown in the
graphical tool, pgAdmin III.

Figure 2-10. Some order information viewed in pgAdmin III

We haven’t put too much data in the table, as it is easier to experiment on smaller amounts
of data. You will notice an extra column, oid, which isn’t part of our user data. This is a special
column used internally by PostgreSQL. The current version of PostgreSQL defaults to creating
this column on all tables, but hides it from the SELECT * command. We will discuss this column
in Chapter 8.

Relating a Table with a Join Operation
Now we have details of our customers, and at least summary details of their orders, stored in
our database. In many ways, this is no different from using a pair of spreadsheets: one for our
customer details and one for their order details. It’s time to look at what we can do using these
tables in combination, and start to see the power of databases. We do this by selecting data
from both tables at the same time. This is called a join, which, after selection and projection
from a single table, is the third most common SQL data-retrieval operation.

MatthewStones_4789C02.fm Page 29 Monday, January 24, 2005 4:18 PM

30 C H A P T E R 2 ■ R E LA T I O N A L D A T A B A S E P R I N C I P LE S

Suppose we want to list all the orders and the customers who placed them. In a procedural
language, such as C, we would need to write code to scan one of the tables, perhaps starting
with the customer table, then for each customer, we look for and print out any orders they have
placed. That’s not difficult, but it’s certainly a bit time-consuming and tedious to code. I’m sure
you will be pleased to know we can find the answer much more easily with SQL, using a join
operation. All we need to do is tell SQL three things:

• The columns we want

• The tables we want the data retrieved from

• How the two tables relate to each other

The command we need is the example presented in the previous chapter:

SELECT * FROM customer, orderinfo
 WHERE customer.customer_id = orderinfo.customer_id;

As you can probably guess, this asks for all columns from our two tables, and tells SQL that
the column customer_id in the table customer holds the same information as the customer_id
column in the orderinfo table. Note the convenient table.column notation, which enables us
to specify both a table name and a column within that table. The * in our command means all
columns. We could instead use named columns to select only specified columns, if we just
wanted names and amounts, for example.

Now that we have a database with some tables and data, we can see how PostgreSQL
responds in Figure 2-11.

Figure 2-11. Selecting data from two tables in one operation

MatthewStones_4789C02.fm Page 30 Monday, January 24, 2005 4:18 PM

C H A P T E R 2 ■ R E L A T I O N A L D A T A B A S E P R I N C I P L E S 31

This is a bit untidy, since the rows wrap to fit in the window, but you can see how PostgreSQL
has answered our query, without us needing to specify exactly how to solve the problem.

Let’s leap ahead briefly, and see a much more complex query we could perform using SQL
on these two tables. Suppose we wanted to see how frequently different customers had placed
orders with us. This requires a significantly more advanced bit of SQL:

SELECT customer.title, customer.fname, customer.lname,
 count(orderinfo.orderinfo_id) AS "Number of orders"
FROM customer, orderinfo
WHERE customer.customer_id = orderinfo.customer_id
GROUP BY customer.title, customer.fname, customer.lname;

That’s a complex bit of SQL, but without going into the details, you can see that we still
have not told SQL how to answer the question; we’ve just specified the question in a very precise
way using SQL. We also managed it all in a single statement. For the record, Figure 2-12 shows
how PostgreSQL responds.

Figure 2-12. Retrieving order frequency

Some database experts may like typing SQL directly into a window using a command-line
tool, and it certainly is useful sometimes, but it’s not everyone’s preference. If you prefer to
build your queries graphically, that’s not a problem. As noted earlier in this chapter, you can
simply access the database via an ODBC driver and use a Windows graphical user interface
(GUI), for example. Figure 2-13 shows the same query being designed and executed in Access
on a Windows machine, using the PostgreSQL ODBC driver and linked external tables. We will
see some other GUI tools, such as Rekall running on a Linux desktop, in Chapter 5.

MatthewStones_4789C02.fm Page 31 Monday, January 24, 2005 4:18 PM

32 C H A P T E R 2 ■ R E LA T I O N A L D A T A B A S E P R I N C I P LE S

Figure 2-13. Building a query graphically

In our particular environment, the data is still stored on a Linux machine, but the user
hardly needs to be aware of the technical details. Generally, in this book, we will use the command
line for teaching SQL, because that way you will learn the basics before moving on to more
complex SQL commands. Of course, you are welcome to use a GUI rather than a command-
line tool to construct your SQL commands; it’s your choice.

Designing Tables
So far, we have only two tables in our database, and we have not really talked about how we
decide what goes in each table, except in the very informal way of doing what looked reasonable.
This design, which includes tables, columns, and relationships, is more correctly called a schema.

MatthewStones_4789C02.fm Page 32 Monday, January 24, 2005 4:18 PM

C H A P T E R 2 ■ R E L A T I O N A L D A T A B A S E P R I N C I P L E S 33

Designing a database schema with more than a couple of dozen tables can be quite
challenging if the data is complex. Database designers earn their money by being good at this
difficult task. Fortunately, for relatively simple databases, with up to perhaps ten tables, it’s
possible to come up with a fairly good design just by applying some basic rules of thumb, rather
than needing to apply rules in a more formal way.

In this section, we are going to look at the simple sample database we are starting to build,
and figure out a way to decide what tables we need.

Understanding Some Basic Rules of Thumb
When a database is designed, it is often normalized; that is, a set of rules is applied to ensure
that data is broken down in an appropriate fashion. In Chapter 12, we will look at database
design in a formal way. To get started, all we require are some simple ground rules. These rules
are just to help you understand the initial database, named bpsimple, we will be using to explore
SQL and PostgreSQL in this and the following chapters. We strongly suggest that you don’t just
read these rules, and then dash off to design a database with 20 tables. Work your way through
the book—at least until Chapter 12.

■Tip If you’re interested in learning more about normal forms, we suggest Joe Celko’s SQL for Smarties
(ISBN 1-55860-576-2). It has some excellent definitions of the various rules of normalization, as well as other
rules Dr. E. F. Codd defined for the relational model and many advanced examples of SQL usage.

Rule One: Break Down the Data into Columns

The first rule is to put only one piece of information, or data attribute, in each column. This
comes naturally to most people, provided they consciously think about it. In our original
spreadsheet, we have already quite naturally broken down the information for each customer
into different columns, so the name was separate from the ZIP code, for example.

In a spreadsheet, this rule just makes it simpler to work on the data; for example, to sort by
the ZIP code. In a database, however, it is essential that the data is correctly broken down into
attributes.

Why is this so important in databases? From a practical point of view, it is difficult to
specify that you want the data between the twenty-ninth and thirty-fifth characters from an
address column, because that happens to be where the ZIP code lives. There is bound to be
some place where the rule does not hold, and you get the wrong piece of data. Another reason
for the data to be correctly broken down is that all columns in a database must have the same
type, unlike a spreadsheet, which is quite forgiving about the types of data in a column.

Rule Two: Have a Unique Way of Identifying Each Row

You will remember that when we tried to decide how to identify each row in the spreadsheet
example at the beginning of this chapter, we had a problem of not being sure what would be
unique. As was mentioned, this was because there was no primary key. In general, it doesn’t
need to be a single column that is unique; it could be a pair of columns taken together,

MatthewStones_4789C02.fm Page 33 Monday, January 24, 2005 4:18 PM

34 C H A P T E R 2 ■ R E LA T I O N A L D A T A B A S E P R I N C I P LE S

or occasionally even the combination of three columns that uniquely identifies a row. It is rare,
and probably a mistake, if you find yourself requiring more than three columns to uniquely
identify a row.

In any case, there must be a way of saying, with absolute certainty, if I look at the contents
of a particular column, or group of columns in this row, I know it will have a value different
from all other rows in this table. If you cannot find a column, or at most a combination of three
columns, that uniquely identifies each row, it’s time to add an extra column to fulfill that purpose.
In our customer table, we added an extra column, customer_id, to identify each row.

Rule Three: Remove Repeating Information

Recall that when we tried to store order information in the customer table, it looked rather
untidy because of the repeating groups. For each customer, we repeated order information as
many times as was required. This meant that we could never know how many columns were
needed for orders. In a database, the number of columns in a table is effectively fixed by the
design. So we must decide in advance how many columns we need, what type they are, and
name each column before we can store any data. Never try to store repeating groups of data in
a single row.

The way around this restriction is to do exactly what we did with our orders and customers
data: split the data into separate tables. Then you can join the tables together when you need
data from both tables. In our example, we used the column customer_id to join the two tables.

More formally, what we had was a many-to-one relationship; that is, there could be many
orders received from a single customer.

Rule Four: Get the Naming Right

This is occasionally the hardest rule to implement well. What do we call a table or column?
Tables and columns should have short, meaningful names. If you cannot decide what to call
something, it’s often a clue that all is not well in your table and column design.

In addition to coming up with appropriate names, most database designers have their
own personal rules of thumb, or naming conventions, that they use to ensure the naming of
tables and columns in a database is consistent. Don’t have some table names singular and
some plural. For example, rather than naming one table office and the other departments, use
office and department. If you decide on a naming rule for an id column—perhaps the table
name with an appended _id—stick to that rule. If you use abbreviations, always use them
consistently. If a column in one table is a key to another table (a foreign key, as explained in
Chapter 12), try to give them the same base name. In a complex database, it can get very
annoying when names are not quite consistent, such as customer_id, customer_ident, cust_id,
and cust_no.

Achieving this apparently simple goal of getting the names right is often surprisingly chal-
lenging, but the rewards in simplified maintenance are considerable.

Creating a Simple Database Design
We can draw our database design, or schema, using an entity relationship diagram. For our
two-table database, such a diagram might look like Figure 2-14.

MatthewStones_4789C02.fm Page 34 Monday, January 24, 2005 4:18 PM

C H A P T E R 2 ■ R E L A T I O N A L D A T A B A S E P R I N C I P L E S 35

■Note An entity relationship diagram is a graphical way of representing the logical structure of our data.
It helps us visualize how the different entities in our data relate to each other.

Figure 2-14. A simple entity relationship diagram

This diagram shows our two tables, the column, the data types, and the sizes in each column,
and also tells us that customer_id is the column that joins the two tables together. Notice that
the arrow goes from the orderinfo table to the customer table. This is a hint that for each
orderinfo entry, there is at most a single entry in the customer table, but that for each customer
there may be many orders. Also notice that some columns are underlined, which indicates that
the column is guaranteed to be unique. These columns form the primary key for the tables.

It’s important that you remember which way a one-to-many relationship goes; getting it
confused can cause a lot of problems. You should also notice that we have been very careful to
name the column we want to use to join the two tables the same in each table: customer_id.
This is not essential. We could have called the two columns foo and bar if we had wanted to,
but, as noted in the previous section, consistent naming is a great help in the long run.

The next stage is to extend our very simple two-table design into something slightly more
realistic. We will design it as a simple order-management database, called bpsimple.

Extending Beyond Two Tables
Clearly, the information we have so far is lacking, in that we don’t know what items were in
each order. You may remember that we deliberately omitted the actual items from each order,
promising to come back to that problem. It’s now time to sort out the actual items in each order.

MatthewStones_4789C02.fm Page 35 Monday, January 24, 2005 4:18 PM

36 C H A P T E R 2 ■ R E LA T I O N A L D A T A B A S E P R I N C I P LE S

The problem we have is that we don’t know in advance how many items there will be in
each order. It’s almost the same as not knowing in advance how many orders a customer might
place. Each order might have one, two, three, or a hundred items in it. We must separate the
information that a customer placed an order from the details of what was in that order. Basically,
what we might try is something like what is shown in Figure 2-15.

Figure 2-15. An attempt at relating customers and ordered items

Much like the customer and orderinfo tables, we separate the information into two tables,
and then join them together. We have, however, created a subtle problem here.

If you think carefully about the relationship between an order and an item that may be
ordered, you will realize that not only could each orderinfo entry relate to many items, but
each item could also appear in many orders, if different customers order the same item.

We will consider this problem further in Chapter 12, but for now, you will be pleased to
know that there is a standard solution to this difficulty. You create a third table between the two
tables, which implements a many-to-many relationship. This is actually easier to do than it is
to explain, so let’s just go ahead and create a table, orderline, to link the orders with the items,
as shown in Figure 2-16.

We have created a table that has rows corresponding to each line of an order. For any
single line, we can determine the order it was from using the orderinfo_id column and the
item referenced using the item_id column. A single item can appear in many order lines, and a
single order can contain many order lines. Each order line refers to only a single item, and it
can appear in only a single order.

MatthewStones_4789C02.fm Page 36 Monday, January 24, 2005 4:18 PM

C H A P T E R 2 ■ R E L A T I O N A L D A T A B A S E P R I N C I P L E S 37

Figure 2-16. Relating customers and orders

You will also notice that we did not need to add a unique id column to identify each row.
That is because the combination of orderinfo_id and item_id is always unique. There is one
very subtle problem lurking, however. What happens if a customer orders two of an item in
a single order? We cannot just enter another row in orderline, because we just said that the
combination of orderinfo_id and item_id is always unique. Do we need to add yet another
special table to cater to orders that contain more than one of any item? Fortunately, we don’t
need to do this. There is a much simpler approach. We just need to add a quantity column to
the orderline table, and all will be well (see Figure 2-17, in the following section).

Completing the Initial Design
We have just two more pieces of information we need to store before we have the main struc-
ture of the first cut of our database design in place. We want to store the barcode that goes with
each product, and we also want to store the quantity we have in stock for each item.

It’s possible that each product will have more than one barcode, because when manufac-
turers significantly change the packaging of a product, they often also change the barcode. For
example, you have probably seen packs that offer “20% extra for free” (often referred to in the
trade as overfill packs). Manufacturers will generally change the barcode of these promotion
packs, but essentially the product is unchanged. Therefore, we may have a many barcodes-to-
one item relationship. We add an additional table to hold the barcodes, as shown in Figure 2-17.

MatthewStones_4789C02.fm Page 37 Monday, January 24, 2005 4:18 PM

38 C H A P T E R 2 ■ R E LA T I O N A L D A T A B A S E P R I N C I P LE S

Figure 2-17. Adding the barcode relationship

Notice that the arrow points from the barcode table to the item table, because there may be
many barcodes for each item. Also notice that the barcode_ean column is the primary key, since
there must be a unique row for each barcode, and a single item could have several barcodes,
but no barcode can ever belong to more than one item. (EAN is a European standard for
product barcodes.)

The last addition we need to make to our database design is to hold the stock quantity for
each item. If most items were in stock, and the stock information were fairly basic, we could
simply store a stock quantity directly in the item table. However, this won’t work if we offer
many items, but only a few are normally in stock, and we need to store a lot of information
about the stocked items. For example, in a warehouse operation, we may need to store location
information, batch numbers, and expiration dates. If we had an item file with 500,000 items in
it, but only held the top 1,000 items in stock, this would be very wasteful. There is a standard
way of resolving this problem, using what is called a supplementary table. We will take this approach
to store stock information for our sample database, as shown in Figure 2-18.

MatthewStones_4789C02.fm Page 38 Monday, January 24, 2005 4:18 PM

C H A P T E R 2 ■ R E L A T I O N A L D A T A B A S E P R I N C I P L E S 39

Figure 2-18. The design of the bpsimple database

We create a new table to store the supplementary information (stock quantity, in this
example), and then create only the rows that are required for items that are in stock, linking the
information back to the main table. Notice the stock table uses item_id as a unique key, and it
holds information that relates directly to items, using item_id to join to the relevant row in the
item table. The arrow points to the item table, because that is the master table, even though it
is not a many-to-one relationship in this case. As in the other tables, the underlining indicates
the table’s primary key (the information guaranteed to be unique).

As it stands, the design is clearly overly complex, since the additional information we are
keeping is so small. We will leave the schema design the way it is to show how it is done, and
later in the book, we will demonstrate how to access data when there is additional information
in supplementary tables like this one. For those who like sneaking a look ahead, we will use
what’s called an outer join.

■Note In Chapter 8, we will see how we can enforce in the database the rules about relationships between
tables, and in Chapter 12 we will revisit the design of databases in more detail. When we get to Chapter 8, we
will discover some more advanced techniques to better manage the consistency of our database, and we will
enhance our design into a bpfinal schema.

MatthewStones_4789C02.fm Page 39 Monday, January 24, 2005 4:18 PM

40 C H A P T E R 2 ■ R E LA T I O N A L D A T A B A S E P R I N C I P LE S

Basic Data Types
In our sample database, we’ve used some basic, generic data types, as summarized in Table 2-1.
These can be translated into actual PostgreSQL types when we create the real tables in the next
chapter.

As noted earlier in the chapter, since the need to add a special unique column is so
common in databases, there is a built-in solution in most databases: a data type known as
serial. This special type is effectively an integer that automatically increments as rows are
added to the table, assigning a new, unique number as each row is added. When we add a new
row to a table that has a serial column, we don’t specify a value for that column, but allow the
database to automatically assign the next number. Most databases, when they assign serial
values, don’t take into account any rows that are deleted. The number assigned will just go on
incrementing for each new row. We will look at how to handle out-of-sequence problems with
serial data types in Chapter 6.

In Chapter 8, we will look at PostgreSQL’s other data types, which will give us a chance
to reexamine some of these data type choices. Appendix B provides a summary of the PostgreSQL
data types.

Table 2-1. Data Types in the Sample Database

Data Type Description

integer A whole number.

serial An integer, but automatically set to a unique number for each row that is added.
This is the type we would use for the _id columns. The figures in this chapter
show such fields as integer, because that’s the underlying type in the database.

char A character array of fixed size, with the size shown in parentheses after the type.
For these column types, PostgreSQL will always store exactly the specified number
of characters. If we use a char(256) to store just one character, there will still be
(at least) 256 bytes held in the database and returned when the data is retrieved.

varchar This is also a character array, but as its name suggests, it is of variable length.
Generally, the space used in the database will be much the same as the actual size of
the data stored. When you ask for a varchar field to be returned, it returns just the
number of characters you stored. The maximum length is given in the parentheses
after the type.

date This allows you to store year, month, and day information. There are other
related types that allow us to store time information as well as date information.
We will meet these later in Chapter 8.

numeric This allows you to store numbers with a specified number of digits (the first
number in the parentheses) and using a fixed number of decimal places (the
second number in the parentheses). Hence, numeric(7,2) would store exactly
seven digits, two of them after the decimal place.

MatthewStones_4789C02.fm Page 40 Monday, January 24, 2005 4:18 PM

C H A P T E R 2 ■ R E L A T I O N A L D A T A B A S E P R I N C I P L E S 41

Dealing with the Unknown: NULLs
In the orderinfo table in our sample database design, we have a date ordered and a date
shipped column, both of type date. What do we do when an order has been received but not yet
shipped? What should we store in the date shipped column? We could store a special date,
a sentinel value, that lets us know that we have not yet shipped the order. On UNIX-type
systems, we might use January 1, 1970, which is traditionally the date from which UNIX
systems count. That date is well before the date of any orders we expect to store in the data-
base, so we would always know that this special date means not yet shipped.

However, having special values scattered in tables shows poor design and is rather error-
prone. For example, if a new programmer starts on the project and doesn’t realize there is a
special date, the programmer might try calculating the average time between the order and
shipping date, and come up with some very strange answers if there are a few shipped dates set
before the order was placed.

Fortunately, all relational database systems support a very special value called NULL, which
usually means unknown at this time. Notice that it doesn’t mean zero, or empty string, or
anything that can be represented by the data type of the field. An unknown value is very different
from zero or a blank string. Indeed, NULL is not really a value at all.

The concept of a NULL is often confusing to novice database users. (The Romans also had
trouble with things that are not there, so there is no zero in Roman numerals.) In database
terminology, NULL generally means a value is unknown, but it also has one or two additional
and rather subtle variations on that meaning.

It’s important to take care of NULLs, because they can pop up at odd times and cause you
surprises, usually unpleasant ones. So in our orderinfo table, we could set date shipped to NULL
before an order is shipped, where the meaning “unknown at this time” is exactly what we require.

There is another subtly different use for NULL (not so common), which is to mean “not
relevant for this row.” Suppose you were doing a survey of people and one of the questions was
about the color of spectacles. For people who don’t wear spectacles, this is clearly a nonsensical
question. This is a case where NULL might be used in the column to record that the information
is not relevant for this particular row.

One feature of NULL is that if you compare two NULLs, the answer is always unknown. This
sometimes confuses people, but if you think about the meaning of NULL as unknown, it’s perfectly
logical that testing for equality on two unknowns gives the answer unknown. SQL has a special
way of checking for NULLs, by asking IS NULL. This allows you to find and test NULL values if you
need to do so. IS NULL is discussed further in Chapter 4.

NULL type values do behave in a slightly different way from more conventional values.
Therefore, it is possible to specify when you design a table that some columns cannot hold NULL
values. It is normally a good idea to specify the columns as NOT NULL, when you are sure that
NULL should never be accepted, such as for primary key columns. Some database designers
advocate an almost complete ban on NULL, but they do have their uses, so we normally advocate
allowing NULL values on selected columns, where there is a genuine possibility that unknown
values are required. NOT NULL is discussed further in Chapter 8.

MatthewStones_4789C02.fm Page 41 Monday, January 24, 2005 4:18 PM

42 C H A P T E R 2 ■ R E LA T I O N A L D A T A B A S E P R I N C I P LE S

Reviewing the Sample Database
In this chapter, we have been designing, in a rather ad-hoc manner, a simple database, named
bpsimple, to look after customers, orders, and items, such as might be used in a small shop (see
Figure 2-18, earlier in this chapter). As the book progresses, we will be using this database to
demonstrate SQL and other PostgreSQL features. We will also be discovering the limitations of
our existing design, and looking at how it can be improved in some areas.

The simplified database we are using has many elements of what a real retail database
might look like; however, it also has many simplifications. For example, an item might have a
full description for the stock file, a short description that appears on the till when it is sold, and
yet another description that appears on shelf edge labels. The address information we are storing
for customers is very simplified. We cannot cope with long addresses, where there is a village
name or a state. We also cannot handle overseas orders.

It is often more feasible to start with a reasonably solid base and expand, rather than try to
cater to every possible requirement in your initial design. This database is adequate for our
initial needs.

In the next chapter, we will look at installing PostgreSQL, creating the tables for our sample
database, and populating them with some sample data.

Summary
In this chapter, we considered how a single database table is much like a single spreadsheet,
with four important differences:

• All items in a column must have the same type.

• The number of columns must be the same for all rows in a table.

• It must be possible to uniquely identify each row.

• There is no implied row order in a database table, as there would be in a spreadsheet.

We have seen how we can extend our database to multiple tables, which lets us manage
many-to-one relationships in a simple way. We gave some informal rules of thumb to help you
understand how a database design needs to be structured. We will come back to the subject of
database design in a much more rigorous fashion in later chapters.

We have also seen how to work around many-to-many relationships that turn up in the real
world, breaking them down into a pair of one-to-many relationships by adding an extra table.

Finally, we worked on extending our initial database design so we have a demonstration
database design, or schema, to work with as the book progresses.

In the next chapter, we will see how to get the PostgreSQL up and running on various
platforms.

MatthewStones_4789C02.fm Page 42 Monday, January 24, 2005 4:18 PM

43

■ ■ ■

C H A P T E R 3

Getting Started
with PostgreSQL

In this chapter, we will look at installing and setting up PostgreSQL on various operating
systems. If you need to install it on a Linux system, precompiled binary packages provide an
easy route. If you are running a UNIX or UNIX-like system—such as Linux, FreeBSD, AIX,
Solaris, HP-UX, or Mac OS X—it is not difficult to compile PostgreSQL from the source code.

We will also cover how to install and set up PostgreSQL on Windows platforms, using the
Windows installer introduced in PostgreSQL version 8.0. Earlier versions can be installed on
Windows, but this requires some additional software to create a UNIX-like environment. We
therefore recommend version 8.0 or later for Windows systems.

Finally, we will prepare for the examples in the following chapters by creating the sample
database discussed in Chapter 2.

In particular, this chapter will cover the following topics:

• Installing PostgreSQL from Linux binaries

• Installing PostgreSQL from the source code

• Setting up PostgreSQL on Linux and UNIX systems

• Installing and setting up PostgreSQL on Windows

• Creating a database with tables and adding data

Installing PostgreSQL on Linux and UNIX Systems
If you are running a Linux system installed from a recent distribution, you may already have
PostgreSQL installed or available to you as an installable package on the operating system
installation disks. If not, you can use RPM packages to install PostgreSQL on many Linux distri-
butions or flavors. Additionally, you can build and install PostgreSQL from the source code on
just about any UNIX-compatible system.

MatthewStones_4789C03.fm Page 43 Tuesday, February 1, 2005 7:24 AM

44 C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L

Installing PostgreSQL from Linux Binaries
Probably the easiest way to install PostgreSQL on Linux is by using precompiled binary pack-
ages. The binaries for PostgreSQL are available for download as RPM (RPM Package Manager,
formerly Red Hat Package Manager) packages for various Linux distributions. At the time of
writing this book, RPM packages are available at http://www.postgresql.org/ for the following
operating systems:

• Red Hat 9

• Red Hat Advanced Server 2.1

• Red Hat Enterprise Linux 3.0

• Fedora Core 1, 2 (including 64-bit), and 3

You can find binary packages at http://www.rpmfind.net for other Linux distributions,
including the following:

• SuSE Linux 8.2 and 9.x

• Conectiva Linux

• Mandrake

• Yellow Dog PPC

■Note Debian Linux users can install PostgreSQL using apt-get.

Table 3-1 lists the PostgreSQL binary packages. For a functional database and client instal-
lation, you need to download and install at least the base, libs, and server packages.

Table 3-1. PostgreSQL Binary Packages

Package Description

postgresql The base package including clients and utilities

postgresql-libs Shared libraries required from clients

postgresql-server Programs to create and run a server

postgresql-contrib Contributed extensions

MatthewStones_4789C03.fm Page 44 Tuesday, February 1, 2005 7:24 AM

C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L 45

The exact filenames will have version numbers appended with the package. It is advisable
to install a matching set of packages, all with the same revision level. In a package with the
version number 8.x.y, the x.y portion determines the revision level.

Installing the RPMs

To install the RPMs, you can use any of the following techniques:

• Use the RPM Package Manager application. Make sure that you have logged on as the
superuser (root) to perform the installation.

• Use the graphical package manager of your choice, such as KPackage, to install the RPMs.

• Place all the RPM files in a single directory and, as superuser (root), execute the following
command to unpack the packages and install all the files they contain into their correct
places for your distribution:

$ rpm -i *.rpm

You can also install from the PostgreSQL packages that are bundled along with your Linux
distribution, such as in Red Hat or SuSE Linux. For example, on SuSE Linux 9.x, you can install
a version of PostgreSQL by running the YaST2 installation tool and selecting the packages listed
in Table 3-1, as shown in Figure 3-1.

postgresql-devel Header files and libraries for development

postgresql-docs Documentation

postgresql-jdbc Java database connectivity for PostgreSQL

postgresql-odbc Open database connectivity for PostgreSQL

postgresql-pl PostgreSQL server support for Perl

postgresql-python PostgreSQL server support for Python

postgresql-tcl PostgreSQL server support for Tcl

postgresql-test PostgreSQL test suite

Table 3-1. PostgreSQL Binary Packages (Continued)

Package Description

MatthewStones_4789C03.fm Page 45 Tuesday, February 1, 2005 7:24 AM

46 C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L

Figure 3-1. Installing PostgreSQL from SuSE packages with YaST2

Upgrading to a New PostgreSQL Version

PostgreSQL is under continuous development, so new versions become available from time to
time. Installing from RPM packages has the advantage that you can very simply upgrade to the
most recent version. To do that, just let rpm know that you are performing an upgrade rather
than a first-time installation by specifying the -U option instead of the -i option:

$ rpm -U *.rpm

However, before performing an upgrade, you should back up the existing data in the data-
base. Any precautions that must be taken when performing an upgrade to the latest release will
be noted at the PostgreSQL home site and in the release notes. Backing up existing databases
is discussed in detail in Chapter 11 of this book.

MatthewStones_4789C03.fm Page 46 Tuesday, February 1, 2005 7:24 AM

C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L 47

■Caution If you are installing a new version of PostgreSQL as an upgrade to an existing installation, be
sure to read the release notes for the new version before starting. In some cases, it may be necessary to back
up and restore your PostgreSQL databases during an upgrade if, for example, the new version has introduced
changes in the way that data is stored.

Anatomy of a PostgreSQL Installation
A PostgreSQL installation consists of a number of applications, utilities, and data directories.
The main PostgreSQL application (postmaster) contains the server code that services the requests
to access data from clients. Utilities such as pg_ctl are used to control a master server process
that needs to be running all the time the server is active.

PostgreSQL uses a data directory to store all of the files needed for a database. This directory
not only stores the tables and records, but also system parameters. A typical installation would
have all of the components of a PostgreSQL installation shown in Table 3-2, arranged in sub-
directories of one PostgreSQL directory. One common location (and the default when you
install from source code, as described in the next section) is /usr/local/pgsql.

There is a drawback with the single directory approach: both fixed program files and variable
data are stored in the same place, which is often not ideal.

The files that PostgreSQL uses fall into two main categories:

• Files that are written to while the database server is running, including data files and
logs. The data files are the heart of the system, storing all of the information for all of your
databases. The log file that the database server produces will contain useful information
about database accesses and can be a big help when troubleshooting problems. It effec-
tively just grows as log entries are added.

Table 3-2. PostgreSQL Installation Anatomy

Directory Description

bin Applications and utilities such as pg_ctl and postmaster

data The database itself, initialized by initdb

doc Documentation in HTML format

include Header files for use in developing PostgreSQL applications

lib Libraries for use in developing PostgreSQL applications

man Manual pages for PostgreSQL tools

share Sample configuration files

MatthewStones_4789C03.fm Page 47 Tuesday, February 1, 2005 7:24 AM

48 C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L

• Files that are not written to while the database server is running, which are effectively
read-only files. These files include the PostgreSQL applications like postmaster and
pg_ctl, which are installed once and never change.

For a more efficient and easier to administer setup, you might wish to separate the different
categories of files. PostgreSQL offers the flexibility to store the applications, logs, and data in
different places, and some Linux distributions have made use of this flexibility to good effect.
For example, in SuSE Linux 9.x, the PostgreSQL applications are stored with other applications
in /usr/bin, the log file is in /var/log/postgresql, and the data is in /var/lib/pgsql/data. This
means that it is easy to arrange backups of the critical data separately from the not-so-critical
files, such as the log files.

Other distributions will have their own scheme for file locations. You can use rpm to list the
files that have been installed by a particular package. To do this, use the query option, like this:

$ rpm -q -l postgresql-libs
/usr/lib/libecpg.so.4
/usr/lib/libecpg.so.4.1
...
/usr/share/locale/zh_TW/LC_MESSAGES/libpq.mo
$

To see where all the files have been installed, you will need to run rpm for all of the packages
that make up the complete PostgreSQL set. Different distributions may call the packages by
slightly different names. For example, SuSE Linux uses the package name pg_serv for the server
package, so the query option looks like this:

$ rpm -q -l pg_serv
/etc/init.d/postgresql
/etc/logrotate.d/postgresql
...
/var/lib/pgsql/data/pg_options
$

Alternatively, you can use one of the graphical package manager tools, such as KPackage,
which comes with the KDE desktop environment. Figure 3-2 shows an example of viewing a
package’s contents with KPackage.

The disadvantage of installing from a Linux distribution is that it is not always clear where
everything lives. So, if you wish to upgrade to the most recent release, it can be tricky to ensure
that you have untangled the original installation. An alternative is to install PostgreSQL from
the source code, as described in the next section. If you have no intention of installing from
source, you can skip the next section and continue with the PostgreSQL setup described in the
“Setting Up PostgreSQL on Linux and UNIX” section.

MatthewStones_4789C03.fm Page 48 Tuesday, February 1, 2005 7:24 AM

C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L 49

Figure 3-2. Examining a package’s contents with KPackage

Installing PostgreSQL from the Source Code
As explained in the previous section, you can use RPM packages to install PostgreSQL on many
Linux distributions or flavors. Additionally, you can build and install PostgreSQL from the
source code on just about any UNIX-compatible system, including Mac OS X.

The source code for PostgreSQL is available at http://www.postgresql.org. Here, you will
find the code for the latest release and often the source code for beta test versions of the next
release. Unless you like to live on the edge, it is probably a good idea to stick to the most recent
stable release.

You can find the entire PostgreSQL source code in a single, compressed archive file, either
in gzipped-tarball format, with a name something like postgresql-8.0.0.tar.gz, or in bzipped-
tarball format, with a name like postgresql-8.0.0.tar.bz2. At the time of writing, the PostgreSQL
tarball was around 13MB in size. To ease the download process in case of an unreliable or slow
connection, the source is also available in a set of smaller files:

• postgresql-8.0.0.base.tar.gz

• postgresql-8.0.0.docs.tar.gz

• postgresql-8.0.0.opt.tar.gz

• postgresql-8.0.0.test.tar.gz

MatthewStones_4789C03.fm Page 49 Tuesday, February 1, 2005 7:24 AM

59cf4c9f76dd75c1cc678ccf0261fa69

50 C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L

The exact filenames depend on the current version revision number at the time.
Compiling PostgreSQL is very simple. If you are familiar with compiling open-source

products, there will be no surprises for you here. Even if this is your first experience in compiling
and installing an open-source product, you should have no difficulty.

To perform the source-code compilation, you will need a Linux or UNIX system with a
complete development environment installed. This includes a C compiler and the GNU version
of the make utility (needed to build the database system). Linux distributions generally ship
with a suitable development environment containing the GNU tools from the Free Software
Foundation. These include the excellent GNU C compiler (gcc), which is the standard compiler
for Linux. The GNU tools are available for most other UNIX platforms, too, and we recommend
them for compiling PostgreSQL. You can download the latest tools from http://www.gnu.org.
Once you have a development environment installed, the compilation of PostgreSQL is
straightforward.

Extracting the Code

Start the installation as a normal user. Copy your source-code tarball file to an appropriate
directory for compiling. This does not need to be—in fact, it should not be—the final resting
place of your PostgreSQL installation. One possible choice is a subdirectory in your home
directory, since you do not need superuser permissions to compile PostgreSQL; you only need
those permissions to install it once it’s built. We generally prefer to unpack source code into a
directory specifically created for maintaining source code products, /usr/src, but you can
unpack anywhere you have sufficient disk space for the compilation. You need to allow around
90MB or so.

Unpack the tarball to extract the source code:

$ tar zxf postgresql-8.0.0.tar.gz

The extraction process will have made a new directory, related to the version of PostgreSQL
you are building. Move into that directory:

$ cd postgresql-8.0.0

■Tip You should find a file, INSTALL, in this directory that contains detailed manual build instructions, in
the unlikely event that the automated method outlined here fails for some reason.

Configuring the Compilation

The build process uses a configuration script, configure, to tailor the build parameters to your
specific environment. To accept all defaults, you can simply run configure without arguments.
Here is an example of running configure on a Linux system:

MatthewStones_4789C03.fm Page 50 Tuesday, February 1, 2005 7:24 AM

C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L 51

$./configure
checking build system type... i686-pc-linux-gnu
checking host system type... i686-pc-linux-gnu
checking which template to use... linux
checking whether to build with 64-bit integer date/time support... no
checking whether NLS is wanted... no
checking for default port number... 5432
checking for gcc... gcc
...
$

The configure script sets variables that control the way the PostgreSQL software is built,
taking into account the type of platform on which you are compiling, the features of your C
compiler, and so on. The configure script will automatically set locations for the installation.
The default locations are for PostgreSQL to be compiled to use /usr/local/pgsql as the main
directory for its operation, with subdirectories for applications and data.

You can use arguments to configure to change the default location settings, to set the
network port the database server will use, and to include support for additional server-side
programming languages for stored procedures. These options are listed in Table 3-3.

To see a full list of options to configure, you can use the --help argument:

$./configure --help
`configure' configures PostgreSQL 8.0.0 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE. See below for descriptions of some of the useful variables.
...
$

Table 3-3. PostgreSQL Configure Script Options

Option Description

--prefix=prefix Install in directories under prefix; defaults to /usr/local/pgsql

--bindir=dir Install application programs in dir; defaults to prefix/bin

--with-docdir=dir Install documentation in dir; defaults to prefix/doc

--with-pgport=port Set the default TCP port number for serving network connections

--with-tcl Compile server-side support for Tcl stored procedures

--with-perl Compile server-side support for Perl stored procedures

--with-python Compile server-side support for Python stored procedures

MatthewStones_4789C03.fm Page 51 Tuesday, February 1, 2005 7:24 AM

52 C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L

You do not need to settle on final locations for the database files and the log file at this
stage. You can always specify these locations to the server process, when you start it after
installation.

Building the Software

Once the compilation is configured, you can build the software using make. The PostgreSQL
build process uses a sophisticated set of makefiles to control the compilation process. Due to
this, we recommend that you use a version of GNU make for the build. This is the default on
Linux. On other UNIX platforms, you may need to install GNU make separately. Often, this will
be given the name gmake to distinguish it from the version of make supplied with the operating
system. In the instructions here, make refers to GNU make.

The next step is to run make to compile the software:

$ make
...
All of PostgreSQL successfully made. Ready to install.

If all goes well, you should see a large number of compilations proceeding. You will be
finally rewarded with the message that everything has been made successfully.

When make has finished, you need to copy the programs to their final resting places. You
use make to do this for you, too, but you need to be the superuser first:

$ su
make install
...
PostgreSQL installation complete.
exit
$

Once the software is built and installed, you can query the configuration of a PostgreSQL
system with pg_config:

pg_config --bindir | --includedir | --libdir | --configure | --version

The pg_config command will report the directory where the PostgreSQL programs are
installed (--bindir), the location of C include files (--includedir) and object code libraries
(--libdir), and the version of PostgreSQL (--version):

$ pg_config --version
PostgreSQL 8.0.0
$

The build-time configuration can be reported by using pg_config --configure. This will
report the command-line options passed to the configure script when the PostgreSQL server
was configured for compilation.

That’s just about all there is to installing PostgreSQL. You now have a set of programs that
make up the PostgreSQL database server in the right place on your system.

At this point, you are in the same situation as you would have been had you installed from
packages. Now it’s time to turn our attention to setting up PostgreSQL now that it’s installed.

MatthewStones_4789C03.fm Page 52 Tuesday, February 1, 2005 7:24 AM

C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L 53

Setting Up PostgreSQL on Linux and UNIX
After you have PostgreSQL installed, whether from RPMs or compiled from the source code,
you need to take a few steps to get it up and running. First, you should create a postgres user.
Then you create a data directory for the database and the initial database structures. At that
point, you can start PostgreSQL by starting the postmaster process.

Creating the postgres User

The main database process for PostgreSQL, postmaster, is quite a special program. It is respon-
sible for dealing with all data access from all users to all databases. It must allow users to access
their data but not access other users’ data, unless authorized. To do this, it needs to have sole
control of all of the data files, so that no normal user can access any of the files directly. The
postmaster process will control access to the data files by checking the permissions granted to
the users that request access and performing the access on their behalf.

Strictly speaking, PostgreSQL needs to run only as a non-root user, which could be any
normal user; if you install in your home directory, it could be your own user. However, a
PostgreSQL installation typically uses the concept of a pseudo user to enforce data access. A
user, often called postgres, is created for the sole purpose of owning the data files and has no
other access rights. A postgres pseudo user provides some additional security, as no one can
log in as the postgres user and gain illicit access. This user identity is used by the postmaster
program to access the database files on behalf of others.

The first step in establishing a working PostgreSQL system is, therefore, to create this postgres
user. The precise procedure for making new users differs from system to system. Linux users
can (as root) simply use useradd:

useradd postgres

Other UNIX systems may require you to create a home directory, edit the configuration
files, or run the appropriate administration tool on your Linux distribution. Refer to your oper-
ating system documentation for details about using such administration tools.

Creating the Database Directory

Next, you must create, as root, the directory PostgreSQL is going to use for its databases and
change its owner to be postgres:

mkdir /usr/local/pgsql/data
chown postgres /usr/local/pgsql/data

Here, we are using the default location for the database. You might choose to store the data
in a different location, as we discussed earlier, in the “Anatomy of a PostgreSQL Installation”
section.

Initializing the Database

You initialize the PostgreSQL database by using the initdb utility, specifying where in your file
system you want the database files to reside. This will do several things, including creating the
data structures PostgreSQL needs to run and creating an initial working database, template1.

MatthewStones_4789C03.fm Page 53 Tuesday, February 1, 2005 7:24 AM

54 C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L

You need to assume the identity of the postgres user to run the initdb utility. To do this,
the most reliable way is to change your identity in two steps, first becoming root with su and
then becoming postgres as follows. (As a normal user, you may not have permission to assume
another user’s identity, so you must become the superuser first.)

$ su
su - postgres
pg$

Now the programs you run will assume the rights of the postgres user and will be able to
access the PostgreSQL database files. For clarity, we have shown the shell prompt for commands
executed as the postgres user as pg$.

■Caution Do not be tempted to shortcut the process of using the postgres user and run these programs
as root. For security reasons, running server processes as root can be dangerous. If there were a problem
with the process, it could result in an outsider gaining access to your system via the network. For this reason,
postmaster will refuse to run as root.

Initialize the database with initdb:

pg$ /usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
The files belonging to this database system will be owned by user "postgres".
This user must also own the server process.

The database cluster will be initialized with locale en_GB.UTF-8.
The default database encoding has accordingly been set to UNICODE.
...
WARNING: enabling "trust" authentication for local connections
You can change this by editing pg_hba.conf or using the -A option the
next time you run initdb.

Success. You can now start the database server using:

 /usr/local/pgsql/bin/postmaster -D /usr/local/pgsql/data
or
 /usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -l logfile start
pg$

If all goes well, you will have a new, completely empty database in the location you specified
with the -D option to initdb.

Granting Connection Permissions

By default, PostgreSQL will not allow general remote access. To grant permission to connect,
you must edit a configuration file, pg_hba.conf. This file lives in the database file area
(/usr/local/pgsql/data in our example), and contains entries that grant or reject permission

MatthewStones_4789C03.fm Page 54 Tuesday, February 1, 2005 7:24 AM

C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L 55

for users to connect to the database. By default, local users may connect and remote users
cannot. Its format is fairly simple, and the default file shipped with PostgreSQL contains many
helpful comments for adding entries. You can grant permission for individual users, hosts,
groups of computers, and individual databases, as necessary.

For example, to allow the user neil on a machine with IP address 192.168.0.3 to connect to
the bpsimple database, add the following line to pg_hba.conf:

host bpsimple neil 192.168.0.3/32 md5

Note that in versions of PostgreSQL earlier than 8.0, the pg_hba.conf file used host address
specifications using an IP address and subnet mask, so the preceding example would need to
be written as follows:

host bpsimple neil 192.168.0.3 255.255.255.255 md5

Here, we will add an entry to allow any computer on the local network (in this case the
subnet 192.168.x.x) to connect to any database with password authentication. (If you require
a different access policy, refer to the comments in the configuration file.) We add a line to the
end of pg_hba.conf that looks like this:

host all all 192.168.0.0/16 md5

This means that all computers with an IP address that begins 192.168 can access all databases.
Alternatively, if we trust all of the users on all of the machines in a network, we can allow

unrestricted access by specifying trust as the authentication mechanism, like this:

host all all 192.168.0.0/16 trust

The PostgreSQL postmaster server process reads a configuration file, postgresql.conf
(also in the data directory) to set a number of runtime options, including (if not otherwise
specified in a -D option or the PGDATA environment variable) the location of the database data
files. The configuration file is well commented, providing guidance if you need to change any
settings. There is also a section on runtime configuration in the PostgreSQL documentation.

As an example, we can allow the server to listen for network connections by setting the
listen_addresses variable in postgresql.conf, instead of using the now deprecated -i option
to postmaster, as follows:

listen_addresses='*'

In fact, setting configuration options in postgresql.conf is the recommended approach
for controlling the behavior of the postmaster process.

Starting the postmaster Process

Now you can start the server process itself. Again, you use the -D option to tell postmaster
where the database files are located. If you want to allow users on a network to access your
data, you can specify the -i option to enable remote clients (if you haven’t enabled
listen_addresses in postgresql.conf, as in the preceding example):

pg$ /usr/local/pgsql/bin/postmaster -i -D /usr/local/pgsql/data >logfile 2>&1 &

MatthewStones_4789C03.fm Page 55 Tuesday, February 1, 2005 7:24 AM

56 C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L

This command starts postmaster, redirects the process output to a file (called logfile in the
postgres user’s home directory), and merges standard output with standard error by using the
shell construction 2>&1. You can choose a different location for your log file by redirecting
output to another file.

The pg_ctl utility provided with PostgreSQL offers a simple way of starting, stopping, and
restarting (the equivalent of stop followed by start) the postmaster process. If PostgreSQL is
fully configured using the postgresql.conf configuration file, as mentioned in the previous
section, it is possible to start, stop, and restart with these commands:

pg_ctl start
pg_ctl stop
pg_ctl restart

Connecting to the Database

Now you can check that the database is functioning by trying to connect to it. The psql utility is
used to interact with the database system and perform simple administrative tasks such as creating
users, creating databases, and creating tables. We will use it to create and populate the sample
database later in the chapter, and it is covered in more detail in Chapter 5. For now, you can simply
try to connect to a database. The response you get should show that you have postmaster running:

pg$ /usr/local/pgsql/bin/psql
psql: FATAL 1: Database "postgres" does not exist in the system catalog.

Don’t be taken aback by the fatal error it displays. By default, psql connects to the database
on the local machine and tries to open a database with the same name as the user running the
program. We have not created a database called postgres, so the attempt fails. It does indicate,
however, that postmaster is running and able to respond with details of the failure.

To specify a particular database to connect to, use the -d option to psql. A new PostgreSQL
system does contain some databases that are used by the system as the base for new databases
you might create. One such database is called template1. If you need to, you can connect to this
database for administration purposes.

To check network connectivity, you can use psql installed on another machine on the
network as a client, or any other PostgreSQL compatible application. With psql, you specify the
host (either the name or IP address) with the -h option, and one of the system databases (as you
haven’t yet created a real database):

remote$ psql -h 192.168.0.111 -d template1
Welcome to psql 8.0.0, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query
 \q to quit

template1=# \q

remote$

MatthewStones_4789C03.fm Page 56 Tuesday, February 1, 2005 7:24 AM

C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L 57

Configuring Automatic Startup

The final step you need to take is to arrange for the postmaster server process to be started auto-
matically every time the machine is rebooted. Essentially, all you need to do is make sure that
postmaster is run at startup. Again, there is little standardization between Linux and UNIX vari-
ants as to how this should be done. Refer to your installation’s documentation for specific details.

If you have installed PostgreSQL from a Linux distribution, it is likely that the startup is
already configured by the RPM packages you installed. On SuSE Linux, PostgreSQL is automatically
started when the system enters multiuser mode, by a script in /etc/rc.d/init.d called postgresql.

If you are creating a startup script yourself, the easiest thing to do is create a simple shell
script that starts postmaster with the parameters you need, and add a call to your script from
one of the scripts that is run automatically at startup, such as those found in /etc/rc.d. Be sure
that postmaster is run as the user postgres. Here is an example of a script that does the job for
a default PostgreSQL installation built from source code:

#!/bin/sh

Script to start and stop PostgreSQL

SERVER=/usr/local/pgsql/bin/postmaster
PGCTL=/usr/local/pgsql/bin/pg_ctl
PGDATA=/usr/local/pgsql/data
OPTIONS=-i
LOGFILE=/usr/local/pgsql/data/postmaster.log

case "$1" in
 start)
 echo -n "Starting PostgreSQL..."

 su -l postgres -c "nohup $SERVER $OPTIONS -D $PGDATA >$LOGFILE 2>&1 &"
 ;;
 stop)
 echo -n "Stopping PostgreSQL..."
 su -l postgres -c "$PGCTL -D $PGDATA stop"
 ;;
 *)
 echo "Usage: $0 {start|stop}"
 exit 1
 ;;
esac
exit 0

■Note On Debian Linux, you may need to use su - in place of su -l.

MatthewStones_4789C03.fm Page 57 Tuesday, February 1, 2005 7:24 AM

58 C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L

Create an executable script file with this script in it. Call it, for example, MyPostgreSQL. Use
the chmod command to make it executable, as follows:

chmod a+rx MyPostgreSQL

Then you need to arrange that the script is called to start and stop PostgreSQL when the
server boots and shuts down:

MyPostgreSQL start
MyPostgreSQL stop

For systems (such as many Linux distributions) that use System V type init scripting, you
can place the script in the appropriate place. For SuSE Linux, for example, you would place the
script in /etc/rc.d/init.d/MyPostgreSQL, and make symbolic links to it from the following
places to automatically start and stop PostgreSQL as the server enters and leaves multiuser mode:

/etc/rc.d/rc2.d/S25MyPostgreSQL
/etc/rc.d/rc2.d/K25MyPostgreSQL
/etc/rc.d/rc3.d/S25MyPostgreSQL
/etc/rc.d/rc3.d/K25MyPostgreSQL

Refer to your system’s documentation on startup scripts for more specific details.

Stopping PostgreSQL

It is important that the PostgreSQL server process is shut down in an orderly fashion. This will
allow it to write any outstanding data to the database and free up shared memory resources it
is using.

To cleanly shut down the database, use the pg_ctl utility as postgres or root, like this:

/usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data stop

If startup scripts are in place, you can use those, as in this example:

/etc/rc.d/init.d/MyPostgreSQL stop

The scripts also make sure that the database is shut down properly when the machine is
halted or rebooted.

RESOURCES

To make life a little easier when dealing with PostgreSQL, it might be of some use to add the PostgreSQL appli-
cations directory to your execution path, and similarly the manual pages. To do this for the standard UNIX shell,
place the following commands in your shell startup file (.profile or .bashrc):

PATH=$PATH:/usr/local/pgsql/bin
MANPATH=$MANPATH:/usr/local/pgsql/man
export PATH MANPATH

The source code for the current and latest test releases of PostgreSQL can be found at
http://www.postgresql.org. More resources for PostgreSQL are listed in Appendix G of this book.

MatthewStones_4789C03.fm Page 58 Tuesday, February 1, 2005 7:24 AM

C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L 59

Installing PostgreSQL on Windows
Let’s begin this section with some good news for Windows users. Although PostgreSQL was
developed for UNIX-like platforms, it was written to be portable. It has been possible for
some time now to write PostgreSQL client applications for Windows, and from version 7.1
onwards, PostgreSQL could be compiled, installed, and run as a PostgreSQL server on Microsoft
Windows NT 4, 2000, XP, and Server 2003.

With PostgreSQL version 8.0, a native Windows version is available, offering a Windows
installer for both server and client software, which makes installing on Windows a breeze. Prior
to version 8.0, Windows users needed to install some additional software to support some UNIX
features on Windows.

■Note PostgreSQL 8.0 is supported on Windows 2000, Windows XP, and Windows Server 2003. It requires
features not present in Windows 95, 98, and Me, so it will not run on those versions. It can be persuaded to
run on Windows NT, but the installation must be performed by hand, as the PostgreSQL installer does not
work correctly for Windows NT.

It may seem that an open-source platform like Linux would be the natural home of an
open-source database like PostgreSQL. Indeed, we would not recommend running a production
database on a desktop version of Windows, but installing on Windows can have its advantages.
For example, having the PostgreSQL utilities like psql on the same machine as some client
applications can be useful in testing new database installations and troubleshooting connection
problems, even if you don’t need to run the server on Windows. Running the database server
on a development machine can avoid any potential problems with developers needing to share
a server instance elsewhere.

Using the Windows Installer
The installer for the Windows version of PostgreSQL is a separate PostgreSQL-related project
with its home page at http://pgfoundry.org/projects/pginstaller. The latest version of the
installer may be downloaded from the home page or one of the PostgreSQL mirror sites.

The installer is packaged as a Microsoft Windows Installer (.msi) file inside a ZIP archive.
To run the installer, you will need version 2.0 or later of the Windows Installer. A suitable
version is included with Windows XP and later. If necessary, the Windows Installer can be
downloaded from http://www.microsoft.com (search for “Windows Installer redistributable”).

The PostgreSQL MSI package has a filename similar to postgresql-8.0.0.msi. To start the
installation wizard, just double-click this file to start the installer. After choosing a language to
use for installation and reading the installation notes presented, you will see the installation
options dialog box, as shown in Figure 3-3.

You can also use this dialog box to set the locations for the PostgreSQL applications and
the PostgreSQL database files.

Click PostgreSQL, and then click Browse to set the location for the application installation
(the default is C:\Program Files\PostgreSQL\8.0.0).

Click Data directory, and then click Browse to set the location of the database files (the default
is C:\Program Files\PostgreSQL\8.0.0\data).

MatthewStones_4789C03.fm Page 59 Tuesday, February 1, 2005 7:24 AM

60 C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L

Figure 3-3. PostgreSQL installation options

The locations of other components can be similarly set if required; they will default to
subfolders of the application installation folder. We recommend leaving them at their default
locations.

Here, you can choose which components you need to install, depending on how you will
use the machine on which PostgreSQL is being installed: as a database server, a client, a devel-
opment machine, or a mixture. The installation options are summarized in Table 3-4.

Table 3-4. PostgreSQL Installation Options

Option Meaning

Database Server The PostgreSQL database

Natural language support Support for status and error messages in non-English languages

psql The PostgreSQL command-line interface

pgAdmin III A graphical PostgreSQL management console

JDBC Driver The PostgreSQL JDBC driver for Java clients

Npgsql Driver The PostgreSQL Microsoft .NET driver

ODBC Driver The PostgreSQL ODBC driver

OLEDB Provider The PostgreSQL OLEDB Provider

Documentation HTML format documentation

Development Support files and utilities for creating PostgreSQL clients

MatthewStones_4789C03.fm Page 60 Tuesday, February 1, 2005 7:24 AM

C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L 61

The following are our recommendations for each type of setup:

• To set up a simple database server, it is sufficient to select the Database Server option.
This will result in an installation that needs to be managed remotely from another
machine. It is helpful to also include the psql command-line interface, even for a server-
only installation.

• To set up a machine for managing a remote server, we suggest you choose the psql and
pgAdmin III options. These can be installed independently of the database server.

• To set up a machine that will run applications that connect to a remote PostgreSQL data-
base, choose the appropriate drivers. As mentioned in Chapter 2 and covered in more detail
in Chapter 5, you can use the ODBC driver to connect applications such as Microsoft Access
and Excel to PostgreSQL. Java and .NET applications need the JDBC and Npgsql drivers,
respectively. The OLEDB Provider allows PostgreSQL to be used with OLEDB clients
such as Microsoft Visual Studio.

• To set up a machine that will be used to develop client applications, such as those covered
in Chapters 13 and 14, choose the Development option to install appropriate header files
and libraries. You will also need a development environment such as Microsoft Visual Studio
or Cygwin (http://www.cygwin.com) to compile your applications.

For our installation, we selected all of the available options.
The next step in the installation is to configure the database server to run as a service, as

shown in Figure 3-4. This is the recommended option, as it will allow the PostgreSQL server to
be automatically started when Windows is booted.

Figure 3-4. PostgreSQL service configuration

MatthewStones_4789C03.fm Page 61 Tuesday, February 1, 2005 7:24 AM

62 C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L

PostgreSQL must run as a non-administrator user. This avoids any potential security risk
from running a service that accepts network connections as a user that has administrative
privileges. In the unlikely event of security vulnerabilities in PostgreSQL being discovered and
exploited, then only files and data managed by PostgreSQL would be at risk, rather than the entire
server. You can either create an account on Windows for the purposes of running PostgreSQL or
have the installer do it for you: just give an account name to the installer, and it will create it,
if it does not already exist.

Next, initialize the PostgreSQL database, as shown in Figure 3-5. (Note that for an upgrade
installation, it will not be necessary to perform the database initialization step, as you would
normally want the existing database to be preserved.)

Figure 3-5. PostgreSQL database initialization

Here, you specify a superuser account for PostgreSQL. This is a database user that has
permissions to create and manage databases within the server. It is different from the Windows
account that is used to run the server. PostgreSQL accounts are used by clients connecting to
the database, and PostgreSQL itself manages the authentication of these users; they do not
need to have Windows accounts on the database server. As noted in the dialog box shown in
Figure 3-5, there are security advantages to using a different username and password for the
database superuser.

To allow the database server to accept connections from the network, check the Addresses
check box. Without this selected, only clients running on the server machine will be able to
connect. Although this option will start the server listening on the network, you still have control
over who can connect and where from. We will cover client access configuration in the next section.

In our installation, we have left the locale and encoding schemes for the database at their
default values. If you are installing a PostgreSQL database in an environment that requires the
use of a specific character set or locale, these options can be set here. If you are not familiar
with character sets and locales, then the defaults will probably work just fine.

In Chapter 9, we will cover stored procedures, which are functions that you can execute on
the server to perform tasks more efficiently than in a client application. PostgreSQL supports
stored procedures written in a variety of programming languages, including its own PL/pgSQL,

MatthewStones_4789C03.fm Page 62 Tuesday, February 1, 2005 7:24 AM

C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L 63

Perl, Python, and others. To run the examples in Chapter 9, you need to select the PL/pgSQL
option in the next installation dialog box, Procedural Languages, shown in Figure 3-6.

Figure 3-6. PostgreSQL procedural languages

The next installation dialog box deals with contributed modules, and its settings can safely
be left at the defaults. (We do not cover these advanced topics in this book.)

The installation will now proceed and complete. The database server processes should be
running. They will be visible as postmaster.exe and several postgres.exe processes in Task
Manager, as shown in Figure 3-7.

Figure 3-7. PostgreSQL processes

MatthewStones_4789C03.fm Page 63 Tuesday, February 1, 2005 7:24 AM

64 C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L

The PostgreSQL applications and utilities are installed in a new program group accessible
from the Start menu, as shown in Figure 3-8.

Figure 3-8. PostgreSQL program menu

Configuring Client Access
To configure remote hosts and users that can connect to the PostgreSQL service, you need to
edit the pg_hba.conf file. This file contains many comments that document the options available
for remote access. In our sample installation, we want to allow users from any host on the local
network to access all of the databases on our server. To do this, we add the following line at the
end of the file:

host all all 192.168.0.0/16 trust

This means that all computers with an IP address that begins 192.168 can access all databases.
The simplest way to make this configuration change take effect is to restart the PostgreSQL

server.
The pg_hba.conf file takes the same form on Windows systems as it does on Linux and

UNIX systems. For other examples of configuration access, see the “Granting Connection
Permissions” section earlier in this chapter.

Creating the Sample Database
Now that we have PostgreSQL up and running, we are going to create a simple database, which
we will call bpsimple, to support our customer order tables examples. This database (together
with a variant called bpfinal created in Chapter 8) is used throughout the book. We’ll cover the
details of creating databases and creating and populating databases in later chapters. Here, we
will just show the steps and SQL scripts, so that we have a database to use for demonstration.

Before we start, one simple way to check if PostgreSQL is running on your system is to look
for the postmaster process. On Windows systems, look for postmaster.exe in the processes tab
of Task Manager. On UNIX and Linux systems, run the following command:

$ ps -el | grep post

MatthewStones_4789C03.fm Page 64 Tuesday, February 1, 2005 7:24 AM

C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L 65

If there is a process running called postmaster (the name might be abbreviated in the
display), then you are running a PostgreSQL server.

Creating User Records
Before we can create a database, we need to tell PostgreSQL about the valid users by creating
records for them within the system. Valid users of a PostgreSQL database system can read data,
insert data, or update data; create databases of their own; and control access to the data those
databases hold. To create user records, we use PostgreSQL’s createuser utility.

On Linux and UNIX systems, use su (from root) to become the PostgreSQL user, postgres.
Then run createuser to register the user. The user login name given is recorded as a valid
PostgreSQL user. Let’s give user rights to the (existing UNIX/Linux) user neil:

$ su
su - postgres
pg$ /usr/local/pgsql/bin/createuser neil
Shall the new user be able to create databases? (y/n) y
Shall the new user be able to create new users (y/n) y
CREATE USER
pg$

On Windows systems, open a Command Prompt window and change the directory to the
location of the PostgreSQL application (the default is C:\Program Files\PostgreSQL\8.0.0
in our installation). Then run the createuser.exe utility:

C:\Program Files\PostgreSQL\8.0.0\bin>createuser -U postgres -P neil
Enter password for new user:
Enter it again:
Shall the new user be allowed to create databases? (y/n) y
Shall the new user be allowed to create more new users? (y/n) y
Password:
CREATE USER

The -U option is used to specify the identity you want to use for creating the new user. It must
be a PostgreSQL user with permission to create users, normally the PostgreSQL user you named
when you performed the installation. The -P option causes createuser to prompt for a password
for the new user.

Here, we have allowed neil to create new databases, and he is allowed to create new users.
Some of the examples in the book use another user, rick, who also has permission to create
databases, but does not have permission to create new users. If you would like to exactly repli-
cate these examples, now is a good time to create this user.

Once you have created a PostgreSQL user with these rights, you will be able to create the
bpsimple database.

Creating the Database
To create the database on Linux and UNIX systems, change back to your own (non-root) login
and run the following command:

MatthewStones_4789C03.fm Page 65 Tuesday, February 1, 2005 7:24 AM

66 C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L

$ /usr/local/pgsql/bin/createdb bpsimple
CREATE DATABASE
$

On Windows systems, run the createdb.exe command:

C:\Program Files\PostgreSQL\8.0.0\bin>createdb -U neil bpsimple
Password:
CREATE DATABASE

You should now be able to connect (locally) to the server, using the interactive terminal
psql. On Linux and UNIX systems, use the following command:

$ /usr/local/pgsql/bin/psql -U neil -d bpsimple
Welcome to psql 8.0.0, the PostgreSQL interactive terminal.
...
bpsimple=#

On Windows systems, use this command:

C:\Program Files\PostgreSQL\8.0.0\bin>psql -U neil -d bpsimple
Password:
Welcome to psql 8.0.0, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query
 \q to quit

Warning: Console codepage (850) differs from windows codepage (1252)
 8-bit characters will not work correctly. See PostgreSQL
 documentation "Installation on Windows" for details.

bpsimple=#

Alternatively, you can select the Windows Start menu item psql to template1, and then
change the database within psql:

template1=# \c bpsimple
You are now connected to database "bpsimple".
bpsimple=#

You are now logged into PostgreSQL, ready to execute some commands. To exit back to
the shell, use the command \q.

Next, we will use a set of SQL statements to create and populate the sample database.

MatthewStones_4789C03.fm Page 66 Tuesday, February 1, 2005 7:24 AM

C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L 67

Creating the Tables
You can create the tables in your bpsimple database by typing in the SQL commands that
follow at the psql command prompt. However, it’s easier to download the code bundle from
the Downloads section of the Apress web site (http://www.apress.com), unpack it, and then
execute the commands using \i <filename>. (The \i command in psql can be used to execute
groups of SQL statements and other PostgreSQL commands stored in text files, called scripts.)
The commands are just plain text, so you can always edit them with your preferred text editor
if you want.

To run the create_tables-bpsimple.sql script to create the tables, enter the following:

bpsimple=# \i create_tables-bpsimple.sql
CREATE TABLE
...
bpsimple=#

It is a very good practice to script all database schema (tables, indexes, and procedures)
statements. That way, if the database needs to be re-created, you can do that from the scripts.
Scripts should also be used whenever the schema needs to be updated.

Here is the SQL for creating our tables (the ones we designed in Chapter 2), which you will
find in create_tables-bpsimple.sql in the code bundle:

CREATE TABLE customer
(
 customer_id serial ,
 title char(4) ,
 fname varchar(32) ,
 lname varchar(32) NOT NULL,
 addressline varchar(64) ,
 town varchar(32) ,
 zipcode char(10) NOT NULL,
 phone varchar(16) ,
 CONSTRAINT customer_pk PRIMARY KEY(customer_id)
);

CREATE TABLE item
(
 item_id serial ,
 description varchar(64) NOT NULL,
 cost_price numeric(7,2) ,
 sell_price numeric(7,2) ,
 CONSTRAINT item_pk PRIMARY KEY(item_id)
);

MatthewStones_4789C03.fm Page 67 Tuesday, February 1, 2005 7:24 AM

68 C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L

CREATE TABLE orderinfo
(
 orderinfo_id serial ,
 customer_id integer NOT NULL,
 date_placed date NOT NULL,
 date_shipped date ,
 shipping numeric(7,2) ,
 CONSTRAINT orderinfo_pk PRIMARY KEY(orderinfo_id)
);

CREATE TABLE stock
(
 item_id integer NOT NULL,
 quantity integer NOT NULL,
 CONSTRAINT stock_pk PRIMARY KEY(item_id)
);

CREATE TABLE orderline
(
 orderinfo_id integer NOT NULL,
 item_id integer NOT NULL,
 quantity integer NOT NULL,
 CONSTRAINT orderline_pk PRIMARY KEY(orderinfo_id, item_id)
);

CREATE TABLE barcode
(
 barcode_ean char(13) NOT NULL,
 item_id integer NOT NULL,
 CONSTRAINT barcode_pk PRIMARY KEY(barcode_ean)
);

Removing the Tables
If, at some later date, you wish to delete all the tables (also known as dropping the tables) and
start again, you can. The command set is in the drop_tables.sql file, and looks like this:

DROP TABLE barcode;
DROP TABLE orderline;
DROP TABLE stock;
DROP TABLE orderinfo;
DROP TABLE item;
DROP TABLE customer;

MatthewStones_4789C03.fm Page 68 Tuesday, February 1, 2005 7:24 AM

C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L 69

DROP SEQUENCE customer_customer_id_seq;
DROP SEQUENCE item_item_id_seq;
DROP SEQUENCE orderinfo_orderinfo_id_seq;

Be warned, if you drop the tables, you also lose any data in them!

■Note The drop_tables.sql script also explicitly drops the special attributes, called sequences, that
PostgreSQL uses to maintain the automatically incrementing serial columns. In PostgreSQL version 8.0 and
later, these sequences will be automatically dropped when the relevant table is dropped, but we have retained
the commands for compatibility with earlier versions.

If you run this script after creating the tables, then you should run the
create_tables-bpsimple.sql script again before attempting to populate the tables with data.

Populating the Tables
Last, but not least, we need to add some data to the tables, or populate the tables.

The sample data is in the code bundle available from the Apress web site, as
pop_tablename.sql. If you choose to use your own data, your results will be different from
the ones presented in the book. So, until you are confident, it’s probably best to stick with
our sample data.

The line wraps are simply a necessity of the fitting the commands on the printed page. You
can type each command on a single line. You do need to include the terminating semicolon,
which tells psql where each SQL command ends.

Customer table

INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Miss','Jenny','Stones','27 Rowan Avenue','Hightown','NT2 1AQ','023 9876');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr','Andrew','Stones','52 The Willows','Lowtown','LT5 7RA','876 3527');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Miss','Alex','Matthew','4 The Street','Nicetown','NT2 2TX','010 4567');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr','Adrian','Matthew','The Barn','Yuleville','YV67 2WR','487 3871');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr','Simon','Cozens','7 Shady Lane','Oakenham','OA3 6QW','514 5926');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr','Neil','Matthew','5 Pasture Lane','Nicetown','NT3 7RT','267 1232');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr','Richard','Stones','34 Holly Way','Bingham','BG4 2WE','342 5982');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mrs','Ann','Stones','34 Holly Way','Bingham','BG4 2WE','342 5982');

MatthewStones_4789C03.fm Page 69 Tuesday, February 1, 2005 7:24 AM

70 C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L

INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mrs','Christine','Hickman','36 Queen Street','Histon','HT3 5EM','342 5432');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr','Mike','Howard','86 Dysart Street','Tibsville','TB3 7FG','505 5482');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr','Dave','Jones','54 Vale Rise','Bingham','BG3 8GD','342 8264');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr','Richard','Neill','42 Thatched Way','Winersby','WB3 6GQ','505 6482');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mrs','Laura','Hardy','73 Margarita Way','Oxbridge','OX2 3HX','821 2335');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr','Bill','O\'Neill','2 Beamer Street','Welltown','WT3 8GM','435 1234');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr','David','Hudson','4 The Square','Milltown','MT2 6RT','961 4526');

Item table

INSERT INTO item(description, cost_price, sell_price)
VALUES('Wood Puzzle', 15.23, 21.95);
INSERT INTO item(description, cost_price, sell_price)
VALUES('Rubik Cube', 7.45, 11.49);
INSERT INTO item(description, cost_price, sell_price)
VALUES('Linux CD', 1.99, 2.49);
INSERT INTO item(description, cost_price, sell_price)
VALUES('Tissues', 2.11, 3.99);
INSERT INTO item(description, cost_price, sell_price)
VALUES('Picture Frame', 7.54, 9.95);
INSERT INTO item(description, cost_price, sell_price)
VALUES('Fan Small', 9.23, 15.75);
INSERT INTO item(description, cost_price, sell_price)
VALUES('Fan Large', 13.36, 19.95);
INSERT INTO item(description, cost_price, sell_price)
VALUES('Toothbrush', 0.75, 1.45);
INSERT INTO item(description, cost_price, sell_price)
VALUES('Roman Coin', 2.34, 2.45);
INSERT INTO item(description, cost_price, sell_price)
VALUES('Carrier Bag', 0.01, 0.0);
INSERT INTO item(description, cost_price, sell_price)
VALUES('Speakers', 19.73, 25.32);

Barcode table

INSERT INTO barcode(barcode_ean, item_id) VALUES('6241527836173', 1);
INSERT INTO barcode(barcode_ean, item_id) VALUES('6241574635234', 2);
INSERT INTO barcode(barcode_ean, item_id) VALUES('6264537836173', 3);
INSERT INTO barcode(barcode_ean, item_id) VALUES('6241527746363', 3);
INSERT INTO barcode(barcode_ean, item_id) VALUES('7465743843764', 4);
INSERT INTO barcode(barcode_ean, item_id) VALUES('3453458677628', 5);

MatthewStones_4789C03.fm Page 70 Tuesday, February 1, 2005 7:24 AM

C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L 71

INSERT INTO barcode(barcode_ean, item_id) VALUES('6434564564544', 6);
INSERT INTO barcode(barcode_ean, item_id) VALUES('8476736836876', 7);
INSERT INTO barcode(barcode_ean, item_id) VALUES('6241234586487', 8);
INSERT INTO barcode(barcode_ean, item_id) VALUES('9473625532534', 8);
INSERT INTO barcode(barcode_ean, item_id) VALUES('9473627464543', 8);
INSERT INTO barcode(barcode_ean, item_id) VALUES('4587263646878', 9);
INSERT INTO barcode(barcode_ean, item_id) VALUES('9879879837489', 11);
INSERT INTO barcode(barcode_ean, item_id) VALUES('2239872376872', 11);

Orderinfo table

INSERT INTO orderinfo(customer_id, date_placed, date_shipped, shipping)
VALUES(3,'03-13-2000','03-17-2000', 2.99);
INSERT INTO orderinfo(customer_id, date_placed, date_shipped, shipping)
VALUES(8,'06-23-2000','06-24-2000', 0.00);
INSERT INTO orderinfo(customer_id, date_placed, date_shipped, shipping)
VALUES(15,'09-02-2000','09-12-2000', 3.99);
INSERT INTO orderinfo(customer_id, date_placed, date_shipped, shipping)
VALUES(13,'09-03-2000','09-10-2000', 2.99);
INSERT INTO orderinfo(customer_id, date_placed, date_shipped, shipping)
VALUES(8,'07-21-2000','07-24-2000', 0.00);

Orderline table

INSERT INTO orderline(orderinfo_id, item_id, quantity) VALUES(1, 4, 1);
INSERT INTO orderline(orderinfo_id, item_id, quantity) VALUES(1, 7, 1);
INSERT INTO orderline(orderinfo_id, item_id, quantity) VALUES(1, 9, 1);
INSERT INTO orderline(orderinfo_id, item_id, quantity) VALUES(2, 1, 1);
INSERT INTO orderline(orderinfo_id, item_id, quantity) VALUES(2, 10, 1);
INSERT INTO orderline(orderinfo_id, item_id, quantity) VALUES(2, 7, 2);
INSERT INTO orderline(orderinfo_id, item_id, quantity) VALUES(2, 4, 2);
INSERT INTO orderline(orderinfo_id, item_id, quantity) VALUES(3, 2, 1);
INSERT INTO orderline(orderinfo_id, item_id, quantity) VALUES(3, 1, 1);
INSERT INTO orderline(orderinfo_id, item_id, quantity) VALUES(4, 5, 2);
INSERT INTO orderline(orderinfo_id, item_id, quantity) VALUES(5, 1, 1);
INSERT INTO orderline(orderinfo_id, item_id, quantity) VALUES(5, 3, 1);

Stock table

INSERT INTO stock(item_id, quantity) VALUES(1,12);
INSERT INTO stock(item_id, quantity) VALUES(2,2);
INSERT INTO stock(item_id, quantity) VALUES(4,8);
INSERT INTO stock(item_id, quantity) VALUES(5,3);
INSERT INTO stock(item_id, quantity) VALUES(7,8);
INSERT INTO stock(item_id, quantity) VALUES(8,18);
INSERT INTO stock(item_id, quantity) VALUES(10,1);

MatthewStones_4789C03.fm Page 71 Tuesday, February 1, 2005 7:24 AM

72 C H A P T E R 3 ■ G E T T I N G S T A R T E D W I T H P O S T G R E S Q L

With the PostgreSQL system running, the database created, and the tables made and
populated, we are ready to continue our exploration of PostgreSQL features.

Summary
In this chapter, we have taken a look at some of the options for installing PostgreSQL on Linux,
UNIX-compatible systems, and Windows. The simplest way is probably to use some form of
precompiled binary package. We provided step-by-step instructions for compiling, installing,
and confirming a working installation on Linux systems from packages, UNIX-compatible
systems from source code, and Windows systems using the Microsoft Windows installer.

Finally, we created a sample database that we will be using throughout the rest of the book
to demonstrate the features of the PostgreSQL system. We’ll begin in the next chapter by exploring
how to access your data.

MatthewStones_4789C03.fm Page 72 Tuesday, February 1, 2005 7:24 AM

73

■ ■ ■

C H A P T E R 4

Accessing Your Data

So far in this book, our encounters with SQL have been rather informal. We have seen some
statements that retrieve data in various ways, as well as some SQL for creating and populating
tables.

In this chapter, we will take a slightly more formal look at SQL, starting with the SELECT
statement. In fact, this whole chapter is devoted to the SELECT statement. Your first impression
might be that a whole chapter on one part of SQL is a bit excessive, but the SELECT statement is
at the heart of the SQL language. Once you understand SELECT, you really have done the hard
part of learning SQL.

In the next chapter, we will talk about some of the GUI clients you can use, but for now, we
will be using psql, a simple command-line tool that ships with PostgreSQL, to access the database.

In this chapter, we’ll cover the following topics:

• Using the psql command to interact with the PostgreSQL database

• Using some simple SELECT statements for retrieving data

• Improving the output readability by overriding column names

• Controlling the order of rows in retrieved data

• Suppressing duplicate rows

• Performing mathematical calculations while retrieving data

• Aliasing table names for convenience

• Using pattern matching to specify what data to retrieve

• Making comparisons using various data types

• Retrieving data from multiple tables in a single SELECT statement

• Relating three or more tables in a SELECT statement

By now, you should have PostgreSQL up and running. Throughout this chapter, we will be
using the sample database we designed in Chapter 2 and created and populated in Chapter 3.

MatthewStones_4789C04.fm Page 73 Tuesday, February 1, 2005 7:30 AM

74 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

Using psql
Assuming you have followed the instructions in Chapter 3, you should now have a database
called bpsimple, accessible from your normal PostgreSQL login prompt.

■Caution You should never use the postgres user for accessing the PostgreSQL server, except in the
special case of database administration.

Starting Up on Linux Systems
If you are on a Linux system, and you created an ordinary user without a password, to start psql
accessing the bpsimple database, you include your username in the connection command. For
example, to access the database as user rick, you would enter:

$ psql -d bpsimple -U rick

You should see the following:

Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

bpsimple=>

We are now ready to enter commands. If you created the user with a password, you may be
prompted for a password, depending on the exact authentication configuration. We will explain
more about authentication in Chapter 11.

Starting Up on Windows Systems
If you are using Windows, begin by opening the Start menu and choosing the command psql
to template1. You’ll be prompted for the postgres user password. After successful connecting,
switch to the bpsimple database and your own username (here, we show user rick) using the
\c command, like this:

template1=# \c bpsimple rick
You are now connected to database "bpsimple" as user "rick".
bpsimple=>

MatthewStones_4789C04.fm Page 74 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 75

Notice the prompt changes from =# to => to show that you no longer have permission to
create databases.

Alternatively, you could create a shortcut for the menu command. For example, here we
connect to a remote server (the -h option) on IP address 192.168.0.3, to database (the -d option)
bpsimple, as the user rick (the -U option).

"C:\Program Files\PostgreSQL\8.0\bin\psql.exe" -h 192.168.0.3 -d bpsimple -U rick

Replace rick with postgres for a connection as the administrative user, and you can omit the
-h option if the server is local.

Resolving Startup Problems
If psql complains about pg_shadow, then you have not yet created the supplied username as a
database user. If it complains about not knowing the username or lack of permissions, then
you may not have granted permissions correctly. Refer to Chapter 3 for details on how to grant
permissions.

If you have come unstuck, the easiest way to fix things at this stage is to delete the database
and user, and then re-create them. To do so, exit the psql command using the command \q,
which will return you to the command-line prompt (Linux) or close the Windows Command
Prompt window.

Next, reconnect to the database server as the postgres user. In Linux, do this from the
prompt like this:

$ psql -d template1

On Windows, use the Start menu command psql to template1.
Enter the password you used during the installation process, and you should see this prompt:

template1=#

Now delete the user database and the user (rick in this example) like this:

template1=# DROP DATABASE bpsimple;
DROP DATABASE
template1=# DROP USER rick;
DROP USER
template1=#

Next, re-create the user and choose a password (apress4789 in this example):

template1=# CREATE USER rick WITH CREATEDB PASSWORD 'apress4789';
CREATE USER
template1=#

The CREATEDB option allows users to create their own databases.

MatthewStones_4789C04.fm Page 75 Tuesday, February 1, 2005 7:30 AM

76 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

Now reconnect to the database, as your newly created user:

template1=# \c template1 rick
Password:
template1=#

You are now connected to database template1 as your new user (again, rick in this example).
Next, create the bpsimple database:

template1=> CREATE DATABASE bpsimple;
CREATE DATABASE
template1=>

Reattach to the bpsimple database as the new user:

template1=> \c bpsimple rick
You are now connected to database "bpsimple" as user "rick".
bpsimple=>

You will then need to rerun the steps described at the end of the previous chapter, starting
from the “Creating the Tables” section, in order to create the sample tables and data we will use
in this chapter.

If you see an error message like this when trying to create the database:

ERROR: source database "template1" is being accessed by other users

this means that there is some other session attached to the database template1—perhaps
another psql session or a GUI tool such as pgAdmin III. Ensure your current psql session is the
only one in use, and then try again.

To check if you have the tables created for the bpsimple database, enter \dt, and then press
Return, and you should see output similar to this:

bpsimple=> \dt
 List of relations
Schema | Name | Type | Owner
-------+--------------+-------+----------
public | barcode | table | rick
public | customer | table | rick
public | item | table | rick
public | orderinfo | table | rick
public | orderline | table | rick
public | stock | table | rick
(6 rows)

bpsimple=>

The Owner column will show your login name (rick in this example).

MatthewStones_4789C04.fm Page 76 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 77

■Note You may see some tables with names such as pg_ts_dict, pg_ts_parser, pg_ts_cfg, and
pg_ts_cfgmap. These are additional tables added by some optional user-contributed tools. You can safely
ignore them.

You can see the same information in pgAdmin III by navigating to Databases, then
bpsimple, then Schemas, then public, and then Tables, as shown in Figure 4-1.

Figure 4-1. Examining the bpsimple database with pgAdmin III

We’ll cover database and user management in considerable detail in Chapter 11.

MatthewStones_4789C04.fm Page 77 Tuesday, February 1, 2005 7:30 AM

78 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

Using Some Basic psql Commands
We will use only a few basic psql commands in this chapter (we will meet the full set in Chapter 5).
For now, the commands you need to know are listed in Table 4-1.

Each of the commands listed in Table 4-1 must be followed by pressing Return (or Enter).
You should also be able to use the arrow keys to recall previous lines and move within lines to
edit them. On Linux systems, this feature of psql depends on the presence of the GNU readline
facility, which is usually, but not always, installed.

Now we are ready to start accessing our PostgreSQL database using SQL commands. In the
next chapter, we will meet some of the GUI tools that you can use with PostgreSQL, but in this
chapter, we will use the psql tool.

■Note If you prefer to use the GUI tools, you may want to look ahead to Chapter 5 first. Then you can return
to this chapter. You should be able to try all of the examples in this chapter from any GUI tool that allows you
to type SQL directly to PostgreSQL, such as pgAdmin III (http://www.pgadmin.org/). However, we suggest
working through at least this chapter with the command line, because it is often very handy to know the
basics of accessing PostgreSQL using only a command-line tool.

Using Simple SELECT Statements
As with all relational databases, we retrieve data from PostgreSQL using the SELECT statement.
It’s probably the most complex statement in SQL, but it really is at the heart of using relational
databases effectively.

Let’s start our investigation of SELECT by simply asking for all the data in a particular table.
We do this by using a very basic form of the SELECT statement, specifying a list of columns and
a FROM clause with a table name:

Table 4-1. Basic psql Commands

Command Description

\? Get a help message

\do List operators

\dt List tables

\dT List types

\h <cmd> Get help on a SQL command; replace <cmd> with the actual command

\i <filename> Execute commands read from the filename <filename>

\r Reset the buffer (discard any typing)

\q Quit psql

MatthewStones_4789C04.fm Page 78 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 79

SELECT <comma-separated list of columns> FROM <table name>

If we can’t remember what the exact column names are called, or want to see all the columns,
we can just use an asterisk (*) in place of the column list.

■Note In this book, we show SQL keywords that structure the commands in uppercase in the text to make
them stand out clearly. SQL is not case-sensitive, although a few implementations do make table names case-
sensitive. Data stored in SQL databases is case-sensitive, so the character string "Newtown" is different from
the character string "newtown".

Try It Out: Select All Columns from a Table

We will start by fetching all the data from the item table:

SELECT * FROM item;

Remember that the semicolon (;) is for the benefit of psql, to tell it you have finished
typing. Strictly speaking, it is not part of SQL. If you prefer, you can terminate SQL statements
typed into psql with \g, which has the same effect as the semicolon. If you are using a different
tool to send SQL to PostgreSQL, you may not need either of these terminators.

Enter the command, and you’ll see PostgreSQL’s response:

bpsimple=> SELECT * FROM item;
 item_id | description | cost_price | sell_price
---------+---------------+------------+------------
 1 | Wood Puzzle | 15.23 | 21.95
 2 | Rubic Cube | 7.45 | 11.49
 3 | Linux CD | 1.99 | 2.49
 4 | Tissues | 2.11 | 3.99
 5 | Picture Frame | 7.54 | 9.95
 6 | Fan Small | 9.23 | 15.75
 7 | Fan Large | 13.36 | 19.95
 8 | Toothbrush | 0.75 | 1.45
 9 | Roman Coin | 2.34 | 2.45
 10 | Carrier Bag | 0.01 | 0.00
 11 | Speakers | 19.73 | 25.32
(11 rows)
bpsimple=>

How It Works

We simply asked PostgreSQL for all the data from all the columns in the item table, using an *
for the column names. PostgreSQL gave us just that, but neatly arranged with column headings
and a pipe (|) symbol to separate each column. It even told us how many rows we retrieved.

But suppose we didn’t want all the columns? In general, you should ask PostgreSQL, or
indeed any relational database, to retrieve only the data you actually want. Each column of

MatthewStones_4789C04.fm Page 79 Tuesday, February 1, 2005 7:30 AM

80 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

each row that is retrieved adds a little extra work. There is no point in making the server do
work unnecessarily; it’s always nice to keep things clean and efficient.

You will also find that, once you start having SQL embedded in other languages (see
Chapter 14), specifying exact columns will protect you against changes to the database schema.
For example, if you use * to retrieve all columns and an additional column had been inserted
in a table since the code was tested, you may find that you are processing data from a different
column than the one you intended. If a column that you are using is deleted, then the SQL in
your program will fail, since the column can no longer be retrieved; however, that is a much
easier bug to find and correct than some application code accessing the wrong column while
processing data. If you specify the columns by name, you have the option of searching all your
code to see if the column names appear, before making changes to the database, and
preventing bugs from ever occurring.

Let’s try restricting the columns we retrieve. As we saw in the syntax earlier, we do this by
specifying each column we want, separated by a comma. If we don’t want the columns in the
order we specified when we created the database table, that’s fine—we can specify the columns
in any order we like, and they will be returned in that order.

Try It Out: Select Named Columns in a Specific Order

To retrieve the name of the town and last name of all our customers, we must specify the name
of the columns for town and last name, and, of course, the table from which to retrieve them.
Here is the statement we need and PostgreSQL’s response:

bpsimple=> SELECT town, lname FROM customer;
 town | lname
-----------+---------
 Hightown | Stones
 Lowtown | Stones
 Nicetown | Matthew
 Yuleville | Matthew
 Oakenham | Cozens
 Nicetown | Matthew
 Bingham | Stones
 Bingham | Stones
 Histon | Hickman
 Tibsville | Howard
 Bingham | Jones
 Winersby | Neill
 Oxbridge | Hardy
 Welltown | O'Neill
 Milltown | Hudson
(15 rows)

bpsimple=>

MatthewStones_4789C04.fm Page 80 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 81

How It Works

PostgreSQL returns all the data rows from the table we specified, but only from the columns we
requested. It also returns the column data in the order in which we specified the columns in the
SELECT statement.

Overriding Column Names
You will notice that the output uses the database column name as the heading for the output.
Sometimes, this is not very easy to read, particularly when the column in the output isn’t an
actual database column, so it has no name. There is a very simple syntax for specifying the display
name (a column name alias) to use with each column, which is to add AS "<display name>" after
each column in the SELECT statement. You can specify the names of all columns you select or
just a few. Where you don’t specify the name, PostgreSQL just uses the column name.

For example, to change the preceding output to add meaningful names, we would use this:

SELECT town, lname AS "Last Name" FROM customer;

We will see an example of this in use in the next section. It’s worth noting that, in the
SQL92 standard, the AS clause is optional; however, as of release 8.0, PostgreSQL still requires
the AS keyword.

Controlling the Order of Rows
So far, we have retrieved the data from the columns we wanted, but the data is not always in the
most suitable order for viewing. The data we are seeing may look as though it is in the order we
inserted it into the database, but that is probably simply because we have not been updating
the data by inserting and deleting rows.

As we mentioned in Chapter 2, unlike in a spreadsheet, the order of rows in a database is
unspecified. The database server is free to store rows in the most effective way, which is not
usually the most natural way for viewing the data. The output you see is not sorted in any
meaningful order, and the next time you ask for the same data, it could be displayed in a different
order. Generally, the data will be returned in the order it is stored in the database internally. No
SQL database, PostgreSQL included, is obliged to return the data in a particular order, unless
you specifically request it to be ordered when you retrieve it.

We can control the order in which data is displayed from a SELECT statement by adding an
ORDER BY clause to the SELECT statement, which specifies the order we would like the data to be
returned. The syntax is as follows:

SELECT <comma-separated list of columns> FROM <table name> ORDER BY <column name>
[ASC | DESC]

The slightly strange-looking syntax at the end means that after the column name, we can
write either ASC (short for ascending) or DESC (short for descending). By default, ascending
order is used. The data is then returned to us ordered by the column we specified, sorted in the
direction we requested.

MatthewStones_4789C04.fm Page 81 Tuesday, February 1, 2005 7:30 AM

82 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

Try It Out: Order the Data

In this example, we will sort the data by town, and we will also override the default column
name for the lname column, similar to what we saw in the previous section, to make the output
slightly easier to read.

Here is the command we require and PostgreSQL’s response:

bpsimple=> SELECT town, lname AS "Last Name" FROM customer ORDER BY town;
 town | Last Name
-----------+-----------
 Bingham | Stones
 Bingham | Stones
 Bingham | Jones
 Hightown | Stones
 Histon | Hickman
 Lowtown | Stones
 Milltown | Hudson
 Nicetown | Matthew
 Nicetown | Matthew
 Oakenham | Cozens
 Oxbridge | Hardy
 Tibsville | Howard
 Welltown | O'Neill
 Winnersby | Neill
 Yuleville | Matthew
(15 rows)

bpsimple=>

Notice that since we want the data in ascending order, we can omit the ASC, as ascending
is the default sort order. As you can see, the data is now sorted in ascending order by town.

How It Works

This time, we made two changes to our previous statement. We added an AS clause to change
the name of the second column to Last Name, which makes it easier to read, and we also added
an ORDER BY clause to specify the order in which PostgreSQL should return the data to us.

Sometimes, we need to go a little further and order the data by more than a single column.
For example, in the previous output, although the data is ordered by town, there is not much
order in the Last Name. We can see, for example, that Jones is listed after Stones under all the
customers found in the town Bingham.

We can more precisely order the output by specifying more than one column in the
ORDER BY clause. If we want to, we can even specify that the order is ascending for one
column and descending for another column.

Try It Out: Order the Data Using ASC and DESC

Let’s try our SELECT again, but this time, we will sort the town names into descending order, and
then sort the last names into ascending order where rows share the same town name.

MatthewStones_4789C04.fm Page 82 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 83

The statement we need and PostgreSQL’s response are as follows:

bpsimple=> SELECT town, lname AS 'Last Name' FROM customer
ORDER BY town DESC, lname ASC;
 town | Last Name
-----------+-----------
 Yuleville | Matthew
 Winnersby | Neill
 Welltown | O'Neill
 Tibsville | Howard
 Oxbridge | Hardy
 Oakenham | Cozens
 Nicetown | Matthew
 Nicetown | Matthew
 Milltown | Hudson
 Lowtown | Stones
 Histon | Hickman
 Hightown | Stones
 Bingham | Jones
 Bingham | Stones
 Bingham | Stones
(15 rows)
bpsimple=>

How It Works

As you can see, PostgreSQL first orders the data by town in descending order, which was the
first column we specified in our ORDER BY clause. It then orders those entries that have multiple
last names for the same town in an ascending order. This time, although Bingham is now last in
the rows retrieved, the last names of our customers in that town are ordered in an ascending
fashion.

Usually, the columns by which you can order the output are restricted, not unreasonably,
to columns you have requested in the output. PostgreSQL, at least in the current version, does
not enforce this standard restriction, and it will accept a column in the ORDER BY clause that is
not in the selected column list. However, this is nonstandard SQL, and we suggest that you
avoid relying on this feature.

Suppressing Duplicates
You may have noticed that there are several duplicate rows in the previous output. For example,
the following town and last name rows appear twice:

Nicetown | Matthew
Bingham | Stones

What’s going on here? In the original data, there are indeed two customers in Nicetown
named Matthew and two customers in Bingham named Stones. For reference, here are the
rows, showing the first names as well:

MatthewStones_4789C04.fm Page 83 Tuesday, February 1, 2005 7:30 AM

84 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

Nicetown | Matthew | Alex
Nicetown | Matthew | Neil
Bingham | Stones | Richard
Bingham | Stones | Ann

When PostgreSQL listed two rows for Nicetown and Matthew, and two rows for Bingham
and Stones, it was quite correct. There are two customers in each of those towns with the same
last names. They look exactly the same because we did not ask for the columns that distinguish
them.

The default behavior is to list all the rows, but that is not always what we want. For example,
we might want just a list of towns where we have customers, perhaps to determine where we
should build distribution centers. Based on our knowledge so far, we might reasonably try this:

bpsimple=> SELECT town FROM customer ORDER BY town;
 town

 Bingham
 Bingham
 Bingham
 Hightown
 Histon
 Lowtown
 Milltown
 Nicetown
 Nicetown
 Oakenham
 Oxbridge
 Tibsville
 Welltown
 Winersby
 Yuleville
(15 rows)

bpsimple=>

PostgreSQL has listed all the towns, once for each time a town appeared in the customer
table. This is correct, but it’s probably not quite the listing we would like. What we actually
need is a list where each town appeared just once; in other words, a list of distinct towns.

In SQL, you can suppress duplicate rows by adding the keyword DISTINCT to the SELECT
statement. The syntax is as follows:

SELECT DISTINCT <comma-separated list of columns> FROM <table name>

As with pretty much all the clauses on SELECT, you can combine this with other clauses,
such as renaming columns or specifying an order.

Try It Out: Use DISTINCT

Let’s get a list of all the towns that appear in our customer table, without duplicates. We can try
the following code to get the response:

MatthewStones_4789C04.fm Page 84 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 85

bpsimple=> SELECT DISTINCT town FROM customer;
 town

 Bingham
 Hightown
 Histon
 Lowtown
 Milltown
 Nicetown
 Oakenham
 Oxbridge
 Tibsville
 Welltown
 Winersby
 Yuleville
(12 rows)

bpsimple=>

How It Works

The DISTINCT keyword tells PostgreSQL to remove all duplicate rows. Notice that the output is
now ordered by town. This is because of the way PostgreSQL has chosen to implement the
DISTINCT clause for your data. In general, you cannot assume the data will be sorted in this way.
If you want the data sorted in a particular way, you must add an ORDER BY clause to specify
the order.

Notice that the DISTINCT clause is not associated with a particular column. You can suppress
only rows that are duplicated in all the columns you select, not suppress duplicates of a partic-
ular column. For example, suppose that we used this form:

SELECT DISTINCT town, fname FROM customer;

We would again get 15 rows, because there are 15 different town and first name combinations.
A word of warning is in order here: Although it might look like a good idea to always use

DISTINCT with SELECT, in practice, this is a bad idea for two reasons. First, by using DISTINCT,
you are asking PostgreSQL to do significantly more work in retrieving your data and checking
for duplicates. Unless you know there will be duplicates that need to be removed, you shouldn’t
use the DISTINCT clause. The second reason is a bit more pragmatic. Occasionally, DISTINCT
will mask errors in your data or SQL that would have been easy to spot if duplicate rows had
been displayed.

■Caution Use DISTINCT only where you actually need it, because it requires more work and may
mask errors.

MatthewStones_4789C04.fm Page 85 Tuesday, February 1, 2005 7:30 AM

86 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

Performing Calculations
We can also perform simple calculations on data in the rows we retrieve before sending them
to the output.

Suppose we wanted to display the cost price of items in our item table. We could just
execute SELECT as shown here:

bpsimple=> SELECT description, cost_price FROM item;
 description | cost_price
---------------+-------------
 Wood Puzzle | 15.23
 Rubic Cube | 7.45
 Linux CD | 1.99
 Tissues | 2.11
 Picture Frame | 7.54
 Fan Small | 9.23
 Fan Large | 13.36
 Toothbrush | 0.75
 Roman Coin | 2.34
 Carrier Bag | 0.01
 Speakers | 19.73
(11 rows)

bpsimple=>

Suppose we wanted to see the price in cents. We can do a simple calculation in SQL, like this:

bpsimple=> SELECT description, cost_price * 100 FROM item;
 description | ?column?
---------------+--------------
 Wood Puzzle | 1523.00
 Rubic Cube | 745.00
 Linux CD | 199.00
 Tissues | 211.00
 Picture Frame | 754.00
 Fan Small | 923.00
 Fan Large | 1336.00
 Toothbrush | 75.00
 Roman Coin | 234.00
 Carrier Bag | 1.00
 Speakers | 1973.00
(11 rows)

bpsimple=>

It seems a little weird, with the decimal points and the strange column name, so let’s get
rid of the decimal points by using a SQL function, and also explicitly name the resulting column.
We use the cast function to change the type of the column, which, in conjunction with an
AS clause to name the column, gives us the better-looking output:

MatthewStones_4789C04.fm Page 86 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 87

bpsimple=> SELECT description, cast((cost_price * 100) AS int AS "Cost Price"
FROM item;
description | Cost Price
--------------+--------------
Wood Puzzle | 1523
Rubic Cube | 745
Linux CD | 199
Tissues | 211
Picture Frame | 754
Fan Small | 923
Fan Large | 1336
Toothbrush | 75
Roman Coin | 234
Carrier Bag | 1
Speakers | 1973
(11 rows)

bpsimple=>

We’ll talk more about the cast function later in this chapter, in the “Setting the Time and
Date Style” section.

Choosing the Rows
So far in this chapter, we have always worked with all the rows of data, or at least all the distinct
rows. It’s time to look at how we can choose the specific rows we want to see. You probably
won’t be surprised to learn that we do this with yet another clause on the SELECT statement: the
WHERE clause.

The simplified syntax for WHERE is as follows:

SELECT <comma-separated list of columns> FROM <table name> WHERE <conditions>

There are many possible conditions, which can also be combined by the keywords AND, OR,
and NOT.

The standard comparison operators used in conditions are listed in Table 4-2. The compar-
ison operators can be used on most types, both numeric and string, although there are some
special conditions when working with dates, which we will see later in this chapter.

Table 4-2. Standard Comparison Operators

Operator Description

< Less than

<= Less than or equal to

= Equal to

>= Greater than or equal to

> Greater than

<> Not equal to

MatthewStones_4789C04.fm Page 87 Tuesday, February 1, 2005 7:30 AM

88 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

We will start with a simple condition, choosing to retrieve rows for people who live in the
town Bingham:

bpsimple=> SELECT town, lname, fname FROM customer WHERE town = 'Bingham';
town | lname | fname
--------+--------+---------
Bingham | Stones | Richard
Bingham | Stones | Ann
Bingham | Jones | Dave
(3 rows)

bpsimple=>

That was pretty straightforward, wasn’t it? Notice the single quotes round the string Bingham,
which are needed to make it clear that this is a string. Also notice that because Bingham is being
matched against data in the database, it is case-sensitive. If we had used ... town = 'bingham',
no data would have been returned.

We can have multiple conditions, combined using AND, OR, and NOT, with parentheses to
make the expression clear. We can also use conditions on columns that don’t appear in the list
of columns we have selected. You will remember that this generally isn’t true for clauses such
as ORDER BY.

Try It Out: Use Operators

Let’s try a more complicated set of conditions. Suppose we want to see the names of our
customers who do not have a title of Mr., but do live in either Bingham or Nicetown. Here is the
statement we need and PostgreSQL’s response:

bpsimple=> SELECT title, fname, lname, town FROM customer WHERE title <> 'Mr'
bpsimple-> AND (town = 'Bingham' OR town = 'Nicetown');
title | fname | lname | town
-------+-------+---------+----------
 Miss | Alex | Matthew | Nicetown
 Mrs | Ann | Stones | Bingham
(2 rows)

bpsimple=>

How It Works

Although it might look a little complex at first glance, this statement is actually quite simple.
The first part is just our usual SELECT, listing the columns we want to see in the output. After the
WHERE clause, we initially check that the title is not Mr. Then, using AND, we check that another
condition is true. This second condition is that the town is either Bingham or Nicetown. Notice
that we need to use parentheses to make it clear how the clauses are to be grouped.

You should be aware that PostgreSQL, or any other relational database, is not under any
obligation to process the clauses in the order you write them in the SQL statement. All that is
promised is that the result will be the correct answer to the SQL “question.” Generally, relational
databases have sophisticated optimizers, which look at the request, and then determine the

MatthewStones_4789C04.fm Page 88 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 89

optimal way to satisfy it. Optimizers are not perfect, and you will very occasionally come across
statements that run better when rewritten in different ways. For reasonably simple statements
like this one, we can safely assume the optimizer will do a good job.

■Tip If you want to know how PostgreSQL will process a SQL statement, you can get it to tell you by
prefixing the SQL with EXPLAIN. Rather than execute the statement, PostgreSQL will tell you how the
statement would be processed.

Using More Complex Conditions
One of the things that we frequently need to do when working with strings is to allow partial
matching. For example, we may be looking for a person named Robert, but the name may have
been shortened in the database to Rob or Bob. There are some special operations in SQL that
make working with strings, either partial ones or lists of strings, easier.

The first new condition is IN, which allows us to check against a list of items, rather than
using a string of OR conditions. Consider the following:

SELECT title, fname, lname, town FROM customer WHERE title <> 'Mr' AND
(town = 'Bingham' OR town = 'Nicetown');

We can rewrite this as follows:

SELECT title, fname, lname, town FROM customer WHERE title <> 'Mr' AND
town IN ('Bingham', 'Nicetown');

We will get the same result, although it’s possible the output rows could be in a different
order, since we did not use an ORDER BY clause. There is no particular advantage in using the IN
clause in this case, except for the simplification of the expression. When we meet subqueries in
Chapter 7, we will use IN again, as it offers more advantages in those situations.

The next new condition is BETWEEN, which allows us to check a range of values by specifying
the endpoints. Suppose we wanted to select the rows with customer_id values between 5 and 9.
Rather than write a sequence of OR conditions, or an IN with many values, we can simply
write this:

bpsimple=> SELECT customer_id, town, lname FROM customer WHERE customer_id
BETWEEN 5 AND 9;
customer_id | town | lname
-------------+----------+---------
 5 | Oahenham | Cozens
 6 | Nicetown | Matthew
 7 | Bingham | Stones
 8 | Bingham | Stones
 9 | Histon | Hickman
(5 rows)
bpsimple=>

MatthewStones_4789C04.fm Page 89 Tuesday, February 1, 2005 7:30 AM

90 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

It’s also possible to use BETWEEN with strings; however, you need to be careful, because the
answer may not always be exactly what you were expecting, and you must know the case, since,
as mentioned earlier, string comparisons are case-sensitive.

Try It Out: Use Complex Conditions

Let’s try a BETWEEN statement, comparing strings. Suppose we wanted a distinct list of all the
towns that start with letters between B and N. All of the towns in the customer table start with
a capital letter, so we might write the following:

bpsimple=> SELECT DISTINCT town FROM customer WHERE town BETWEEN 'B' AND 'N';
 town

 Bingham
 Hightown
 Histon
 Lowtown
 Milltown
(5 rows)

bpsimple=>

If you look at these results closely, you’ll see that this SQL doesn’t work as expected. Where
is Newtown? It certainly starts with an N, but it hasn’t been listed.

Why It Didn’t Work

The reason this statement didn’t work is that PostgreSQL, as per the SQL standard, pads the
string you give it with blanks until it is the same length as the string it is checking against. So
when the comparison arrived at Newtown, PostgreSQL compared N (N followed by six
spaces) with Newtown, and because whitespace appears in the ASCII table before all the other
letters, it decided the Newtown came after N , so it shouldn’t be included in the list.

How to Make It Work

It’s actually quite easy to make this work as expected. Either we need to prevent the behavior of
adding blanks to the search string by adding some additional z characters after the N or search
using the next letter in the alphabet, O, in the BETWEEN clause. Of course, if there were a town
called O, we would then erroneously retrieve it, so you need to be careful using this method. It’s
generally better to use z rather than Z, because z appears after Z in the ASCII table. Thus, our
SQL should read as follows:

SELECT DISTINCT town FROM customer WHERE town BETWEEN 'B' AND 'Nz';

Notice that we didn’t add a z after the B, because the B string being padded with blanks
does work to find all towns that start with a B, since it is the starting point, rather than the
endpoint. Also if there were a town that started with the letters Nzz, we would again fail to find
it, because we would then compare Nz against Nzz, and decide that Nzz came after Nz, because
the third string location would have been padded to a space, which comes before the z in the
third place of the string we are comparing against.

MatthewStones_4789C04.fm Page 90 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 91

This type of matching has rather subtle behavior, so if you do use BETWEEN with strings,
always think carefully about exactly what is being matched.

Pattern Matching
The string-comparison operations we have seen until now are fine as far as they go, but they
don’t help very much with real-world string pattern matching. The SQL condition for pattern
matching is LIKE.

Unfortunately, LIKE uses a different set of string-comparison rules from all other program-
ming languages we know. However, as long as you remember the rules, it’s easy enough to use.
When comparing strings with LIKE, you use a percent sign (%) to mean any string of characters,
and you use an underscore (_) to match a single character. For example, to match towns begin-
ning with the letter B, we would write this:

... WHERE town LIKE 'B%'

To match first names that end with e, we would write this:

... WHERE fname LIKE '%e';

To match first names that are exactly four characters long, we would use four underscore
characters, like this:

... WHERE fname LIKE '_ _ _ _';

We can also combine the two types in a single string.

Try It Out: Pattern Matching

Let’s find all the customers who have first names that have an a as the second character. Here
is the SQL statement to achieve this:

bpsimple=> SELECT fname, lname FROM customer WHERE fname LIKE '_a%';
fname | lname
------+--------
Dave | Jones
Laura | Hardy
David | Hudson
(3 rows)

bpsimple=>

How It Works

The first part of the pattern, _a, matches strings that start with any single character, then have
a lowercase a. The second part of the pattern, %, matches any remaining characters. If we didn’t
use the trailing %, only strings exactly two characters long would have been matched.

MatthewStones_4789C04.fm Page 91 Tuesday, February 1, 2005 7:30 AM

92 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

Limiting the Results
In the examples we have been using so far, the number of result rows returned has always been
quite small, because we have only a few sample rows in our sample database. In a real-world
database we could easily have many thousands of rows that match the selection criteria. If we
are working on our SQL, refining our statements, we almost certainly do not want to see many
thousands of rows scrolling past on our screen. A few sample rows to check our logic would be
quite sufficient.

PostgreSQL has an extra clause on the SELECT statement, LIMIT, which is not part of the
SQL standard but is very useful when we want to restrict the number of rows returned.

If you append LIMIT and a number to your SELECT clause, only rows up to the number you
specified will be returned, starting from the first row. A slightly different way to use LIMIT is in
conjunction with the OFFSET clause, which specifies a starting position.

It’s easier to show it in action than to describe it. Here we display only the first five
matching rows:

bpsimple=> SELECT customer_id, town FROM customer LIMIT 5;
customer_id | town
-------------+-----------
 1 | Hightown
 2 | Lowtown
 3 | Nicetown
 4 | Yuleville
 5 | Oahenham
(5 rows)

bpsimple=>

The following skips the first two result rows, then returns the next five rows:

bpsimple=> SELECT customer_id, town FROM customer LIMIT 5 OFFSET 2;
 customer_id | town
-------------+-----------
 3 | Nicetown
 4 | Yuleville
 5 | Oahenham
 6 | Nicetown
 7 | Bingham
(5 rows)

bpsimple=>

It’s also possible to use OFFSET on its own, like this:

MatthewStones_4789C04.fm Page 92 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 93

bpsimple=> SELECT customer_id, town FROM customer OFFSET 12;
 customer_id | town
-------------+----------
 13 | Oxbridge
 14 | Welltown
 15 | Milltown
(3 rows)

bpsimple=>

If you want to combine LIMIT with other SELECT clauses, the LIMIT clause should always
appear after the normal SELECT statement, followed only by the OFFSET clause, if you use it.

Checking for NULL
So far, we do not know a way of checking to see if a column contains a NULL value. We can check
if it equals a value or string, or if it doesn’t equal a value or string, but that’s not sufficient.

You will remember from Chapter 2 that NULL is a special column value that means either
unknown or not relevant. We need to look at checking for NULL separately, because it requires
special consideration to ensure that the results are as expected.

Suppose we have an integer column tryint in a table testtab that we know stores 0, 1, or
NULL. We can check if it is 0 by writing this:

SELECT * FROM testtab WHERE tryint = 0;

We can check if it is 1 by writing this:

SELECT * FROM testtab WHERE tryint = 1;

We need another check to see if the value is NULL. PostgreSQL supports the standard SQL
syntax for checking whether a value is NULL. We do this with the use of IS NULL, like this:

SELECT * FROM testtab WHERE tryint IS NULL;

Notice that we use the keyword IS rather than an = sign.
We can also test to see if the value is something other than NULL by adding a NOT to invert

the test:

SELECT * FROM testtab WHERE tryint IS NOT NULL;

Why do we suddenly need this extra bit of syntax? You are probably familiar with two-valued
logic, where everything is either true or false. What is happening here is that we have stumbled
into three-value logic, with true, false, and unknown.

Unfortunately, this property of NULL, being unknown, has some other effects outside the
immediate concern of checking for NULL.

MatthewStones_4789C04.fm Page 93 Tuesday, February 1, 2005 7:30 AM

94 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

Suppose we ran our statement on a table where some values of tryint were NULL:

SELECT * FROM testtab WHERE tryint = 1;

What does our tryint = 1 mean when tryint is actually NULL? We are asking the question,
“Is unknown equal to 1?” This is interesting, because we can’t know that the statement is false,
but neither can we know it to be true. So the answer must be unknown, hence the rows where
NULL appears are not matched. If we reversed the test, and compared tryint != 1, the rows
with NULL would also not be found, because that condition would not be true either. This can
be confusing, because we have apparently used two tests, with opposite conditions, and still
not retrieved all the rows from the table.

It’s important to be aware of these issues with NULL, because it’s all too easy to forget about
NULL values. If you start getting slightly unexpected results when using conditions on a column
that can have NULL values, verify whether the rows consisting of the NULL value are the cause of
your problems.

Checking Dates and Times
PostgreSQL has two basic types for handling date and time information: timestamp, which holds
both a date and a time; and date, which holds day, month, and year information. PostgreSQL
has some built-in functions that help us work with dates and time, which are traditionally
rather difficult units to manipulate. Here, we’ll concentrate on those that are most commonly
used. (You can find all of the built-in functions listed in the online documentation.)

Before we start, we need to tackle one of those apparently trivial problems that can so
easily cause confusion: how do we specify a date?

When we write the date 1/2/2005, what do we mean? Europeans generally mean the first
day of February 2005, but Americans usually mean the second day of January 2005. This is because
Europeans generally read dates as DD/MM/YYYY, but Americans expect MM/DD/YYYY. Just to
add to the confusion, the ISO standard 8601 (officially adopted in Europe as European Standard
EN 28601) specifies the logical (but rarely seen in everyday use) date format YYYY-MM-DD.

PostgreSQL lets you change the way dates are handled to suit your local needs, so before
we get into checking dates and time, it’s probably sensible to look at how you control this
aspect of PostgreSQL’s behavior.

Setting the Time and Date Style
Unfortunately, PostgreSQL’s method of setting the way the date and time are handled is, at first
sight at least, a little strange.

There are two things you can control:

• The order in which days and months are handled, United States or European style

• The display format; for example, numbers only or more textual date output

The unfortunate part of the story is that PostgreSQL uses the same variable to handle both
settings, which frankly, can be a bit confusing. The good news is that PostgreSQL defaults to
using the unambiguous ISO-8601 style date and time output, which is always written in the
form YYYY-MM-DD hh:mm:ss.ssTZD. This gives you the year, month, day, hours, minutes,
seconds, decimal part of a second to two places, and a time zone designator, which indicates a

MatthewStones_4789C04.fm Page 94 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 95

plus or minus number of hours difference between local time and UTC. For example, a full date
and time would look like 2005-02-01 05:23:43.23+5, which equates to February 1, 2005, at
23 minutes and 43.23 seconds past five o’clock in the morning, and the time zone used is five
hours ahead of UTC. If you specify the time in UTC, with no time zone, the standard says you
should use a Z (pronounced “Zulu”) to indicate this, although it seems common to omit the Z.

For input in the form NN/NN/NNNN, PostgreSQL defaults to expecting the month before
the day (United States style). For example, 2/1/05 is the first of February. Alternatively, you can
use a format like February 1, 2005, or the ISO style 2005-02-01. If that behavior is all you need,
you are in luck—you don’t need to know any more about controlling how PostgreSQL accepts
and displays dates, and you can skip ahead to the next section on date and time functions.

The default style is actually controlled by the postgresql.conf file, in the data directory,
which has a line of the form datestyle = 'iso, mdy'. So, you could change the default globally,
if you wish.

If you need more control over how dates are handled, PostgreSQL does allow this, but it
can be a little tricky. The confusing thing is that there are two independent features to control,
and you set them both using datestyle. Do remember, however, that this is all to do with
presentation. Internally, PostgreSQL stores dates in a way totally independent of any represen-
tation that users expect when data is input or retrieved.

The syntax as a command to psql is as follows:

SET datestyle TO 'value';

To set the order in which months and days are handled, you set the datestyle value to
either US, for month-first behavior (02/01/1997, for February 1) or European for day-first
behavior (01/02/1997 for February 1).

To change the display format, you also set datestyle, but to one of four different values:

• ISO for the ISO-8601 standard, using - as the field separator, as in 1997-02-01

• SQL for the traditional style, as in 02/01/1997

• Postgres for the default PostgreSQL style, as in Sat Feb 01

• German for the German style, as in 01.02.1997

■Note In the current release, the Postgres format defaults to displaying in SQL style for both date
and timestamps.

You set the datestyle variable to the value pair by separating the values with a comma. So,
for example, to specify that we want dates shown in SQL style, but using the European convention
of day before month, we use this setting:

SET datestyle TO 'European, SQL';

Rather than set the date-handling style locally in session, you can set it for an entire instal-
lation, or set the default for a session. If you want to set the default style for date input for a
complete installation, you can set the environment variable PGDATESTYLE before starting the

MatthewStones_4789C04.fm Page 95 Tuesday, February 1, 2005 7:30 AM

96 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

postmaster master server process. Setting the same options using the environment variable in
Linux, we would use the following:

PGDATESTYLE="European, SQL"
export PGDATESTYLE

A much better way of changing the default date handling is to edit the configuration file
postgresql.conf (found in the data subdirectory of your installation), and set an option such
as datestyle='European, SQL' or datestyle = 'iso, mdy', depending on your preferences. You
will need to restart the PostgreSQL server after making this change for it to become effective.

If you want to set the date style for individual users, you use the same environment variable,
but set for the local user, before psql is invoked. A local setting will override any global setting
you have made.

Before we demonstrate how this all works, it’s very handy to remember the special PostgreSQL
function cast, which allows you to convert one format into another. We saw it briefly earlier in
this chapter, when we looked at doing calculations in the SELECT statement, but there is much
more to it than the simple conversion to integer we saw earlier. Although PostgreSQL does a
pretty good job of getting types correct, and you shouldn’t need conversion functions often,
they can be very useful occasionally. The conversion we need to use to investigate our date and
time values is the following to get a date:

cast('string' AS date)

Alternatively, to get a value that includes a time:

cast('string' AS timestamp)

We are also going to use a little trick to demonstrate this function more easily. Almost
every time you use the SELECT statement, you will be fetching data from a table. However, you
can use SELECT to get data that isn’t in a table at all, as in this example:

bpsimple=> SELECT 'Fred';
?column?

 Fred
(1 row)

bpsimple=>

PostgreSQL is warning us that we haven’t selected any columns, but it is quite happy to
accept the SELECT syntax without a table name, and just returns the string we specified.

We can use the same feature, in conjunction with cast, to see how PostgreSQL treats dates
and time, without needing to create a temporary table to experiment with.

Try It Out: Set Date Formats

We start off with the environment variable PGDATESTYLE unset, so you can see the default
behavior, and then set the date style, so you can see how things progress. We enter a date in ISO
format, so this is always a safe option, and PostgreSQL outputs in the same format. There is no
ambiguity in either of these statements:

MatthewStones_4789C04.fm Page 96 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 97

bpsimple=> SELECT cast('2005-02-1' AS date);
?column?

2005-02-01
(1 row)
bpsimple=>

Changing the style to US and SQL format, we still enter the date in ISO style, which is unam-
biguous; it’s still the first of February, but now the output shows the more conventional, but
possibly ambiguous, United States style MM/DD/YYYY output:

bpsimple=> SET datestyle TO 'US, SQL';
SET VARIABLE
bpsimple=> SELECT cast('2005-02-1' AS date);
?column?

02/01/2005
(1 row)
bpsimple=>

Now is a good time to also ask psql what the internal variable datestyle is set to:

bpsimple=> SHOW datestyle;
 DateStyle

 SQL, MDY
(1 row)
bpsimple=>

In older versions of PostgreSQL, the output was more verbose, so you may see something
slightly different, depending on which version of PostgreSQL you are using.

Now let’s try some more formats:

bpsimple=> SET datestyle TO 'European, SQL';
SET
bpsimple=> SELECT cast('2005 02 1' AS date);
 date

 01/02/2005
(1 row)

bpsimple=>

With the output set to European, the display changes to DD/MM/YYYY.
Let’s go back to ISO input and output:

MatthewStones_4789C04.fm Page 97 Tuesday, February 1, 2005 7:30 AM

98 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

bpsimple=> SET datestyle TO 'European, ISO';
SET
bpsimple=> SELECT cast('2005-02-1' AS date);
 date

 2005-02-01
(1 row)

bpsimple=>

The European setting has no effect, because ISO is the same for all locales.
Now let’s consider times. We use the timestamp type, which displays time:

bpsimple=> SELECT cast('2005-02-1' AS timestamp);
 ?column?

 2005-02-01 00:00:00
(1 row)

bpsimple=>

We didn’t specify any hours or minutes, so they all default to zero.
Let’s try PostgreSQL-style output:

bpsimple=> SET datestyle TO 'European, Postgres';
SET
bpsimple=> SELECT cast('2005-02-1' AS timestamp);
 timestamp

 Tue 01 Feb 00:00:00 2005
(1 row)

bpsimple=>

This produces output that is unambiguous and rather more reader-friendly.

How It Works

As you can see, we can vary the way both dates and times are displayed, as well as how ambig-
uous input strings, such as 01/02/2005, are interpreted.

Time zones are much simpler than date formats. Providing that your local environment
variable TZ or configuration option in postgresql.conf is correctly set, PostgreSQL will manage
time zones without further ado.

Using Date and Time Functions
Now that we have seen how dates work, we can look at a couple of useful functions you might
need when comparing dates:

MatthewStones_4789C04.fm Page 98 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 99

• date_part(units required, value to use) allows you to extract a particular component
of a date, such as the month.

• now simply gets the current date and time, and is equivalent to the more standard “magic
variable” current_timestamp.

Suppose we wanted to select the rows from our orderinfo table where the date the order
was placed is in September. We know September is the ninth month; therefore, we just ask the
following:

bpsimple=> SELECT * FROM orderinfo WHERE date_part('month',date_placed)=9;
 orderinfo_id | customer_id | date_placed | date_shipped | shipping
--------------+-------------+-------------+--------------+----------
 3 | 15 | 02-09-2004 | 12-09-2004 | 3.99
 4 | 13 | 03-09-2004 | 10-09-2004 | 2.99
(2 rows)

bpsimple=>

PostgreSQL extracts the appropriate rows for us. Note the date is being displayed in ISO
format. We can extract the following parts from a date or timestamp:

• Year

• Month

• Day

• Hour

• Minute

• Second

We can also compare dates, using the same operators that we can use with numbers: <>,
<=, <, >, >=, and =. Here is an example:

bpsimple=> SELECT * FROM orderinfo WHERE date_placed >= cast('2004 07 21' AS date);
 orderinfo_id | customer_id | date_placed | date_shipped | shipping
--------------+-------------+-------------+--------------+----------
 3 | 15 | 02-09-2004 | 12-09-2004 | 3.99
 4 | 13 | 03-09-2004 | 10-09-2004 | 2.99
 5 | 8 | 21-07-2004 | 24-07-2004 | 0.00
(3 rows)

bpsimple=>

Notice that we need to convert our string to a date, using the cast operation, and that we
stick to the unambiguous ISO style dates.

The second function, now, simply gives us the current date and time, which would be handy
if, for example, we were adding a new row for an order being placed while the customer was on
the phone, or in real time over the Internet.

MatthewStones_4789C04.fm Page 99 Tuesday, February 1, 2005 7:30 AM

100 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

bpsimple=> SELECT now(), current_timestamp;
 now | timestamptz
------------------------------------+------------------------------------
 Sat 16 Oct 13:46:05.99938 2004 BST | Sat 16 Oct 13:46:05.99938 2004 BST
(1 row)

bpsimple=>

We can also do simple calculations using dates. For example, to discover the number of
days between an order being placed and shipped, we could use a query like this:

bpsimple=> SELECT date_shipped - date_placed FROM orderinfo;
 ?column?

 4
 1
 10
 7
 3
(5 rows)

bpsimple=>

This returns the number of days between the two dates stored in the database.

■Note More extensive details on PostgreSQL’s handling of dates, times, time zones, and related conversion
functions can be found in the online documentation.

Working with Multiple Tables
By now, you should have a good idea of how we can select data from a table, picking which
columns we want, which rows we want, and how to control the order of the data. We have also
seen how to perform simple calculations, make type conversions, and handle the rather special
date and time formats.

It’s now time to move on to one of the most important features of SQL, and indeed, relational
databases in general: relating data in one table to data in another table automatically. The good
news is that it’s all done with the SELECT statement, and everything that you have learned so far
about SELECT is just as true with many tables as it was with a single table.

Relating Two Tables
Before we look at the SQL for using many tables at the same time, let’s have a quick recap of the
material we saw in Chapter 2 about relating tables.

MatthewStones_4789C04.fm Page 100 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 101

You will remember that we have a customer table, which stores details of our customers,
and an orderinfo table, which stores details of the orders they have placed. This allows us to
store details of each customer only once, no matter how many orders they placed. We linked
the two tables together by having a common piece of data, the customer_id, stored in both tables.

If we think about this as a picture, we could imagine a row in the customer table, which has
a customer_id, being related to none, one, or many rows in the orderinfo table, where the same
customer_id value appears, as illustrated in Figure 4-2.

Figure 4-2. The customer table and orderinfo table relationship

We could say that the value 8 for customer_id in the row in the customer table relates to
two rows in the orderinfo table, where the column customer_id also appears. Of course, we
didn’t need to have the two columns with the same name, but given that they both store the
customer’s ID, it would have been very confusing, and inconsistent, to give them different names.

Suppose we wanted to find all the orders that had been placed by our customer Ann Stones.
Logically, what we do is first look in our customer table to find this customer:

bpsimple=> SELECT customer_id FROM customer WHERE fname = 'Ann'
AND lname = 'Stones';
customer_id

 8
(1 row)

bpsimple=>

Now that we know the customer_id, we can check for orders from this customer:

MatthewStones_4789C04.fm Page 101 Tuesday, February 1, 2005 7:30 AM

102 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

bpsimple=> SELECT * FROM orderinfo WHERE customer_id = 8;
 orderinfo_id | customer_id | date_placed | date_shipped | shipping
--------------+-------------+-------------+--------------+----------
 2 | 8 | 23-06-2004 | 24-06-2004 | 0.00
 5 | 8 | 21-07-2004 | 24-07-2004 | 0.00
(2 rows)

bpsimple=>

This worked, but it took two steps, and we had to remember the customer_id between
steps. As we explained in Chapter 2, SQL is a declarative language; that is, you tell SQL what you
want to achieve, rather than explicitly defining the steps of how to get to the solution. What we
have just done is to use SQL in a procedural way. We specified two discrete steps to get to our
answer and discover the orders placed by a single customer. Wouldn’t it be more elegant to do
it all in one step?

Indeed, in SQL we can do this all in a single step, by specifying that we want to know the
orders placed by Ann Stones and that the information is in the customer table and orderinfo
table, which are related by the customer_id column that appears in both tables.

The new bit of SQL syntax we need to do this is an extension to the WHERE clause:

SELECT <column list> FROM <table list> WHERE <join condition>
AND <row-selection conditions>

That looks a little complex, but actually it’s quite easy. Just to make our first example a little
simpler, let’s assume we know the customer ID is 8, and just fetch the order date(s) and customer
first name(s). We need to specify the columns we want, the customer first name, the date the
order was placed, that the two tables are related by customer_id column, and that we want only
rows where the customer_id is 8.

You will immediately realize we have a slight problem. How do we tell SQL which customer_id
we want to use: the one in the customer table or the one in the orderinfo table? Although we are
about to check that they are equal, this might not always be the case, so how do we handle
columns whose name appears in more than one table? We simply specify the column name
using the extended syntax: tablename.columname. We can then unambiguously describe every
column in our database.

In general, PostgreSQL is quite forgiving, and if a column name appears in only one table
in the SELECT statement, we don’t need to explicitly use the table name as well. In this case, we
will use customer.fname, even though fname would have been sufficient, because it’s a little
easier to read, especially when you are learning SQL. The first part of our statement, therefore,
needs to be:

SELECT customer.fname, orderinfo.date_placed FROM customer, orderinfo

That indicates to PostgreSQL the columns and tables we wish to use.
Now we need to specify our conditions. We have two different conditions: that the

customer_id is 8 and that the two tables are related, or joined, using customer_id. Just as we
saw earlier with multiple conditions, we do this by using the keyword AND to specify multiple
conditions that must all be true:

WHERE customer.customer_id = 8 AND customer.customer_id = orderinfo.customer_id;

MatthewStones_4789C04.fm Page 102 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 103

Notice that we need to tell SQL a specific customer_id column, using the
tablename.columnname syntax, even though, in practice, it would not matter which of the two
tables’ customer_id column were checked against 8, since we also specify that they must have
the same value. Putting it all together, the statement we need is as follows:

bpsimple=> SELECT customer.fname, orderinfo.date_placed
 FROM customer, orderinfo
 WHERE customer.customer_id = 8
 AND customer.customer_id = orderinfo.customer_id;

 fname | date_placed
-------+-------------
 Ann | 2004-06-23
 Ann | 2004-07-21
(2 rows)

bpsimple=>

It’s much more elegant than multiple steps, isn’t it? Perhaps more important, by specifying the
entire problem in a single statement, we allow PostgreSQL to fully optimize the way the data
is retrieved.

Try It Out: Relate Tables

Now we know the principle, let’s try our original question and find all the orders placed by Ann
Stones, assuming we don’t know the customer_id.

We now only know a name, rather than a customer ID; therefore, our SQL is slightly more
complex. We must specify the customer by name:

bpsimple=> SELECT customer.fname, orderinfo.date_placed
FROM customer, orderinfo
WHERE customer.fname = 'Ann' AND customer.lname = 'Stones'
AND customer.customer_id = orderinfo.customer_id;
 fname | date_placed
-------+-------------
 Ann | 2004-06-23
 Ann | 2004-07-21
(2 rows)

bpsimple=>

How It Works

Just as we saw in our earlier example, we specify the columns we want, (customer.fname,
orderinfo.date_placed), the tables involved (customer, orderinfo), the selection conditions
(customer.fname = 'Ann' AND customer.lname = 'Stones'), and how the two tables are related
(customer.customer_id = orderinfo.customer_id).

MatthewStones_4789C04.fm Page 103 Tuesday, February 1, 2005 7:30 AM

104 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

SQL does the rest for us. It doesn’t matter if the customer has placed no orders, one order,
or many orders. SQL is perfectly happy to execute the SQL query, provided it’s valid, even if
there are no rows that match the condition.

Let’s now look at another example. Suppose we want to list all the products we have, with
their barcodes. You will remember that barcodes are held in the barcode table, and items are
stored in the item table. The two tables are related by having an item_id column in each table.
You may also remember that the reason we split this out into two tables is that many products,
or items, actually have multiple barcodes.

Using our newfound expertise in joining tables, we know that we need to specify the columns
we want, the tables, and how they are related, or joined together. Being confident, we also decide to
order the result by the cost price of the item:

bpsimple=> SELECT description, cost_price, barcode_ean FROM item, barcode
 WHERE barcode.item_id = item.item_id ORDER BY cost_price;
 description | cost_price | barcode_ean
---------------+------------+---------------
 Toothbrush | 0.75 | 6241234586487
 Toothbrush | 0.75 | 9473625532534
 Toothbrush | 0.75 | 9473627464543
 Linux CD | 1.99 | 6264537836173
 Linux CD | 1.99 | 6241527746363
 Tissues | 2.11 | 7465743843764
 Roman Coin | 2.34 | 4587263646878
 Rubic Cube | 7.45 | 6241574635234
 Picture Frame | 7.54 | 3453458677628
 Fan Small | 9.23 | 6434564564544
 Fan Large | 13.36 | 8476736836876
 Wood Puzzle | 15.23 | 6241527836173
 Speakers | 19.73 | 9879879837489
 Speakers | 19.73 | 2239872376872
(14 rows)

bpsimple=>

This looks reasonable, except several items seem to appear more than once, and we don’t
remember stocking two different speakers. Also, we don’t remember stocking that many items.
What’s going on here?

Let’s count the number of items we stock, using our newfound SQL skills:

bpsimple=> SELECT * FROM item;

PostgreSQL responds with the data, showing 11 rows. (More experienced SQL users would
use the more efficient SELECT count(*) FROM item; this function is introduced in Chapter 7.)

We stock only 11 items, but our earlier query found 14 rows. Did we make a mistake?
No, all that’s happened is that for some items, such as Toothbrush, there are many different

barcodes against a single product. PostgreSQL simply repeated the information from the item
table against each barcode, so that it listed all the barcodes and the item each one belonged to.

MatthewStones_4789C04.fm Page 104 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 105

You can check this out by also selecting the item ID, by adding it to the SELECT statement,
like this:

bpsimple=> SELECT item.item_id, description, cost_price, barcode_ean
 FROM item, barcode
 WHERE barcode.item_id = item.item_id ORDER BY cost_price;
 item_id | description | cost_price | barcode_ean
---------+---------------+------------+---------------
 8 | Toothbrush | 0.75 | 6241234586487
 8 | Toothbrush | 0.75 | 9473625532534
 8 | Toothbrush | 0.75 | 9473627464543
 3 | Linux CD | 1.99 | 6264537836173
 3 | Linux CD | 1.99 | 6241527746363
 4 | Tissues | 2.11 | 7465743843764
 9 | Roman Coin | 2.34 | 4587263646878
 2 | Rubic Cube | 7.45 | 6241574635234
 5 | Picture Frame | 7.54 | 3453458677628
 6 | Fan Small | 9.23 | 6434564564544
 7 | Fan Large | 13.36 | 8476736836876
 1 | Wood Puzzle | 15.23 | 6241527836173
 11 | Speakers | 19.73 | 9879879837489
 11 | Speakers | 19.73 | 2239872376872
(14 rows)

bpsimple=>

Notice that we have specified precisely which table item_id comes from, since it appears
in the item table as well as the barcode table.

It is now clear what exactly is going on. If the data you get returned from a SELECT statement
looks a little odd, it’s often a good idea to add all the id type columns to the SELECT statement,
just to see what is happening.

Aliasing Table Names
Earlier in the chapter, we saw how we could change column names in the output using AS to
give more descriptive names. It’s also possible to alias table names, if you wish. This is handy
in a few special cases, where you need two names for the same table, but more commonly, it is
used to save on typing. You will also see it used frequently in GUI tools, where it makes SQL
generation a little easier.

To alias a table name, you simply put the alias name immediately after the table name in
the FROM part of the SQL clause. Once you have done this, you can use the alias name, rather
than the real table name, in the rest of the SQL statement.

Suppose we had this simple SQL statement:

SELECT lname FROM customer;

MatthewStones_4789C04.fm Page 105 Tuesday, February 1, 2005 7:30 AM

106 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

As we saw earlier, you can explicitly name the column by preceding it with the table name,
like this:

SELECT customer.lname FROM customer;

If we alias the customer table to cu, we could instead prefix the column with cu like this:

SELECT cu.lname FROM customer cu;

Notice that we have added a cu directly after the table name, as well as prefixing the column
with cu.

When a single table is involved, aliasing table names is not very interesting. With multiple
tables, it starts to be a bit more useful. Consider our earlier query:

SELECT customer.fname, orderinfo.date_placed FROM customer, orderinfo WHERE
customer.fname = 'Ann' AND customer.lname = 'Stones' AND customer.customer_id =
orderinfo.customer_id;

With aliases for table names, we could write this as follows:

SELECT cu.fname, oi.date_placed FROM customer cu, orderinfo oi
WHERE cu.fname = 'Ann'
AND cu.lname = 'Stones' AND cu.customer_id = oi.customer_id;

Aliases table names can be useful both to make the SQL clearer and to avoid typing long
table names many times in a complex query.

Relating Three or More Tables
Now that we know how to relate two tables together, can we extend the idea to three or even
more tables? Yes, we can. SQL is a very logical language, so if we can do something with N items,
we can almost always do it with N+1 items. Of course, the more tables you include, the more
work PostgreSQL needs to do, so queries with many tables can be rather slow, especially if
many of the tables have very large numbers of rows.

Suppose we wanted to relate customer information to actual item IDs ordered?
If you look at our schema in Figure 4-3, you will see we need to use three tables to get from

the customer to the actual ordered items: customer, orderinfo, and orderline. Redrawing our
earlier diagram with three tables, it would look like Figure 4-4.

Here, we can see that customer 123 matches several rows in the orderinfo table—those
with orderinfo IDs of 579, 426, 723, and 114—and each of these, in turn, relates to one or more
rows in the orderline table. Notice that there is no direct relationship between customer and
orderline. We must use the orderinfo table, since that contains the information that binds the
customers to their orders.

MatthewStones_4789C04.fm Page 106 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 107

Figure 4-3. Database schema

Figure 4-4. Three related tables

MatthewStones_4789C04.fm Page 107 Tuesday, February 1, 2005 7:30 AM

108 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

Try It Out: Join Multiple Tables

Let’s first build a three-table join to discover the item_ids for
Ann Stones’s orders. We start with the columns we need:

SELECT customer.fname, customer.lname, orderinfo.date_placed,
 orderline.item_id, orderline.quantity

Then we list the tables involved:

FROM customer, orderinfo, orderline

Then we specify how the customer and orderinfo tables are related:

WHERE customer.customer_id = orderinfo.customer_id

We must also specify how the orderinfo and orderline tables are related:

orderinfo.orderinfo_id = orderline.orderinfo_id

Now our conditions:

customer.fname = 'Ann' AND customer.lname = 'Stones';

Putting them all together, and spreading the typing over several lines (notice the bpsimple ->
continuation prompt), we get this:

bpsimple=> SELECT customer.fname, customer.lname, orderinfo.date_placed,
bpsimple-> orderline.item_id,orderline.quantity
bpsimple-> FROM customer, orderinfo, orderline
bpsimple-> WHERE
bpsimple-> customer.customer_id = orderinfo.customer_id AND
bpsimple-> orderinfo.orderinfo_id = orderline.orderinfo_id AND
bpsimple-> customer.fname = 'Ann' AND
bpsimple-> customer.lname = 'Stones';
 fname | lname | date_placed | item_id | quantity
-------+--------+-------------+---------+----------
 Ann | Stones | 2004-06-23 | 1 | 1
 Ann | Stones | 2004-06-23 | 4 | 2
 Ann | Stones | 2004-06-23 | 7 | 2
 Ann | Stones | 2004-06-23 | 10 | 1
 Ann | Stones | 2004-07-21 | 1 | 1
 Ann | Stones | 2004-07-21 | 3 | 1
(6 rows)

bpsimple=>

Notice that whitespace outside strings is not significant to SQL, so we can add extra spaces
and line breaks to make the SQL easier to read. The psql program just issues a continuation
prompt, bpsimple->, and waits till it sees a semicolon before it tries to interpret what we have
been typing.

Having seen how easy it is to go from two tables to three tables, let’s take our query a step
further and list all the items by description that our customer Ann Stones has ordered. To do this,

MatthewStones_4789C04.fm Page 108 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 109

we need to use an extra table, the item table, to get at the item description. The rest of the query
however, is pretty much as before:

bpsimple=> SELECT customer.fname, customer.lname, orderinfo.date_placed,
bpsimple-> item.description, orderline.quantity
bpsimple-> FROM customer, orderinfo, orderline, item
bpsimple-> WHERE
bpsimple-> customer.customer_id = orderinfo.customer_id AND
bpsimple-> orderinfo.orderinfo_id = orderline.orderinfo_id AND
bpsimple-> orderline.item_id = item.item_id AND
bpsimple-> customer.fname = 'Ann' AND
bpsimple-> customer.lname = 'Stones';
 fname | lname | date_placed | description | quantity
-------+--------+-------------+-------------+----------
 Ann | Stones | 2004-06-23 | Wood Puzzle | 1
 Ann | Stones | 2004-06-23 | Tissues | 2
 Ann | Stones | 2004-06-23 | Fan Large | 2
 Ann | Stones | 2004-06-23 | Carrier Bag | 1
 Ann | Stones | 2004-07-21 | Wood Puzzle | 1
 Ann | Stones | 2004-07-21 | Linux CD | 1
(6 rows)

bpsimple=>

How It Works

Once you have seen how three-table joins work, it’s not difficult to extend the idea to more tables.
We added the item description to the list of columns to be shown, added the item table to the
list of tables to select from, and added the information about how to relate the item table to the
tables we already had, orderline.item_id = item.item_id. You will notice that Wood Puzzle is
listed twice, since it was purchased on two different occasions.

In this SELECT, we have displayed at least one column from each of the tables we used in
our join. There is actually no need to do this. If we had just wanted the customer name and
item description, we could have simply chosen not to retrieve the columns we didn’t need.

A version retrieving fewer columns is just as valid, and may be marginally more efficient
than our earlier attempt:

SELECT customer.fname, customer.lname, item.description
FROM customer, orderinfo, orderline, item
WHERE
 customer.customer_id = orderinfo.customer_id AND
 orderinfo.orderinfo_id = orderline.orderinfo_id AND
 orderline.item_id = item.item_id AND
 customer.fname = 'Ann' AND
 customer.lname = 'Stones';

 To conclude this example, let’s go back to something we learned early in the chapter: how
to remove duplicate information using the DISTINCT keyword.

MatthewStones_4789C04.fm Page 109 Tuesday, February 1, 2005 7:30 AM

110 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

Try It Out: Add Extra Conditions

Suppose we want to discover what type of items Ann Stones bought. All we want listed are the
descriptions of items purchased, ordered by the description. We don’t even want to list the
customer name, since we know that already (we are using it to select the data). We need to select
only the item.description, and we also need to use the DISTINCT keyword, to ensure that Wood
Puzzle is listed only once, even though it was bought several times:

bpsimple=> SELECT DISTINCT item.description
bpsimple-> FROM customer, orderinfo, orderline, item
bpsimple-> WHERE
bpsimple-> customer.customer_id = orderinfo.customer_id AND
bpsimple-> orderinfo.orderinfo_id = orderline.orderinfo_id AND
bpsimple-> orderline.item_id = item.item_id AND
bpsimple-> customer.fname = 'Ann' AND
bpsimple-> customer.lname = 'Stones'
bpsimple-> ORDER BY item.description;
 description

 Carrier Bag
 Fan Large
 Linux CD
 Tissues
 Wood Puzzle
(5 rows)

bpsimple=>

How It Works

We simply take our earlier SQL, remove the columns we no longer need, add the DISTINCT
keyword after SELECT to ensure each row appears only once, and add our ORDER BY condition
after the WHERE clause.

That’s one of the great things about SQL: once you have learned a feature, it can be applied
in a general way. ORDER BY, for example, works with many tables in just the same way as it works
with a single table.

The SQL92 SELECT Syntax
You may have noticed that the WHERE clause actually has two slightly different jobs. It specifies the
conditions to determine which rows we wish to retrieve (customer.fname = 'Ann') but also specifies
how multiple tables relate to each other (customer.customer_id = orderinfo.customer_id).

This didn’t really cause anyone any problems for many years, until the SQL standards
committee tried to extend the syntax to help handle the increasingly complex jobs to which
SQL was being put. When the SQL92 standard was released, a new form of the SELECT statement
syntax was added to separate these two subtly different uses. This new syntax (sometimes
referred to as the SQL92/99 syntax, or the ANSI syntax) was surprisingly slow to catch on with

MatthewStones_4789C04.fm Page 110 Tuesday, February 1, 2005 7:30 AM

C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A 111

many SQL databases. Microsoft was an early adopter in SQL Server 6.5, and PostgreSQL added
support in version 7.1, but it took Oracle till version 9 to support the new syntax.

The new syntax uses the JOIN … ON syntax to specify how tables relate, leaving the WHERE
clause free to concentrate on which rows to select. The new syntax moves the linking of tables
into the FROM section of the SELECT statement, away from the WHERE clause. So the syntax changes
from this:

SELECT <column list> FROM <table list>
 WHERE <join condition> <row-selection conditions>

to this:

SELECT <column list> FROM <table> JOIN <table> ON <join condition>
 WHERE <row-selection conditions>

It’s easier than it looks—really! Suppose we wanted to join the customer and orderinfo
tables, which share a common key of customer_id. Instead of writing the following:

FROM customer, orderinfo WHERE customer.customer_id = orderinfo.customer_id

we would write this:

FROM customer JOIN orderinfo ON customer.customer_id = orderinfo.customer_id

This is slightly more long-winded, but it is both clearer and an easier syntax to extend, as we
will see when we look at outer joins in Chapter 7.

Extensions to more than two tables are straightforward. Consider our earlier query:

SELECT customer.fname, customer.lname, item.description
FROM customer, orderinfo, orderline, item
WHERE
 customer.customer_id = orderinfo.customer_id AND
 orderinfo.orderinfo_id = orderline.orderinfo_id AND
 orderline.item_id = item.item_id AND
 customer.fname = 'Ann' AND
 customer.lname = 'Stones';

In the SQL92 syntax, this becomes:

SELECT customer.fname, customer.lname, item.description
FROM customer
 JOIN orderinfo ON customer.customer_id = orderinfo.customer_id
 JOIN orderline ON orderinfo.orderinfo_id = orderline.orderinfo_id
 JOIN item ON orderline.item_id = item.item_id
WHERE
 customer.fname = 'Ann' AND
 customer.lname = 'Stones';

Both versions of the SELECT statement produce identical results.

MatthewStones_4789C04.fm Page 111 Tuesday, February 1, 2005 7:30 AM

112 C H A P T E R 4 ■ A C C E S S I N G Y O U R D A T A

However, many users seem to have stuck with the earlier syntax, which is still valid and
slightly more succinct for many SQL statements. We present the newer SQL92 version here, so
you will be familiar with the syntax, but generally in this book, we will stick with the older-style
joins, except where we meet outer joins in Chapter 7.

Summary
This has been a fairly long chapter, but we have covered quite a lot. We have discussed the
SELECT statement in some detail, discovering how to choose columns and rows, how to order
the output, and how to suppress duplicate information. We also learned a bit about the date
type, and how to configure PostgreSQL’s behavior in interpreting and displaying dates, as well
as how to use dates in condition statements.

We then moved on to the heart of SQL: the ability to relate tables together. After our first
bit of SQL that joined a pair of tables, we saw how easy it was to extend this to three and even
four tables. We finished off by reusing some of the knowledge we gained early in the chapter to
refine our four-table selection to home in on displaying exactly the information we were searching
for, and removing all the extra columns and duplicate rows.

The good news is that we have now seen all the everyday features of the SELECT statement,
and once you understand the SELECT statement, much of the rest of SQL is reasonably straight-
forward. We will be coming back to the SELECT statement in Chapter 7 to look at some more
advanced features that you will need from time to time, but you will find that much of SQL you
need to use in the real world has been covered in this chapter.

MatthewStones_4789C04.fm Page 112 Tuesday, February 1, 2005 7:30 AM

113

■ ■ ■

C H A P T E R 5

PostgreSQL Command-Line
and Graphical Tools

A PostgreSQL database is generally created and administered with the command-line tool,
psql, which we have used in earlier chapters to get started. Command-line tools similar to psql
are common with commercial databases. Oracle has one such tool called SQL*Plus, for example.

While command-line tools are generally complete, in the sense that they contain ways to
perform all the functions that you need, they can be a little user-unfriendly. On the other hand,
they make no great demands in terms of graphics cards, memory, and so on.

In this chapter, we will begin by taking a closer look at psql. Next, we will cover how to set
up an ODBC data source to use a PostgreSQL database, which is necessary for some of the tools
described in this chapter. Then we will meet some of the graphical tools available for working
with PostgreSQL databases. Some of the tools can also be used for administering databases,
which is the topic of Chapter 11. In this chapter, we will concentrate on general database tasks.

In particular, we’ll examine the following tools in this chapter:

• psql

• ODBC

• pgAdmin III

• phpPgAdmin

• Rekall

• Microsoft Access

• Microsoft Excel

psql
The psql tool allows us to connect to a database, execute queries, and administer a database,
including creating a database, adding new tables and entering or updating data, using SQL
commands.

MatthewStones_4789C05.fm Page 113 Monday, February 14, 2005 12:00 PM

114 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

Starting psql
As we have already seen, we start psql by specifying the database to which we wish to connect.
We need to know the host name of the server and the port number the database is listening on
(if it is not running on the default of 5432), plus a valid username and password to use for the
connection. The default database will be the one on the local machine with the same name as
the current user login name.

To connect to a named database on a server, we invoke psql with a database name, like this:

$ psql -d bpsimple

We can override defaults for the database name, username, server host name, and listening
port by setting the environment variables PGDATABASE, PGUSER, PGHOST, and PGPORT, respectively.
These defaults may also be overridden by using the –d, -U, -h, and -p command-line options
to psql.

■Note We can run psql only by connecting to a database. This presents a “chicken-and-egg” problem for
creating our first database. We need a user account and a database to connect to. We created a default user,
postgres, when we installed PostgreSQL in Chapter 3, so we can use that to connect to create new users
and databases. To create a database, we connect to a special database included with all PostgreSQL instal-
lations, template1. Once connected to template1, we can create a database, and then either quit and
restart psql or use the \c internal psql command to reconnect to the new database.

When psql starts up, it will read a startup file, .psqlrc, if one exists and is readable in the
current user’s home directory. This file is similar to a shell script startup file and may contain
psql commands to set the desired behavior, such as setting the format options for printing
tables and other options. We can prevent the startup file from being read by starting psql with
the -X option.

Issuing Commands in psql
Once running, psql will prompt for commands with a prompt that consists of the name of the
database we are connected to, followed by =>. For users with full permissions on the database,
the prompt is replaced with =#.

psql commands are of two different types:

• SQL commands: We can issue any SQL statement that PostgreSQL supports to psql, and
it will execute it.

• Internal commands: These are psql commands used to perform operations not directly
supported in SQL, such as listing the available tables and executing scripts. All internal
commands begin with a backslash and cannot be split over multiple lines.

MatthewStones_4789C05.fm Page 114 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 115

■Tip You can ask for a list of all supported SQL commands by executing the internal command \h. For help
on a specific command, use \h <sql_command>. The internal command \? gives a list of all internal commands.

SQL commands to psql may be spread over multiple lines. When this occurs, psql will
change its prompt to -> or -# to indicate that more input is expected, as in this example:

$ psql -d bpsimple
...
bpsimple=# SELECT *
bpsimple-# FROM customer
bpsimple-# ;
...
$

To tell psql that we have completed a long SQL command that might spread across multiple
lines, we need to end the command with a semicolon. Note that the semicolon is not a required
part of the SQL command, but is just there to let psql know when we are finished. For example,
in the SELECT statement shown here, we may have wanted to add a WHERE clause on the next line.

We can tell psql that we will never split our commands over more than one line by starting
psql with the -S option. In that case, we do not need to add the semicolon to the end of our
commands. The psql prompt will change to ^> to remind us that we are in single-line mode.
This will save us a small amount of typing and may be useful for executing some SQL scripts.

Working with the Command History
On PostgreSQL platforms that support history recording, each command that we ask psql to
execute is recorded in a history, and we can recall previous commands to run again or edit. Use
the arrow keys to scroll through the command history and edit commands. This feature is
available unless you have turned it off with the -n command-line option (or it has not been
compiled in the build for your platform).

We can view the query history with the \s command or save it to a file with \s <file>. The
last query executed is kept in a query buffer. We can see what is in the query buffer with \p, and
we can clear it with \r. We can edit the query buffer contents with an external editor with \e.
The editor will default to vi (on Linux and UNIX), but you can specify your own favorite editor
by setting the EDITOR environment variable before starting psql. We can send the query buffer
to the server with \g, which gives a simple way to repeat a query.

Scripting psql
We can collect a group of psql commands (both SQL and internal) in a file and use it as a simple
script. The \i internal command will read a set of psql commands from a file.

This feature is especially useful for creating and populating tables. We used it in Chapter 3
to create our sample database, bpsimple. Here is part of the create_tables-bpsimple.sql script
file that we used:

MatthewStones_4789C05.fm Page 115 Monday, February 14, 2005 12:00 PM

116 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

CREATE TABLE customer
(
 customer_id serial ,
 title char(4) ,
 fname varchar(32) ,
 lname varchar(32) NOT NULL,
 addressline varchar(64) ,
 town varchar(64) ,
 zipcode char(10) NOT NULL,
 phone varchar(16) ,
 CONSTRAINT customer_pk PRIMARY KEY(customer_id)
);

CREATE TABLE item
(
 item_id serial ,
 description varchar(64) NOT NULL,
 cost_price numeric(7,2) ,
 sell_price numeric(7,2) ,
 CONSTRAINT item_pk PRIMARY KEY(item_id)
);

We give script files a .sql extension by convention, and execute them with the \i internal
command:

bpsimple=#\i create_tables-bpsimple.sql
CREATE TABLE
CREATE TABLE
...
bpsimple=#

Here, the script is located in the directory where we started psql, but we can execute a
script stored elsewhere by giving the full path to it.

Another use of script files is for simple reports. If we want to keep an eye on the growth of
a database, we could put a few commands in a script file and arrange to run it every once in a
while. To report the number of customers and orders taken, create a script file called report.sql
that contains the following lines and execute it in a psql session:

SELECT count(*) FROM customer;
SELECT count(*) FROM orderinfo;

Alternatively, we can use the -f command line option to get psql to execute the file and
then exit:

$ psql -f report.sql bpsimple
 count

 15
(1 row)

MatthewStones_4789C05.fm Page 116 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 117

 count

 5
(1 row)
$

If a password is required to access the database, psql will prompt for one. We can specify
a different database user with the -U option to psql.

We can redirect query output to a file by using the -o command-line option, or to a file or
filter program with the \o internal command from within a session. For example, from within
a psql session, we can create a text file called customers.txt containing all of our customers by
issuing the following commands:

bpsimple=# \o customers.txt
bpsimple=# SELECT * FROM customer;
bpsimple=# \o

The final command, \o without a filename parameter, stops the redirecting of query output
and closes the output file.

Examining the Database
We can explore the structure of our database using a number of internal psql commands. The
structure includes the names and definition of the tables that make up the database, any functions
(stored procedures and triggers) that may have been defined, the users that have been created,
and so on.

The \d command lists all of the relations—tables, sequences, and views, if any—in our
database. Here is an example:

bpsimple=# \d customer
 Table "public.customer"
 Column | Type | Modifiers
-------------+-----------------------+--
 customer_id | integer | not null default nextval(...)
 title | character(4) |
 fname | character varying(32) |
 lname | character varying(32) | not null
 addressline | character varying(64) |
 town | character varying(32) |
 zipcode | character(10) | not null
 phone | character varying(16) |
Indexes:
 "customer_pk" PRIMARY KEY, btree (customer_id)

bpsimple=#

The \dt command restricts the listing to tables only. See Table 5-2 in the “Internal Commands
Quick Reference” section for more internal psql commands.

MatthewStones_4789C05.fm Page 117 Monday, February 14, 2005 12:00 PM

118 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

psql Command-Line Quick Reference
The command syntax for psql is:

psql [options] [dbname [username]]

The psql command-line options and their meanings are shown in Table 5-1. To see the
complete list of options to psql, use the following command:

$ psql --help

Table 5-1. psql Command-Line Options

Option Meaning

-a Echo all input from script

-A Unaligned table output mode; same as -P format=unaligned

-c <query> Run only single query (or internal command) and exit

-d <dbname> Specify database name to connect to (default: $PGDATABASE or current
login name)

-e Echo queries sent to server

-E Display queries that internal commands generate

-f <filename> Execute queries from file, then exit

-F <string> Set field separator (default: |); same as -P fieldsep=<string>

-h <host> Specify database server host (default: $PGHOST or local machine)

-H Set HTML table output mode; same as -P format=html

--help Show help, then exit

-l List available databases, then exit

-n Disable readline; prevents line editing

-o <filename> Send query output to filename (use the form |pipe to send output to a
filter program)

-p <port> Specify database server port (default: $PGPORT or compiled-in default,
usually 5432)

-P var[=arg] Set printing option var to arg (see \pset command)

-q Run quietly (no messages, only query output)

-R <string> Set record separator (default: newline); same as -P recordsep=<string>

-s Set single-step mode (confirm each query)

MatthewStones_4789C05.fm Page 118 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 119

psql Internal Commands Quick Reference
The supported internal psql commands are shown in Table 5-2. In many versions of PostgreSQL,
some of these commands have more legible longer forms (such as \list for \l).

-S Set single-line mode (end of line terminates query rather than semicolon)

-t Print rows only; same as -P tuples_only

-T <text> Set HTML table tag options (width, border); same as -P tableattr=<text>

-U <username> Specify database username (default: $PGUSER or current login)

-v name=value Set psql variable name to value

--version Show version information and exit; also –V

-W Prompt for password (should happen automatically, if a password is required)

-x Turn on expanded table output; same as -P expanded

-X Do not read startup file (~/.psqlrc)

Table 5-2. psql Internal Commands

Command Meaning

\? List all available psql internal commands

\a Toggle between unaligned and aligned mode

\c[onnect] [dbname|- [user]] Connect to new database; use - as the database name to connect
to the default database if you need to give a username

\C <title> Set table title for output; same as \pset title

\cd <dir> Change the working directory

\copy ... Perform SQL COPY with data stream to the client machine

\copyright Show PostgreSQL usage and distribution terms

\d <table> Describe table (or view, index, sequence)

\d{t|i|s|v} List tables/indices/sequences/views

\d{p|S|l} List permissions/system tables/lobjects

\da List aggregates

Table 5-1. psql Command-Line Options (Continued)

Option Meaning

MatthewStones_4789C05.fm Page 119 Monday, February 14, 2005 12:00 PM

120 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

\db List tablespaces

\dc List conversions

\dC List casts

\dd [object] List comment for table, type, function, or operator

\dD List domains

\df List functions

\dg List groups

\dl List large objects; also \lo list

\dn List schemas

\do List operators

\dT List data types

\du List users

\e [file] Edit the current query buffer or file with external editor

\echo <text> Write text to standard output

\encoding <encoding> Set client encoding

\f <sep> Change field separator

\g [file] Send query to back-end (and results in file, or |pipe)

\h [cmd] Help on syntax of SQL commands; use * for detail on all
commands

\H Toggle HTML mode

\i <file> Read and execute queries from file

\l List all databases

\lo_export, \lo_import, \lo_list,
\lo_unlink

Perform large object operations

\o [file] Send all query results to file, or |pipe

\p Show the content of the current query buffer

\pset <opt> Set table output option, which can be one of the following:
format, border, expanded, fieldsep, footer, null, recordsep,
tuples_only, title, tableattr, pager

\q Quit psql

\qecho <txt> Write text to query output stream (see \o)

\r Reset (clear) the query buffer

\s [file] Print history or save it in file

Table 5-2. psql Internal Commands (Continued)

Command Meaning

MatthewStones_4789C05.fm Page 120 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 121

ODBC Setup
Several of the tools discussed in this chapter, as well as some of the programming language
interfaces discussed in later chapters, use the ODBC standard interface to connect to PostgreSQL.
ODBC defines a common interface for databases and is based on X/Open and ISO/IEC
programming interfaces. In fact, ODBC stands for Open Database Connectivity and is not (as
is often believed) limited to Microsoft Windows clients. Programs written in many languages—
like C, C++, Ada, PHP, Perl, and Python—can make use of ODBC. OpenOffice, Gnumeric,
Microsoft Access, and Microsoft Excel are just a few examples of applications that can use ODBC.

To use ODBC on a particular client machine, we need both an application written for the
ODBC interface and a driver for the particular database that we want to use. PostgreSQL has
an ODBC driver called psqlodbc, which we can install on our clients. Often, clients will be
running on machines that are different from the server, and possibly different from each
other, requiring us to compile the ODBC driver on several client platforms. For example, we
might have the database server on Linux and our client applications running on Windows
and Mac OS X.

The source code and a binary installation for Windows are available from the psqlODBC
project home page at http://gborg.postgresql.org/project/psqlodbc/.

■Note The standard Windows installation of PostgreSQL also contains a version of the ODBC driver that can
be installed on a Windows server at the same time as the database.

Installing the ODBC Driver
On Microsoft Windows, ODBC drivers are made available through the Control Panel’s Admin-
istrative Tools Data Sources applet, as shown in Figure 5-1.

\set <var> <value> Set internal variable

\t Show only rows (toggles between modes)

\T <tags> Set HTML table tags; same as \pset tableattr

\timing Toggle timing of commands

\unset <var> Unset (delete) internal variable

\w <file> Write current query buffer to file

\x Toggle expanded output

\z List access permissions for tables, views, and sequences

\! [cmd] Escape to shell or execute a shell command

Table 5-2. psql Internal Commands (Continued)

Command Meaning

MatthewStones_4789C05.fm Page 121 Monday, February 14, 2005 12:00 PM

122 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

Figure 5-1. The ODBC Data Sources applet

The Drivers tab of this applet lists the installed ODBC drivers, as shown in Figure 5-2.

Figure 5-2. Installed ODBC drivers

MatthewStones_4789C05.fm Page 122 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 123

To install the PostgreSQL ODBC driver, we need to perform two steps:

1. Download a suitable version of the driver from http://gborg.postgresql.org/project/
psqlodbc. If you have a version of Windows that includes the Microsoft Windows Installer,
the MSI version of the drivers is the recommended choice, as it is much smaller; otherwise,
download the full installation. At the time of writing, both versions of the driver are located
in compressed archive files named psqlodbc-07_03_0200.zip.

2. Extract the driver installation file from the downloaded archive. It will be named either
psqlodbc.msi or psqlodbc.exe. Double-click the installation file and follow the instruc-
tions to install the PostgreSQL ODBC driver.

After performing these two steps, we can confirm that we have successfully installed the
driver by again selecting the Drivers tab in the ODBC applet and noting that PostgreSQL now
appears in the list, as shown in Figure 5-3.

Figure 5-3. PostgreSQL ODBC driver installed

Creating a Data Source
Now we will be able to use ODBC-aware applications to connect to PostgreSQL databases.
To make a specific database available, we need to create a data source, as follows:

1. Select User DSN in the ODBC applet to create a data source that will be available to the
current user. (If you select System DSN, you can create data sources that all users can see.)

2. Click Add to begin the creation process. A dialog box for selecting which driver the data
source will use appears, as shown in Figure 5-4.

MatthewStones_4789C05.fm Page 123 Monday, February 14, 2005 12:00 PM

124 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

Figure 5-4. Creating a PostgreSQL data source

3. Select the PostgreSQL driver and click Finish.

4. We now have a PostgreSQL driver entry that must be configured. A Driver Setup box will
appear for us to enter the details of this data source. As shown in Figure 5-5, give the
data source a name and a description, and set the network configuration. Here, we are
creating an ODBC connection to a copy of our bpsimple database running on a Linux
server using the IP address of the server. (If you are running a fully configured naming
service such as DNS or WINS, you can use a machine name for the server.) We also
specify the username and password to be used at the server to access the database we
have chosen.

Figure 5-5. Configuring a PostgreSQL data source

MatthewStones_4789C05.fm Page 124 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 125

■Tip Additional options are available under the Global and DataSource options in the ODBC Driver Setup
dialog box. If you will be using ODBC applications to update data or insert new data into the PostgreSQL data-
base, you may need to configure the data source to support this. To do this, click the DataSource button and
make sure that the Read Only box is not checked in the dialog box that appears.

5. Click Save to complete the setup.

We are now ready to access our PostgreSQL database from ODBC applications such as
Microsoft Access and Excel, as we will discuss later in this chapter. Next, we will look at some
open-source alternatives, starting with pgAdmin III.

pgAdmin III
pgAdmin III is a full-featured graphical interface for PostgreSQL databases. It is free software,
community-maintained at http://www.pgadmin.org. According to the web site, pgAdmin is “a
powerful administration and development platform for the PostgreSQL database, free for any
use.” It runs on Linux, FreeBSD, and Windows 2000/XP. Versions for Sun and Mac OS X are
being developed.

pgAdmin III offers a variety of features. With it, we can do the following:

• Create and delete tablespaces, databases, tables, and schemas

• Execute SQL with a query window

• Export the results of SQL queries to files

• Back up and restore databases or individual tables

• Configure users, groups, and privileges

• View, edit, and insert table data

Let’s look at how to get up and running with this versatile tool.

Installing pgAdmin III
With the release of pgAdmin III, the developers have made installation of the program much
simpler. Previous versions require the PostgreSQL ODBC driver to be installed to provide
access to the database, but this dependency has been removed. If you have used an earlier
version of pgAdmin, we recommend that you consider upgrading.

MatthewStones_4789C05.fm Page 125 Monday, February 14, 2005 12:00 PM

126 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

■Note The standard Windows installation of PostgreSQL includes a version of pgAdmin III that can be
installed on a Windows server along with the database or on a client without a database.

Binary packages for Microsoft Windows 2000/XP, FreeBSD, Debian Linux, Slackware Linux,
and Linux distributions that use the RPM package format (such as Red Hat and SuSE Linux) are
available to download from http://www.pgadmin.org/pgadmin3/download.php.

Download the appropriate package for the system you want to run pgAdmin III and install it.
The Windows package contains an installer to execute, packaged in a compressed archive ZIP file.
After installation, you should have a new program (pgAdmin III) in the Windows Start menu.

Using pgAdmin III
Before we can use pgAdmin III in earnest, we need to make sure that we can create objects in
the database we want to maintain. This is because pgAdmin III augments the database with
objects of its own that are stored on the server. To perform all of the maintenance functions
with pgAdmin III, we need to log on as a user that has complete privileges for the database—
a superuser, in other words. If we choose a user without superuser status, we will get an error.

■Tip We will be looking at users and permissions in Chapter 11. If your PostgreSQL database installation
was performed on Windows with the default settings, you should have a user postgres that is used to
control the database, and you can try to log on as that user. If you installed on Linux or UNIX following the
steps in Chapter 3, you will have created a suitable user; we used neil.

We can manage several database servers at once with pgAdmin III, so our first task is to
create a server connection. Select Add Server from the File menu to bring up a dialog box very
similar to the one we used to create an ODBC connection earlier. Figure 5-6 shows a connection
being made to a PostgreSQL database on a Linux server.

MatthewStones_4789C05.fm Page 126 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 127

Figure 5-6. Adding a server connection in pgAdmin III

Once the server connection has been created, we can connect to the database server and
browse the databases, tables, and other objects that the server is providing. Figure 5-7 shows
an example of pgAdmin III exploring the tables of the bpsimple database and examining the
lname attribute of the customer table.

MatthewStones_4789C05.fm Page 127 Monday, February 14, 2005 12:00 PM

128 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

Figure 5-7. Examining table properties with pgAdmin III

One feature of pgAdmin III that is potentially very useful is its backup and restore func-
tionality. This provides a simple interface to the PostgreSQL pg_dump utility, which we will cover
in Chapter 11. We can back up and restore individual tables or an entire database. There are
options to control how and where the backup file is created and what method will be used to
restore the database, if necessary (for example, by using the \copy command or SQL INSERT
statements).

To open the Backup dialog box, right-click the object (database or table) to back up and
select Backup. Figure 5-8 shows the Backup dialog box for the bsimple database.

MatthewStones_4789C05.fm Page 128 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 129

Figure 5-8. The pgAdmin III Backup dialog box

We will cover more of pgAdmin III’s features for managing databases in Chapter 11.

phpPgAdmin
A web-based alternative for managing PostgreSQL databases is phpPgAdmin. This is an appli-
cation (written in the PHP programming language) that is installed on a web server and provides a
browser-based interface for administration of database servers. The project home page is at
http://phppgadmin.sourceforge.net/.

With phpPgAdmin, we can perform many tasks with our databases, including the following:

• Manage users and groups

• Create tablespaces, databases, and schemas

• Manage tables, indexes, constraints, triggers, rules, and privileges

• Create views, sequences, and functions

• Create and run reports

• Browse table data

• Execute arbitrary SQL

• Export table data in many formats: SQL, COPY (data suitable for the SQL COPY command),
XML, XHTML, comma-separated values (CSV), tab-delimited, and pg_dump

• Import SQL scripts, COPY data, XML files, CSV files, and tab-delimited files

MatthewStones_4789C05.fm Page 129 Monday, February 14, 2005 12:00 PM

130 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

Installing phpPgAdmin
Installing phpPgAdmin is very straightforward. The program is available as a download
package in several formats, including ZIP and compressed tarball (.tar.gz). The package
needs to be extracted into a folder served by a web server that supports the PHP programming
language. A popular choice for this is the Apache web server configured with the mod_php
extension. More information about Apache and PHP can be found at http://www.apache.org
and http://www.php.net, respectively. Many Linux distributions provide a suitably configured
Apache installation.

The only configuration that phpPgAdmin requires is the setting of some variables in its
configuration file, conf/conf.inc.php. The following extract shows the lines in this file that
need to be configured to set up phpPgAdmin to manage a database on another server.

// Display name for the server on the login screen
$conf['servers'][0]['desc'] = 'Beast';

// Hostname or IP address for server. Use '' for UNIX domain socket.
$conf['servers'][0]['host'] = '192.168.0.111';

// Database port on server (5432 is the PostgreSQL default)
$conf['servers'][0]['port'] = 5432;

// Change the default database only if you cannot connect to template1
$conf['servers'][0]['defaultdb'] = 'template1';

Using phpPgAdmin
To demonstrate the cross-platform potential of phpPgAdmin, Apache, and PostgreSQL,
Figures 5-9 and 5-10 show a browser running on an Apple Mac, accessing an Apache web server
with phpPgAdmin installed running on Windows XP (at address 192.168.0.3), managing a database
on a Linux server called Beast at address 192.168.0.111. Figure 5-11 depicts the customer table
data being viewed. The URL for the browser is http://192.168.0.3/phpPgAdmin/index.php.

MatthewStones_4789C05.fm Page 130 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 131

Figure 5-9. phpPgAdmin login

Figure 5-10. phpPgAdmin main page

MatthewStones_4789C05.fm Page 131 Monday, February 14, 2005 12:00 PM

132 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

Figure 5-11. phpPgAdmin browsing table data

One feature of phpPgAdmin that is potentially very useful is its data import functionality.
If we have some data that we would like to import into a PostgreSQL table, phpPgAdmin can
help. One way of importing data is to make it available as a comma-separated values (CSV) file.
Applications such as Microsoft Excel are able to export data in this format.

Let’s consider a simple example. Suppose that from an Excel spreadsheet, we have saved
some rows for the item table in the bpsimple database, in a CSV with headings format. This
means that there are column names present in the first row, followed by the data, like this:

description,cost_price,sell_price
Wood Puzzle,15.23,21.95
Rubik Cube,7.45,11.49
Linux CD,1.99,2.49

We start the import process by selecting the table we want to import into, clicking Import,
and selecting the import file type (CSV in this example) and the import filename, as shown in
Figure 5-12. We can then click Import, and (assuming we have permission) the new rows will
be incorporated into our database table.

MatthewStones_4789C05.fm Page 132 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 133

Figure 5-12. Importing data with phpPgAdmin

Rekall
Rekall is a multiplatform database front-end originally developed by theKompany (http://
www.thekompany.com/) as a tool to extract, display, and update data from several different data-
base types. It works with PostgreSQL, MySQL, and IBM DB2 using native drivers, and other
databases using ODBC.

While Rekall does not include the PostgreSQL-specific administration features found in
pgAdmin III and phpPgAdmin, it does add some very useful user functionality. In particular,
it contains a visual query designer and a form builder for creating data-entry applications.
Furthermore, Rekall uses the Python programming language for scripting, allowing sophisti-
cated database applications to be constructed.

Rekall has been made available under a dual-license scheme. There is a commercial
version and also a community-developed open-source version released under the GNU Public
License (GPL). Both are available at http://www.rekallrevealed.org/. The open-source version

MatthewStones_4789C05.fm Page 133 Monday, February 14, 2005 12:00 PM

134 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

can be built and installed on Linux and other systems that are running the KDE desktop envi-
ronment or have the appropriate KDE libraries available. Rekall is beginning to be provided as
part of Linux distributions, including SuSE Linux 9.1. It connects to PostgreSQL using a native
driver. The commercial version of Rekall adds a Microsoft Windows version and support for
ODBC database connections.

Rekall is very easy to use and comes with an on-line handbook, called Rekall Unbound,
which provides information on every aspect of Rekall’s features. It can be accessed either from
Rekall’s help manual or through the KDE Konqueror web browser at the URL help:/rekall.

Here, we will take a quick look at the open-source version of Rekall, running on SuSE Linux 9.1.

Connecting to a Database
Connections to databases are created using a connection wizard that prompts for a host, data-
base name, and user credentials. Several options are available for each connection, but the
defaults work just fine. Figure 5-13 shows a database connection initiated in Rekall.

Figure 5-13. A Rekall database connection

Once we are connected to a database, we can browse the tables, view, and edit data. This
process is depicted in Figure 5-14.

For many of its operations, Rekall provides a data view and a design view. Switching to the
design view reveals the structure of the object. So, when browsing a table, the design view
shows us the definition of the table and its columns. We can use the design view to create new
objects, such as tables, forms, and queries. For forms and queries, the data view allows us to
use the form to enter data or view the results of the query.

MatthewStones_4789C05.fm Page 134 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 135

Figure 5-14. Browsing a table with Rekall

Creating Forms
The support for forms in Rekall is extensive. We can create a new form very quickly using a form
wizard, which simply asks which columns from which table should be included on the form.
A graphical designer allows us to lay out the form if the default is not suitable. We can add buttons
to the form to provide navigation (next record, delete records, and so on), and there is an optional
navigation toolbar that can be added to forms. Figure 5-15 shows a form for the customer table.
This form is nearly the default produced by Rekall; only the text labels for the data have been
changed.

Figure 5-15. A simple data-entry form in Rekall

MatthewStones_4789C05.fm Page 135 Monday, February 14, 2005 12:00 PM

136 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

Each of the buttons on the form is scriptable. The default form contains actions written in
Python for performing an appropriate action, such as saving the record. By adding our own
code to these script actions, we can create a more sophisticated form, perhaps adding entry
validation.

Building Queries
The graphical query designer in Rekall allows us to create, save, and execute potentially quite
complex queries by essentially drawing a picture of the relationships we need to express. We
will be dealing with some fairly complex queries as we progress through the book. For now, to
give a taste of what Rekall can do, let’s look at a couple of examples that show one of the queries
we used in Chapter 4 being constructed and the results being displayed.

In Figure 5-16, we are using a three-table join to find out which items our customer Ann
Stones has ordered from us. This query was created by double-clicking tables to add them to
the query and dragging columns from one table to another to indicate the required joins. The
only typing required was to specify the first name and surname of the customer of interest.

Figure 5-16. A complex query in Rekall

When we switch to the data view, we see the results of the query being executed, and we
get the same results as in Chapter 4. This task is shown in Figure 5-17.

MatthewStones_4789C05.fm Page 136 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 137

Figure 5-17. Query results in Rekall

Microsoft Access
Although it may seem an odd idea at first sight, we can use Microsoft Access with PostgreSQL.
If Access is already a database system, why would we want to use PostgreSQL to store data?
And, as there are a number of tools available that work with PostgreSQL, why do we need to use
Microsoft Access?

First, when developing a database system, we need to consider requirements for matters
such as data volumes, the possibility of multiple concurrent users, security, robustness, and
reliability. You may decide on PostgreSQL because it fits better with your security model, your
server platforms, and your data-growth predictions.

Second, although PostgreSQL running on a UNIX or Linux server may be the ideal envi-
ronment for your data, it might not be the best, or most familiar, environment for your users
and their applications. There is a case for allowing users to use tools such as Access or other
third-party applications to create reports or data-entry forms for PostgreSQL databases. Since
PostgreSQL has an ODBC interface, this is not only possible but remarkably easy.

Once you have established the link from Access to PostgreSQL, you can use all of the features
of Access to create easy-to-use PostgreSQL applications. In this section, we will look at creating
an Access database that uses data stored on a remote PostgreSQL server, and writing a simple
report based on that data. (We assume that you are reasonably familiar with creating Access
databases and applications.)

Using Linked Tables
Access allows us to import a table into a database in a number of different ways, one of which
is by means of a linked table. This is a table that is represented in Access as a query. The data is
retrieved from another source when it is needed, rather than being copied into the database.
This means that when the data changes in the external database, the change is also reflected
in Access.

In the bpsimple database, we have a table called item that records a unique identifier for
each product we sell, a description of that product, a cost price, and a selling price. As an example,
let’s go through the steps to create a simple Access database to update and report on the product
information stored in our sample database system.

MatthewStones_4789C05.fm Page 137 Monday, February 14, 2005 12:00 PM

138 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

1. In Access, create a new blank database. Click Tables in the list on the left side of the
window, as shown in Figure 5-18.

Figure 5-18. Creating a blank Access database

2. Click New to bring up the New Table dialog box and select the Link Table option, as
shown in Figure 5-19.

Figure 5-19. Adding a link table

3. In the Link dialog box that appears, choose files of type ODBC Databases to bring up the
ODBC data source selection dialog box. Select Machine Data Source and the appropriate
PostgreSQL database connection, as shown in Figure 5-20. We created a suitable database
connection in the “ODBC Setup” section earlier in this chapter,

MatthewStones_4789C05.fm Page 138 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 139

Figure 5-20. Selecting an ODBC data source

4. When the connection is made, you are presented with a list of available tables in the
remote database. You can choose to link one or more tables from this list. For our
example, we will select public.item to link the item table to our Access database, as
shown in Figure 5-21.

Figure 5-21. Selecting the tables to link

■Note Before Access can link a table, it needs to know which of the fields in the table it can use to uniquely
identify each record. In other words, it needs to know which columns form the primary key. For this table, the
item_id column is the primary key, so Access will select that. For tables that do not have a defined primary
key, Access will prompt you to select a column to use. If a table has a composite key, you can select more
than one column.

MatthewStones_4789C05.fm Page 139 Monday, February 14, 2005 12:00 PM

140 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

Now we will see that the Access database has a new table, also called item, that we can
browse and edit, just as if the data were held in Access. This is depicted in Figure 5-22.

Figure 5-22. Browsing a link table

That’s just about all there is to linking a PostgreSQL database table to Access.

■Note You might see slightly different screens than the ones in the figures shown here, depending on your
version of Windows and Access. If you see an additional column in your table called oid, this is the internal
PostgreSQL object identifier and can be ignored. To prevent the object_id column being shown, be sure to
uncheck the OID column options in the ODBC data source configuration.

MatthewStones_4789C05.fm Page 140 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 141

Entering Data and Creating Reports
We can use the table browser in Access to examine data in the PostgreSQL table and to add
more rows. Figure 5-23 shows an Access data-entry form being used to add items to the item
table. We can use the programming features of Access to create more sophisticated data-entry
applications that perform validation on entries or prevent the modification of existing data.

Figure 5-23. A simple Access data-entry form

Creating reports is just as easy. Use the Access report designer to generate reports based
on the data stored in PostgreSQL tables, just as you would any other Access table. We can include
derived columns in the report to answer questions about the data in the table. For example,
Figure 5-24 shows an Access report that displays the markup (that is, the difference between
the sell_price and the cost_price) that we are applying to the products in the item table.

MatthewStones_4789C05.fm Page 141 Monday, February 14, 2005 12:00 PM

142 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

Figure 5-24. A simple Access report

Combining Microsoft Access and PostgreSQL increases the number of options you have
for creating database applications. The scalability and reliability of PostgreSQL with the famil-
iarity and ease of use of Microsoft Access may be just what you need.

Microsoft Excel
As with Microsoft Access, you can employ Microsoft Excel to add functionality to your PostgreSQL
installation. This is similar to the way you can work with Access; you include data in your
spreadsheets that is taken from (or rather, linked to) a remote data source. When the data
changes, you can refresh the spreadsheet and have the spreadsheet reflect the new data. Once
you have made a spreadsheet based on PostgreSQL data, you can use Excel’s features, such as
charting, to create graphical representations of your data.

Let’s extend our report example from Access to make a chart showing the markup we have
applied to the products in the item table.

1. We need to tell Excel that some portion of a spreadsheet needs to be linked to an external
database table. Starting from a blank spreadsheet, choose the menu option to import
external data with a new database query, as shown in Figure 5-25.

MatthewStones_4789C05.fm Page 142 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 143

Figure 5-25. Importing data into Excel

2. We are presented with an ODBC data source selection dialog box to select our data
source, as with Access (see Figure 5-20). Select the appropriate PostgreSQL database
connection.

3. When the connection to the database is made, you can choose which table you want to
use, and which columns you want to appear in the spreadsheet. For this example, we
select the item identifier, the description, and both prices from the item table, as shown
in Figure 5-26.

Figure 5-26. Choosing columns to import into Excel

MatthewStones_4789C05.fm Page 143 Monday, February 14, 2005 12:00 PM

144 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

4. If you want to restrict the number of rows that appear in your spreadsheet, you can do
this by specifying selection criteria at the next dialog box. In Figure 5-27, we select those
products with a selling price greater than $2.

Figure 5-27. Restricting rows to import

5. Finally, you can choose to have the data sorted by a particular column or group of
columns, in either sort direction. For this example, we choose to sort by the selling
price, in ascending order, as shown in Figure 5-28.

Figure 5-28. Defining the sort criteria for imported data

6. Choose to return the data to Excel in the next dialog box.

7. Now, you get the chance to specify where in your spreadsheet you want the data to
appear. It is probably a good idea to have data from a PostgreSQL table appear on a
worksheet by itself. This is because you need to make sure that you provide for the
number of rows increasing as the database grows. You will refresh the spreadsheet data
and will need space for the data to expand. However, for this example, we simply allow
the data to occupy the top-left area of the sheet, as shown in Figure 5-29.

MatthewStones_4789C05.fm Page 144 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 145

Figure 5-29. Choosing an import location

Now we can see the data present in our worksheet, as shown in Figure 5-30.

Figure 5-30. Viewing imported data in Excel

We could use this spreadsheet to perform calculations on the data. For example, we might
calculate the sales margin being earned from each product by setting up an additional column
with an appropriate formula.

MatthewStones_4789C05.fm Page 145 Monday, February 14, 2005 12:00 PM

146 C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O LS

■Caution When the data changes in the database, Excel will not automatically update its version of the
rows. To make sure that the data you are viewing in Excel is accurate, you must refresh the data. This is
simply done by selecting the Refresh Data option on the Data menu.

We can also employ some of Excel’s features to add value to our PostgreSQL application.
In the example shown in Figure 5-31, we have added a chart showing the markup on each
product. It is simply built by using the Excel Chart Wizard and selecting the PostgreSQL data
area of the sheet as the source data for the chart. When the data in the PostgreSQL database
changes and we refresh the spreadsheet, the chart will automatically update.

Figure 5-31. An Excel chart using PostgreSQL data

Resources for PostgreSQL Tools
A good place to start to look for tools to use with PostgreSQL is pgFoundry, the PostgreSQL
project’s web site at http://pgfoundry.org. The GBorg site at http://gborg.postgresql.org/
also currently hosts many PostgreSQL-related projects. It is probable that these PostgreSQL
project web sites will become merged and be accessible at http://projects.postgresql.org.

MatthewStones_4789C05.fm Page 146 Monday, February 14, 2005 12:00 PM

C H A P T E R 5 ■ P O S T G R E S Q L C O M M A N D - L I N E A N D G R A P H I C A L T O O L S 147

You can find a list of graphical tools that support PostgreSQL at http://
techdocs.postgresql.org/guides/GUITools.

A session monitor for PostgreSQL, called pgmonitor, is in development and can be found at
http://gborg.postgresql.org/project/pgmonitor. This is a Tcl/Tk program that allows you to
monitor activity on your database. It needs to run on the database server, but it can display on
a client machine if you are running the X Window System on UNIX or a UNIX-like operating
system.

Summary
In this chapter, we looked at some of the tools we have at our disposal for getting the most out
of PostgreSQL. The standard distribution comes with the command-line tool, psql, which is
capable of carrying out most of the operations we need for creating and maintaining databases.

Database administration can be carried out on a client machine using the very capable
pgAdmin III tool or over a network using the browser-based phpPgAdmin tool.

We can view data, design queries graphically, and create data-entry forms using Rekall, for
free on Linux, and through a commercial product on Windows.

We can use Microsoft Office products, including Excel and Access, to manipulate and
report on data held in a PostgreSQL database. This allows us to combine the scalability and
reliability of the PostgreSQL system running on a UNIX or Linux platform with the easy use of
familiar tools.

Now that we’ve reviewed some of the PostgreSQL tools, in the next chapter, we will return
to the topic of using SQL to handle the data in a PostgreSQL database, focusing on inserting,
updating, and deleting data.

MatthewStones_4789C05.fm Page 147 Monday, February 14, 2005 12:00 PM

MatthewStones_4789C05.fm Page 148 Monday, February 14, 2005 12:00 PM

149

■ ■ ■

C H A P T E R 6

Data Interfacing

So far, we have looked at why a relational database, and PostgreSQL in particular, is a powerful
tool for organizing and retrieving data. In the previous chapter, we examined some of the
graphical tools, such as pgAdmin III, that can also be used for administering PostgreSQL. We
have even looked at how to use Microsoft Access with PostgreSQL and add more functionality
to it by using Microsoft Excel. Of course, none of these tools would be much use to us without
any data in the database. In Chapter 3, we populated our bpsimple database using some
SQL scripts.

In this chapter, we will move beyond the basics and learn more about handling data. We
are going to look in detail at how to insert data into a PostgreSQL database, update data already
in the database, and delete data from a database.

As we progress through this chapter, we will cover the following topics:

• Adding data to the database with INSERT

• Inserting data into serial columns

• Inserting NULL values

• Loading data from text files using the \copy command

• Loading data directly from another application

• Updating data in the database with UPDATE

• Deleting data from the database with DELETE

Adding Data to the Database
Surprisingly perhaps, after the complexities of the SELECT statement that we saw in Chapter 4,
adding data into a PostgreSQL database is quite straightforward. We add data to PostgreSQL
using the INSERT statement. We can add data to only a single table at any one time, and generally we
do that one row at a time.

Using Basic INSERT Statements
The basic SQL INSERT statement has a very simple syntax:

INSERT INTO tablename VALUES (list of column values);

MatthewStones_4789C06.fm Page 149 Tuesday, February 1, 2005 7:32 AM

150 C H A P T E R 6 ■ D A T A I N T E R F A C I N G

We specify a list of comma-separated column values, which must be in the same order as
the columns in the table.

■Caution Although this syntax is very appealing because of its simplicity, it is also rather dangerous as it
relies on knowledge of the table structure—specifically, the order of the columns—which might change if the
database is modified to support additional data. Therefore, we urge you to avoid this syntax, and instead use
the safer syntax shown later, in the “Using Safer INSERT Statements” section. In the safer syntax, the column
names are specified as well as the data values. We present the simple syntax here, because you will see it in
common use, but we recommend that you avoid using it.

Try It Out: Use INSERT Statements

Let’s add some new rows to the customer table. The first thing we must do is to discover the
correct column order. This is the same order in which they were listed in the original CREATE
TABLE command. If we don’t have access to that table-creation SQL, which is unfortunately all
too common, then we can use the psql command-line tool to describe the table, using the \d
command. Suppose we wanted to look at the definition of the customer table in our database
(as presented in Chapter 3). We would use the \d command to ask for its description to be
shown. Let’s do that now:

bpsimple=# \d customer
 Table "public.customer"
 Column | Type | Modifiers

-------------+-----------------------+--

 customer_id | integer | not null default nextval('public.customer
_customer_id_seq'::text)
 title | character(4) |
 fname | character varying(32) |
 lname | character varying(32) | not null
 addressline | character varying(64) |
 town | character varying(32) |
 zipcode | character(10) | not null
 phone | character varying(16) |
Indexes:
 "customer_pk" primary key, btree (customer_id)

bpsimple=#

The display is slightly confused by the wrapping introduced to get it on the page, but it
does show us the column order for our customer table. You will notice that the customer_id
column isn’t described exactly as we specified in the CREATE TABLE statement we saw in
Chapter 3. This is because of the way PostgreSQL implements our serial definition of

MatthewStones_4789C06.fm Page 150 Tuesday, February 1, 2005 7:32 AM

C H A P T E R 6 ■ D A T A I N T E R F A C I N G 151

customer_id. For now, we just need to remember that it is an integer field. We will explain how
PostgreSQL implements serial columns in Chapter 8.

To insert character data, we must enclose it in single quotes ('). Numbers do not need any
special treatment. For NULLs, we just write NULL, or, as we will see later in a more complex form
of the INSERT statement, simply provide no data for that column.

Now that we know the column order, we can write our INSERT statement like this:

bpsimple=# INSERT INTO customer VALUES(16, 'Mr', 'Gavyn', 'Smith',
bpsimple-# '23 Harlestone', 'Milltown', 'MT7 7HI', '746 3725');
INSERT 17331 1

bpsimple=#

The exact number you see after the INSERT will almost certainly be different in your case.
The important thing is that PostgreSQL has inserted the new data. The first number is actually
an internal PostgreSQL identification number, called an OID, which is normally hidden.

■Note The OID (Object IDentification) number is a unique, normally invisible number assigned to every row
in PostgreSQL. When you initialize the database, a counter is created. This counter is used to uniquely number
every row. Here, the INSERT command has been executed, 17331 is the OID assigned to the new row, and
1 is the number of rows inserted. This OID number is not part of standard SQL, and it will not normally be
sequential within a table, so we urge you to be aware of its existence but never to use it in applications.
Starting in release 8.0, PostgreSQL has the option to avoid creating OIDs on tables, so even their very exist-
ence is not reliable.

We can easily check that the data has been inserted correctly by using a SELECT statement
to retrieve it, like this:

bpsimple=# SELECT * FROM customer WHERE customer_id > 15;
customer_id | title | fname | lname | addressline | town | zipcode | phone
------------+-------+-------+-------+---------------+----------+---------+---------
 16 | Mr | Gavyn | Smith | 23 Harlestone | Milltown | MT7 7HI | 746 3725
(1 row)

bpsimple=#

Depending on the size of your terminal window, the display may be wrapped, but you
should be able to see that the data was correctly inserted.

Suppose that we want to insert another row, where the last name is O'Rourke. What do we
do with the single quote that is already in the data? If a single quote must appear in a character
string, we precede it with a backslash (\). The backslash is called an escape character, and it
indicates that the following character has no special meaning and is part of the data. So, to
insert Mr. O’Rourke’s data, we escape the quote in his name using a single backslash (\), like this:

INSERT INTO customer VALUES(17, 'Mr', 'Shaun', 'O\'Rourke',
 '32 Sheepy Lane', 'Milltown', 'MT9 8NQ', '746 3956');

MatthewStones_4789C06.fm Page 151 Tuesday, February 1, 2005 7:32 AM

152 C H A P T E R 6 ■ D A T A I N T E R F A C I N G

Check that the data has been inserted:

bpsimple=# SELECT * FROM customer WHERE customer_id > 15;
customer_id | ti | fname | lname | addressline | town | zipcode | phone
------------+----+-------+----------+----------------+----------+---------+---------
 16 | Mr | Gavyn | Smith | 23 Harlestone | Milltown | MT7 7HI | 746 3725
 17 | Mr | Shaun | O'Rourke | 32 Sheepy Lane | Milltown | MT9 8NQ | 746 3956
(2 rows)

bpsimple=#

■Note In some cases, to fit the output on the page, we’ve needed to make some slight changes. For
example, here, we’ve abbreviated title to ti. These adjustments are just for legibility, and we’ve made
sure that the point of each example is clear.

How It Works

We used the INSERT statement to add data to the customer table, specifying column values in
the same order as they were created in the table. To add a number to a column, just write the
number. To add a string, enclose it in single quotes. To insert a single quote into the string, we
must precede the single quote with a backslash character (\). If we ever need to insert a back-
slash character, then we would write a pair, like this \\.

Suppose we want to insert another row, where the address is something strange, such as
Midtown Street A\33. What do we do with the single backslash that is already in the data? We
would escape the single backslash by using two backslashes, like this:

INSERT INTO customer VALUES(18, 'Mr', 'Jeff', 'Baggott',
 'Midtown Street A\\33', 'Milltown', 'MT9 8NQ', '746 3956');

This is how it looks:

bpsimple=# SELECT * FROM customer WHERE addressline='Midtown Street A\\33';
c_id | ti | fname | lname | addressline | town | zipcode | phone
------+----+-------+---------+---------------------+----------+----------+----------
 18 | Mr | Jeff | Baggott | Midtown Street A\33 | Milltown | MT9 8NQ | 746 3956
(1 row)

bpsimple=#

Using Safer INSERT Statements
While INSERT statements like the ones we just tried out work, it is not always convenient to
specify every single column or to get the data order exactly the same as the table column order.
This adds an element of risk in that we may accidentally write an INSERT statement with the
column data in the wrong order. This would result in the addition of incorrect data to our database.

MatthewStones_4789C06.fm Page 152 Tuesday, February 1, 2005 7:32 AM

C H A P T E R 6 ■ D A T A I N T E R F A C I N G 153

In the previous example, suppose we had erroneously exchanged the position of the fname and
lname columns. The data would have been inserted successfully, because both columns are text
columns, and PostgreSQL would have been unable to detect our mistake. If we had later asked
for a list of the last names of our customers, Gavyn would have appeared as a valid customer last
name, rather than Smith, as we intended.

Poor-quality data, or just plain incorrect data, is a major problem in databases, and we
generally take as many precautions as we can to ensure that only correct data gets in. Simple
mistakes might be easy to spot in our sample database with just tens of rows, but in a database
with tens of thousands of customers, spotting mistakes—particularly within data with unusual
names—would be very difficult indeed.

Fortunately, there is a slight variation of the INSERT statement that is both easier to use and
much safer as well:

INSERT INTO tablename(list of column names)
VALUES (list of column values corresponding to the column names);

In this variant of the INSERT statement, we must list the column names and data values for
those columns in the same order, which can be different from the order we used when we
created the table. Using this variant, we no longer need to know the order in which the columns
were defined in the database. We also have a nice, clear, almost side-by-side list of column
names and the data we are about to insert into them.

Try It Out: Insert Values Corresponding to Column Names

Let’s add another row to the database, this time explicitly naming the columns, like this:

INSERT INTO customer(customer_id, title, fname, lname, addressline, ...)
VALUES(19, 'Mrs', 'Sarah', 'Harvey', '84 Willow Way', ...)

We can enter an INSERT statement over several lines, making it easier to read, and check
that we have the column names and data values in the same order.

Let’s execute an example, typing it in over several lines so it is easier to read:

bpsimple=# INSERT INTO
bpsimple-# customer(customer_id, title, lname, fname, addressline, town,
bpsimple-# zipcode, phone)
bpsimple-# VALUES(19, 'Mrs', 'Harvey', 'Sarah', '84 Willow Way', 'Lincoln',
bpsimple-# 'LC3 7RD', '527 3739');
INSERT 22592 1

bpsimple=#

Notice how much easier it is to compare the names of the fields with the values being
inserted into them. We deliberately swapped the fname and lname column positions, just to
show it could be done. You can use any column order you like; all that matters is that the values
match the order in which you list the columns.

You will also notice the psql prompt changes on subsequent lines, and it remains changed
until we terminate the command with a semicolon.

MatthewStones_4789C06.fm Page 153 Tuesday, February 1, 2005 7:32 AM

154 C H A P T E R 6 ■ D A T A I N T E R F A C I N G

■Tip We strongly recommend that you always use the named column form of the INSERT statement,
because the explicit naming of columns makes it much safer to use.

Inserting Data into Serial Columns
At this point, it is time to confess to a minor sin we have been committing with the customer_id
column. Up to this point in the chapter, we have not covered how to insert data into some
columns of a table while leaving others alone. With the second form of the INSERT statement,
using named columns, we can do this and see how it is particularly important when inserting
data into tables with serial type columns.

You will remember from Chapter 2 that we met the rather special data type serial, which
is effectively an integer, but automatically increments to give us an easy way of creating unique
ID numbers for each row. So far in this chapter, we have been inserting data into rows, providing
a value for the customer_id column, which is a serial type data field.

Let’s take a look at the data in our customer table so far:

bpsimple=# SELECT customer_id, fname, lname, addressline FROM customer;
 customer_id | fname | lname | addressline
-------------+-----------+----------+---------------------
 1 | Jenny | Stones | 27 Rowan Avenue
 2 | Andrew | Stones | 52 The Willows
 3 | Alex | Matthew | 4 The Street
 4 | Adrian | Matthew | The Barn
 5 | Simon | Cozens | 7 Shady Lane
 6 | Neil | Matthew | 5 Pasture Lane
 7 | Richard | Stones | 34 Holly Way
 8 | Ann | Stones | 34 Holly Way
 9 | Christine | Hickman | 36 Queen Street
 10 | Mike | Howard | 86 Dysart Street
 11 | Dave | Jones | 54 Vale Rise
 12 | Richard | Neill | 42 Thatched Way
 13 | Laura | Hardy | 73 Margarita Way
 14 | Bill | O'Neill | 2 Beamer Street
 15 | David | Hudson | 4 The Square
 16 | Gavyn | Smith | 23 Harlestone
 17 | Shaun | O'Rourke | 32 Sheepy Lane
 18 | Jeff | Baggott | Midtown Street A\33
 19 | Sarah | Harvey | 84 Willow Way
(19 rows)

bpsimple=#

Certainly, all looks well. However, there is a slight problem because, by forcing values into
the customer_id column, we have inadvertently confused PostgreSQL’s internal serial counter.

Suppose we try inserting another row, this time allowing the serial type to provide our
automatically incrementing customer_id value:

MatthewStones_4789C06.fm Page 154 Tuesday, February 1, 2005 7:32 AM

C H A P T E R 6 ■ D A T A I N T E R F A C I N G 155

bpsimple=# INSERT INTO customer(title, fname, lname, addressline, town,
bpsimple-# zipcode, phone)
bpsimple-# VALUES('Mr', 'Steve', 'Clarke', '14 Satview way', 'Lincoln',
bpsimple-# 'LC4 3ED', '527 7254');
ERROR: duplicate key violates unique constraint "customer_pk"

bpsimple=#

Clearly, something has gone wrong, since we did not provide any duplicate values. What
has happened is that earlier in the chapter, when we were providing values for customer_id, we
bypassed PostgreSQL’s automatic allocation of IDs in the serial column and caused the auto-
matic allocation system to get out of step with the actual data in the table.

■Caution Avoid providing values for serial data columns when inserting data.

The out-of-step sequence problem is reasonably rare, but most commonly occurs as a
result of one of the following:

• You have dropped and re-created the table, but did not drop and re-create the sequence
(PostgreSQL version 8.0 and later does this automatically).

• You mixed styles of adding data—allowing PostgreSQL to pick values for some serial
columns and explicitly specifying values for some serial columns yourself.

In this case, the latter occurred. Having gotten ourselves into a bit of a mess, how do we
recover? The answer is that we need to give PostgreSQL a helping hand, and put its internal
sequence number back in step with the actual data.

Accessing Sequence Numbers

When the customer table was created, the customer_id column was defined as having type
serial. You may have noticed that PostgreSQL then gave us some informational messages,
saying that it was creating a customer_customer_id_seq sequence. Also, when we ask PostgreSQL
to describe the table using \d, we see the column is specially defined:

customer_id integer not null default nextval('customer_customer_id_seq'::text)

PostgreSQL has created a special counter for the column, a sequence, which it can use to
generate unique IDs. Notice that the sequence is always named <tablename>_<columnname>_seq.
The default behavior for the column has been automatically specified by PostgreSQL to be the
result of the function nextval('customer_customer_id_seq'). When we failed to provide data
for the column in our INSERT statement, this is the function that was being automatically
executed by PostgreSQL for us. By inserting or providing data to this column, we have upset
this automatic mechanism, since the function will not get called if data is provided. Fortunately,
we are not reduced to deleting all the data from the table and starting again, because PostgreSQL
allows us to directly manipulate the sequence number.

MatthewStones_4789C06.fm Page 155 Tuesday, February 1, 2005 7:32 AM

156 C H A P T E R 6 ■ D A T A I N T E R F A C I N G

When inserting data like this, you can usually find the value of a sequence number using
the currval function:

currval('sequence name');

PostgreSQL will tell you the current value of the sequence number:

bpsimple=# SELECT currval('customer_customer_id_seq');
 currval

 16
(1 row)

bpsimple=#

■Note Strictly speaking, currval tells you the value from the last call to nextval, so for this to work,
either a new row will need to have been inserted or nextval called explicitly in this psql session.

As you can see, PostgreSQL thinks that the current number for the last row in the table is 16,
but, in fact, the last row is 19. When we try to insert data into the customer table, leaving the
customer_id column to PostgreSQL, it attempts to provide a value for the column by calling the
nextval function:

nextval('sequence number');

This function first increments the provided sequence number, and then returns the result.
We can try this directly:

bpsimple=# SELECT nextval('customer_customer_id_seq');
 nextval

 17
(1 row)

bpsimple=#

Of course, we could get to the correct value for the sequence by repeatedly calling nextval,
but that would not be much use if the value were too large or too small. Instead, we can use the
setval function:

setval('sequence number', new value);

First, we need to discover what the sequence value should be. This is accomplished by
selecting the maximum value of the column that is already in the database. To do this, we will
use the max(column name) function, which simply tells us the maximum value stored in a column:

MatthewStones_4789C06.fm Page 156 Tuesday, February 1, 2005 7:32 AM

C H A P T E R 6 ■ D A T A I N T E R F A C I N G 157

bpsimple=# SELECT max(customer_id) FROM customer;
 max

 19
(1 row)

bpsimple=#

PostgreSQL will respond with the largest number that it found in the customer_id column
in the customer table. (We will discuss the max(column name) function in more detail in the next
chapter.) Now we set the sequence, using the function setval(sequence, value), which allows
us to set a sequence to any value we choose. The current largest value in the table is 19, and the
sequence number is always incremented before its value is used. Therefore, the sequence
should normally have the same number as the current biggest value in the table:

bpsimple=# SELECT setval('customer_customer_id_seq', 19);
 setval

 19
(1 row)

bpsimple=#

Now that the sequence number is correct, we can insert our data, allowing PostgreSQL to
provide the value for the serial column customer_id:

bpsimple=# INSERT INTO customer(title, fname, lname, addressline, town,
bpsimple-# zipcode, phone) VALUES('Mr', 'Steve', 'Clarke', '14 Satview
bpsimple-# way', 'Lincoln', 'LC4 3ED', '527 7254');
INSERT 21459 1
bpsimple=#

Success! PostgreSQL is now back in step, and it will continue to create serial values correctly.
PostgreSQL versions 7.3 and later allow you to use the DEFAULT keyword in INSERT statements

to indicate that a column’s declared default value should be inserted, which is especially useful
in keeping sequence values in line. Where we have been adding rows using explicit customer_id
values, we can write statements like this instead:

INSERT INTO customer(customer_id, title, fname, lname,
 addressline, town, zipcode, phone)
VALUES(DEFAULT, 'Mrs', 'Sarah', 'Harvey',
 '84 Willow Way', 'Lincoln', 'LC3 7RD', '527 3739');

Here, the default value of the customer_id is the next value in the sequence, as customer_id is a
serial column.

We will return to the topic of default column values in Chapter 8.

MatthewStones_4789C06.fm Page 157 Tuesday, February 1, 2005 7:32 AM

158 C H A P T E R 6 ■ D A T A I N T E R F A C I N G

Inserting NULL Values
We briefly mentioned in Chapter 2 that NULL values could be inserted into columns using the
INSERT statement. Let’s look at this in a little more detail.

If you are using the first form of the INSERT statement, where you insert data into the
columns in the order they were defined when the table was created, you simply write NULL in
the column value. Note that you must not use quotes, as this is not a string. You should also
remember that NULL is a special undefined value in SQL, not the same as an empty string.

Consider our previous example:

INSERT INTO customer VALUES(16, 'Mr', 'Gavyn', 'Smith',
 '23 Harlestone', 'Milltown', 'MT7 7HI', '746 3725');

Suppose that we did not know the first name. The table definition allows NULL in the fname
column, so adding data without knowing the first name is perfectly valid. If we had written this:

INSERT INTO customer VALUES(16, 'Mr', '', 'Smith',
 '23 Harlestone', 'Milltown', 'MT7 7HI', '746 3725');

it would not be what we intended, because we would have added an empty string as the first
name, perhaps implying that Mr. Smith has no first name. What we intended was to use a NULL,
because we do not know the first name.

The correct INSERT statement would have been as follows:

INSERT INTO customer VALUES(16, 'Mr', NULL, 'Smith',
 '23 Harlestone', 'Milltown', 'MT7 7HI', '746 3725');

Notice the lack of quotes around NULL. If quotes had been used, fname would have been set to
the string 'NULL', rather than the value NULL.

Using the second (safer) form of the INSERT statement, where columns are explicitly named,
it is much easier to insert NULL values where we neither list the column nor provide a value for it,
like this:

INSERT INTO customer(title, lname, addressline, town, zipcode, phone)
VALUES('Mr', 'Smith', '23 Harlestone', 'Milltown', 'MT7 7HI', '746 3725');

Notice that the fname column is neither listed nor is a value defined for it. Alternatively, we
could have listed the column, and then written NULL in the value list.

This will not work if we try to add a NULL value in a column that is defined as not allowing
NULL values. Suppose we try to add a customer with no last name (lname) column:

bpsimple=# INSERT INTO customer(title, fname, addressline, town, zipcode,
bpsimple-# phone) VALUES('Ms', 'Gill', '27 Chase Avenue', 'Lowtown',
bpsimple-# 'LT5 8TQ', '876 1962');
ERROR: null value in column "lname" violates not-null constraint
bpsimple=#

Notice that we did not provide a value for lname, so the INSERT was rejected, because the
customer table is defined to not allow NULL in that column:

MatthewStones_4789C06.fm Page 158 Tuesday, February 1, 2005 7:32 AM

C H A P T E R 6 ■ D A T A I N T E R F A C I N G 159

bpsimple=# \d customer
 Table "public.customer"
 Column | Type | Modifiers

-------------+-----------------------+--

 customer_id | integer | not null default nextval('public.customer
_customer_id_seq'::text)
 title | character(4) |
 fname | character varying(32) |
 lname | character varying(32) | not null
 addressline | character varying(64) |
 town | character varying(32) |
 zipcode | character(10) | not null
 phone | character varying(16) |
Indexes:
 "customer_pk" primary key, btree (customer_id)

bpsimple=#

We will see in Chapter 8 how we can more generally define explicit default values to be
used in columns when data is inserted with no value, by specifying a default value for a column.

Using the \copy Command
Although INSERT is the standard SQL way of adding data to a database, it is not always the most
convenient. Suppose we had a large number of rows to add to the database, but already had the
actual data available, perhaps in a spreadsheet. One way to get started on inserting data into
the database would be to use a spreadsheet export, so we would probably export the spread-
sheet as a comma-separated values (CSV) file. We can then use a text editor like Emacs, or at
least one with a macro facility, to convert all our data into INSERT statements.

Consider the following data:

Miss,Jenny,Stones,27 Rowan Avenue,Hightown,NT2 1AQ,023 9876
Mr,Andrew,Stones,52 The Willows,Lowtown,LT5 7RA,876 3527
Miss,Alex,Matthew,4 The Street,Nicetown,NT2 2TX,010 4567

We might transform it into a series of INSERT statements, so it looks like this:

INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Miss','Jenny','Stones','27 Rowan Avenue','Hightown',
 'NT2 1AQ','023 9876');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
 VALUES('Mr','Andrew','Stones','52 The Willows','Lowtown',
 'LT5 7RA','876 3527');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
 VALUES('Miss','Alex','Matthew','4 The Street','Nicetown',
 'NT2 2TX','010 4567');

Then save it in a text file with a .sql extension.

MatthewStones_4789C06.fm Page 159 Tuesday, February 1, 2005 7:32 AM

160 C H A P T E R 6 ■ D A T A I N T E R F A C I N G

We could then use the \i command in psql to execute the statements in the file. This is
how the pop_customer.sql file works (we used this in Chapter 3 to initially populate our data-
base). Notice here that we allowed PostgreSQL to generate the unique customer_id value.

This isn’t very convenient, however. It would be much nicer if data could be moved between
flat files and the database in a more general way. There are a couple of ways of doing this in
PostgreSQL. Rather confusingly, both are called the copy command. There is a PostgreSQL SQL
command called COPY, which can save and restore data to flat files, but its use is limited to the
database administrator, as files are read and written on the server to which normal users would
not necessarily have access. More useful is the general-purpose \copy command, which imple-
ments almost all the functionality of COPY, but can be used by everyone, and data is read and
written on the client machine. The SQL-based COPY command is, therefore, almost totally
redundant.

■Note The COPY command does have one advantage: it is significantly quicker than \copy, because it
executes directly in the server process. The \copy command executes in the client process, potentially
having to pass all the data across a network. COPY can also be slightly more reliable when errors occur.
Unless you have very large amounts of data, however, the difference will not be that noticeable.

The \copy command has this basic syntax for importing data:

\copy tablename FROM 'filename'
 [USING DELIMITERS 'a single character to use as a delimiter']
 [WITH NULL AS 'a string that means NULL']

It looks a little imposing, but it is quite simple to use. The sections in square braces, [], are
optional, so you only need to use them if required. Do notice, however, that the filename needs
to be enclosed in single quotes.

The option USING DELIMITERS 'a single character to use as a delimiter' allows you
to specify how each column is separated in the input file. By default, a tab character is assumed
to separate columns in the input data. In our case, we will assume that we have started with a
CSV file that we have exported from a spreadsheet. In practice, the CSV format is often not a
good choice because the comma character can appear in the data, and address data is particu-
larly prone to containing comma characters. Unfortunately, spreadsheets often do not offer
sensible alternatives to CSV file exports, so you may need to work with what you’ve got. Given
the choice, a pipe character, |, is often useful as a delimiter, as it very rarely appears in user data.

The option WITH NULL AS 'a string that means NULL' allows you to specify a string that
should be interpreted as NULL. By default, \N is assumed. Notice that in the \copy command,
you must include single quotes around the string, because that tells PostgreSQL that it is a
string, although quotes will not be expected in the actual data. So, if you want the string NOTHING
to be loaded as a NULL value in the database, you would specify the option WITH NULL AS 'NOTHING'.
Then if we did not know Mr. Hudson’s first name, for example, the data should look like this:

15,Mr,NOTHING,Hudson,4 The Square, Milltown,MT2 6RT,961 4526

When inserting data directly, it is very important to watch out that the data is “clean.” You
need to ensure that no columns are missing, all quote characters have been correctly escaped

MatthewStones_4789C06.fm Page 160 Tuesday, February 1, 2005 7:32 AM

C H A P T E R 6 ■ D A T A I N T E R F A C I N G 161

with a backslash, there are no binary characters present, and so on. PostgreSQL will catch most
of these mistakes for you, and load only valid data, but untangling several thousand rows of
data that have almost been completely loaded is a slow, unreliable, and unrewarding job. It is
well worth going to the effort to clean the data as much as possible before attempting to “bulk
load” it with the \copy command.

Try It Out: Load Data Using \copy

Let’s create some additional customer data in a cust.txt file that looks like this:

21,Miss,Emma,Neill,21 Sheepy Lane,Hightown,NT2 1YQ,023 4245
22,Mr,Gavin,Neill,21 Sheepy Lane,Hightown,NT2 1YQ,023 4245
23,Mr,Duncan,Neill,21 Sheepy Lane,Hightown,NT2 1YQ,023 4245

You can create the simple cust.txt file using any text editor, or use the file included with
this book’s downloadable code (available from the Downloads section of the Apress web site,
at http://www.apress.com). Conveniently, there are no NULLs to worry about, so we just need to
specify the comma as the column separator. To load this data, execute this command:

\copy customer from 'cust.txt' using delimiters ','

Notice there is no semicolon (;) at the end of this command, since it is a \ command directly to
psql, not SQL. psql responds with the rather brief \., which tells us that all is well.

Then execute the following:

SELECT * FROM customer;

We will see that the additional rows have been added.
There is, however, a slight problem lurking. Remember the sequence number that can get

out of step? Unfortunately, using \copy to load data is one way this can happen. Let’s check
what has happened to our sequence number:

bpsimple=# SELECT max(customer_id) FROM customer;
 max

 23
(1 row)

bpsimple=# SELECT currval('customer_customer_id_seq');
 currval

 21
(1 row)

bpsimple=#

Oops! The maximum value stored in customer_id is currently 23, so the next ID allocated
should be 24, but the sequence is going to try to allocate 22 as the next value. Never mind—
it’s easy to correct:

MatthewStones_4789C06.fm Page 161 Tuesday, February 1, 2005 7:32 AM

162 C H A P T E R 6 ■ D A T A I N T E R F A C I N G

bpsimple=# SELECT setval('customer_customer_id_seq', 23);
 setval

 23
(1 row)

bpsimple=#

How It Works

We used the \copy command to directly load data that had been exported from a spreadsheet
in CSV format into our customer table. We subsequently had to correct the sequence number
that generates customer_id numbers for the serial column customer_id in the table, which
takes significantly less effort than that we would have needed to expend to convert our CSV
format data into a series of INSERT statements.

Loading Data Directly from Another Application
If the data already resides in a desktop database, such as Microsoft Access, there is an even
easier way to load the data into PostgreSQL. We can simply attach the PostgreSQL table to the
Access database via ODBC and insert data into a PostgreSQL table.

Often, when you are doing this, you will find that your existing data is not quite what you
need, or that it needs some reworking before being inserted into its final destination table.
Even if the data is in the correct format, it is often a good idea not to attempt to insert it directly
into the database, but rather to first move it to a loading table, and then transfer it from this
loading table to the real table. Using an intermediate loading table is a common method in
real-world applications for inserting data into a database, particularly when the quality of the
original data is uncertain. The data is first loaded into the database in a holding table, checked,
corrected if necessary, and then moved into the final table.

Usually, you will write a custom application or stored procedure to check and correct the
data, a topic covered in detail in Chapter 10. Once the data is ready to load into the final table
though, there is a useful variant of the INSERT command that allows us to move data between
tables, transferring multiple rows in one command. It is the only time an INSERT statement
affects multiple rows with a single statement. This is the INSERT INTO statement.

The syntax for inserting data from one table into another is as follows:

INSERT INTO tablename(list of column names) SELECT normal select statement

Try It Out: Load Data Between Tables

Suppose we have a holding table, tcust, that has some additional customer data to be loaded
into our master customer table. We will make our holding table definition look like this:

MatthewStones_4789C06.fm Page 162 Tuesday, February 1, 2005 7:32 AM

C H A P T E R 6 ■ D A T A I N T E R F A C I N G 163

CREATE TABLE tcust
(
 title char(4) ,
 fname varchar(32) ,
 lname varchar(32) ,
 addressline varchar(64) ,
 town varchar(32) ,
 zipcode char(10) ,
 phone varchar(16)
);

Notice that there are no primary keys or constraints of any kind. It is normal when cross-
loading data into a loading table to make it as easy as possible to get the data into that table.
Removing the constraints makes this easier. Also notice that all the required columns are there,
except the customer_id sequence number, which PostgreSQL can create for us as we load the data.

Suppose we have loaded some data into tcust (via ODBC, \copy, or some other method),
validated, and corrected it. (A suitable script for creating and populating the tcust table is
included in this book’s downloadable code, available from the Apress web site.) Then a SELECT
output looks like this:

bpsimple=# SELECT * FROM tcust;
 title | fname | lname | addressline | town | zipcode | phone
-------+-------+---------+----------------+-------–-+------------+----------
 Mr | Peter | Bradley | 72 Milton Rise | Keynes | MK41 2HQ |
 Mr | Kevin | Carney | 43 Glen Way | Lincoln | LI2 7RD | 786 3454
 Mr | Brian | Waters | 21 Troon Rise | Lincoln | LI7 6GT | 786 7243
(3 rows)

bpsimple=#

The first thing to notice is that we have not yet managed to find a phone number for
Mr. Bradley. This may or may not be a problem. Let’s decide that, for now, we don’t wish to
load this row, but we do wish to load all the other customers. In a real-world scenario, we may
be trying to load hundreds of new customers, and it is quite probable that we will want to load
groups of them as the data for each group is validated or cleaned.

The first part of the INSERT is quite easy to write. We will use the full syntax of INSERT, speci-
fying precisely the columns we wish to load. This is normally the sensible choice:

INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)

Notice that we do not specify that we are loading the customer_id. You will remember that
by leaving this blank, we allow PostgreSQL to automatically create values for us, which is always
the safer way to allow serial values to be created.

MatthewStones_4789C06.fm Page 163 Tuesday, February 1, 2005 7:32 AM

164 C H A P T E R 6 ■ D A T A I N T E R F A C I N G

We now need to write the SELECT part of the statement, which will feed this INSERT statement.
Remember that we do not wish to insert the information for Mr. Bradley yet, because his phone
number is set to NULL, as we are still trying to find it. We could, if we wanted to, load Mr. Bradley’s
data, since the phone column will accept NULL values. What we are doing here is applying a
slightly more stringent real-world usage rule to the data than is required by the low-level data-
base rules. We write a SELECT statement like this:

SELECT title, fname, lname, addressline, town, zipcode, phone FROM tcust
WHERE phone IS NOT NULL;

Of course, this is a perfectly valid statement on its own. Let’s test it:

bpsimple=# SELECT title, fname, lname, addressline, town, zipcode, phone
bpsimple-# FROM tcust WHERE phone IS NOT NULL;
 title | fname | lname | addressline | town | zipcode | phone
-------+-------+--------+---------------+--------+------------+----------
 Mr | Kevin | Carney | 43 Glen Way | Lincoln | LI2 7RD | 786 3454
 Mr | Brian | Waters | 21 Troon Rise | Lincoln | LI7 6GT | 786 7243
(2 rows)

bpsimple=#

That looks correct. It finds the rows we need, and the columns are in the same order as the
INSERT statement. So, we can now put the two statements together and execute them, like this:

bpsimple=# INSERT INTO customer(title, fname, lname, addressline, town,
bpsimple-# zipcode, phone) SELECT title, fname, lname, addressline, town,
bpsimple-# zipcode, phone FROM tcust WHERE phone IS NOT NULL;
INSERT 0 2
bpsimple=#

Notice that psql tells us that two rows have been inserted. Now, being extra cautious, let’s
fetch those rows from the customer table, just to be absolutely sure they were loaded correctly:

bpsimple=# SELECT customer_id, fname, lname, addressline FROM customer WHERE
bpsimple-# town = 'Lincoln';
 customer_id fname | lname | addressline
-------------+-------+--------+----------------
 19 | Sarah | Harvey | 84 Willow Way
 20 | Steve | Clarke | 14 Satview way
 24 | Brian | Waters | 21 Troon Rise
 25 | Kevin | Carney | 43 Glen Way
(4 rows)

bpsimple=#

We actually get more than two rows, because we already had customers from Lincoln. We can
see, however, that our data has been inserted correctly, and customer_id values were created
for us.

MatthewStones_4789C06.fm Page 164 Tuesday, February 1, 2005 7:32 AM

C H A P T E R 6 ■ D A T A I N T E R F A C I N G 165

Now that some of the data from tcust has been loaded into the live customer table, we
would normally delete those rows from tcust. For the purposes of the example, we are going to
leave that data alone for now and delete it in a later example.

How It Works

We specified the columns we wanted to load in the customer table, and then selected the same
set of data, in the same order from the tcust table. We did not specify that we would load the
customer_id column, so PostgreSQL used its sequence numbers to generate unique IDs for us.

An alternative method, which you may find easier, particularly if there is a lot of data to load,
is to add an additional column to the temporary table, perhaps a column isvalid of type boolean.
You then load all the data into the temporary table, and set all the isvalid values to false,
using the UPDATE statement that we will meet more formally in the next section of this chapter:

UPDATE tcust SET isvalid = 'false';

We have not specified a WHERE clause; therefore, all rows have the isvalid column set to
false. We can then continue work on the data, modifying it where necessary. When we are
happy that a row is correct and complete, we set the isvalid column to true. We can then load
the corrected data, selecting only the rows where isvalid is true:

bpsimple=# INSERT INTO customer(title, fname, lname, addressline, town,
bpsimple-# zipcode, phone)
bpsimple-# SELECT title, fname, lname, addressline, town, zipcode, phone
bpsimple-# FROM tcust WHERE isvalid = true;

Once these rows are loaded, we can remove them from the tcust table, like this:

DELETE FROM tcust WHERE isvalid = true;

Then continue to work on the remaining data in the tcust table. (We will discuss the DELETE
statement near the end of this chapter.)

Updating Data in the Database
Now we know how to get data into the database by using INSERT, and how to retrieve it again,
using SELECT. Unfortunately, data does not tend to stay static for very long. People move to
different addresses, change phone numbers, and so on. We need a way of updating the data in
the database. In PostgreSQL, as in all SQL-based databases, this is done with the UPDATE statement.

Using the UPDATE Statement
The UPDATE statement is remarkably simple. Its syntax is as follows:

UPDATE tablename SET columnname = value WHERE condition

If we want to set several columns at the same time, we simply specify them as a comma-
separated list, like this:

UPDATE customer SET town = 'Leicester', zipcode = 'LE4 2WQ' WHERE some condition

MatthewStones_4789C06.fm Page 165 Tuesday, February 1, 2005 7:32 AM

166 C H A P T E R 6 ■ D A T A I N T E R F A C I N G

We can update as many columns simultaneously as we like, provided that each column
appears only once. You will notice that you can use only a single table name. This is due to the
syntax of SQL. In the rare event that you need to update two separate, but related, tables, you
must write two separate UPDATE statements. You can put those UPDATE statements into a transaction
to ensure that either both updates are performed or no updates are performed. We will look at
transactions more closely in Chapter 9.

Try It Out: Use the UPDATE Statement

Suppose we have now tracked down the phone number of Mr. Bradley (missing from our tcust
table), and want to update the data into our live customer table. The first part of the UPDATE
statement is easy:

UPDATE tcust SET phone = '352 3442'

Now we need to specify the row to update, which is simply:

WHERE fname = 'Peter' and lname = 'Bradley';

With UPDATE statements, it is always a good idea to check the WHERE clause. Let’s do that now:

bpsimple=# SELECT fname, lname, phone FROM tcust
bpsimple-# WHERE fname = 'Peter' AND lname = 'Bradley';
 fname | lname | phone
-------+---------+-------
 Peter | Bradley |
(1 row)

bpsimple=#

We can see that the single row we want to update is being selected, so we can go ahead and
put the two halves of the statement together and execute it:

bpsimple=# UPDATE tcust SET phone = '352 3442'
bpsimple-# WHERE fname = 'Peter' AND lname = 'Bradley';
UPDATE 1
bpsimple=#

PostgreSQL tells us that one row has been updated. We could, if we wanted, reexecute our
SELECT statement to check that all is well.

How It Works

We built our UPDATE statement in two stages. First, we wrote the UPDATE command part that
would actually change the column value, and then we wrote the WHERE clause to specify which
rows to update. After testing the WHERE clause, we executed the UPDATE statement, which changed
the row as required.

Why were we so careful to test the WHERE clause and warn about not executing the first part
of the UPDATE statement? The answer is because it is perfectly valid to have an UPDATE statement
with no WHERE clause. By default, UPDATE will then update all the rows in the table, which is
almost never what was intended. It can also be quite hard to correct.

MatthewStones_4789C06.fm Page 166 Tuesday, February 1, 2005 7:32 AM

C H A P T E R 6 ■ D A T A I N T E R F A C I N G 167

tcust is just temporary experimental data, so let’s use it to test an UPDATE with no WHERE clause:

bpsimple=# UPDATE tcust SET phone = '999 9999';
UPDATE 3
bpsimple=#

Notice that psql has told us that three rows have been updated. Now look at what we have:

bpsimple=# SELECT fname, lname, phone FROM tcust;
 fname | lname | phone
-------+---------+----------
 Kevin | Carney | 999 9999
 Brian | Waters | 999 9999
 Peter | Bradley | 999 9999
(3 rows)

bpsimple=#

This is almost certainly not what we wanted!

■Caution Always test the WHERE clause of UPDATE statements before executing them. A simple error in a
WHERE clause can result in many, or even all, of the rows in the table being updated with the same values.

If you do intend to update many rows, rather than retrieve all the data, you can simply
check how many rows you are matching using the count(*) syntax, which we will meet in more
detail in the next chapter. For now, all you need to know is that replacing the column names in
a SELECT statement with count(*) will tell you how many rows were matched, rather than returning
the data in the rows. In fact, that’s about all there is to the count(*) statement, but it does turn
out to be quite useful in practice. Here is an example of our SELECT statement to check how
many rows are matched by the WHERE clause:

bpsimple=# SELECT count(*) from tcust
bpsimple-# WHERE fname = 'Peter' AND lname = 'Bradley';
 count

 1
(1 row)

bpsimple=#

This tells us that the WHERE clause is sufficiently restrictive to specify a single row. Of
course, with different data, even specifying both fname and lname may not be sufficient to
uniquely identify a row.

MatthewStones_4789C06.fm Page 167 Tuesday, February 1, 2005 7:32 AM

168 C H A P T E R 6 ■ D A T A I N T E R F A C I N G

Updating from Another Table
PostgreSQL has an extension that allows updates from another table, using the syntax:

UPDATE tablename FROM tablename WHERE condition

This is an extension to the SQL standard.

Try It Out: Update with FROM

For the purpose of checking out the UPDATE with FROM option, let’s create a table named cust-
phone that contains the customer names and their phone numbers. The table looks like this:

CREATE TABLE custphone
(
 customer_id serial,
 fname varchar(32),
 lname varchar(32) NOT NULL,
 phone_num varchar(16)

);

Let’s also insert some data into the newly created custphone table that holds the customers
and their phone numbers:

bpsimple=# INSERT INTO custphone(fname, lname, phone_num)
bpsimple-# VALUES('Peter', 'Bradley', '352 3442');
INSERT 22593 1
bpsimple=#

Now we need to specify the row to be updated in the tcust table:

bpsimple=# UPDATE tcust SET phone = custphone.phone_num FROM custphone
bpsimple-# WHERE tcust.fname = 'Peter' AND tcust.lname = 'Bradley';
UPDATE 1

bpsimple=#

How It Works

We created a new table that contains the phone numbers of the customers. Then we inserted
data into the new table. Finally, we executed the UPDATE statement, which changed the row as
required.

While UPDATE uses subqueries to control the rows that are updated, the FROM clause allows
the inclusion of columns from other tables in the SET clause. In fact, the FROM clause isn’t even
required. This is because PostgreSQL creates a reference to any table used in a query by default.

MatthewStones_4789C06.fm Page 168 Tuesday, February 1, 2005 7:32 AM

C H A P T E R 6 ■ D A T A I N T E R F A C I N G 169

Deleting Data from the Database
The last thing we need to learn about in this chapter is deleting data from tables. Prospective
customers may never actually place an order, orders get canceled, and so on, so we often need
to delete data from the database.

Using the DELETE Statement
The normal way of deleting data is to use the DELETE statement. This has syntax similar to the
UPDATE statement:

DELETE FROM tablename WHERE condition

Notice that there are no columns listed, since DELETE works on rows. If you want to remove
data from a column, you must use the UPDATE statement to set the value of the column to NULL
or some other appropriate value.

Now that we have copied our data for our two new customers from tcust to our live
customer table, we can go ahead and delete those rows from our tcust table.

Try It Out: Delete Data

We know just how dangerous omitting the WHERE clause in statements that change data can be.
We can appreciate that accidentally deleting data is even more serious, so we will start by
writing and checking our WHERE clause using a SELECT statement:

bpsimple=# SELECT fname, lname FROM tcust WHERE town = 'Lincoln';
 fname | lname
-------+--------
 Kevin | Carney
 Brian | Waters
(2 rows)

bpsimple=#

That’s good—it retrieves the two rows we were expecting.
Now we can prepend the DELETE statement on the front and, after a last visual check that it

looks correct, execute it:

bpsimple=# DELETE FROM tcust WHERE town = 'Lincoln';
DELETE 2
bpsimple=#

■CAUTION Deleting from the database is that easy, so be very careful!

MatthewStones_4789C06.fm Page 169 Tuesday, February 1, 2005 7:32 AM

170 C H A P T E R 6 ■ D A T A I N T E R F A C I N G

How It Works

We wrote and tested a WHERE clause to choose the rows that we wanted to delete from the data-
base. We then executed a DELETE statement that deleted them.

Just like UPDATE, DELETE can work on only a single table at any one time. If we ever need to
delete related rows from more than one table, we will use a transaction, which we will meet in
Chapter 9.

Using the TRUNCATE Statement
There is one other way of deleting data from a table. It deletes all of the data from a table, and
unless it is contained within a PostgreSQL version 7.4 or later transaction, it will give you no
way of recovering the data. The command is TRUNCATE, and its syntax is as follows:

TRUNCATE TABLE tablename

This is a command to be used with caution, and only when you are very sure that you want
to permanently delete all the data in a table. In some ways, it is similar to dropping and re-creating
the table, except it is much easier to use and doesn’t reset the sequence number.

Try It Out: Use The TRUNCATE Statement

Suppose we have now finished with our tcust table, and want to delete all the data in it. We
could DROP the table, but then if we needed it again, we would need to re-create it. Instead, we
can TRUNCATE it, to delete all the rows in the table:

bpsimple=# TRUNCATE TABLE tcust;
TRUNCATE TABLE
bpsimple=# SELECT count(*) FROM tcust;
 count

 0
(1 row)

bpsimple=#

All the rows are now deleted.

How It Works

TRUNCATE simply deletes all the rows from the specified table.
If you have a large table, perhaps with many thousands of rows, and want to delete all the

rows from it, by default, PostgreSQL does not physically remove the rows, but scans through
them all, marking each one as deleted. This helps in restoring the data in case the transaction
is rolled back. Even though on the command line we might not have explicitly asked for a trans-
action, all commands automatically get executed inside a transaction. The action of scanning
and marking many thousands of rows of a table slows down execution. The TRUNCATE statement
deletes the contents of the table very efficiently without scanning the data. So, on very large
tables, it executes much more efficiently than DELETE.

MatthewStones_4789C06.fm Page 170 Tuesday, February 1, 2005 7:32 AM

C H A P T E R 6 ■ D A T A I N T E R F A C I N G 171

■Tip There are two ways to delete all the rows from a table: DELETE without a WHERE clause and
TRUNCATE. TRUNCATE, although not in SQL92, is a very common SQL statement for efficiently deleting
all rows from a table.

You should stick to using DELETE almost all of the time, as it is a much safer way of deleting
data. Also DELETE works in some cases where TRUNCATE does not, such as on tables with foreign
keys. However, in special cases where you want to efficiently and irrevocably delete all rows
from a table, TRUNCATE is the solution.

Summary
In this chapter, we looked at the three other parts of data manipulation along with SELECT: the
ability to add data with the INSERT command, modify data with the UPDATE command, and
remove data with the DELETE command.

We learned about the two forms of the INSERT command, with data explicitly included in
the INSERT statement or INSERT from data SELECTed from another table. We saw how it is safer
to use the longer form of the INSERT statement, where all columns are listed, so there is less
chance of mistakes. We also met INSERT’s cousin command, the rather useful PostgreSQL
extension \copy, which allows data to be inserted into a table directly from a local file.

We looked at how you need to be careful with the sequence counters for serial fields, and
how to check the value of a sequence, and if necessary, change it. We saw that, in general, it is
better to allow PostgreSQL to generate sequence numbers for you, by not providing data for
serial type columns.

We saw how the very simple UPDATE and DELETE statements work, and how to use them
with WHERE clauses, just as with the SELECT statement. We also mentioned that you should
always test UPDATE and DELETE statements with WHERE clauses using a SELECT statement, as
mistakes here can cause problems that are difficult to rectify.

Finally, we looked at the TRUNCATE statement, a very efficient way of deleting all rows from
a table. Since this is an irrevocable deletion, unless managed by transactions, it should be used
with caution.

MatthewStones_4789C06.fm Page 171 Tuesday, February 1, 2005 7:32 AM

MatthewStones_4789C06.fm Page 172 Tuesday, February 1, 2005 7:32 AM

173

■ ■ ■

C H A P T E R 7

Advanced Data Selection

In Chapter 4‚ we looked in some detail at the SELECT statement and how we can use it to retrieve
data. This included selecting columns, selecting rows, and joining tables together. In the
previous chapter, we looked at ways of adding, updating, and removing data. In this chapter,
we return to the SELECT statement, examining its more advanced features. You may rarely need
to use some of these features, but it’s useful to know them so that you have a good understanding
of what is possible in SQL.

In this chapter, we will meet some special functions called aggregates, which allow us to
get results based on a group of rows. We will then describe some more advanced joins that
provide more control over our query results than the simple joins discussed in Chapter 4. We
will also meet a whole new group of queries called subqueries, where we use multiple SELECT
statements in a single query. Finally, we will discuss the very important outer join, which allows
us to join tables together in a more flexible way than we have seen so far.

As we progress through this chapter, we will cover the following topics:

• Aggregate functions

• Subqueries

• UNION joins

• Self joins

• Outer joins

Aggregate Functions
In previous chapters, we used a couple of special functions for producing statistics from selec-
tions: the max(column name) function, to tell us the largest value in a column, and the count(*)
function to tell us the number of rows in a table. These functions belong to a small group of
SQL functions called aggregates. The functions in this group include those listed in Table 4-1.

MatthewStones_4789C07.fm Page 173 Tuesday, February 1, 2005 7:33 AM

174 C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N

Aggregates are often quite useful and generally easy to use. In this section, we’ll introduce
each of the functions listed in Table 4-1. PostgreSQL supports other aggregates, including func-
tions for variance and standard deviation. Details can be found the PostgreSQL documentation.

■Tip psql's \da command lists all of the aggregates used by PostgreSQL.

SELECT statements using any of these aggregate functions can include two optional clauses:
GROUP BY and HAVING. The syntax is as follows (shown here with the count(*) function):

SELECT count(*) column list FROM table name
WHERE condition [GROUP BY column name [HAVING aggregate condition]]

The optional GROUP BY clause is an additional condition that can be applied to SELECT
statements. It is normally useful only when an aggregate function is being used. It can also be
used to provide a function similar to ORDER BY, which we met in Chapter 4, but by working on
the aggregate column. The optional HAVING clause allows us to pick out particular rows where
the function result meets some condition, and we have already used a GROUP BY clause. This all
sounds a bit complicated, but it’s actually quite easy in practice, as we’ll see in this chapter.

The Count Function
We will start by looking at the count function, which, as you can see from Table 4-1, has two
forms: count(*) and count(column name).

Count(*)

The count(*) function provides a row count for a table. It acts as a special column name in a
SELECT statement. Let’s try out a very simple count(*) just to get the basic idea.

Table 4-1. Aggregate Functions

Aggregate Description

count(*) Provides a row count for a table

count(column name) Counts the number of rows in the table where the value in the speci-
fied column is not NULL

min(column name) Returns the minimum value found in the specified column

max(column name) Returns the maximum value found in the specified column

sum(column name) Returns the total sum of the entries in the specified numeric column

avg(column name) Returns the average of the entries in the specified column

MatthewStones_4789C07.fm Page 174 Tuesday, February 1, 2005 7:33 AM

C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N 175

■Note In the examples in this chapter, as with others, we start with clean base data in the sample data-
base, so readers can dip into chapters as they choose. This does mean that some of the output will be slightly
different if you continue to use sample data from a previous chapter. The downloadable code for this book
(available from the Downloads section of the Apress web site at http://www.apress.com) provides scripts
to make it easy to drop the tables, re-create them, and repopulate them with clean data, if you wish to do so.

Try It Out: Use Count(*)

Suppose we wanted to know how many customers in the customer table live in the town of
Bingham. We could simply write a SQL query like this:

SELECT * FROM customer WHERE town = 'Bingham';

Or, for a more efficient version that returns less data, we could write a SQL query like this:

SELECT customer_id FROM customer WHERE town = 'Bingham';

This works, but in a rather indirect way. Suppose the customer table contained many
thousands of customers, with perhaps over a thousand of them living in Bingham. In that case,
we would be retrieving a great deal of data that we don’t need. The count(*) function solves
this for us, by allowing us to retrieve just a single row with the count of the number of selected
rows in it.

We write our SELECT statement as we normally do, but instead of selecting real columns,
we use count(*), like this:

bpsimple=# SELECT count(*) FROM customer WHERE town = 'Bingham';
 count

 3
(1 row)

bpsimple=#

If we want to count all the customers, we can just omit the WHERE clause:

bpsimple=# SELECT count(*) FROM customer;
 count

 15
(1 row)

bpsimple=#

You can see we get just a single row, with the count in it. If you want to check the answer,
just replace count(*) with customer_id to show the real data.

MatthewStones_4789C07.fm Page 175 Tuesday, February 1, 2005 7:33 AM

176 C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N

How It Works

The count(*) function allows us to retrieve a count of objects, rather than the objects them-
selves. It is vastly more efficient than getting the data itself, because all of the data that we don’t
need to see does not need to be retrieved from the database, or worse still, sent across a network.

■Tip You should never retrieve data when all you need is a count of the number of rows.

GROUP BY and Count(*)

Suppose we wanted to know how many customers live in each town. We could find out by
selecting all the distinct towns, and then counting how many customers were in each town.
This is a rather procedural and tedious way of solving the problem. Wouldn’t it be better to
have a declarative way of simply expressing the question directly in SQL? You might be tempted
to try something like this:

SELECT count(*), town FROM customer;

It’s a reasonable guess based on what we know so far, but PostgreSQL will produce an
error message, as it is not valid SQL syntax. The additional bit of syntax you need to know to
solve this problem is the GROUP BY clause.

The GROUP BY clause tells PostgreSQL that we want an aggregate function to output a result
and reset each time a specified column, or columns, change value. It’s very easy to use. You
simply add a GROUP BY column name to the SELECT with a count(*) function. PostgreSQL will tell
you how many of each value of your column exists in the table.

Try It Out: Use GROUP BY

Let’s try to answer the question, “How many customers live in each town?”
Stage one is to write the SELECT statement to retrieve the count and column name:

SELECT count(*), town FROM customer;

We then add the GROUP BY clause, to tell PostgreSQL to produce a result and reset the count
each time the town changes by issuing a SQL query like this:

SELECT count(*), town FROM customer GROUP BY town;

Here it is in action:

bpsimple=# SELECT count(*), town FROM customer GROUP BY town;
 count | town
-------+-----------
 1 | Milltown
 2 | Nicetown
 1 | Welltown
 1 | Yuleville
 3 | Bingham

MatthewStones_4789C07.fm Page 176 Tuesday, February 1, 2005 7:33 AM

C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N 177

 1 | Histon
 1 | Hightown
 1 | Lowtown
 1 | Tibsville
 1 | Oxbridge
 1 | Winnersby
 1 | Oakenham
(12 rows)

bpsimple=#

As you can see, we get a listing of towns and the number of customers in each town.

How It Works

PostgreSQL orders the result by the column listed in the GROUP BY clause. It then keeps a running
total of rows, and each time the town name changes, it writes a result row and resets its counter
to zero. You will agree that this is much easier than writing procedural code to loop through
each town.

We can extend this idea to more than one column if we want to, provided all the columns
we select are also listed in the GROUP BY clause. Suppose we wanted to know two pieces of infor-
mation: how many customers are in each town and how many different last names they have.
We would simply add lname to both the SELECT and GROUP BY parts of the statement:

bpsimple=# SELECT count(*), lname, town FROM customer GROUP BY town, lname;
 count | lname | town
-------+---------+-----------
 1 | Hardy | Oxbridge
 1 | Cozens | Oakenham
 1 | Matthew | Yuleville
 1 | Jones | Bingham
 2 | Matthew | Nicetown
 1 | O'Neill | Welltown
 1 | Stones | Hightown
 2 | Stones | Bingham
 1 | Hudson | Milltown
 1 | Hickman | Histon
 1 | Neill | Winnersby
 1 | Howard | Tibsville
 1 | Stones | Lowtown
(13 rows)

bpsimple=#

Notice that Bingham is now listed twice, because there are customers with two different last
names, Jones and Stones, who live in Bingham.

Also notice that this output is unsorted. Versions of PostgreSQL prior to 8.0 would have
sorted first by town, then lname, since that is the order they are listed in the GROUP BY clause.
In PostgreSQL 8.0 and later, we need to be more explicit about sorting by using an ORDER BY
clause. We can get sorted output like this:

MatthewStones_4789C07.fm Page 177 Tuesday, February 1, 2005 7:33 AM

178 C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N

bpsimple=# SELECT count(*), lname, town FROM customer GROUP BY town, lname
bpsimple-# ORDER BY town, lname;
 count | lname | town
-------+---------+-----------
 1 | Jones | Bingham
 2 | Stones | Bingham
 1 | Stones | Hightown
 1 | Hickman | Histon
 1 | Stones | Lowtown
 1 | Hudson | Milltown
 2 | Matthew | Nicetown
 1 | Cozens | Oakenham
 1 | Hardy | Oxbridge
 1 | Howard | Tibsville
 1 | O'Neill | Welltown
 1 | Neill | Winnersby
 1 | Matthew | Yuleville
(13 rows)

bpsimple=#

HAVING and Count(*)

The last optional part of a SELECT statement is the HAVING clause. This clause may be a bit
confusing to people new to SQL, but it’s not difficult to use. You just need to remember that
HAVING is a kind of WHERE clause for aggregate functions. We use HAVING to restrict the results
returned to rows where a particular aggregate condition is true, such as count(*) > 1. We use it
in the same way as WHERE to restrict the rows based on the value of a column.

■Caution Aggregates cannot be used in a WHERE clause. They are valid only inside a HAVING clause.

Let’s look at an example. Suppose we want to know all the towns where we have more than
a single customer. We could do it using count(*), and then visually look for the relevant towns.
However, that’s not a sensible solution in a situation where there may be thousands of towns.
Instead, we use a HAVING clause to restrict the answers to rows where count(*) was greater than
one, like this:

bpsimple=# SELECT count(*), town FROM customer
bpsimple-# GROUP BY town HAVING count(*) > 1;
 count | town
-------+----------
 3 | Bingham
 2 | Nicetown
(2 rows)

bpsimple=#

MatthewStones_4789C07.fm Page 178 Tuesday, February 1, 2005 7:33 AM

C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N 179

Notice that we still must have our GROUP BY clause, and it appears before the HAVING clause.
Now that we have all the basics of count(*), GROUP BY, and HAVING, let’s put them together in a
bigger example.

Try It Out: Use HAVING

Suppose we are thinking of setting up a delivery schedule. We want to know the last names and
towns of all our customers, except we want to exclude Lincoln (maybe it’s our local town), and
we are interested only in the names and towns with more than one customer.

This is not as difficult as it might sound. We just need to build up our solution bit by bit,
which is often a good approach with SQL. If it looks too difficult, start by solving a simpler, but
similar problem, and then extend the initial solution until you solve the more complex problem.
Effectively, take a problem, break it down into smaller parts, and then solve each of the smaller
parts.

Let’s start with simply returning the data, rather than counting it. We sort by town to make
it a little easier to see what is going on:

bpsimple=# SELECT lname, town FROM customer
bpsimple=# WHERE town <> 'Lincoln' ORDER BY town;
 lname | town
---------+-----------
 Stones | Bingham
 Stones | Bingham
 Jones | Bingham
 Stones | Hightown
 Hickman | Histon
 Stones | Lowtown
 Hudson | Milltown
 Matthew | Nicetown
 Matthew | Nicetown
 Cozens | Oakenham
 Hardy | Oxbridge
 Howard | Tibsville
 O'Neill | Welltown
 Neill | Winnersby
 Matthew | Yuleville
(15 rows)

bpsimple=#

Looks good so far, doesn’t it?
Now if we use count(*) to do the counting for us, we also need to GROUP BY the lname

and town:

MatthewStones_4789C07.fm Page 179 Tuesday, February 1, 2005 7:33 AM

180 C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N

bpsimple=# SELECT count(*), lname, town FROM customer
bpsimple-# WHERE town <> 'Lincoln' GROUP BY lname, town ORDER BY town;
 count | lname | town
-------+---------+-----------
 2 | Stones | Bingham
 1 | Jones | Bingham
 1 | Stones | Hightown
 1 | Hickman | Histon
 1 | Stones | Lowtown
 1 | Hudson | Milltown
 2 | Matthew | Nicetown
 1 | Cozens | Oakenham
 1 | Hardy | Oxbridge
 1 | Howard | Tibsville
 1 | O'Neill | Welltown
 1 | Neill | Winnersby
 1 | Matthew | Yuleville
(13 rows)

bpsimple=#

We can actually see the answer now by visual inspection, but we are almost at the full solution,
which is simply to add a HAVING clause to pick out those rows with a count(*) greater than one:

bpsimple=# SELECT count(*), lname, town FROM customer
bpsimple-# WHERE town <> 'Lincoln' GROUP BY lname, town HAVING count(*) > 1;
 count | lname | town
-------+---------+----------
 2 | Matthew | Nicetown
 2 | Stones | Bingham
(2 rows)

bpsimple=#

As you can see, the solution is straightforward when you break down the problem into parts.

How It Works

We solved the problem in three stages:

• We wrote a simple SELECT statement to retrieve all the rows we were interested in.

• Next, we added a count(*) function and a GROUP BY clause, to count the unique lname
and town combination.

• Finally, we added a HAVING clause to extract only those rows where the count(*) was
greater than one.

There is one slight problem with this approach, which isn’t noticeable on our small sample
database. On a big database, this iterative development approach has some drawbacks. If we
were working with a customer database containing thousands of rows, we would have customer

MatthewStones_4789C07.fm Page 180 Tuesday, February 1, 2005 7:33 AM

C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N 181

lists scrolling past for a very long time while we developed our query. Fortunately, there is often
an easy way to develop your queries on a sample of the data, by using the primary key. If we add
the condition WHERE customer_id < 50 to all our queries, we could work on a sample of the first
50 customer_ids in the database. Once we were happy with our SQL, we could simply remove
the WHERE clause to execute our solution on the whole table. Of course, we need to be careful
that the sample data we used to test our SQL is representative of the full data set and be wary
that smaller samples may not have fully exercised our SQL.

Count(column name)

A slight variant of the count(*) function is to replace the * with a column name. The difference
is that COUNT(column name) counts occurrences in the table where the provided column name
is not NULL.

Try It Out: Use Count(column name)

Suppose we add some more data to our customer table, with some new customers having NULL
phone numbers:

INSERT INTO customer(title, fname, lname, addressline, town, zipcode)
VALUES('Mr','Gavyn','Smith','23 Harlestone','Milltown','MT7 7HI');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mrs','Sarah','Harvey','84 Willow Way','Lincoln','LC3 7RD','527 3739');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode)
VALUES('Mr','Steve','Harvey','84 Willow Way','Lincoln','LC3 7RD');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode)
VALUES('Mr','Paul','Garrett','27 Chase Avenue','Lowtown','LT5 8TQ');

Let’s check how many customers we have whose phone numbers we don’t know:

bpsimple=# SELECT customer_id FROM customer WHERE phone IS NULL;
 customer_id

 16
 18
 19
(3 rows)

bpsimple=#

We see that there are three customers for whom we don’t have a phone number. Let’s see
how many customers there are in total:

bpsimple=# SELECT count(*) FROM customer;
 count

 19
(1 row)

bpsimple=#

MatthewStones_4789C07.fm Page 181 Tuesday, February 1, 2005 7:33 AM

182 C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N

There are 19 customers in total. Now if we count the number of customers where the phone
column is not NULL, there should be 16 of them:

bpsimple=# SELECT count(phone) FROM customer;
 count

 16
(1 row)

bpsimple=#

How It Works

The only difference between count(*) and count(column name) is that the form with an explicit
column name counts only rows where the named column is not NULL, and the * form counts all
rows. In all other respects, such as using GROUP BY and HAVING, count(column name) works in the
same way as count(*).

Count(DISTINCT column name)

The count aggregate function supports the DISTINCT keyword, which restricts the function to
considering only those values that are unique in a column, not counting duplicates. We can
illustrate its behavior by counting the number of distinct towns that occur in our customer table,
like this:

bpsimple=# SELECT count(DISTINCT town) AS "distinct", count(town) AS "all"
bpsimple=# FROM customer;
 distinct | all
----------+-----
 12 | 15
(1 row)

bpsimple=#

Here, we see that there are 15 towns, but only 12 distinct ones (Bingham and Nicetown)
appear more than once.

Now that we understand count(*) and have learned the principles of aggregate functions,
we can apply the same logic to all the other aggregate functions.

The Min Function
As you might expect, the min function takes a column name parameter and returns the minimum
value found in that column. For numeric type columns, the result would be as expected. For
temporal types, such as date values, it returns the largest date, which might be either in the past
or future. For variable-length strings (varchar type), the result is slightly unexpected: it compares
the strings after they have been right-padded with blanks.

MatthewStones_4789C07.fm Page 182 Friday, February 4, 2005 11:57 AM

C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N 183

■Caution Be wary of using min or max on varchar type columns, because the results may not be what
you expect.

For example, suppose we want to find the smallest shipping charge we levied on an order.
We could use min, like this:

bpsimple=# SELECT min(shipping) FROM orderinfo;
 min

 0.00
(1 row)

bpsimple=#

This shows the smallest charge was zero.
Notice what happens when we try the same function on our phone column, where we know

there are NULL values:

bpsimple=# SELECT min(phone) FROM customer;
 min

 010 4567
(1 row)

bpsimple=#

Now you might have expected the answer to be NULL, or an empty string. Given that NULL
generally means unknown, however, the min function ignores NULL values. Ignoring NULL values
is a feature of all the aggregate functions, except count(*). (Whether there is any value in knowing
the smallest phone number is, of course, a different question.)

The Max Function
It’s not going to be a surprise that the max function is similar to min, but in reverse. As you would
expect, max takes a column name parameter and returns the maximum value found in that
column.

For example, we could find the largest shipping charge we levied on an order like this:

bpsimple=# SELECT max(shipping) FROM orderinfo;
 max

 3.99
(1 row)

bpsimple=#

MatthewStones_4789C07.fm Page 183 Tuesday, February 1, 2005 7:33 AM

184 C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N

Just as with min, NULL values are ignored with max, as in this example:

bpsimple=# SELECT max(phone) FROM customer;
 max

 961 4526
(1 row)

bpsimple=#

That is pretty much all you need to know about max.

The Sum Function
The sum function takes the name of a numeric column and provides the total. Just as with min
and max, NULL values are ignored.

For example, we could get the total shipping charges for all orders like this:

bpsimple=# SELECT sum(shipping) FROM orderinfo;
 sum

 9.97
(1 row)

bpsimple=#

Like count, the sum function supports a DISTINCT variant. You can ask it to add up only the
unique values, so that multiple rows with the same value are counted only once:

bpsimple=# SELECT sum(DISTINCT shipping) FROM orderinfo;
 sum

 6.98
(1 row)

bpsimple=#

Note that in practice, there are few real-world uses for this variant.

The Avg Function
The last aggregate function we will look at is avg, which also takes a column name and returns
the average of the entries. Like sum, it ignores NULL values. Here is an example:

bpsimple=# SELECT avg(shipping) FROM orderinfo;
 avg

 1.9940000000000000
(1 row)

bpsimple=#

MatthewStones_4789C07.fm Page 184 Tuesday, February 1, 2005 7:33 AM

C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N 185

The avg function can also take a DISTINCT keyword to work on only distinct values:

bpsimple=# SELECT avg(DISTINCT shipping) FROM orderinfo;
 avg

 2.3266666666666667
(1 row)

bpsimple=#

■Note In standard SQL and in PostgreSQL’s implementation, there are no mode or median functions.
However, a few commercial vendors do support them as extensions.

The Subquery
Now that we have met various SQL statements that have a single SELECT in them, we can look
at a whole class of data-retrieval statements that combine two or more SELECT statements in
several ways.

A subquery is where one or more of the WHERE conditions of a SELECT are other SELECT state-
ments. Subqueries are somewhat more difficult to understand than single SELECT statement
queries, but they are very useful and open up a whole new area of data-selection criteria.

Suppose we want to find the items that have a cost price that is higher than the average
cost price. We can do this in two steps: find the average price using a SELECT statement with an
aggregate function, and then use the answer in a second SELECT statement to find the rows we
want (using the cast function, which was introduced in Chapter 4), like this:

bpsimple=# SELECT avg(cost_price) FROM item;
 avg

 7.2490909090909091
(1 row)

bpsimple=# SELECT * FROM item
bpsimple-# WHERE cost_price > cast(7.249 AS numeric(7,2));
 item_id | description | cost_price | sell_price
---------+---------------+------------+------------
 1 | Wood Puzzle | 15.23 | 21.95
 2 | Rubik Cube | 7.45 | 11.49
 5 | Picture Frame | 7.54 | 9.95
 6 | Fan Small | 9.23 | 15.75
 7 | Fan Large | 13.36 | 19.95
 11 | Speakers | 19.73 | 25.32
(6 rows)

bpsimple=#

MatthewStones_4789C07.fm Page 185 Tuesday, February 1, 2005 7:33 AM

186 C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N

This does seem rather inelegant. What we really want to do is pass the result of the first
query straight into the second query, without needing to remember it and type it back in for
a second query.

The solution is to use a subquery. We put the first query in brackets and use it as part of
a WHERE clause to the second query, like this:

bpsimple=# SELECT * from ITEM
bpsimple-# WHERE cost_price > (SELECT avg(cost_price) FROM item);
 item_id | description | cost_price | sell_price
---------+---------------+------------+------------
 1 | Wood Puzzle | 15.23 | 21.95
 2 | Rubik Cube | 7.45 | 11.49
 5 | Picture Frame | 7.54 | 9.95
 6 | Fan Small | 9.23 | 15.75
 7 | Fan Large | 13.36 | 19.95
 11 | Speakers | 19.73 | 25.32
(6 rows)

bpsimple=#

As you can see, we get the same result, but without needing the intermediate step or
the cast function, since the result is already of the right type. PostgreSQL runs the query in
brackets first. After getting the answer, it then runs the outer query, substituting the answer
from the inner query.

 We can have many subqueries using various WHERE clauses if we want. We are not restricted
to just one, although needing multiple, nested SELECT statements is rare.

Try It Out: Use a Subquery

Let’s try a more complex example. Suppose we want to know all the items where the cost price
is above the average cost price, but the selling price is below the average selling price. (Such an
indicator suggests our margin is not very good, so we hope there are not too many items that fit
those criteria.) The general query is going to be of this form:

SELECT * FROM item
WHERE cost_price > average cost price
AND sell_price < average selling price

We already know the average cost price can be determined with the query SELECT
avg(cost_price) FROM item. Finding the average selling price is accomplished in a similar
fashion, using the query SELECT avg(sell_price) FROM item.

If we put these three queries together, we get this:

bpsimple=# SELECT * FROM item
bpsimple-# WHERE cost_price > (SELECT avg(cost_price) FROM item) AND
bpsimple-# sell_price < (SELECT avg(sell_price) FROM item);
 item_id | description | cost_price | sell_price
---------+---------------+------------+------------
 5 | Picture Frame | 7.54 | 9.95
(1 row)

bpsimple=#

MatthewStones_4789C07.fm Page 186 Tuesday, February 1, 2005 7:33 AM

C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N 187

Perhaps someone needs to look at the price of picture frames and see if it is correct!

How It Works

PostgreSQL first scans the query and finds that there are two queries in brackets, which are the
subqueries. It evaluates each of those subqueries independently, and then puts the answers
back into the appropriate part of the main query of the WHERE clause before executing it.

We could also have applied additional WHERE clauses or ORDER BY clauses. It is perfectly
valid to mix WHERE conditions that come from subqueries with more conventional conditions.

Subqueries That Return Multiple Rows
So far, we have seen only subqueries that return a single result, because an aggregate function
was used in the subquery. Subqueries can also return zero or more rows.

Suppose we want to know which items we have in stock where the cost price is greater
than 10.0. We could use a single SELECT statement, like this:

bpsimple=# SELECT s.item_id, s.quantity FROM stock s, item i
bpsimple-# WHERE i.cost_price > cast(10.0 AS numeric(7,2))
bpsimple-# AND s.item_id = i.item_id;
 item_id | quantity
---------+----------
 1 | 12
 7 | 8
(2 rows)

bpsimple=#

Notice that we give the tables alias names (stock becomes s; item becomes i) to keep the
query shorter. All we are doing is joining the two tables (s.item_id = i.item_id), while also
adding a condition about the cost price in the item table (i.cost_price > cast(10.0 AS
NUMERIC(7,2))).

We can also write this as a subquery, using the keyword IN to test against a list of values.
To use IN in this context, we first need to write a query that gives a list of item_ids where the
item has a cost price less than 10.0:

SELECT item_id FROM item WHERE cost_price > cast(10.0 AS NUMERIC(7,2));

We also need a query to select items from the stock table:

SELECT * FROM stock WHERE item_id IN list of values

We can then put the two queries together, like this:

MatthewStones_4789C07.fm Page 187 Tuesday, February 1, 2005 7:33 AM

188 C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N

bpsimple=# SELECT * FROM stock WHERE item_id IN
bpsimple-# (SELECT item_id FROM item
bpsimple(# WHERE cost_price > cast(10.0 AS numeric(7,2)));
 item_id | quantity
---------+----------
 1 | 12
 7 | 8
(2 rows)

bpsimple=#

This shows the same result.
Just as with more conventional queries, we could negate the condition by writing NOT IN,

and we could also add WHERE clauses and ORDER BY conditions.
It is quite common to be able to use either a subquery or an equivalent join to retrieve the

same information. However, this is not always the case; not all subqueries can be rewritten as
joins, so it is important to understand them.

If you do have a subquery that can also be written as a join, which one should you use?
There are two matters to consider: readability and performance. If the query is one that you use
occasionally on small tables and it executes quickly, use whichever form you find most read-
able. If it is a heavily used query on large tables, it may be worth writing it in different ways and
experimenting to discover which performs best. You may find that the query optimizer is able
to optimize both styles, so their performance is identical; in that case, readability automatically
wins. You may also find that performance is critically dependent on the exact data in your data-
base, or that it varies dramatically as the number of rows in different tables changes.

■Caution Be careful in testing the performance of SQL statements. There are a lot of variables beyond your
control, such as the caching of data by the operating system.

Correlated Subqueries
The subquery types we have seen so far are those where we executed a query to get an answer,
which we then “plug in” to a second query. The two queries are otherwise unrelated and are
called uncorrelated subqueries. This is because there are no linked tables between the inner
and outer queries. We may be using the same column from the same table in both parts of the
SELECT statement, but they are related only by the result of the subquery being fed back into the
main query’s WHERE clause.

There is another group of subqueries, called correlated subqueries, where the relationship
between the two parts of the query is somewhat more complex. In a correlated subquery, a table in
the inner SELECT will be joined to a table in the outer SELECT, thereby defining a relationship
between these two queries. This is a powerful group of subqueries, which quite often cannot be
rewritten as simple SELECT statements with joins. A correlated query has the general form:

MatthewStones_4789C07.fm Page 188 Tuesday, February 1, 2005 7:33 AM

C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N 189

SELECT columnA from table1 T1
WHERE T1.columnB =
 (SELECT T2.columnB FROM table2 T2 WHERE T2.columnC = T1.columnC)

We have written this as some pseudo SQL to make it a little easier to understand. The
important thing to notice is that the table in the outer SELECT, T1, also appears in the inner
SELECT. The inner and outer queries are, therefore, deemed to be correlated. You will notice we
have aliased the table names. This is important, as the rules for table names in correlated
subqueries are rather complex, and a slight mistake can give strange results.

■Tip We strongly suggest that you always alias all tables in a correlated subquery, as this is the safest option.

When this correlated subquery is executed, something quite complex happens. First, a row
from table T1 is retrieved for the outer SELECT, then the column T1.columnB is passed to the
inner query, which then executes, selecting from table T2 but using the information that is
passed in. The result of this is then passed back to the outer query, which completes evaluation
of the WHERE clause, before moving on to the next row. This is illustrated in Figure 7-1.

Figure 7-1. The execution of a correlated subquery

If this sounds a little long-winded, that is because it is. Correlated subqueries often execute
quite inefficiently. However, they do occasionally solve some particularly complex problems.
So, it’s well worth knowing they exist, even though you may use them only infrequently.

MatthewStones_4789C07.fm Page 189 Tuesday, February 1, 2005 7:33 AM

190 C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N

Try It Out: Execute a Correlated Subquery

On a simple database, such as the one we are using, there is little need for correlated subqueries,
but we can still use our sample database to demonstrate their use.

Suppose we want to know the date when orders were placed for customers in Bingham.
Although we could write this more conventionally, we will use a correlated subquery, like this:

bpsimple=# SELECT oi.date_placed FROM orderinfo oi
bpsimple-# WHERE oi.customer_id =
bpsimple-# (SELECT c.customer_id from customer c
bpsimple(# WHERE c.customer_id = oi.customer_id and town = 'Bingham');
 date_placed

 2000-06-23
 2000-07-21
(2 rows)

bpsimple=#

How It Works

The query starts by selecting a row from the orderinfo table. It then executes the subquery on
the customer table, using the customer_id it found. The subquery executes, looking for rows
where the customer_id from the outer query gives a row in the customer table that also has the
town Bingham. If it finds one, it then passes the customer_id back to the original query, which
completes the WHERE clause, and if it is true, prints the date_placed column. The outer query
then proceeds to the next row, and the sequence repeats.

It is also possible to create a correlated subquery with the subquery in the FROM clause.
Here is an example that finds all of the data for customers in Bingham that have placed an
order with us.

bpsimple=# SELECT * FROM orderinfo o,
bpsimple=# (SELECT * FROM customer c WHERE town = 'Bingham') c
bpsimple=# WHERE c.customer_id = o.customer_id;
 orderinfo_id | customer_id | date_placed | date_shipped | shipping |
 customer_id | title | fname | lname | addressline | town | zipcode | phone
--------------+-------------+-------------+--------------+----------+-----------
--+-------+-------+--------+--------------+---------+------------+----------
 2 | 8 | 2004-06-23 | 2004-06-24 | 0.00 |
8 | Mrs | Ann | Stones | 34 Holly Way | Bingham | BG4 2WE | 342 5982
 5 | 8 | 2004-07-21 | 2004-07-24 | 0.00 |
8 | Mrs | Ann | Stones | 34 Holly Way | Bingham | BG4 2WE | 342 5982
(2 rows)

bpsimple=#

MatthewStones_4789C07.fm Page 190 Tuesday, February 1, 2005 7:33 AM

C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N 191

The subquery result takes the place of a table in the main query, in the sense that the
subquery produces a set of rows containing just those customers in Bingham.

Now you have an idea of how correlated subqueries can be written. When you come across
a problem that you cannot seem to solve in SQL with more common queries, you may find that
the correlated subquery is the answer to your difficulties.

Existence Subqueries
Another form of subquery tests for existence using the EXISTS keyword in the WHERE clause,
without needing to know what data is present.

Suppose we want to list all the customers who have placed orders. In our sample database,
there are not many. The first part of the query is easy:

SELECT fname, lname FROM customer c;

Notice that we have aliased the table name customer to c, ready for the subquery. The next
part of the query needs to discover if the customer_id also exists in the orderinfo table:

SELECT 1 FROM orderinfo oi WHERE oi.customer_id = c.customer_id;

There are two very important aspects to notice here. First, we have used a common trick.
Where we need to execute a query but don’t need the results, we simply place 1 where a column
name would be. This means that if any data is found, a 1 will be returned, which is an easy and
efficient way of saying true. This is a weird idea, so let’s just try it:

bpsimple=# SELECT 1 FROM customer WHERE town = 'Bingham';
 ?column?

 1
 1
 1
(3 rows)

bpsimple=#

It may look a little odd, but it does work. It is important not to use count(*) here, because
we need a result from each row where the town is Bingham, not just to know how many customers
are from Bingham.

The second important thing to notice is that we use the table customer in this subquery,
which was actually in the main query. This is what makes it correlated. As before, we alias all
the table names. Now we need to put the two halves together.

For our query, using EXISTS is a good way of combining the two SELECT statements together,
because we only want to know if the subquery returns a row:

MatthewStones_4789C07.fm Page 191 Tuesday, February 1, 2005 7:33 AM

192 C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N

bpsimple=# SELECT fname, lname FROM customer c
bpsimple-# WHERE EXISTS (SELECT 1 FROM orderinfo oi
bpsimple(# WHERE oi.customer_id = c.customer_id);
 fname | lname
-------+---------
 Alex | Matthew
 Ann | Stones
 Laura | Hardy
 David | Hudson
(4 rows)

bpsimple=#

An EXISTS clause will normally execute more efficiently than other types of joins or IN
conditions. Therefore, it’s often worth using it in preference to other types of joins in cases
where you have a choice of how to write the subquery.

The UNION Join
We are now going to look at another way multiple SELECT statements can be combined to give
us more advanced selection capabilities. Let’s start with an example of a problem that we need
to solve.

In the previous chapter, we used the tcust table as a loading table, while adding data into
our main customer table. Now suppose that in the period between loading our tcust table with
new customer data and being able to clean it and load it into our main customer table, we were
asked for a list of all the towns where we had customers, including the new data. We might
reasonably have pointed out that since we hadn’t cleaned and loaded the customer data into
the main table yet, we could not be sure of the accuracy of the new data, so any list of towns
combining the two lists might not be accurate either. However, it may be that verified accuracy
wasn’t important. Perhaps all that was needed was a general indication of the geographical
spread of customers, not exact data.

We could solve this problem by selecting the town from the customer table, saving it, and
then selecting the town from the tcust table, saving it again, and then combining the two lists.
This does seem rather inelegant, as we would need to query two tables, both containing a list
of towns, save the results, and merge them somehow.

Isn’t there some way we could combine the town lists automatically? As you might gather
from the title of this section, there is a way, and it’s called a UNION join. These joins are not very
common, but in a few circumstances, they are exactly what is needed to solve a problem, and
they are also very easy to use.

Try It Out: Use a UNION Join

Let’s begin by putting some data back in our tcust table, so it looks like this:

MatthewStones_4789C07.fm Page 192 Tuesday, February 1, 2005 7:33 AM

C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N 193

bpsimple=# SELECT * FROM tcust;
title| fname | lname | addressline | town | zipcode | phone
-----+---------+----------+----------------+----------+------------+---------
 Mr | Peter | Bradley | 72 Milton Rise | Keynes | MK41 2HQ |
 Mr | Kevin | Carney | 43 Glen Way | Lincoln | LI2 7RD | 786 3454
 Mr | Brian | Waters | 21 Troon Rise | Lincoln | LI7 6GT | 786 7245
 Mr | Malcolm | Whalley | 3 Craddock Way | Welltown | WT3 4GQ | 435 6543
(4 rows)

bpsimple=#

We already know how to select the town from each table. We use a simple pair of SELECT
statements, like this:

SELECT town FROM tcust;
SELECT town FROM customer;

Each gives us a list of towns. In order to combine them, we use the UNION keyword to stitch
the two SELECT statements together:

SELECT town FROM tcust UNION SELECT town FROM customer;

We input our SQL statement, splitting it across multiple lines to make it easier to read.
Notice the psql prompt changes from =# to -# to show it’s a continuation line, and that there is
only a single semicolon, right at the end, because this is all a single SQL statement:

bpsimple=# SELECT town FROM tcust
bpsimple-# UNION
bpsimple-# SELECT town FROM customer;
 town

 Bingham
 Hightown
 Histon
 Keynes
 Lincoln
 Lowtown
 Milltown
 Nicetown
 Oahenham
 Oxbridge
 Tibsville
 Welltown
 Winersby
 Yuleville
(14 rows)

bpsimple=#

MatthewStones_4789C07.fm Page 193 Tuesday, February 1, 2005 7:33 AM

194 C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N

How It Works

PostgreSQL has taken the list of towns from both tables and combined them into a single list.
Notice, however, that it has removed all duplicates. If we wanted a list of all the towns, including
duplicates, we could have written UNION ALL, rather than just UNION.

This ability to combine SELECT statements is not limited to a single column; we could have
combined both the towns and ZIP codes:

SELECT town, zipcode FROM tcust UNION SELECT town, zipcode FROM customer;

This would have produced a list with both columns present. It would have been a longer list,
because zipcode is included, and hence there are more unique rows to be retrieved.

There are limits to what the UNION join can achieve. The two lists of columns you ask to be
combined from the two tables must each have the same number of columns, and the chosen
corresponding columns must also have compatible types.

Let’s see another example of a UNION join using the different, but compatible columns,
title and town:

bpsimple=# SELECT title FROM customer
bpsimple-# UNION
bpsimple-# SELECT town FROM tcust;
 title

 Keynes
 Lincoln
 Miss
 Mr
 Mrs
 Welltown
(6 rows)

bpsimple=#

The query, although rather nonsensical, is valid, because PostgreSQL can combine the
columns, even though title is a fixed-length column and town is a variable-length column,
because they are both strings of characters. If we tried to combine customer_id and town, for
example, PostgreSQL would tell us that it could not be done, because the column types are
different.

Generally, this is all you need to know about UNION joins. Occasionally, they are a handy
way to combine data from two or more tables.

Self Joins
One very special type of join is called a self join, and it is used where we want to use a join
between columns that are in the same table. It’s quite rare to need to do this, but occasionally,
it can be useful.

Suppose we sell items that can be sold as a set or individually. For the sake of example, say
we sell a set of chairs and a table as a single item, but we also sell the table and chairs separately.
What we would like to do is store not only the individual items, but also the relationship between
them when they are sold as a single item. This is frequently called parts explosion, and we will
meet it again in Chapter 12.

MatthewStones_4789C07.fm Page 194 Tuesday, February 1, 2005 7:33 AM

C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N 195

Let’s start by creating a table that can hold not only an item ID and its description, but also
a second item ID, like this:

CREATE TABLE part (part_id int, description varchar(32), parent_part_id INT);

We will use the parent_part_id to store the component ID of which this is a component.
For this example, our table and chairs set has an item_id of 1, which is composed of chairs,
item_id 2, and a table, item_id 3. The INSERT statements would look like this:

bpsimple=# INSERT INTO part(part_id, description, parent_part_id)
bpsimple-# VALUES(1, 'table and chairs', NULL);
INSERT 21579 1

bpsimple=# INSERT INTO part(part_id, description, parent_part_id)
bpsimple-# VALUES(2, 'chair', 1);
INSERT 21580 1

bpsimple=# INSERT INTO part(part_id, description, parent_part_id)
bpsimple-# VALUES(3, 'table', 1);
INSERT 21581 1

bpsimple=#

Now we have stored the data, but how do we retrieve the information about the individual
parts that make up a particular component? We need to join the part table to itself. This turns
out to be quite easy. We alias the table names, and then we can write a WHERE clause referring to
the same table, but using different names:

bpsimple=# SELECT p1.description, p2.description FROM part p1, part p2
bpsimple-# WHERE p1.part_id = p2.parent_part_id;
 description | description
------------------+-------------
 table and chairs | chair
 table and chairs | table
(2 rows)

bpsimple=#

This works, but it is a little confusing, because we have two output columns with the same
name. We can easily rectify this by naming them using AS:

bpsimple=# SELECT p1.description AS "Combined", p2.description AS "Parts"
bpsimple-# FROM part p1, part p2 WHERE p1.part_id = p2.parent_part_id;
 Combined | Parts
------------------+-------
 table and chairs | chair
 table and chairs | table
(2 rows)

bpsimple=#

MatthewStones_4789C07.fm Page 195 Tuesday, February 1, 2005 7:33 AM

196 C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N

We will see self joins again in Chapter 12, when we look at how a manager/subordinate
relationship can be stored in a single table.

Outer Joins
Another class of joins is known as the outer join. This type of join is similar to more conventional
joins, but it uses a slightly different syntax, which is why we have postponed meeting them
until now.

Suppose we want to have a list of all items we sell, indicating the quantity we have in stock.
This apparently simple request turns out to be surprisingly difficult in the SQL we know so far,
although it can be done. This example uses the item and stock tables in our sample database.
As you will remember, all the items that we might sell are held in the item table, and only items
we actually stock are held in the stock table, as illustrated in Figure 7-2.

Figure 7-2. Schema for the item and stock tables

Let’s work through a solution, beginning with using only the SQL we know so far. Let’s try
a simple SELECT, joining the two tables:

bpsimple=# SELECT i.item_id, s.quantity FROM item i, stock s
bpsimple-# WHERE i.item_id = s.item_id;
 item_id | quantity
---------+----------
 1 | 12
 2 | 2
 4 | 8
 5 | 3
 7 | 8
 8 | 18
 10 | 1
(7 rows)

bpsimple=#

It’s easy to see (since we happen to know that our item_ids in the item table are sequential,
with no gaps), that some item_ids are missing. The rows that are missing are those relating to
items that we do not stock, since the join between the item and stock tables fails for these rows,
as the stock table has no entry for that item_id. We can find the missing rows, using a subquery
and an IN clause:

MatthewStones_4789C07.fm Page 196 Tuesday, February 1, 2005 7:33 AM

C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N 197

bpsimple=# SELECT i.item_id FROM item i
bpsimple-# WHERE i.item_id NOT IN
bpsimple-# (SELECT i.item_id FROM item i, stock s
bpsimple(# WHERE i.item_id = s.item_id);
 item_id

 3
 6
 9
 11
(4 rows)

bpsimple=#

We might translate this as, “Tell me all the item_ids in the item table, excluding those that
also appear in the stock table.”

The inner SELECT statement is simply the one we used earlier, but this time, we use the list
of item_ids it returns as part of another SELECT statement. The main SELECT statement lists all
the known item_ids, except that the WHERE NOT IN clause removes those item_ids found in the
subquery.

So now we have a list of item_ids for which we have no stock, and a list of item_ids for
which we do have stock, but retrieved using different queries. What we need to do now is glue
the two lists together, which is the job of the UNION join. However, there is a slight problem. Our
first statement returns two columns, item_id and quantity, but our second SELECT returns only
item_ids, as there is no stock for these items. We need to add a dummy column to the second
SELECT, so it has the same number and types of columns as the first SELECT. We will use NULL.
Here is our complete query:

SELECT i.item_id, s.quantity FROM item i, stock s WHERE i.item_id = s.item_id
UNION
SELECT i.item_id, NULL FROM item i WHERE i.item_id NOT IN
 (SELECT i.item_id FROM item i, stock s WHERE i.item_id = s.item_id);

This looks a bit complicated, but let’s give it a try:

bpsimple=# SELECT i.item_id, s.quantity FROM item i, stock s
bpsimple-# WHERE i.item_id = s.item_id
bpsimple-# UNION
bpsimple-# SELECT i.item_id, NULL FROM item i
bpsimple-# WHERE i.item_id NOT IN
bpsimple-# (SELECT i.item_id FROM item i, stock s WHERE i.item_id = s.item_id);
 item_id | quantity
---------+----------
 1 | 12
 2 | 2
 3 |
 4 | 8
 5 | 3
 6 |

MatthewStones_4789C07.fm Page 197 Tuesday, February 1, 2005 7:33 AM

198 C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N

 7 | 8
 8 | 18
 9 |
 10 | 1
 11 |
(11 rows)

bpsimple=#

In the early days of SQL, this was pretty much the only way of solving this type of problem,
except that SQL89 did not allow the NULL we used in the second SELECT statement as a column.
Fortunately, most vendors allowed the NULL, or life would have been even more difficult. If we
had not been allowed to use NULL, we would have used 0 (zero) as the next best alternative. NULL
is better because 0 is potentially misleading; NULL will always be blank.

To get around this rather complex solution for what is a fairly common problem, vendors
invented outer joins. Unfortunately, because this type of join did not appear in the standard, all
the vendors invented their own solutions, with similar ideas but different syntax.

Oracle and DB2 used a syntax with a + sign in the WHERE clause to indicate that all values of
a table must appear (the preserved table), even if the join failed. Sybase used *= in the WHERE
clause to indicate the preserved table. Both of these syntaxes are reasonably straightforward,
but unfortunately different, which is not good for the portability of your SQL.

When the SQL92 standard appeared, it specified a very general-purpose way of implementing
joins, resulting in a much more logical system for outer joins. Vendors have, however, been
slow to implement the new standard. (Sybase 11 and Oracle 8, which both came out after the
SQL92 standard, did not support it, for example.) PostgreSQL implemented the SQL92 standard
method starting in version 7.1.

■Note If you are running a version of PostgreSQL prior to version 7.1, you will need to upgrade to try the
last examples in this chapter. It’s probably worth upgrading if you are running a version older than 7.x anyway,
as version 8 has significant improvements over older versions.

The SQL92 syntax for outer joins replaces the WHERE clause we are familiar with, using an ON
clause for joining tables, and adds the LEFT OUTER JOIN keywords. The syntax looks like this:

SELECT columns FROM table1
 LEFT OUTER JOIN table2 ON table1.column = table2.column

The table name to the left of LEFT OUTER JOIN is always the preserved table, the one from
which all rows are shown.

So, now we can rewrite our query, using this new syntax:

SELECT i.item_id, s.quantity FROM item i
 LEFT OUTER JOIN stock s ON i.item_id = s.item_id;

Does this look almost too simple to be true? Let’s give it a go:

MatthewStones_4789C07.fm Page 198 Tuesday, February 1, 2005 7:33 AM

C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N 199

bpsimple=# SELECT i.item_id, s.quantity FROM item i
bpsimple-# LEFT OUTER JOIN stock s ON i.item_id = s.item_id;
 item_id | quantity
---------+----------
 1 | 12
 2 | 2
 3 |
 4 | 8
 5 | 3
 6 |
 7 | 8
 8 | 18
 9 |
 10 | 1
 11 |
(11 rows)

bpsimple=#

As you can see, the answer is identical to the one we got from our original version.
You can see why most vendors felt they needed to implement an outer join, even though it

wasn’t in the original SQL89 standard.
There is also the equivalent RIGHT OUTER JOIN, but the LEFT OUTER JOIN is used more often

(at least for Westerners, it makes more sense to list the known items down the left side of the
output rather than the right).

Try It Out: Use a More Complex Condition

The simple LEFT OUTER JOIN we have used is great as far as it goes, but how do we add more
complex conditions?

Suppose we want only rows from the stock table where we have more than two items in stock,
and overall, we are interested only in rows where the cost price is greater than 5.0. This is quite
a complex problem, because we want to apply one rule to the item table (that cost_price > 5.0)
and a different rule to the stock table (quantity > 2), but we still want to list all rows from the
item table where the condition on the item table is true, even if there is no stock at all.

What we do is combine ON conditions that work on left-outer-joined tables only, with WHERE
conditions that limit all the rows returned after the table join has been performed.

The condition on the stock table is part of the outer join. We don’t want to restrict rows
where there is no quantity, so we write this as part of the ON condition:

ON i.item_id = s.item_id AND s.quantity > 2

For the item condition, which applies to all rows, we use a WHERE clause:

WHERE i.cost_price > cast(5.0 AS numeric(7,2));

Putting them both together, we get this:

bpsimple=# SELECT i.item_id, i.cost_price, s.quantity FROM item i
bpsimple-# LEFT OUTER JOIN stock s

MatthewStones_4789C07.fm Page 199 Tuesday, February 1, 2005 7:33 AM

200 C H A P T E R 7 ■ A D V A N C E D D A T A S E L E C T I O N

bpsimple-# ON i.item_id = s.item_id AND s.quantity > 2
bpsimple-# WHERE i.cost_price > cast(5.0 AS numeric(7,2));
 item_id | cost_price | quantity
---------+------------+----------
 1 | 15.23 | 12
 2 | 7.45 |
 5 | 7.54 | 3
 6 | 9.23 |
 7 | 13.36 | 8
 11 | 19.73 |
(6 rows)

bpsimple=#

How It Works

We use a LEFT OUTER JOIN to get all the values from the item table, optionally joining to the
stock table where both a row exists and the quantity is greater than 2. This gives us a set of rows
where all the rows from the item table appear, but the quantity column (from the stock table)
will contain NULL unless it both has an entry for that item and the quantity value is greater than
2. The WHERE clause is then applied, which allows through rows only where the cost price (from
the item table) is greater than 5.0.

Summary
We started the chapter looking at aggregate functions that we can use in SQL to select single
values from a number of rows. In particular, we met the count(*) function, which you will find
widely used to determine the number of rows in a table. We then met the GROUP BY clause,
which allows us to select groups of rows to apply the aggregate function to, followed by the
HAVING clause, which allows us to restrict the output of rows containing particular aggregate
values.

Next, we took a look at subqueries, where we use the results from one query in another
query. We saw some simple examples and touched on a much more difficult kind of query, the
correlated subquery, where the same column appears in both parts of a subquery.

Then we looked briefly at the UNION join, which allows us to combine the output of two
queries in a single result set. Although this is not widely used, it can occasionally be very useful.

Finally we met outer joins, a very important feature that allows us to perform joins between
two tables, retrieving rows from the first table, even when the join to the second table fails.

In this chapter, we have covered some difficult aspects of SQL. You have now seen a wide
range of SQL syntax, so if you see some advanced SQL in existing systems, you will at least have
a reasonable understanding of what is being done. Don’t worry if some parts still seem a little
unclear. One of the best ways of truly understanding SQL is to use it, and use it extensively.
Get PostgreSQL installed, install the test database and some sample data, and experiment.

In the next chapter, we will look in more detail at data types, creating tables, and other
information that you need to know to build your own database.

MatthewStones_4789C07.fm Page 200 Tuesday, February 1, 2005 7:33 AM

201

■ ■ ■

C H A P T E R 8

Data Definition
and Manipulation

Up until now, we have concentrated on the PostgreSQL tools and data manipulation. Although
we created a database early in the book, we looked only superficially at table creation and the
data types available in PostgreSQL. We kept our table definitions simple by just using primary
keys and defining a few columns that do not accept NULL values.

In a database, the quality of the data should always be one of our primary concerns. Having
very strict rules about the data, enforced at the lowest level by the database, is one of the most
effective measures we can use to maintain the data in a consistent state. This is also one of the
features that distinguish true databases from simple indexed files, spreadsheets, and the like.

In this chapter, we will look in more detail at the data types available in PostgreSQL and
how to manipulate them. Then we will look at how tables are managed, including how to use
constraints, which allow us to significantly tighten the rules applied when data is added to or
removed from the tables in the database. Next, we will take a brief look at views. Finally, we will
explore foreign key constraints in depth and use them in the creation of an updated version of
our sample database. We will create the bpfinal database, which we will use in the examples in
the following chapters.

In this chapter, we will cover the following topics:

• Data types

• Data manipulation

• Table management

• Views

• Foreign key constraints

Data Types
At the most basic level, PostgreSQL supports the following types of data:

• Boolean

• Character

MatthewStones_4789C08.fm Page 201 Friday, February 25, 2005 5:17 PM

202 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

• Number

• Temporal (time-based)

• PostgreSQL extension types

• Binary Large Object (BLOB)

Here, we will look at each of these types, except BLOB, which is less commonly used. If
you’re interested in BLOB types, see Appendix F for details on how to use them.

The Boolean Data Type
The Boolean type is probably the simplest possible type. It can store only two possible values,
true and false, and NULL, for when the value is unknown. The type declaration for a Boolean
column is officially boolean, but it is almost always shortened to simply bool.

When data is inserted into a Boolean column in a table, PostgreSQL is quite flexible about
what it will interpret as true and false. Table 8-1 offers a list of acceptable values and their
interpretation. Anything else will be rejected, apart from NULL. Like SQL keywords, these are
also case-insensitive; for example, 'TRUE' will also be interpreted as a Boolean true.

■Note When PostgreSQL displays the contents of a boolean column, it will show only t, f, and a space
character for a true, false, and NULL, respectively, regardless of how you set the column value ('true',
'y', 't', and so on). Since PostgreSQL stores only one of the three possible states, the exact phrase you
used to set the column value is never stored, only the interpreted value.

Try It Out: Use Boolean Values

Let’s create a simple table with a bool column, and then experiment with some values. Rather
than experiment in our bpsimple database with our “real” data, we will create a test database
to use for these purposes. If you worked with the examples in Chapter 3, you may already have
created this database, and just need to connect to it. If not, create it and then connect to it,
as follows:

Table 8-1. Ways of Specifying Boolean Values

Interpreted As True Interpreted As False

'1' '0'

'yes' 'no'

'y' 'n'

'true' 'false'

't' 'f'

MatthewStones_4789C08.fm Page 202 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 203

bpsimple=> CREATE DATABASE test;
CREATE DATABASE
bpsimple=> \c test
You are now connected to database "test".
test=>

Now we will create a table, testtype, with a variable-length string and a Boolean column,
insert some data, and see what PostgreSQL stores. Here is our short psql session:

test=> CREATE TABLE testtype (
test(> valused varchar(10),
test(> boolres bool
test(>);
CREATE TABLE
test=>
test=> INSERT INTO testtype VALUES('TRUE', TRUE);
INSERT 17862 1
test=> INSERT INTO testtype VALUES('1', '1');
INSERT 17863 1
test=> INSERT INTO testtype VALUES('t', 't');
INSERT 17864 1
test=> INSERT INTO testtype VALUES('no', 'no');
INSERT 17865 1
test=> INSERT INTO testtype VALUES('f', 'f');
INSERT 17866 1
test=> INSERT INTO testtype VALUES('Null', NULL);
INSERT 17867 1
test=> INSERT INTO testtype VALUES('FALSE', FALSE);
INSERT 17868 1
test=>

Let’s check that the data has been inserted:

test=> SELECT * FROM testtype;
 valused | boolres
---------+---------
 TRUE | t
 1 | t
 t | t
 no | f
 f | f
 Null |
 FALSE | f
(7 rows)

test=>

MatthewStones_4789C08.fm Page 203 Friday, February 25, 2005 5:17 PM

204 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

How It Works

We created a table testtype with two columns. The first column holds a string, and the second
holds a Boolean value. We then inserted data into the table, each time making the first value a
string, to remind us what we inserted, and the second the same value, but to be stored as a
Boolean value. We also inserted a NULL, to show that PostgreSQL (unlike at least one commer-
cial database) does allow NULL to be stored in a boolean type. We then extracted the data again,
which showed us how PostgreSQL had interpreted each value we passed to it as one of true,
false, or NULL.

Character Data Types
The character data types are probably the most widely used in any database. There are three
character type variants, used to represent the following string variations:

• A single character

• Fixed-length character strings

• Variable-length character strings

These are standard SQL character types, but PostgreSQL also supports a text type, which
is similar to the variable-length type, except that we do not need to declare any upper limit to
the length. This is not a standard SQL type, however, so it should be used with caution. The
standard types are defined using char, char(n), and varchar(n). Table 8-2 shows the PostgreSQL
character types.

Given a choice of three standard types to use for character strings, which should you pick?
As always, there is no definitive answer. If you know that your database is going to run only on
PostgreSQL, you could use text, since it is easy to use and doesn’t force you to decide on the
maximum length. Its length is limited only by the maximum row size that PostgreSQL can
support. If you are using a version of PostgreSQL earlier than 7.1, the row limit is around 8KB
(unless you recompiled from source and changed it). From PostgreSQL 7.1 onwards, that limit
is gone. The actual limit for any single field in a table for PostgreSQL versions 7.1 and later is
1GB; in practice, you should never need a character string that long.

Table 8-2. PostgreSQL Character Types

Definition Meaning

char A single character.

char(n) A set of characters exactly n characters in length, padded with spaces. If you
attempt to store a string that is too long, an error will be generated.

varchar(n) A set of characters up to n characters in length, with no padding. PostgreSQL
has an extension to the SQL standard that allows specifying varchar without a
length, which makes the length effectively unlimited.

text Effectively, an unlimited length character string, like varchar but without the
need to define a maximum. This is a PostgreSQL extension to the SQL standard.

MatthewStones_4789C08.fm Page 204 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 205

The major downside is that text is not a standard type. So, if there is even a slight chance
that you will one day need to port your database to something other than PostgreSQL, you
should avoid text. Generally, we have not used the text type in this book, preferring the more
standard SQL type definitions, varchar and char.

Conventionally char(n) is used where the length of the string to be stored is fixed or varies
only slightly between rows, and varchar(n) is used for strings where the length may vary signif-
icantly. This is because in some databases, the internal storage of a fixed-length string is more
efficient than a variable-length one, even though some additional, unnecessary characters
may be stored. However, internally, PostgreSQL will use the same representation for both char
and varchar types. So, for PostgreSQL, which type you use is more a personal preference.
Where the length varies significantly between different rows of data, choose the varchar(n)
type. Also, if you’re not sure about the length, use varchar(n).

Just as with the boolean type, all character types can also contain NULL, unless you specifi-
cally define the column to not permit NULL values.

Try It Out: Use Character Types

Let’s see how the PostgreSQL character types work. First, we need to drop our testtype table,
and then we can re-create it with some different column types:

test=> DROP TABLE testtype;
DROP TABLE
test=>
test=> CREATE TABLE testtype (
test(> singlechar char,
test(> fixedchar char(13),
test(> variablechar varchar(128)
test(>);
CREATE TABLE
test=>
test=> INSERT INTO testtype VALUES('F', '0-349-10177-9', 'The Wasp Factory');
INSERT 17871 1
test=> INSERT INTO testtype VALUES('S', '1-85723-457-X', 'Excession');
INSERT 17872 1
test=> INSERT INTO testtype VALUES('F', '0-349-10768-8', 'Whit');
INSERT 17873 1
test=> INSERT INTO testtype VALUES(NULL, '', 'T.B.D.');
INSERT 17874 1
test=> INSERT INTO testtype VALUES('L', 'A String that is too long', 'L');
ERROR: value too long for type character(13)
test=>
test=> SELECT * FROM testtype;
 singlechar | fixedchar | variablechar
------------+---------------+------------------
 F | 0-349-10177-9 | The Wasp Factory
 S | 1-85723-457-X | Excession
 F | 0-349-10768-8 | Whit
 | | T.B.D.
(4 rows)

MatthewStones_4789C08.fm Page 205 Friday, February 25, 2005 5:17 PM

206 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

test=>
test=> SELECT fixedchar, length(fixedchar), variablechar FROM testtype
test-> WHERE singlechar = 'S';
 fixedchar | length | variablechar
---------------+--------+--------------
 1-85723-457-X | 13 | Excession
(1 row)

test=> SELECT fixedchar, length(fixedchar), variablechar FROM testtype
test-> WHERE singlechar IS NULL;
 fixedchar | length | variablechar
---------------+--------+--------------
 | 0 | T.B.D.
(1 row)

test=>

How It Works

We created a table with three columns, one for each of the different standard SQL types. The
singlechar column holds a single character, the fixedchar column holds exactly 13 characters,
and the variablechar column holds up to 128 characters. We then stored different data in the
columns, and retrieved them again to show that PostgreSQL has stored the data correctly,
although in the psql output, you can’t actually see the padding.

We also tried to store a string that is too long in our fixedchar column. This generated an
error, and no data was inserted.

We retrieved rows where the length of the string fixedchar is different, and used the built-in
function length() to determine its size. We will look at some other functions that are useful for
manipulating data in the “Functions Useful for Data Manipulation” section later in this chapter.

■Note In versions of PostgreSQL before 8.0, the length() function in this example would always have
been 13, since the storage type char(n) is fixed-length and data is always padded with spaces, but now the
length() function ignores those spaces and returns a more useful result.

Number Data Types
The number types in PostgreSQL are slightly more complex than those we have met so far, but
they are not particularly difficult to understand. There are two distinct types of numbers that
we can store in the database: integers and floating-point numbers. These subdivide again, with
a special subtype of integer, the serial type (which we have already used to create unique
values in a table) and different sizes of integers, as shown in Table 8-3.

MatthewStones_4789C08.fm Page 206 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 207

Floating-point numbers also subdivide, into those offering general-purpose floating-point
values and fixed-precision numbers, as shown in Table 8-4.

The split of the two types into integer and floating-point numbers is easy enough to under-
stand, but what might be less obvious is the purpose of the numeric type.

Floating-point numbers are stored in scientific notation, with a mantissa and exponent.
With the numeric type, you can specify both the precision and the exact number of digits stored
when performing calculations. You can also specify the number of digits held after the decimal
point. The actual decimal-point location comes for free!

■Caution A common mistake is to think that numeric(5,2) can store a number, such as 12345.12. This
is not correct. The total number of digits stored is only five, so a declaration of numeric(5,2) can store only
up to 999.99 before overflowing.

Table 8-3. PostgreSQL Integer Number Types

Subtype Standard Name Description

small integer smallint A 2-byte signed integer, capable of storing numbers
from –32768 to 32767

integer int A 4-byte integer, capable of storing numbers from
–2147483648 to 2147483647

serial Same as integer, except that its value is normally
automatically entered by PostgreSQL

Table 8-4. PostgreSQL Floating-Point Number Types

Subtype Standard Name Description

float float(n) A floating-point number with at least the precision n, up to a
maximum of 8 bytes of storage.

float8 real A double-precision (8-byte) floating-point number.

numeric numeric(p,s) A real number with p digits, s of them after the decimal point.
Unlike float, this is always an exact number, but less effi-
cient to work with than ordinary floating-point numbers.

money numeric(9,2) A PostgreSQL-specific type, though common in other data-
bases. The money type became deprecated in version 8.0 of
PostgreSQL, and may be removed in later releases. You should
use numeric instead.

MatthewStones_4789C08.fm Page 207 Friday, February 25, 2005 5:17 PM

208 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

PostgreSQL will generally catch attempts to insert values into fields that cannot store them,
so attempting to insert overly large numbers into any number column will fail.

Try It Out: Use Number Types

Now we can experiment with the number data types. First, we need to drop our testtype table,
and then re-create it with some different column types:

test=> DROP TABLE testtype;
DROP TABLE

test=> CREATE TABLE testtype (
test(> asmallint smallint,
test(> anint int,
test(> afloat float(2),
test(> areal real,
test(> anumeric numeric(5,2)
test(>);
CREATE TABLE

test=> INSERT INTO testtype VALUES(2, 2, 2.0, 2.0, 2.0);
INSERT 17883 1
test=> INSERT INTO testtype VALUES(-100, -100, 123.456789, 123.456789, 123.456789);
INSERT 17884 1
test=> INSERT INTO testtype VALUES(-32768, -123456789, 1.23456789,
test-> 1.23456789, 1.23456789);
INSERT 17885 1
test=> INSERT INTO testtype VALUES(-32768, -123456789, 123456789.123456789,
test-> 23456789.123456789, 123456789.123456789);
ERROR: numeric field overflow
DETAIL: The absolute value is greater than or equal to 10^8 for field with
precision 5, scale 2.
test=>
test=> INSERT INTO testtype VALUES(-32768, -123456789, 123456789.123456789,
test-> 123456789.123456789, 123.123456789);
INSERT 17886 1
test=>
test=> SELECT * FROM testtype;
 asmallint | anint | afloat | areal | anumeric
-----------+------------+--------------+--------------+----------
 2 | 2 | 2 | 2 | 2.00
 -100 | -100 | 123.457 | 123.457 | 123.46
 -32768 | -123456789 | 1.23457 | 1.23457 | 1.23
 -32768 | -123456789 | 1.23457e+008 | 1.23457e+008 | 123.12
(4 rows)

test=>

MatthewStones_4789C08.fm Page 208 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 209

How It Works

We created a table with a small integer column, a normal integer column, a floating-point
number, a real number, and a numeric with a precision of 5 and a scale of 2.

You can see that float and real behave in a very similar fashion, but the numeric column
behaves somewhat differently. Rather than storing approximate numbers, numeric rounds the
number to store a fixed number of digits after the decimal place. The INSERT fails if we try to
store a number in it that is too large. Also notice that both float and real have rounded numbers;
for example, 123.456789 has been rounded to 123.457.

Temporal Data Types
We looked at temporal data types, which store time-related information, in Chapter 4, when
we saw how to control data formats. PostgreSQL has a range of types relating to date and time,
as shown in Table 8-5, but we will generally confine ourselves to the standard SQL92 types in
this book.

Special Data Types
From its origins as a research database system, PostgreSQL has acquired some unusual data
types to store geometric and network data types, as shown in Table 8-6. The use of any of these
PostgreSQL special features will make portability of a PostgreSQL database quite poor, so gener-
ally, we tend to avoid these extensions. For further information about these types, consult the
PostgreSQL documentation, under “Data Types.”

Table 8-5. PostgreSQL Temporal Data Types

Definition Meaning

date Stores date information

time Stores time information

timestamp Stores a date and time

interval Stores information about a difference in timestamps

timestamptz A PostgreSQL extension that stores a timestamp and time zone information

Table 8-6. PostgreSQL Special Data Types

Definition Meaning

box A rectangular box

line A set of points

point A geometric pair of numbers

lseg A line segment

polygon A closed geometric line

cidr or inet An IP version 4 address, such as 196.192.12.45

macaddr A MAC (Ethernet physical) address

MatthewStones_4789C08.fm Page 209 Friday, February 25, 2005 5:17 PM

210 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

■Note PostgreSQL also allows you to create your own types for use in the database, using the SQL CREATE
TYPE command. This is not commonly needed, and it is performed in a manner unique to PostgreSQL. Further
details can be found in the documentation. Be aware that creating your own types is likely to result in a data-
base schema that is very specific to PostgreSQL, as user-created types tend not to be portable.

Arrays
PostgreSQL has another unusual feature: the ability to store arrays in tables. This was not a
standard SQL feature until SQL99, so it is not common in database implementations. Normally,
an array would be implemented using an additional table. However, the array facility can
sometimes be useful, particularly when you need to store a fixed number of repeating elements,
and it is very easy to use.

There are two syntaxes for creating arrays: the original PostgreSQL way and the more stan-
dard SQL99 way. We will look briefly at both methods here.

PostgreSQL-Style Arrays

To declare a column in a table as an array, you simply add [] after the type; there is no need to
declare the number of elements. If you do declare a size, PostgreSQL accepts the definition, but
it doesn’t enforce the number of elements.

Try It Out: Use the PostgreSQL Syntax for Arrays

As an example, suppose we decided to have a table of employees, with an indicator to show
which days of the week they worked. Normally, this would require a column for each day or a
separate table to hold the workdays. In PostgreSQL, we can simplify this and hold an array of
working days directly, as follows:

test=> CREATE TABLE empworkday (
test(> refcode char(5),
test(> workdays int[]
test(>);
CREATE TABLE
test=>

This creates a table named empworkday with two columns: a character reference code and
an array of integers called workdays. To insert values into the array column, we need to enclose
a comma-separated list of values in a pair of {} delimiters, like this:

test=> INSERT INTO empworkday VALUES('val01', '{0,1,0,1,1,1,1}');
INSERT 17892 1
test=> INSERT INTO empworkday VALUES('val02', '{0,1,1,1,1,0,1}');
INSERT 17893 1
test=>

MatthewStones_4789C08.fm Page 210 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 211

We can now select all the values of the array elements at once, like this:

test=> SELECT * FROM empworkday;
 refcode | workdays
---------+-----------------
 val01 | {0,1,0,1,1,1,1}
 val02 | {0,1,1,1,1,0,1}
(2 rows)

test=>

We can also select individual elements by giving an array index:

test=> SELECT workdays[2] FROM empworkday WHERE refcode = 'val02';
 workdays

 1
(1 row)
test=>

How It Works

PostgreSQL behaves much like a conventional programming language, storing an array of
values, with the added benefit that you don’t need to specify the size of the array. If you select
the whole of an array, PostgreSQL displays all the values, separated by commas, between curly
braces.

One thing to notice is that PostgreSQL’s first array element is at offset 1, rather than 0, as is
common with many programming languages. If you try to select a nonexistent array element,
a NULL will be returned.

■Note PostgreSQL also allows multidimensional arrays. For more information about PostgreSQL arrays, see
the documentation.

SQL99-Style Arrays

In the SQL99 standard, a new array declaration syntax was introduced. This is more explicit
than the PostgreSQL style in that the number of elements must be declared, which is not enforced
in the PostgreSQL implementation of the standard.

Try It Out: Use the SQL99 Syntax for Arrays

Let’s delete our earlier table and repeat the experiment using SQL99-style array declarations:

MatthewStones_4789C08.fm Page 211 Friday, February 25, 2005 5:17 PM

212 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

test=> DROP TABLE empworkday;
DROP TABLE
test=> CREATE TABLE empworkday (
test(> refcode char(5),
test(> workdays int array[7]
test(>);
CREATE TABLE
test=> INSERT INTO empworkday VALUES('val01', '{0,1,0,1,1,1,1}');
INSERT 17899 1
test=> INSERT INTO empworkday VALUES('val02', '{0,1,1,1,1,0,1}');
INSERT 17900 1
test=>
test=> SELECT * FROM empworkday;
 refcode | workdays
---------+-----------------
 val01 | {0,1,0,1,1,1,1}
 val02 | {0,1,1,1,1,0,1}
(2 rows)

test=>
test=> SELECT workdays[2] FROM empworkday WHERE refcode = 'val02';
 workdays

 1
(1 row)
test=>

How It Works

As you can see, the behavior of SQL99-style arrays is identical to that of PostgreSQL-style
arrays. Only the declaration syntax is different.

Data Manipulation
PostgreSQL offers some facilities for manipulating table data. Here, we will look at some built-in
functions and “magic” variables. We will also take a closer look at the oid column that PostgreSQL
adds to tables.

Converting Between Data Types
From time to time, we need to convert between data types in a database. Type conversions may
be useful, and are sometimes necessary, such as when working with dates and times. For
example, we may be processing date values that have come from another system and been
loaded into the database as strings. Converting these strings to date data types will enable us to
query by date, something that could not be done if we left them as simple strings.

MatthewStones_4789C08.fm Page 212 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 213

■Note Generally, you should be concerned at seeing type conversions, since too many type conversions in
an application may indicate a design flaw in the database.

There is quite a degree of variation in how relational databases do type conversions.
PostgreSQL uses a cast notation:

cast(column-name AS type-definition-to-convert-to)

An alternative, more succinct, double-colon syntax can be used in place of a simple
column name in a SELECT statement:

column-name::type-definition-to-convert-to

Suppose we wanted to grab the date from the orderinfo table in our original bpsimple
database as a char(10). We would write the following:

SELECT cast(date_placed AS char(10)) FROM orderinfo;

Executing this in our bpsimple database, we see this:

bpsimple=> SELECT cast(date_placed AS char(10)) FROM orderinfo;
 date_placed

 2004-03-13
 2004-06-23
 2004-09-02
 2004-09-03
 2004-07-21
(5 rows)

bpsimple=>

We can use cast (or ::) on values as well as columns, and we can name the result to provide
a column heading, as we will do in the next example.

Try It Out: Cast Types

Suppose we want to produce a list of items, showing the price to the nearest dollar. We can do
this easily by simply casting the price to an integer. We will select the “raw” price as well, to
show that PostgreSQL is rounding the price.

MatthewStones_4789C08.fm Page 213 Friday, February 25, 2005 5:17 PM

214 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

bpsimple=> SELECT sell_price, sell_price::int AS "Guide Price" FROM item
WHERE sell_price > 5.0;
 sell_price | Guide Price
------------+-------------
 21.95 | 22
 9.95 | 10
 15.75 | 16
 19.95 | 20
 25.32 | 25
 11.49 | 11
(6 rows)

bpsimple=>

How It Works

We cast the sell_price column to an integer (sell_price::int) and also named it (AS "Guide
Price"). We could just as well have written this using the cast notation; the two casting forms
are interchangeable.

Comparing the two columns, we can see how PostgreSQL makes sensible decisions about
rounding. In older versions of PostgreSQL, it was more frequently necessary to perform explicit
casting between data types. Generally, the current version makes reasonable conversions
automatically.

Note that it is not possible to universally convert between types. For example, you cannot
cast a date as an integer.

Functions for Data Manipulation
PostgreSQL provides some general-purpose functions that you can use for manipulating
columns, which are listed in Table 8-7. See Chapter 10 for more information about PostgreSQL’s
built-in functions.

Table 8-7. Useful Data Manipulation Functions

Function Description

length(column-name) Returns the length of a string.

trim(column-name) Removes leading and trailing spaces.

strpos(column-name, string) Returns the position of a string in the column.

substr(column-name, position, length) Returns the length characters from the string, starting the
search from the given character position. The first character
is counted as position 1.

round(column-name, length) Rounds a number to a given number of decimal places.

abs(number) Gets the absolute value of a number.

MatthewStones_4789C08.fm Page 214 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 215

These functions are used in the same way as the cast function, as described in the previous
section. Here’s an example of using the substr and round functions:

bpsimple=> SELECT substr(description, 3, 5), round(sell_price, 1) FROM item;
 substr | round
--------+-------
 od Pu | 22.0
 nux C | 2.5
 ssues | 4.0
 cture | 10.0
 n Sma | 15.8
 n Lar | 20.0
 othbr | 1.5
 man C | 2.5
 rrier | 0.0
 eaker | 25.3
 bik C | 11.5
(11 rows)

bpsimple=>

Magic Variables
Occasionally, we want to store some information in the database that relates to the current
user or time in some way, perhaps to implement an audit trail. PostgreSQL provides several
“magic” variables for doing this. The following are the most useful of these variables:

• CURRENT_DATE

• CURRENT_TIME

• CURRENT_TIMESTAMP

• CURRENT_USER

You can use these just like column names, or you can SELECT them without including a
table name at all:

bpsimple=> SELECT item_id, quantity, CURRENT_TIMESTAMP FROM stock;
 item_id | quantity | timestamptz
---------+----------+-------------------------------
 1 | 12 | 2004-10-19 18:03:14.500694+01
 2 | 2 | 2004-10-19 18:03:14.500694+01
 4 | 8 | 2004-10-19 18:03:14.500694+01
 5 | 3 | 2004-10-19 18:03:14.500694+01
 7 | 8 | 2004-10-19 18:03:14.500694+01
 8 | 18 | 2004-10-19 18:03:14.500694+01
 10 | 1 | 2004-10-19 18:03:14.500694+01
(7 rows)

MatthewStones_4789C08.fm Page 215 Friday, February 25, 2005 5:17 PM

216 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

bpsimple=> SELECT CURRENT_USER, CURRENT_TIME;
 current_user | timetz
--------------+--------------------
 rick | 18:03:40.862712+01
(1 row)

bpsimple=>

These magic variables can also be used in INSERT and UPDATE statements, as in this
example:

INSERT INTO orderinfo(orderinfo_id, customer_id, date_placed, date_shipped,
 shipping) VALUES (5, 8, CURRENT_DATE, NULL, 0.0);

The OID Column
You will have noticed that each time we insert data, PostgreSQL responds with an almost arbitrary
looking number, as well as the number of rows inserted. As we mentioned briefly in Chapter 6,
this number is an internal reference number, an object ID, that PostgreSQL stores against each
row—a normally hidden column named oid.

Most relational databases do not have such a column, or if they do, it is not accessible to
the users. With PostgreSQL, we can see this number by explicitly naming it when we SELECT
from a table, like this:

bpsimple=> SELECT oid, fname, lname FROM customer;
 oid | fname | lname
-------+-----------+---------
 19888 | Jenny | Stones
 19889 | Andrew | Stones
 19890 | Alex | Matthew
 19891 | Adrian | Matthew
 19892 | Simon | Cozens
 19893 | Neil | Matthew
 19894 | Richard | Stones
 19895 | Ann | Stones
 19896 | Christine | Hickman
 19897 | Mike | Howard
 19898 | Dave | Jones
 19899 | Richard | Neill
 19900 | Laura | Hardy
 19901 | Bill | O'Neill
 19902 | David | Hudson
(15 rows)

bpsimple=>

MatthewStones_4789C08.fm Page 216 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 217

Your database will almost certainly have different values for the oid column. You will also
see OID appear in an ODBC driver configuration. You can choose to display it or hide it.

It is possible to prevent the oid column from being added to user tables in the database by
setting the default_with_oids flag to false in the postgresql.conf configuration file or explic-
itly specifying WITHOUT OIDS when you create the table. The default in version 8.0 of PostgreSQL
is to create oid columns on user tables. However, in future releases of PostgreSQL, the default
will probably change to not create oid columns. Consequently, you should never rely on an oid
column being present in your database, and we suggest you avoid using either the WITH OIDS or
WITHOUT OIDS option in table-creation statements.

Table Management
Now that we know about PostgreSQL data types, we can use them when we create tables. We
have already seen the CREATE TABLE SQL command, which we used to create tables in our sample
database, but we will cover it more formally here. We will also explore some additional features,
such as temporary tables, altering tables after creation, and deleting tables when they are no
longer required.

Creating Tables
The basic syntax for creating tables is as follows:

CREATE [TEMPORARY] TABLE table-name (
 { column-name type [column-constraint] [,...] }
 [CONSTRAINT table-constraint]
) [INHERITS (existing-table-name)]

This may look a little complex, but it is actually quite straightforward. The first line simply
says that you create tables by using CREATE TABLE, followed by the name of the table and an
opening parenthesis. TEMPORARY allows you to create a temporary table, as described in the
“Using Temporary Tables” section later in this chapter.

Next, you list the column name, its type, and an optional column constraint. You can
essentially have an unlimited number of columns in your table, each one separated by a comma.
The optional column constraint allows you to specify additional rules for the column, and you
have already seen the most common example, NOT NULL.

After the list of columns comes an optional table-level constraint, which allows you to write
additional table-level rules that must be obeyed by the data in the table, such as a column value
must always be smaller than a number. For example, a day-of-the-week column might be
constrained to be less than 7. We’ll discuss both column and table constraints in the following
sections.

Last comes a PostgreSQL extension, INHERITS, which allows a new table being created to
inherit the columns from an existing table. The new table contains all the columns that are in
the tables listed after the INHERITS keyword, in addition to those specified directly. See the
PostgreSQL documentation for more information about using INHERITS.

MatthewStones_4789C08.fm Page 217 Friday, February 25, 2005 5:17 PM

218 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

■Tip We strongly advise you to always store the commands you use for creating your database in a script,
and always use that script for creating your database. If you need to change the database design, it is much
easier and more reliable to modify the script than to re-create the database. Then you won’t need to try to
recall the commands you used initially to create the database all those months (or was it just days…) ago.
You will find that the effort of initially creating a script, and keeping it up-to-date, pays you back many, many
times over.

Using Column Constraints
It is common to have columns in a table where certain rules apply. We have seen some simple
ones already, such as ensuring that a customer’s last name is NOT NULL. Sometimes, we want to
impose rules that govern the data when it is known, such as ensuring that a pay rate column
will accept values only above a minimum or ensuring that columns are unique. Applying
constraints to columns allows us to perform these checks at the lowest level of our complete
application—in the database.

For hard-and-fast basic rules, enforcing them at the database level is a good technique,
since it is independent of the application, so any application bugs that might allow illegal
values to slip through will be caught by the database. It is also often easier to apply the rule by
writing a definition when a table is created, rather than by writing application logic code to
support the rule.

Table 8-8 shows the principal constraints that you will find useful. (There are also more
advanced constraints, which are defined in the PostgreSQL documentation.) We won’t discuss
the REFERENCES constraints here, but will cover it later in the chapter, in the “Foreign Key
Constraints” section.

Table 8-8. Principal Column Constraints

Definition Meaning

NOT NULL The column cannot have a NULL value stored in it.

UNIQUE The value stored in the column must be different for each row in
the database. PostgreSQL allows you to have as many rows as you
like with NULL in a column declared UNIQUE.

PRIMARY KEY Effectively, a combination of NOT NULL and UNIQUE. Each table
may have only a single column marked PRIMARY KEY. (You can
have multiple columns marked both NOT NULL and UNIQUE,
however.) If you need to create a composite primary key (a primary
key that comprises more than one column), you must use a table-
level constraint, rather than the column-level constraint.

DEFAULT default-value Allows you to provide a default value when inserting data. (Strictly
speaking, this is not a constraint option, but it’s easier to consider
it along with the true constraints.)

CHECK (condition) Allows you to check a condition when inserting or updating data.

REFERENCES Constrains the value to be one that appears in a column in a
separate table.

MatthewStones_4789C08.fm Page 218 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 219

With the exception of PRIMARY KEY, you can have as many columns with as many constraints
as you need. It is possible, but not common, to name column-level constraints.

One particular point to note is what happens when a NULL value is added to a column with
a UNIQUE constraint. PostgreSQL considers each NULL to be unique, so it allows you to have as
many rows as you like with NULL in a column declared UNIQUE. According to the SQL standard,
only a single NULL should be allowed, so this is a slight deviation from the standard. Arguably,
the SQL standard is more logical, since if NULL is unknown, there is no way of knowing that two
of them are different, but the PostgreSQL implementation is probably more intuitive.

Try It Out: Apply Column Constraints

The easiest way to understand column constraints is to see them in action. Let’s create a new
table in the test database we created earlier, and then use it to experiment with some constraints:

bpsimple=> \c test
You are now connected to database "test".
test=> CREATE TABLE testcolcons (
test(> colnotnull INT NOT NULL,
test(> colunique INT UNIQUE,
test(> colprikey INT PRIMARY KEY,
test(> coldefault INT DEFAULT 42,
test(> colcheck INT CHECK(colcheck < 42)
test(>);
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index
"testcolcons_pkey" for table "testcolcons"
NOTICE: CREATE TABLE / UNIQUE will create implicit index
"testcolcons_colunique_key" for table "testcolcons"
CREATE TABLE
test=>

You can see that PostgreSQL warns us that it has created indexes to enforce the PRIMARY
KEY and UNIQUE constraints. It has also picked meaningful names for us.

Now that we have created a table with a variety of constraints on the columns, we can try
inserting some data and see how the constraints work in practice:

test=> INSERT INTO testcolcons(colnotnull, colunique, colprikey, coldefault,
test(> colcheck) VALUES(1,1,1,1,1);
INSERT 17497 1
test=> INSERT INTO testcolcons(colnotnull, colunique, colprikey,
test(> oldefault, colcheck) VALUES(2,2,2,2,2);
INSERT 17498 1
test=> INSERT INTO testcolcons(colnotnull, colunique, colprikey,
test(> coldefault, colcheck) VALUES(2,2,2,2,2);
ERROR: duplicate key violates unique constraint "testcolcons_pkey"
test=>

This INSERT has failed, because the index testcolcons_pkey found a duplicate value. We
need to use a little common sense here, and realize that an index called testcolcons_pkey is
referring to a primary key index on the testcolcons table (hardly a great leap of intuition).

MatthewStones_4789C08.fm Page 219 Friday, February 25, 2005 5:17 PM

220 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

Each table can have only one primary key; therefore, there is no ambiguity in the index being
called tablename_pkey.

However, PostgreSQL does allow us to insert two rows where the colunique column contains
NULL (which could be considered a little dangerous):

test=> INSERT INTO testcolcons(colnotnull, colunique, colprikey,
coldefault, colcheck) VALUES(1,NULL,98,1,1);
INSERT 17503 1
test=> INSERT INTO testcolcons(colnotnull, colunique, colprikey,
coldefault, colcheck) VALUES(1,NULL,99,1,1);
INSERT 17504 1
test=>

If we use actual values, PostgreSQL rejects the INSERT:

test=> INSERT INTO testcolcons(colnotnull, colunique, colprikey,
test(> coldefault, colcheck) VALUES(2,2,9,2,2);
ERROR: Cannot insert a duplicate key into unique index testcolcons_colunique_key
test=>

This time, the INSERT fails because the index testcolcons_colunique_key found a
duplicate. We can have many columns declared UNIQUE, so PostgreSQL names the index
tablename_columnname_key, making it clear which column is causing the problem:

test=> INSERT INTO testcolcons(colnotnull, colunique, colprikey,
test(> coldefault, colcheck) VALUES(3,3,3,3,100);
ERROR: new row for relation "testcolcons" violates check constraint
"testcolcons_colcheck_check"
test=>

This time, the problem is that the CHECK constraint on the column colcheck failed,
because we tried to insert a value larger than 42. Notice the constraint is named
tablename_columnname_check, so the source of the problem is easy to locate:

test=> UPDATE testcolcons SET colunique = 1 WHERE colnotnull = 2;
ERROR: duplicate key violates unique constraint
"testcolcons_colunique_key"testcolcons_colunique_key
test=>

We cannot update the value of colunique, because there is already a row in the table where
the column has that value:

MatthewStones_4789C08.fm Page 220 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 221

test=> INSERT INTO testcolcons(colnotnull, colunique, colprikey, colcheck)
test-> VALUES(3,3,3,41);
INSERT 17505 1
test=> SELECT * FROM testcolcons;
 colnotnull | colunique | colprikey | coldefault | colcheck
------------+-----------+-----------+------------+----------
 1 | 1 | 1 | 1 | 1
 2 | 2 | 2 | 2 | 2
 1 | | 98 | 1 | 1
 1 | | 99 | 1 | 1
 3 | 3 | 3 | 42 | 41
(5 rows)

test=>

Finally, we fail to provide a value for the coldefault column (notice it is not listed in the
column list), and see that the default value is used.

If we want to check the constraints on a table, we can ask psql to list them, using the
\d tablename command, like this:

test=> \d testcolcons
 Table "public.testcolcons"
 Column | Type | Modifiers
------------+---------+------------
 colnotnull | integer | not null
 colunique | integer |
 colprikey | integer | not null
 coldefault | integer | default 42
 colcheck | integer |
Indexes:
 "testcolcons_pkey" PRIMARY KEY, btree (colprikey)
 "testcolcons_colunique_key" UNIQUE, btree (colunique)
Check constraints:
 "testcolcons_colcheck_check" CHECK (colcheck < 42)

test=>

How It Works

PostgreSQL uses a variety of methods to implement constraints. It is not possible to control
the order in which constraints are checked, however. The exact error you get will depend on
PostgreSQL internal implementation. What you can know for sure is that all constraints will be
checked before the data is stored in the database. You can also use transactions, which are
introduced in Chapter 9, to ensure that all or none of a set of requested changes are made to the
database.

MatthewStones_4789C08.fm Page 221 Friday, February 25, 2005 5:17 PM

222 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

Using Table Constraints
Table constraints are very similar to column constraints, but as the name suggests, apply to the
entire table, rather than to an individual column. Sometimes, we need to specify constraints,
such as a primary key, at a table level rather than a column level. For example, we saw in our
orderline table we needed to use two columns, orderinfo_id and item_id, together as a composite
key to identify a row, since only the combination of columns must be unique. This type of
constraint is expressed at the table level.

The four table-level constraints are listed in Table 8-9.

As you can see, the table-level constraints bear more than a passing resemblance to the
column-level constraints. The differences are as follows:

• Table-level constraints can refer to more than one column.

• Table-level constraints are listed after all the columns.

Try It Out: Use Table-Level Constraints

Let’s see how table-level constraints work. First, create a table with some constraints:

test=> CREATE TABLE ttconst (
test(> mykey1 int,
test(> mykey2 int,
test(> mystring varchar(15),
test(> CONSTRAINT cs1 CHECK (mystring <> ''),
test(> CONSTRAINT cs2 PRIMARY KEY(mykey1, mykey2)
test(>);
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "cs2"
for table "ttconst"
CREATE TABLE
test=>

Table 8-9. Principal Table Constraints

Name Description

UNIQUE(column-list) The value stored in the columns listed must be different from
that stored in all other rows of this column.

PRIMARY KEY(column-list) Effectively a combination of NOT NULL and UNIQUE. Each table
may have only a single PRIMARY KEY constraint, either as a table
constraint or as a column constraint.

CHECK (condition) Allows you to check a condition when inserting or updating data.

REFERENCES Constrains the value to be one that appears in a column in a
separate table.

MatthewStones_4789C08.fm Page 222 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 223

Notice that, as with the column-level constraint, PostgreSQL has created an index to
enforce the primary key constraint. Let’s insert some rows to get started:

test=> INSERT INTO ttconst VALUES(1,1,'Hello');
INSERT 19381 1
test=> INSERT INTO ttconst VALUES(1,2,'Bye');
INSERT 19382 1
test=>

Now try to insert a row that violates the rule that mystring cannot be an empty string:

test=> INSERT INTO ttconst VALUES(1,2,'');
ERROR: new row for relation "ttconst" violates check constraint "cs1"
test=>

The table-level CHECK constraint works almost identically to the column-level one, rejecting
the row because the string was empty.

Now if we try inserting a row that violates the rule that the combination of mykey1 and
mykey2 must be unique, we can see the second constraint, cs2, being enforced:

test=> INSERT INTO ttconst VALUES(2,2,'Chow');
INSERT 19383 1
test=> INSERT INTO ttconst VALUES(2,2,'Chow');
ERROR: duplicate key violates unique constraint "cs2"
test=>

When both mykey values are the same, the row is rejected, because the primary key
constraint has now been violated.

How It Works

As you can see, table-level constraints are very similar to their column-level equivalents. In
general, it is better to use a column-level constraint if that is all that is required. However,
where we need a mix of column-level and table-level constraints in the same table, such as in
our bpsimple database, we prefer to use a table-level primary key constraint on all the tables,
for the sake of consistency.

Altering Table Structures
Unfortunately, life is complicated, and no matter how carefully you gather requirements and
implement your database, the day will come when you need to alter the design of a table.

We saw one way we might solve this in Chapter 6, using INSERT INTO where the data is
gathered by selecting data from an existing table. We could follow this procedure:

• Create a new working table with an identical structure to the existing table.

• Use INSERT INTO to populate the working table with data identical to the original table.

• Drop (delete) the existing table.

MatthewStones_4789C08.fm Page 223 Friday, February 25, 2005 5:17 PM

224 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

• Re-create the table with the same name, but with the changes we need.

• Use INSERT INTO again to populate the altered table from the working table.

• Delete the working table.

That is clearly a great deal of work, however, especially if the table contains a lot of data or
is referenced by triggers or views and all we want to do is add a column to a table. PostgreSQL,
in line with the SQL standard, allows us to add, delete, and rename columns on the fly; that is,
while the table contains data. You can even rename the table itself.

It is also possible to add and remove constraints from a table and change default values;
however, there are some restrictions on these changes for practical reasons. For example, you
cannot add a constraint to a table that already contains data that would violate the new constraint.

■Note In older versions of PostgreSQL there is an additional restriction, in that you can’t create a new
column that has a NOT NULL or a DEFAULT setting, since data in the table already exists. If necessary, it’s
not hard to work around this: simply add the column without any constraints, update the data in the table, and
then add the required column constraint. From PostgreSQL 8.0 onwards, you can add a column with a default
value and with a NOT NULL constraint, provided you also supply a default value.

To make these changes, we use the ALTER TABLE command. The syntax of ALTER TABLE is
simple, but has several variants:

ALTER TABLE table-name ADD COLUMN column-name column-type
ALTER TABLE table-name DROP COLUMN column-name
ALTER TABLE table-name RENAME COLUMN old-column-name TO new-column-name
ALTER TABLE table-name column-name TYPE new-type [USING expression]
ALTER TABLE table-name ALTER COLUMN [SET DEFAULT value | DROP DEFAULT]
ALTER TABLE table-name ALTER COLUMN [SET NOT NULL | DROP NOT NULL]
ALTER TABLE table-name ADD CHECK check-expression
ALTER TABLE table-name ADD CONSTRAINT name constraint-definition
ALTER TABLE old-table-name RENAME TO new-table-name

Columns that are added to a table with existing data will have NULL stored as their value for
the existing rows.

Try it Out: Alter a Table

Before we see some ALTER TABLE statements in action, let’s check the existing structure of our
ttconst table:

MatthewStones_4789C08.fm Page 224 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 225

test=> \d ttconst
 Table "public.ttconst"
 Column | Type | Modifiers
----------+-----------------------+-----------
 mykey1 | integer | not null
 mykey2 | integer | not null
 mystring | character varying(15) |
Indexes:
 "cs2" PRIMARY KEY, btree (mykey1, mykey2)
Check constraints:
 "cs1" CHECK (mystring::text <> ''::text)

test=>

First, we add a new column:

test=> ALTER TABLE ttconst ADD COLUMN mydate DATE;

Now we rename the newly added column:

test=> ALTER TABLE ttconst RENAME COLUMN mydate TO birthdate;
ALTER TABLE
test=> \d ttconst
 Table "public.ttconst"
 Column | Type | Modifiers
-----------+-----------------------+-----------
 mykey1 | integer | not null
 mykey2 | integer | not null
 mystring | character varying(15) |
 birthdate | date |
Indexes:
 "cs2" PRIMARY KEY, btree (mykey1, mykey2)
Check constraints:
 "cs1" CHECK (mystring::text <> ''::text)

test=>

Now let’s try changing some constraints and other rules:

test=> ALTER TABLE ttconst DROP CONSTRAINT cs1;
ALTER TABLE
test=> ALTER TABLE ttconst ADD CONSTRAINT cs3 UNIQUE(birthdate);
NOTICE: ALTER TABLE / ADD UNIQUE will create implicit index "cs3" for table "tt
const"
ALTER TABLE
test=> ALTER TABLE ttconst ALTER COLUMN mystring SET DEFAULT 'Hello';
ALTER TABLE

MatthewStones_4789C08.fm Page 225 Friday, February 25, 2005 5:17 PM

226 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

Next, let’s look at the new table definition:

test=> \d ttconst
 Table "public.ttconst"
 Column | Type | Modifiers
-----------+-----------------------+------------------------------------
 mykey1 | integer | not null
 mykey2 | integer | not null
 mystring | character varying(15) | default 'Hello'::character varying
 birthdate | date |
Indexes:
 "cs2" PRIMARY KEY, btree (mykey1, mykey2)
 "cs3" UNIQUE, btree (birthdate)

test=>

As you can see, the new rules are in place, just as though we had set them up when we
created the table.

It’s also possible to change the type of a column, providing the conversion is logical. Here,
we change a date to a varchar:

test=> ALTER TABLE ttconst ALTER birthdate TYPE varchar(32);
ALTER TABLE
test=>

It’s more common to just need to alter a column size; for example, increasing the size of a
varchar type column:

test=> ALTER TABLE ttconst ALTER mystring TYPE varchar(32);
ALTER TABLE
test=>

Finally, we rename the whole table:

test=> ALTER TABLE ttconst RENAME TO ttconst2;
ALTER TABLE
test=>

How It Works

As you can see, ALTER TABLE is a powerful command that allows you to modify existing table
structures, both columns and constraints, even if they already contain data.

■NOTE Prior to PostgreSQL 8.0, the ALTER TABLE command was more limited, so if you are running an
older version, you may find that some options are not available to you.

MatthewStones_4789C08.fm Page 226 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 227

The ability to alter table structures should never be used as an excuse for lack of attention
to detail in the initial table design. ALTER TABLE should mostly be needed when requirements
change. Using it at other times is generally a hint that your original design could have been
improved before you started the work of actually creating tables in your database.

One thing you should be very wary of is constantly changing a table structure by adding
new columns. New columns are always added at the end of the table, and so may not reflect the
logical purpose of the table very well. Suppose we had forgotten a title column when we created
our customer table, and then used ALTER TABLE to add it later. The column would have been
added at the end, which would have made the design of the customer table look a little strange,
with a person’s title coming after the phone number. Instead, you may prefer to use the
following procedure to add columns:

• Create a new table with a temporary name, but the correct columns in the most
logical order.

• Use INSERT INTO ... SELECT ... to populate it as a duplicate of the table being changed.

• Delete the old table.

• Rename the new table with the same name as the old table.

You do need to be careful that sequences and triggers, which we will discuss in Chapter 10,
may also need to be dropped and re-created when tables are dropped and renamed.

Deleting Tables
Deleting a table is very simple:

DROP TABLE table-name

Presto! Your table has disappeared, along with any data that was in it. Of course, you
should use this command with caution.

Using Temporary Tables
All the SQL examples we have seen so far have managed to achieve our desired result in a single,
albeit occasionally complex, SELECT statement. Usually, this is a good practice, because as
we’ve said, SQL is a declarative language. If you define what you want to achieve, SQL finds the
best way of getting the result for you. However, sometimes it is just not possible, or convenient,
to do everything in a single SELECT statement. In some cases, you need temporary results to
be held.

Often, the temporary storage you need is a table, so you can store many rows. Of course,
you could always create a table, do your processing, and then delete the table again, but that
entails a risk that the intermediate tables will occasionally not get deleted, either because your
application has a bug or due to simple forgetfulness of an interactive user working directly on
the database. The net result is stray tables, usually with strange names, left around in your
database. Unfortunately, it is not always clear which tables are intended to be just intermediate
work tables, and can be deleted, and which are for long-term use.

MatthewStones_4789C08.fm Page 227 Friday, February 25, 2005 5:17 PM

228 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

SQL offers a very simple solution to this problem: temporary tables. When you create the
table, rather than use CREATE TABLE, you use CREATE TEMPORARY TABLE (you can also use CREATE
TEMP TABLE, which is just a synonym). The table is created for you in the usual way, except that
when your session ends and your connection to the database is terminated, the temporary
table is automatically deleted for you.

Views
When you have a complex database, or sometimes when you have various users with different
permissions, you need to create the illusion of a table, or a view. Let’s look at an example to
clarify this concept.

Suppose we want to allow people in the warehouse to look at the items and barcodes in
our database. Currently, these are split across two tables, item and barcode. While correct from
a design point of view, we might wish to present a simpler view to people accessing the data,
perhaps allowing them to use some of the GUI tools we saw in Chapter 5. Rather than change
our design, we can do this with a view.

Creating Views
The syntax for creating a view is very simple:

CREATE VIEW name-of-view AS select-statement;

You can then query this view as though it were a table. (At the time of writing, in PostgreSQL,
by default, views are read-only.) You SELECT data from a view just as you would a table, and can
join it to other tables, as well as use WHERE clauses. Each time you execute a SELECT using the
view, the data is rebuilt, so the data is always up-to-date. It is not a frozen copy stored at the
time the view was created.

■Note In some other databases, views, and hence the underlying data in the tables, can be updated, just
like tables.

Suppose we want to create a view that provides a simplified display of the item table. We
just want to see the item_id, description and the sell_price. The SELECT statement would be
as follows:

SELECT item_id, description, sell_price FROM item;

For example, to create this as a view called item_price, we would write:

CREATE VIEW item_price AS SELECT item_id, description, sell_price FROM item;

This could then be used in a SELECT statement as though item_price were a table.

MatthewStones_4789C08.fm Page 228 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 229

Try It Out: Create a View

Recall from Chapter 5 that we had a minor difficulty with the price definition in the item table.
Assuming that we consider our definition of price as numeric(7,2) to be correct, we can still
keep this definition, but present a different view of the type, using a view with a cast in the
SELECT statement.

Let’s create a view of the item table that alters what users see in three ways:

• We want to hide the cost_price.

• We want to present only a short item description.

• We want to hide all expensive items, which for this example, we will declare to be
anything over $20.

We can do this by creating a view, like this:

bpsimple=> CREATE VIEW item_price AS SELECT item_id, description::varchar(10),
bpsimple-> sell_price AS price FROM item WHERE sell_price <= 20.0;
CREATE VIEW
bpsimple=>

Now when we SELECT data from the view, it behaves like a subset of the columns in the
original table:

bpsimple=> SELECT * FROM item_price;
 item_id | description | price
---------+-------------+-------
 3 | Linux CD | 2.49
 4 | Tissues | 3.99
 5 | Picture Fr | 9.95
 6 | Fan Small | 15.75
 7 | Fan Large | 19.95
 8 | Toothbrush | 1.45
 9 | Roman Coin | 2.45
 10 | Carrier Ba | 0.00
 2 | Rubik Cube | 11.49
(9 rows)

bpsimple=>

How It Works

We did several things in our example. First, we truncated the description column to 10 characters,
by casting it as description::varchar(10). Next, we hid the cost price, by not including it in the
list of columns, and even being a little sneaky by renaming the sell price sell_price AS price
so there is no clue there might also be cost price held in the table. Finally, we restricted the rows
that are returned by the view WHERE sell_price <= 20.0. (In Chapter 11, we will cover how to
use permissions to not allow ordinary users to access the original item table.)

We are not restricted to using only one table in a view. We can use a complex SQL state-
ment to access as many tables as we like.

MatthewStones_4789C08.fm Page 229 Friday, February 25, 2005 5:17 PM

230 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

Try It Out: Create a View from Multiple Tables

Let’s create a view that will solve our problem of presenting a simplified display of the item and
barcode tables, hiding the price information and the split of data into two tables. We will call
the view all_items:

bpsimple=> CREATE VIEW all_items AS SELECT i.item_id, i.description, b.barcode_ean
bpsimple-> FROM item i, barcode b WHERE i.item_id = b.item_id;
CREATE VIEW
bpsimple=>

This creates a new view, which we can now use just like a table:

bpsimple=> SELECT * FROM all_items;
 item_id | description | barcode_ean
---------+---------------+---------------
 1 | Wood Puzzle | 6241527836173
 2 | Rubik Cube | 6241574635234
 3 | Linux CD | 6264537836173
 3 | Linux CD | 6241527746363
 4 | Tissues | 7465743843764
 5 | Picture Frame | 3453458677628
 6 | Fan Small | 6434564564544
 7 | Fan Large | 8476736836876
 8 | Toothbrush | 6241234586487
 8 | Toothbrush | 9473625532534
 8 | Toothbrush | 9473627464543
 9 | Roman Coin | 4587263646878
 11 | Speakers | 9879879837489
 11 | Speakers | 2239872376872
(14 rows)

bpsimple=>

Notice that this is exactly the same as if we had typed the following:

SELECT i.item_id, i.description, b.barcode_ean FROM item i, barcode b
WHERE i.item_id = b.item_id;

As you can see, however, it hides the complexity from the end users.
If we want to list the views in our database, we can use the \dv command. The \d name-of-view

command will describe the view, allowing us to see the SQL being used:

MatthewStones_4789C08.fm Page 230 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 231

bpsimple=> \dv
 List of relations
 Schema | Name | Type | Owner
--------+------------+------+-------
 public | all_items | view | rick
 public | item_price | view | rick
(2 rows)

bpsimple=> \d all_items
 View "public.all_items"
 Column | Type | Modifiers
-------------+-----------------------+-----------
 item_id | integer |
 description | character varying(64) |
 barcode_ean | character(13) |
View definition:
 SELECT i.item_id, i.description, b.barcode_ean
 FROM item i, barcode b
 WHERE i.item_id = b.item_id;

bpsimple=>

How It Works

We created a view called all_items, which behaves like a table, except that it builds its data
from some hidden SQL.

Some people are tempted to think that views are such a good idea that all tables should be
hidden behind views. While some level of data hiding is often good, using a view is not as effi-
cient as using the actual tables, particularly if the SQL that defines the view is complex and uses
more than a single table. Databases that have all their data hidden behind views can suffer
from poor performance, and users will not be able to optimize their SQL performance, perhaps
because the column they need is in a view that does a big table join. Even though users want
only one column, if you have forced them to use the view, they will be executing the complex
SQL behind the view, decreasing performance. While views can be good for you, too much of a
good thing can be harmful!

Deleting and Replacing Views
To delete a view, drop it, as follows:

DROP VIEW name-of-view

MatthewStones_4789C08.fm Page 231 Friday, February 25, 2005 5:17 PM

232 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

Unlike dropping a table, however, dropping a view does not affect the underlying data.
If you want to replace an existing view with a view with the same name and returning the

same set of columns, you can use a special version of the syntax to do this in a single statement:

CREATE OR REPLACE VIEW name-of-view AS select-statement

Foreign Key Constraints
We now come to one of the most important kinds of constraints, called foreign key constraints.

In Chapter 2, when we drew our diagram of a sample bpsimple database, we had tables
with data that joined, or were related, to other tables. Figure 8-1 shows that database schema
design.

Figure 8-1. Database schema design

You can see how columns in one table relate to columns in another. For example, the
customer_id in the orderinfo table relates to the customer_id in the customer table. So, given an
orderinfo_id, we can use the customer_id from the same row to discover the name and address
of the customer to which the order relates. We learned that the customer_id is a primary key in
the customer table; that it uniquely identifies a single row in the customer table.

Here is another important piece of terminology: the customer_id in the orderinfo table is
a foreign key. This means that although customer_id in the orderinfo table is not a primary key
in that table, the column it joins to in the customer table is a unique key in the customer table.
Notice that there is no reverse relationship—no column in the customer table is a unique key of
any other table. Hence, we say that the customer table has no foreign keys.

MatthewStones_4789C08.fm Page 232 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 233

Part of the intrinsic structure of our database design is our goal that each and every
customer_id in the orderinfo table also appears in the customer table. The customer_id in
orderinfo is called a foreign key. We would like to enforce the rule about the relationship
between these two tables in the database, as it’s a much more reliable place to enforce data-
integrity rules than in an application, and this is called a foreign key constraint.

When we create a foreign key constraint, PostgreSQL will check that the column in the
particular table is declared such that it must be unique. It is very common for the column refer-
enced by a foreign key to be the primary key in the other table. Using foreign key constraints is
an excellent way to ensure that inter-table relationships are not corrupted due to the deletion
of a particular primary key (foreign to another table) in a given table.

It is possible for a table to have more than one foreign key. For example, in the orderline
table, orderinfo_id is a foreign key, since it joins with the orderinfo_id, which is a primary key
in the orderinfo table, and item_id is also a foreign key, because it joins with item_id in the
item table that is a primary key in the item table.

In the item table, item_id is a primary key in the item table, since it uniquely identifies a
row, and it is also a foreign key in the stock table. It is perfectly acceptable for a single column
to be both a primary and foreign key, and this implies a (usually optional) one-to-one relation-
ship between rows in the two tables.

Although we don’t have any examples in our sample database, it is also possible for a pair
of columns combined to be a foreign key, just as the orderinfo_id and item_id combined are a
primary key in the orderline table.

These relationships are absolutely crucial to our database. If we have a row in our order-
info table where the customer_id doesn’t match a customer_id in the customer table, we have a
major data-integrity problem. We have an order and no idea of the customer who placed the
order. Although we can use application logic to enforce our relationship rules, as we said earlier,
it is much safer, and often easier, to declare them as database rules.

You will not be surprised to learn that it is possible to declare such foreign key relation-
ships as constraints on columns and tables, much like the constraints we have already met.
This is usually done when tables are created, as part of the CREATE TABLE command, using the
REFERENCES type of constraint. It is also possible to add foreign key constraints later, using the
ALTER TABLE table-name ADD CONSTRAINT name constraint-definition syntax.

We are now going to move on from our bpsimple database, and create a bpfinal database,
that implements foreign key constraints, to enforce data integrity.

Foreign Key As a Column Constraint
Here is the basic syntax for declaring a column to be a foreign key in another table:

[CONSTRAINT arbitrary-name] existing-column-name type REFERENCES
foreign-table-name(column-in-foreign-table)

Naming the constraint is optional, but as we will see later, it is a considerable help in
understanding error messages.

To define a foreign key constraint on the customer_id column in the orderinfo table, relating
it to the customer table, we use the REFERENCES keyword along with the name of the foreign table
and column, like this:

MatthewStones_4789C08.fm Page 233 Friday, February 25, 2005 5:17 PM

234 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

CREATE TABLE orderinfo
(
 orderinfo_id serial ,
 customer_id integer NOT NULL REFERENCES customer(customer_id),
 date_placed date NOT NULL,
 date_shipped date ,
 shipping numeric(7,2) ,
 CONSTRAINT orderinfo_pk PRIMARY KEY(orderinfo_id)
);

We will see the effect of the REFERENCES constraint shortly.

Foreign Key As a Table Constraint
Although you can declare foreign key constraints at the column level, we prefer to declare them
at the table level, along with primary key constraints. You cannot use a column constraint
when multiple columns in the current table are involved in the relationship, so in these cases,
you must write it as a table-level constraint.

■Tip Rather than mixing column and table-level foreign key constraints, it is better to always use the
table form.

The table form is very similar to the column form, but comes after all columns have
been listed:

CONSTRAINT [arbitrary-name] FOREIGN KEY (column-list) REFERENCES
foreign-table-name(column-list-in-foreign-table)

We can update our definition of the orderinfo table to declare a constraint that the column
customer_id is a foreign key, because it relates to the primary key column customer_id in the
customer table.

CREATE TABLE orderinfo
(
 orderinfo_id serial ,
 customer_id integer NOT NULL,
 date_placed date NOT NULL,
 date_shipped date ,
 shipping numeric(7,2) ,
 CONSTRAINT orderinfo_pk PRIMARY KEY(orderinfo_id),
 CONSTRAINT orderinfo_customer_id_fk FOREIGN KEY(customer_id) REFERENCES
 customer(customer_id)
);

MatthewStones_4789C08.fm Page 234 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 235

Adding a Foreign Key Constraint to an Existing Table

Before creating the table from scratch, let’s briefly revisit the ALTER TABLE command, and see
how we could use this to retrospectively add a foreign key constraint.

First let’s look at the existing table:

bpsimple=> \d orderinfo
 Table "public.orderinfo"
 Column | Type | Modifiers

--------------+--------------+--
 orderinfo_id | integer | not null default nextval
 ('public.orderinfo_orderinfo_id_seq'::text)
 customer_id | integer | not null
 date_placed | date | not null
 date_shipped | date |
 shipping | numeric(7,2) |
Indexes:
 "orderinfo_pk" PRIMARY KEY, btree (orderinfo_id)
bpsimple=>

Now we alter the table to add a new foreign key constraint:

bpsimple=> ALTER TABLE orderinfo ADD CONSTRAINT
 orderinfo_customer_id_fk FOREIGN KEY(customer_id)
 REFERENCES customer(customer_id);
ALTER TABLE
bpsimple=>

Let’s check that the table has been correctly updated:

bpsimple=> \d orderinfo
 Table "public.orderinfo"
 Column | Type | Modifiers

--------------+--------------+--
 orderinfo_id | integer | not null default nextval
 ('public.orderinfo_orderinfo_id_seq'::text)
 customer_id | integer | not null
 date_placed | date | not null
 date_shipped | date |
 shipping | numeric(7,2) |
Indexes:
 "orderinfo_pk" PRIMARY KEY, btree (orderinfo_id)
Foreign-key constraints:
 "orderinfo_customer_id_fk" FOREIGN KEY (customer_id) REFERENCES
 customer(customer_id)

bpsimple=>

It’s a little complex, but we can clearly see our new foreign key constraint listed at the end.

MatthewStones_4789C08.fm Page 235 Friday, February 25, 2005 5:17 PM

236 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

Creating Tables with Foreign Key Constraints

It’s time to take a leap forward from our initial bpsimple database and work on our final version
of the design, bpfinal:

bpsimple=> CREATE DATABASE bpfinal;
CREATE DATABASE
bpsimple=> \c bpfinal
You are now connected to database "bpfinal".
bpfinal=>

Now we are ready to start re-creating our tables using our newfound knowledge of foreign
key constraints to enforce referential integrity at the database level.

We must start with our customer table (the definition is unchanged from our previous
design), since we cannot reference it in our orderinfo table until it exists.

bpfinal=> CREATE TABLE customer
bpfinal-> (
bpfinal(> customer_id serial,
bpfinal(> title char(4),
bpfinal(> fname varchar(32),
bpfinal(> lname varchar(32) NOT NULL,
bpfinal(> addressline varchar(64),
bpfinal(> town varchar(32),
bpfinal(> zipcode char(10) NOT NULL,
bpfinal(> phone varchar(16),
bpfinal(> CONSTRAINT customer_pk PRIMARY KEY
 (customer_id)
bpfinal(>);
NOTICE: CREATE TABLE will create implicit sequence "customer_customer_id_seq"
for serial column "customer.customer_id"
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "customer_pk"
for table "customer"
CREATE TABLE
bpfinal=>

Now that we have our customer table, we can populate it as before, using the \i command:

bpfinal=> \i pop_customer.sql

Next, we create our orderinfo table:

bpfinal=> CREATE TABLE orderinfo
bpfinal-> (
bpfinal(> orderinfo_id serial,
bpfinal(> customer_id integer NOT NULL,
bpfinal(> date_placed date NOT NULL,
bpfinal(> date_shipped date,

MatthewStones_4789C08.fm Page 236 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 237

bpfinal(> shipping numeric(7,2) ,
bpfinal(> CONSTRAINT orderinfo_pk PRIMARY KEY
 (orderinfo_id),
bpfinal(> CONSTRAINT orderinfo_customer_id_fk FOREIGN KEY(customer_id)
 REFERENCES customer(customer_id)
bpfinal(>);
NOTICE: CREATE TABLE will create implicit sequence "orderinfo_orderinfo_id_seq"
 for serial column "orderinfo.orderinfo_id"
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "orderinfo_pk"
 for table "orderinfo"
CREATE TABLE
bpfinal=>

Let’s take a quick look at the definition:

bpfinal=> \d orderinfo
 Table "public.orderinfo"
 Column | Type | Modifiers

--------------+--------------+--
 orderinfo_id | integer | not null default nextval('public.orderinfo_orderi
nfo_id_seq'::text)
 customer_id | integer | not null
 date_placed | date | not null
 date_shipped | date |
 shipping | numeric(7,2) |
Indexes:
 "orderinfo_pk" PRIMARY KEY, btree (orderinfo_id)
Foreign-key constraints:
 "orderinfo_customer_id_fk" FOREIGN KEY (customer_id) REFERENCES customer(cus
tomer_id)

bpfinal=>

Now we can repopulate the orderinfo table from our SQL script:

bpfinal=> \i pop_orderinfo.sql

So, now we are almost back to where we started, with one very important difference: the
orderinfo table has a foreign key constraint, which says that rows in the orderinfo table have
the customer_id column referring to the customer_id column in the customer table. This means
that we cannot delete rows from the customer table if the row is being referenced by a column
in the orderinfo table.

Try It Out: Use Foreign Key Constraints

We will start by checking to see what customer_id values we have in the orderinfo table:

MatthewStones_4789C08.fm Page 237 Friday, February 25, 2005 5:17 PM

238 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

bpfinal=> select orderinfo_id, customer_id from orderinfo;
 orderinfo_id | customer_id
--------------+-------------
 1 | 3
 2 | 8
 3 | 15
 4 | 13
 5 | 8
(5 rows)

bpfinal=>

We now know that there are five rows in orderinfo that have customer_id values that refer
to customers in the customer table, and that the customers referred to have IDs 3, 8, 13, and 15.
There are only four customers referred to, because the rows with orderinfo_id 2 and 5 both
refer to the same customer.

Let’s try to delete the row from the customer table with customer_id 3:

bpfinal=> DELETE FROM customer WHERE customer_id = 3;
ERROR: update or delete on "customer" violates foreign key constraint
"orderinfo_customer_id_fk" on "orderinfo"
DETAIL: Key (customer_id)=(3) is still referenced from table "orderinfo".
bpfinal=>

PostgreSQL prevents us from deleting the row. Also, notice that naming the constraint
orderinfo_customer_id_fk allows us to more easily identify the source of the complaint.
PostgreSQL is even kind enough to tell us exactly which customer_id key value had the problem,
which although obvious in this example, may not be in more complex cases. PostgreSQL will
allow us to delete rows from the customer table where there is no related orderinfo entry:

bpfinal=> DELETE FROM customer WHERE customer_id = 4;
DELETE 1

bpfinal=>

How It Works

Behind the scenes, PostgreSQL adds some additional checking. For each row we try to delete
from the customer table, it checks that the row is not being referred to by a row in a different
table—in this case, the orderinfo table.

Any attempts to violate the rule result in the command being rejected and the data left
unchanged. We can still delete a customer, but we must make sure the customer does not have
any orders first.

PostgreSQL also checks that we don’t try to insert rows into the orderinfo table that refer
to nonexistent customers, as in this example:

MatthewStones_4789C08.fm Page 238 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 239

bpfinal=> INSERT INTO orderinfo(customer_id, date_placed, shipping)
bpfinal-> VALUES(250,'07-25-2000', 0.00);
ERROR: insert or update on table "orderinfo" violates foreign key constraint
"orderinfo_customer_id_fk"
DETAIL: Key (customer_id)=(250) is not present in table "customer".
bpfinal=>

It is important to realize what a big step forward we have made here. We have taken very
effective steps to ensure that the relationships between tables are enforced by the database.
No longer is it possible to have rows in orderinfo referring to nonexistent customers.

We can now update our original table creation script to add foreign key constraints to all
the tables that refer to other tables: orderinfo, orderline, stock, and barcode. The only slightly
complex constraint is orderline, where the orderinfo_id column refers to the orderinfo table,
and the item_id column refers to the item table. This is not a problem; we simply specify two
constraints, one for each column:

CREATE TABLE orderline
(
 orderinfo_id integer NOT NULL,
 item_id integer NOT NULL,
 quantity integer NOT NULL,
 CONSTRAINT orderline_pk PRIMARY KEY(orderinfo_id,
 item_id),
 CONSTRAINT orderline_orderinfo_id_fk FOREIGN KEY(orderinfo_id) REFERENCES
 orderinfo(orderinfo_id),
 CONSTRAINT orderline_item_id_fk FOREIGN KEY(item_id) REFERENCES item(item_id)
);

The final version of the database creation script can be found in Appendix E. We will be
using this database, bpfinal, for the rest of the book. You can download it, along with the other
code samples, from the Downloads section of the Apress web site (http://www.apress.com).

When you use this database, you will also find that you must populate the tables in an
order that fulfills the foreign key constraints; you can no longer populate the orderinfo table
before populating the customer table for the orders to reference. We suggest this order:

• customer

• item

• orderinfo

• orderline

• stock

• barcode

MatthewStones_4789C08.fm Page 239 Friday, February 25, 2005 5:17 PM

240 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

Foreign Key Constraint Options
It might be that we get into a situation where we have entries in the orderinfo table referring
to the customer table, but we need to update the customer_id. As it stands, we can’t easily do
this, because if we attempt to change the customer_id (actually a very bad idea, since it is a
serial column!), the foreign key constraint in orderinfo will prevent it, since the rule says that
the customer_id stored in each orderinfo row must always refer to a customer_id entry in the
customer table.

We can’t change the customer_id in the orderinfo table, because the entry in the customer
table doesn’t exist yet, and we can’t change the entry in the customer table, because it is being
referred to by the orderinfo table.

The SQL standard allows two ways to resolve the situation where you briefly need to make
a data change that violates a foreign key constraint, but you will restore the correct integrity to
the data before the transaction completes:

• Make the constraint deferrable.

• Specify rules in the foreign key constraint about how to handle violations.

Deferrable Constraints

The first way to allow the foreign key constraint to be violated in certain circumstances is to
add the keywords INITIALLY DEFERRED at the end of the foreign key constraint:

CREATE TABLE orderinfo
(
 orderinfo_id serial ,
 customer_id integer NOT NULL,
 date_placed date NOT NULL,
 date_shipped date ,
 shipping numeric(7,2) ,
 CONSTRAINT orderinfo_pk PRIMARY KEY(orderinfo_id),
 CONSTRAINT orderinfo_customer_id_fk FOREIGN KEY(customer_id)
 REFERENCES customer(customer_id) INITIALLY DEFERRED
);

This changes the way foreign key constraints are enforced. Normally, PostgreSQL will
check that foreign key constraints are met before any change is allowed to the database. If you
use transactions (which we will meet in the next chapter) and INITIALLY DEFERRED, PostgreSQL
will allow foreign key constraints to be violated, providing the constraint is violated only during
a transaction, and the violation has been corrected before the transaction ends. In practice,
what happens is that PostgreSQL suspends checking of the constraint until it is about to complete
the current transaction.

As we will see in Chapter 9, a transaction is a group of SQL commands that must either all
be completely executed or none executed. Hence, we could start a transaction, update the
customer_id in the customer table, update the related customer_id values in the orderinfo
table, commit the transaction, and then PostgreSQL would permit this. All it will check is that
the constraints are met when the transaction ends.

MatthewStones_4789C08.fm Page 240 Friday, February 25, 2005 5:17 PM

C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N 241

■Note Alternatively, you can just use the keyword DEFERRED, in which case, you also need to use the
command SET CONSTRAINTS ALL DEFERRED, so that PostgreSQL defaults to checking DEFERRED constraints
only at the end of transactions. See the online documentation for more details of the SET CONSTRAINTS
option.

ON UPDATE and ON DELETE

An alternative solution is to specify rules in the foreign key constraint about how to handle
violation in two circumstances: UPDATE and DELETE operations. Two actions are possible:

• We could CASCADE the change from the table with the primary key.

• We could SET NULL to make the column NULL, since it no longer references the primary
table.

Here is an example:

CREATE TABLE orderinfo
(
 orderinfo_id serial ,
 customer_id integer NOT NULL,
 date_placed date NOT NULL,
 date_shipped date ,
 shipping numeric(7,2) ,
 CONSTRAINT orderinfo_pk PRIMARY KEY(orderinfo_id),
 CONSTRAINT orderinfo_customer_id_fk FOREIGN KEY(customer_id)
 REFERENCES customer(customer_id) ON DELETE CASCADE
);

This example tells PostgreSQL that if we delete a row in customer with a customer_id that is
being used in the orderinfo table, it should automatically delete the related rows in orderinfo.
This might be what we intended, but it is normally a dangerous choice. It is usually much better
to ensure applications delete rows in the correct order, so we make sure there are no orders for
a customer before deleting the customer entry.

The SET NULL option is usually used with UPDATE or DELETE statements. It looks like this:

CREATE TABLE orderinfo
(
 orderinfo_id serial ,
 customer_id integer NOT NULL,
 date_placed date NOT NULL,
 date_shipped date ,
 shipping numeric(7,2) ,
 CONSTRAINT orderinfo_pk PRIMARY KEY(orderinfo_id),
 CONSTRAINT orderinfo_customer_id_fk FOREIGN KEY(customer_id)
 REFERENCES customer(customer_id) ON UPDATE SET NULL
);

MatthewStones_4789C08.fm Page 241 Friday, February 25, 2005 5:17 PM

242 C H A P T E R 8 ■ D A T A D E F I N I T I O N A N D M A N I P U L A T I O N

This says that if the row being referred to by customer_id is deleted from the customer
table, set the column in the orderinfo table to NULL.

You may have noticed that for our table, this isn’t going to work. We declared customer_id
as NOT NULL, so it cannot be updated to a NULL value. We did this because we did not want to
allow the possibility of rows in the orderinfo table having NULL customer_id values. After all,
what does an order with an unknown customer mean? It’s probably a mistake.

These options can be combined, so you can write the following:

ON UPDATE SET NULL ON DELETE CASCADE

■Caution Use ON UPDATE and ON DELETE with considerable caution. It is much safer to force application
programmers to code UPDATE and DELETE statements in the right order and use transactions than it is to
CASCADE DELETE rows and suddenly store NULL values in columns because a different table was changed.

In Chapter 10, we will see how to use triggers and stored procedures to give much the same
effect, but in a way that gives us more control over the changes in other tables.

Summary
We covered a lot of material in this chapter. We started by looking more formally at the data
types supported by PostgreSQL, especially the common SQL standard types, but also mentioning
some of PostgreSQL’s more unusual extension types, such as arrays. We then looked at how
you can manipulate column data—converting between types, using substrings of the data, and
accessing information with PostgreSQL’s “magic” variables.

We then moved on to look at table management, focusing on a very important topic:
constraints. We saw that there are effectively two ways of defining constraints: against a single
column and at a table level. Even simple constraints can help us to enforce the integrity of data
at the database level.

Next, we saw how to use a view to create an “illusion” of a table. Views can provide a
simpler way for users to access data, as well as hide some data we may not want to be accessible
to everyone.

Our final topic was one of the most important types of constraints: foreign keys. These
allow us to define formally in the database how different tables relate to each other. Most
important, they allow us to enforce these rules, such as to ensure that we can never delete a
customer that has order information relating to that customer in a different table.

Having learned how to enforce referential integrity in our database, we created an updated
database design, bpfinal, which we will be using for the remainder of this book.

In the next chapter, we will cover transactions and locking, which are very important when
considering more than one user needing to simultaneously access a database.

MatthewStones_4789C08.fm Page 242 Friday, February 25, 2005 5:17 PM

243

■ ■ ■

C H A P T E R 9

Transactions and Locking

So far in this book, we have avoided any in-depth discussion of the multiuser aspects of
PostgreSQL, simply stating the idealized view that, like any good relational database, PostgreSQL
hides the details of supporting multiple concurrent users. It simply provides a fast and efficient
database server that delivers a service to its clients as if all the simultaneous users had exclusive
access. Particularly with small and lightly loaded databases, this idealized view is generally
achieved in practice. However, the reality is that PostgreSQL, although very capable, cannot
perform magic, and the isolation of each user from all the others requires work behind the
scenes.

In this chapter, we will look at two important aspects of database support for multiple
users: transactions and locking. Transactions allow you to collect a number of discrete changes
to the database into a single work unit. Locking prevents conflicts when different users make
changes to the database at the same time.

In this chapter, we will cover the following topics:

• What constitutes a transaction

• Benefits of transactions in a single-user database

• Transaction with multiple users

• Row and table locking

What Are Transactions?
As we’ve said in previous chapters, ideally, you should write database changes as a single
declarative statement. However, in real-world applications, there soon comes a point at which
you need to make several changes to a database that cannot be expressed in a single SQL state-
ment. Although they are not made in just one statement, you still need all of the changes to
occur to update the database correctly. If a problem occurs with any part of the group of changes,
then none of the database changes should be made. In other words, you need to perform a
single, indivisible unit of work, which will require several SQL statements to be executed, with
either all of the SQL statements executing successfully or none of them executing.

The classic example is that of transferring money between two accounts in a bank, perhaps
represented in different tables in a database, so that one account is debited and the other is
credited. If you debit one account and fail to credit the second for some reason, you must return
the money to the first account, or behave as though it was never debited in the first place.

MatthewStones_4789C09.fm Page 243 Friday, March 4, 2005 6:44 PM

244 C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G

No bank could remain in business if money occasionally disappeared when transferring it
between accounts.

In databases based on ANSI SQL, as PostgreSQL is, performing this all-or-nothing task is
achieved with transactions. A transaction is a logical unit of work that must not be subdivided.

Grouping Data Changes into Logical Units
What do we mean by a logical unit of work? It is simply a set of logical changes to the database,
which must either all occur or all must fail, just like the previous example of the transfer of
money between accounts. In PostgreSQL, these changes are controlled by four key phrases:

• BEGIN starts a transaction.

• SAVEPOINT savepointname asks the server to remember the current state of the transaction.
This statement can be used only after a BEGIN and before a COMMIT or ROLLBACK; that is,
while a transaction is being performed.

• COMMIT says that all the elements of the transaction are complete and should now be
made persistent and accessible to all concurrent and subsequent transactions.

• ROLLBACK [TO savepointname] says that the transaction is to be abandoned, and all changes
made to data by that SQL transaction are cancelled. The database should appear to all
users as if none of the changes had ever occurred since the previous BEGIN, and the trans-
action is closed. The alternative version, with the addition of the TO clause, allows rollback
to a named savepoint, and does not complete a transaction.

■Note The ANSI SQL92 standard did not define the BEGIN SQL phrase. It defines transactions as starting
automatically (hence the phrase would be redundant), but it is a very common extension present, and required,
in many relational databases. SQL99 added the statement START TRANSACTION, which has the same effect
as BEGIN. PostgreSQL from 7.3 onwards accepts the newer syntax as well as the BEGIN syntax, but we stick
to the BEGIN syntax, as it is currently more common.

Concurrent Multiuser Access to Data
A second aspect of transactions is that any transaction in the database is isolated from other
transactions occurring in the database at the same time. In an ideal world, each transaction
would behave as though it had exclusive access to the database. Unfortunately, as we will see
later in this chapter when we look at transactions with multiple users, the practicalities of
achieving good performance mean that some compromises often must be made.

Let’s look at a different example of where a transaction is needed. Suppose you are trying
to book an airline ticket online. You check the flight you want and discover a ticket is available.
Although unknown to you, it is the very last ticket on that flight. While you are typing in your
credit card details, another customer with an account at the airline makes the same check for
tickets. You have not yet purchased your ticket, so the other person sees a free seat and books
it while you are still typing in your credit card details. You now submit to buy the ticket, and

MatthewStones_4789C09.fm Page 244 Friday, March 4, 2005 6:44 PM

C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G 245

because the system knew there was a seat available when you started the transaction, it incorrectly
assumes a seat is still available, and debits your card. (Of course, airlines have more sophisti-
cated systems that prevent such basic ticket-booking errors, but this example does illustrate
the principle.)

You disconnect, confident your seat has been booked, and perhaps even check that your
credit card has been debited. The reality is, however, that you purchased a nonexistent seat.
At the instant your transaction was processed, there were no free seats.

The code executed by the booking application may have looked a little like this:

Check if seats available.
If yes, offer seat to customer.
If customer accepts offer, ask for credit card number.
Authorize credit card transaction with bank.
Debit card.
Assign seat.
Reduce the number of free seats available by the number purchased.

Such a sequence of events is perfectly valid, if only a single customer ever uses the system
at any one time. The trouble occurred because there were two customers. What actually happened
is depicted in Table 9-1.

Table 9-1. Overlapping Events

Customer 1 Customer 2 Free Seats
on Plane

Check if seats available 1

Check if seats available 1

If yes, offer seat to customer 1

If yes, offer seat to customer 1

If customer accepts offer, ask for
credit card or account number

1

If customer accepts offer, ask for credit card
or account number

1

Get credit card number Get account number 1

Authorize credit card transaction
with bank

1

Check account is valid 1

Update account with new transaction 1

Debit card Assign seat 1

Assign seat Reduce number of free seats available by
number purchased

0

Reduce number of free seats available
by number purchased

–1

MatthewStones_4789C09.fm Page 245 Friday, March 4, 2005 6:44 PM

246 C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G

How could we solve the problem with this ticket-booking application? We could improve
things considerably by rechecking that a seat was available closer to the point at which we take
the money, but however close we do the check, it’s inevitable that the “check a seat is available”
step is separated from the “take money” step, even if only by a tiny amount of time.

We could go to the opposite extreme to solve the problem, allowing only one person to
access the ticket-booking system at any one time, but the performance would be terrible and
customers would go elsewhere.

In application terms, what we have is a critical section of code—a small section of code
that needs exclusive access to some data. We could write our application using a semaphore,
or similar technique, to manage access to the critical section of code. This would require every
application that accessed the database to use the semaphore. However, rather than writing
application logic, it is often easier to use a database to solve the problem.

In database terms, what we have here is a transaction—the set of data manipulations from
checking the seat availability through to debiting the account or card and assigning the seat, all
of which must happen as a single unit of work.

ACID Rules
ACID is a frequently used acronym to describe the four properties a transaction must have:

Atomic: A transaction, even though it is a group of individual actions on the database,
must happen as a single unit. A transaction must happen exactly once, with no subsets
and no unintended repetition of the action. In our banking example, the money move-
ment must be atomic. The debit of one account and the credit of the other must both
happen as though they were a single action, even if several consecutive SQL statements
are required.

Consistent: At the end of a transaction, the system must be left in a consistent state. We
touched on this in Chapter 8, when we saw that we could declare a constraint as deferrable;
in other words, the constraint should be checked only at the end of a transaction. In our
banking example, at the end of a transaction, all accounts must accurately reflect the
intended credits and debits.

Isolated: This means that each transaction, no matter how many transactions are currently
in progress in a database, must appear to be independent of all the other transactions.
In our airline ticket-booking example, transactions processing two concurrent customers
must behave as though they each have exclusive use of the database. In practice, we know
this cannot be true if we are to have sensible performance on multiuser databases, and
indeed this turns out to be one of the places where the practicalities of the real world can
impinge most significantly on our ideal database behavior. We will discuss isolating trans-
actions later in the chapter, in the “Transactions with Multiple Users” section.

MatthewStones_4789C09.fm Page 246 Friday, March 4, 2005 6:44 PM

C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G 247

Durable: Once a transaction has completed, it must stay completed. Once money has
been successfully transferred between accounts, it must stay transferred, even if the power
fails and the machine running the database has an uncontrolled power down. In PostgreSQL,
as with most relational databases, this is achieved using a transaction log file, as described
in the following section. Transaction durability happens without user intervention.

Transaction Logs
As mentioned in the previous section, transaction log files are used internally by the database
to make sure that a transaction endures. The way the transaction log file works is simple. As a
transaction executes, not only are the changes written to the database, but also to a log. Once a
transaction completes, a marker is written to say the transaction has finished, and the log file
data is forced to permanent storage, so it is secure, even if the database server crashes. Should
the database server die for some reason in the middle of a transaction, then as the server restarts,
it is able to automatically ensure that completed transactions are correctly reflected in the
database (by rolling forward transactions in the transaction log, but not in the database). No
changes from transactions that were still in progress when the server went down appear in the
database.

The transaction log that PostgreSQL maintains not only records all the changes that are
being made to the database, but also records how to reverse them. Obviously, this file could get
very large very quickly. Once a COMMIT statement is issued for a transaction, PostgreSQL then
knows that it is no longer required to store the “undo” information, since the database change
is now irrevocable, at least by the database (the application could execute additional code to
reverse changes).

PostgreSQL actually uses a technique where data is written to the transaction log ahead of
it being written to disk for the tables, because it knows that once the data is written to the log
file, it can recover the intended state of the table data from the log, even if the system should
fail before the real data files have been updated. This is called Write Ahead Logging (WAL), and
interested readers can find more details in the PostgreSQL documentation.

Transactions with a Single User
Before we look at the more complex aspects of transactions and how they behave with multiple,
concurrent users of the database, we need to see how they behave with a single user. Even in
this rather simplistic way of working, there are real advantages to using transactions.

The big benefit of transactions is that they allow you to execute several SQL statements,
and then at a later stage, allow you to undo the work you have done, if you so decide. Alterna-
tively, if one of your SQL statements fails, you can undo the work you have done back to a
predetermined point.

Using a transaction, the application does not need to worry about storing what changes
have been made to the database and how to undo them. It can simply ask the database engine
to undo a whole batch of changes at once. Logically, the sequence is depicted in Figure 9-1.

MatthewStones_4789C09.fm Page 247 Friday, March 4, 2005 6:44 PM

248 C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G

Figure 9-1. Rolling back a set of changes

If you decide all your changes to the database are valid after the “Second SQL” step shown
in Figure 9-1, however, and you wish to apply them to the database so they become permanent,
then all you do is replace the ROLLBACK statement with a COMMIT statement, as depicted in Figure 9-2.

Figure 9-2. Commiting a set of changes

After the COMMIT, all changes to the database are committed and can be considered perma-
nently written to the data files, so they will not be lost due to power failures or application errors.

Try It Out: Perform a Simple Transaction

Let’s try a very simple transaction, where we change a single row in a table, and then use the
ROLLBACK statement to cancel the change. We will use the test database for these experiments.

First, connect to the test database (if it does not exist, just use a CREATE DATABASE test
command), and then create a pair of simple tables to experiment with:

MatthewStones_4789C09.fm Page 248 Friday, March 4, 2005 6:44 PM

C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G 249

bpfinal=> \c test
You are now connected to database "test".
test=> CREATE TABLE ttest1 (
test(> ival1 integer,
test(> sval1 varchar(64)
test(>);
CREATE TABLE
test=> CREATE TABLE ttest2 (
test(> ival2 integer,
test(> sval2 varchar(64)
test(>);
CREATE TABLE
test=>

Now we can try a simple transaction:

test=> INSERT INTO ttest1 (ival1, sval1) VALUES (1, 'David');
INSERT 17784 1
test=> BEGIN;
BEGIN
test=> UPDATE ttest1 SET sval1 = 'Dave' WHERE ival1 = 1;
UPDATE 1
test=> SELECT sval1 FROM ttest1 WHERE ival1 = 1;
 sval1

 Dave
(1 row)

test=> ROLLBACK;
ROLLBACK
test=> SELECT sval1 FROM ttest1 WHERE ival1 = 1;
 sval1

 David
(1 row)

test=>

How It Works

We initially inserted a single row and stored the name 'David'. We then started the transaction
by using the BEGIN command. Next, we updated the sval1 column of the row to set the name
to 'Dave'. When we did a SELECT on this row, it showed the data had changed. We then called
ROLLBACK. PostgreSQL used its internal transaction log to undo the changes since BEGIN was
executed, so the next time we SELECT the row, our change had been rolled back.

MatthewStones_4789C09.fm Page 249 Friday, March 4, 2005 6:44 PM

250 C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G

Interestingly, if we used a second psql session and queried the database immediately after
the update of David to Dave, but before executing the ROLLBACK, we would still see David in the
database. This is because PostgreSQL is isolating users, other than the user currently making
the change, from uncommitted database data updates. We will discuss this further in the
“Transactions with Multiple Users” section later in this chapter.

Transactions Involving Multiple Tables
Transactions are not limited to a single table or simple updates to data. Let’s look at a more
complex example involving multiple tables and using both an UPDATE statement and an INSERT
statement.

Try It Out: Perform Transactions with Multiple Tables

Let’s experiment with transactions that affect multiple tables. First, ensure both tables are
empty, and then insert a row into the first table:

test=> DELETE FROM ttest1;
DELETE 1
test=> DELETE FROM ttest2;
DELETE 0
test=> INSERT INTO ttest1 (ival1, sval1) VALUES (1, 'David');
INSERT 17793 1

Now start a transaction and make some changes:

test=> BEGIN;
BEGIN
test=> INSERT INTO ttest2 (ival2, sval2) VALUES (42, 'Arthur');
INSERT 17794 1
test=> UPDATE ttest1 SET sval1 = 'Robert' WHERE ival1 = 1;
UPDATE 1
test=> SELECT * FROM ttest1;
 ival1 | sval1
-------+--------
 1 | Robert
(1 row)

test=> SELECT * FROM ttest2;
 ival2 | sval2
-------+--------
 42 | Arthur
(1 row)

MatthewStones_4789C09.fm Page 250 Friday, March 4, 2005 6:44 PM

C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G 251

Now perform a ROLLBACK and check the effect:

test=> ROLLBACK;
ROLLBACK
test=> SELECT * FROM ttest1;
 ival1 | sval1
-------+-------
 1 | David
(1 row)

test=> SELECT * FROM ttest2;
 ival2 | sval2
-------+-------
(0 rows)

test=>

How It Works

The ROLLBACK caused the data added as a result of the INSERT statement to be removed and the
UPDATE to the item table to be reversed. This demonstrates how a transaction grouping a set of
changes together can work across multiple tables..

Transactions and Savepoints
The previous examples use the basic transaction syntax, which is all that many applications
need. However, savepoints can be useful for situations where you want to be able to roll back
to a specified point in the transaction. This requires the extended version of the transaction
syntax, with a named savepoint and the ROLLBACK TO command.

If we might need to undo just some of the operations in a transaction, we can create a
named savepoint, which we can then roll back to, rather than rolling back all the way to the
BEGIN statement. Figure 9-3 illustrates the sequence.

In the example in Figure 9-3, we start by executing a BEGIN statement, which starts our
transaction, and then execute two SQL statements. We then create a savepoint called parta,
and execute a third SQL statement. We then execute a ROLLBACK TO parta statement, which
effectively undoes the effect of the third SQL statement. We can then issue some more SQL,
before finally executing a COMMIT to make our database changes permanent.

MatthewStones_4789C09.fm Page 251 Friday, March 4, 2005 6:44 PM

252 C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G

Figure 9-3.Using a savepoint

Try It Out: Use Savepoints

Let’s see a savepoint in action. The name of the savepoint is arbitrary; we use first here, but
we could have called it Tux, Getreidegasse, or just about any other name.

test=> DELETE FROM ttest1;
DELETE 1
test=> DELETE FROM ttest2;
DELETE 0
test=> INSERT INTO ttest1 (ival1, sval1) VALUES (1, 'David');
INSERT 17795 1
test=> BEGIN;
BEGIN
test=> INSERT INTO ttest2 (ival2, sval2) VALUES (42, 'Arthur');
INSERT 17796 1
test=> SAVEPOINT first;
SAVEPOINT
test=> UPDATE ttest1 SET sval1 = 'Robert' WHERE ival1 = 1;
UPDATE 1
test=> SELECT * FROM ttest1;

MatthewStones_4789C09.fm Page 252 Friday, March 4, 2005 6:44 PM

C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G 253

 ival1 | sval1
-------+--------
 1 | Robert
(1 row)
test=> ROLLBACK TO first;
ROLLBACK
test=> SELECT * FROM ttest1;
 ival1 | sval1
-------+-------
 1 | David
(1 row)

test=> SELECT * FROM ttest2;
 ival2 | sval2
-------+--------
 42 | Arthur
(1 row)
test=>

We are still in transaction at this point and can still roll back to the initial BEGIN state:

test=>
test=> ROLLBACK;
ROLLBACK
test=> SELECT * FROM ttest1;
 ival1 | sval1
-------+-------
 1 | David
(1 row)

test=> SELECT * FROM ttest2;
 ival2 | sval2
-------+-------
(0 rows)

test=>

Now that a ROLLBACK has been issued to the initial BEGIN statement, the transaction is
considered complete, and we cannot issue another ROLLBACK or COMMIT, until after a new BEGIN
statement:

test=> INSERT INTO ttest2 (ival2, sval2) VALUES (99, 'Chris');
INSERT 17797 1
test=> COMMIT;
WARNING: there is no transaction in progress
COMMIT
test=>

MatthewStones_4789C09.fm Page 253 Friday, March 4, 2005 6:44 PM

254 C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G

Also, once we have issued a COMMIT to say the transaction is complete, it has been written
to the database permanently, and there is no going back:

test=> SELECT * FROM ttest2;
 ival2 | sval2
-------+-------
 99 | Chris
(1 row)

test=> BEGIN;
BEGIN
test=> UPDATE ttest2 SET sval2 = 'Gill' WHERE ival2 = 99;
UPDATE 1
test=> COMMIT;
COMMIT
test=> ROLLBACK;
WARNING: there is no transaction in progress
ROLLBACK
test=> SELECT * FROM ttest2;
 ival2 | sval2
-------+-------
 99 | Gill
(1 row)
test=>x

How It Works

As this example demonstrated, savepoints allow us to both roll back to an intermediate point
in a transaction or all of the way back to the start of the transaction. Once a ROLLBACK has been
executed, the database looks exactly as though the rolled-back changes never happened. Once
a transaction has been committed, it can no longer be undone by a ROLLBACK.

Transaction Limitations
Although transactions work very well, they do have some limitations. These involve nesting,
size, and duration.

Nesting

You cannot nest transactions in PostgreSQL (or most other relational databases, for that matter).
In PostgreSQL, if you try to execute a BEGIN statement while it’s already in a transaction,
PostgreSQL will produce a warning message, telling you a transaction is already in progress.

Some databases silently accept several BEGIN statements. A COMMIT or ROLLBACK command
always works against the first BEGIN statement, however, so although it looked as though the
transactions were nested, in reality, subsequent BEGIN commands were being ignored.

MatthewStones_4789C09.fm Page 254 Friday, March 4, 2005 6:44 PM

C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G 255

Transaction Size

It is advisable to keep transactions small. As we will see later in this chapter, PostgreSQL (and
other relational databases) must do a lot of work to ensure that transactions from different
users are kept separate. A consequence of this is that the parts of a database involved in a trans-
action frequently need to become locked, to ensure that transactions are kept separate. Therefore,
you should try to make sure that each transaction is no larger than it needs to be. Including
large amounts of unnecessary changes in each transaction will result in excessive amounts of
locking taking place in the database, impacting both performance and other users’ ability to
access data. We’ll discuss locking in more detail in the “Locking” section later in this chapter.

Transaction Duration

Transactions should not be kept open over extended time periods. Although PostgreSQL locks
the database automatically for you, a long-running transaction usually prevents other users
from accessing data involved in the transaction until the transaction is committed or rolled
back. Therefore, you should also avoid having a transaction in progress when any user dialogue
is required. It is advisable to collect all the information required from the user first, and then
process the information in a transaction, unhindered by unpredictable user-response times.

Consider a poorly behaved application that started a transaction when a person sat down
to work at a terminal in the morning, and left the transaction running all day while the user
made various changes to the database. As the user did work on the database, more and more of
it would become locked, waiting for those changes to be committed. If the user committed the
data only at the end of the day, the ability for other users to access the data would be severely
impacted, and the overall application would probably be considered unusable for any situa-
tion that requires multiple users.

You should also be aware that although a COMMIT statement usually executes quite rapidly,
since it generally has very little work to perform, rolling back transactions typically involves at
least as much work for the database as performing them initially, and consequently can take
some time to execute. Therefore, if you start a transaction, and it takes two minutes to execute
all the SQL, then decide to do a ROLLBACK to cancel it all, don’t expect the rollback to be instan-
taneous. It could easily take longer than two minutes to undo all the changes.

Transactions with Multiple Users
As we saw earlier in the chapter, transactions that need to work for multiple, concurrent users
must be isolated from each other (the I part of ACID). Although PostgreSQL’s default behavior
for handling isolation will suffice in most cases, there are circumstances where it is useful to
understand it in more detail.

Implementing Isolation
One of the most difficult aspects of relational databases is isolation between different users for
updates to the database. Of course, achieving isolation is not difficult if we don’t care about
performance. Simply allowing a single connection to the database, with only a single transac-
tion in progress at any one time, will ensure complete isolation between different transactions.

MatthewStones_4789C09.fm Page 255 Friday, March 4, 2005 6:44 PM

256 C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G

Unfortunately, the multiuser performance would be terrible. The difficult part of transaction
isolation is in achieving practical isolation without significantly damaging performance or
preventing multiuser access to the database.

To lessen the impact of isolation on performance, the ANSI SQL standard defines different
levels of isolation that databases can implement. This allows the database administrator to
trade between performance and the degree of isolation individual database users receive.
Usually, a relational database will implement at least one of these levels by default, and also
allow users to specify at least one other isolation level to use.

The ANSI SQL standard defines isolation levels in terms of undesirable phenomena that
can happen in multiuser databases when transactions interact. These phenomena are called
dirty reads, unrepeatable reads, phantom reads, and lost updates. Let’s see what each of these
terms means, and then how the ANSI isolation levels are defined.

Dirty Reads

A dirty read occurs when some SQL in a transaction reads data that has been changed by another
transaction, but the transaction changing the data has not yet committed its block of work.

As we discussed earlier, a transaction is a logical unit or block of work that must be atomic.
Either all the elements of a transaction occur or none of them occur. Until a transaction has
been committed, there is always the possibility that it will fail or be abandoned with a ROLLBACK
command. Therefore, no other users of the database should see this changed data before a COMMIT.

Table 9-2 illustrates what different transactions might see as the fname of the customer
with customer_id 15 when dirty reads are allowed and when they are not allowed.

Table 9-2. Dirty Reads

Transaction 1 Data Seen by
Transaction 1

Data Seen by Other
Transactions with Dirty
Reads Allowed

Data Seen by Other
Transactions with Dirty
Reads Prohibited

BEGIN

David David David

UPDATE customer SET fname='Dave'
WHERE customer_id = 15;

Dave Dave David

COMMIT

Dave Dave Dave

BEGIN

UPDATE customer SET fname = 'David'
WHERE customer_id = 15;

Dave

David David Dave

ROLLBACK

Dave Dave Dave

MatthewStones_4789C09.fm Page 256 Friday, March 4, 2005 6:44 PM

C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G 257

Notice how a dirty read has permitted other transactions to see data that has not yet been
committed to the database. This means they can see changes that are later discarded, because of
the ROLLBACK command.

■Note PostgreSQL never permits dirty reads.

Unrepeatable Reads

An unrepeatable read is very similar to a dirty read, but is more restrictively defined. An unre-
peatable read occurs where a transaction reads a set of data, then later rereads the data and
discovers it has changed. This is much less serious than a dirty read, but not quite ideal. An
illustration of the unrepeatable read process is shown in Table 9-3.

Notice the unrepeatable read means that a transaction can see changes committed by
other transactions, even though the reading transaction has not itself committed. If unrepeat-
able reads are prevented, other transactions do not see changes made to the database until
they themselves have committed changes.

By default, PostgreSQL permits unrepeatable reads, although as we will see later, we can
change this default behavior.

Table 9-3. Unrepeatable Reads

Transaction 1 Data Seen by
Transaction 1

Data Seen by Other
Transactions with
Unrepeatable Reads
Allowed

Data Seen by Other
Transactions with
Unrepeatable Reads
Prohibited

BEGIN BEGIN BEGIN

David David David

UPDATE customer SET fname =
'Dave' WHERE customer_id = 15;

Dave David David

COMMIT

Dave Dave David

COMMIT COMMIT

BEGIN BEGIN

SELECT fname FROM customer
WHERE customer_id = 15;

Dave Dave

MatthewStones_4789C09.fm Page 257 Friday, March 4, 2005 6:44 PM

258 C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G

Phantom Reads

Phantom reads are quite similar to unrepeatable reads, but occur when a new row appears in a
table while a different transaction is updating the table, and the new row should have been
updated but was not.

Suppose we had two transactions updating the item table. The first is adding one dollar to
the selling price of all items, and the second is adding a new item. This process is depicted in
Table 9-4.

What should the sell_price of the item added by Transaction 2 be? The INSERT statement
started before the UPDATE statement was committed; therefore, we might reasonably expect it
to be greater by one than the price we inserted. If a phantom read occurs, however, the new
record that appears after Transaction 1 determines which rows to UPDATE, and the price of the
new item does not get incremented.

Phantom reads are extremely rare, and almost impossible to demonstrate, so generally
you do not need to worry about them. By default, PostgreSQL will allow phantom reads.

Lost Updates

Lost updates are slightly different from the previous three cases, which are generally an appli-
cation-level problem and not related to the way the relational database works. A lost update,
on the other hand, occurs when two different changes are written to the database, and the
second update causes the first to be lost.

Suppose two users are using a screen-based application, which updates the item table.
This process is shown in Table 9-5.

Table 9-4. Phantom Reads

Transaction 1 Transaction 2

BEGIN BEGIN

UPDATE item SET sell_price = sell_price + 1;

INSERT INTO item(….) VALUES(…);

COMMIT

COMMIT

MatthewStones_4789C09.fm Page 258 Friday, March 4, 2005 6:44 PM

C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G 259

The sell_price change made by User 1 has been lost, not because there was a database
error, but because User 2 read the sell_price, “kept it” for a while, and then wrote it back to the
database, destroying the change that User 1 had made. The database has quite correctly
isolated the two sets of changes, but the application has still lost data.

There are several ways around this problem; which is the most appropriate depends on
individual applications. As a first step, applications should keep transactions as short as
possible, never holding them in progress for longer than is absolutely necessary. As a second
step, applications should write back only data that they have changed. These two steps will
prevent many occurrences of lost updates, including the mistake demonstrated in Table 9-5.

Of course, it is possible for both users to have been trying to update the sell_price; in
which case, a change would still have been lost. A more comprehensive way to prevent lost
updates is to encode the value you are trying to change in the UPDATE statement, as illustrated
in Table 9-6.

Table 9-5. Lost Updates

User 1 Data Seen by User 1 User 2 Data Seen by User 2

Attempting to change the
selling price from 21.95
to 22.55

Attempting to change the
cost price from 15.23 to
16.00

BEGIN BEGIN

SELECT cost_price,
sell_price FROM item
WHERE item_id = 1;

15.23, 21.95 SELECT cost_price,
sell_price FROM item
WHERE item_id = 1;

15.23, 21.95

UPDATE item SET cost_price
= 15.23, sell_price = 22.55
WHERE item_id = 1;

15.23, 22.55

COMMIT

15.23, 22.55

UPDATE item SET
cost_price = 16.00,
sell_price = 21.95
WHERE item_id = 1;

15.23, 22.55 16.00, 21.95

COMMIT

16.00, 21.95 16.00, 21.95

MatthewStones_4789C09.fm Page 259 Friday, March 4, 2005 6:44 PM

260 C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G

Although this is not a perfect cure, since it works only if the first transaction commits
before the second UPDATE statement is run, it does significantly reduce the risks of losing updates.

ANSI Isolation Levels

The ANSI standard defines different isolation levels a database may use as combinations of the
first three types of undesirable phenomena: dirty reads, unrepeatable reads, and phantom
reads. These levels are listed in Table 9-7.

Table 9-6. An Application Work-Around to Lost Updates

User 1 Data Seen
by User 1

User 2 Data Seen
by User 2

Attempting to change the selling price
from 21.95 to 22.55

Attempting to change the selling price
from 21.95 to 22.99

BEGIN BEGIN

Read sell_price WHERE item_id = 1 21.95 Read sell_price WHERE item_id = 1 21.95

UPDATE item SET cost_price = 15.23,
sell_price = 22.55 WHERE item_id = 1
AND sell_price = 21.95;

22.55 21.95

COMMIT

22.55

UPDATE item SET cost_price = 16.00,
sell_price = 21.95 WHERE item_id = 1
AND sell_price = 21.95;

Update fails with row not found, since
the sell_price has been changed

Table 9-7. ANSI Isolation Level vs. Undesirable Behavior

Isolation Level Definition Dirty Read Unrepeatable Read Phantom Read

Read Uncommitted Possible Possible Possible

Read Committed Not Possible Possible Possible

Repeatable Read Not Possible Not Possible Possible

Serializable Not Possible Not Possible Not Possible

MatthewStones_4789C09.fm Page 260 Friday, March 4, 2005 6:44 PM

C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G 261

You can see that as the isolation level moves from Read Uncommitted to the ultimate
Serializable level, the types of undesirable behavior that might occur are reduced.

Changing the Isolation level
By default, PostgreSQL’s isolation mode is set to READ COMMITTED, for the Read Committed level,
as listed in Table 9-7. The other mode available is SERIALIZABLE, for the Serializable level.

At the time of writing, PostgreSQL does not implement the intermediate level Repeatable
Read or the entry level Read Uncommitted. Generally, Read Uncommitted is such poor behavior
that few databases offer it as an option, and it would be a rare application that was brave (or
foolhardy!) enough to choose to use it. The intermediate level Repeatable Read provides added
protection only against phantom reads, which are extremely rare, so the lack of this level is of
no real consequence. It is common for databases to offer less than the full set of possibilities,
and providing Read Committed and Serializable is a good compromise solution.

You can change the isolation level by using the SET TRANSACTION ISOLATION LEVEL command,
which has the following syntax:

SET TRANSACTION ISOLATION LEVEL { READ COMMITTED | SERIALIZABLE }

Unless you have a very good reason to change it, we suggest you don’t adjust the default
isolation level of your PostgreSQL database.

Using Explicit and Implicit Transactions
Throughout this chapter, we have been explicitly using BEGIN and COMMIT (or ROLLBACK) to
delimit our transactions. Earlier in the book, before we knew about transactions, however, we
were happily making changes to our database without a BEGIN command to be seen.

By default, PostgreSQL operates in an auto-commit mode, sometimes referred to as
chained mode or implicit transaction mode, where each SQL statement that can modify data
acts as though it was a complete transaction in its own right. This is great for experimentation
on the command line, and for allowing new users to experiment without needing to learn too
much SQL. However, it’s not so good for real applications, where we want to have access to
transactions with explicit COMMIT or ROLLBACK statements.

In other relational database management systems that implement different modes, you
normally must issue an explicit command to change the mode; for example, SET CHAINED in
Sybase or SET IMPLICIT_TRANSACTIONS for Microsoft SQL Server.

In PostgreSQL, all you need to do is issue the command BEGIN, and PostgreSQL automatically
switches into a mode where the following commands are in a transaction, until you issue a
COMMIT or ROLLBACK statement.

The SQL standard considers all SQL statements to occur in a transaction, with the transaction
starting automatically on the first SQL statement and continuing until a COMMIT or ROLLBACK is
encountered. Thus, standard SQL does not define a BEGIN command. However, the PostgreSQL
way of performing transactions, with an explicit BEGIN, is quite common.

MatthewStones_4789C09.fm Page 261 Friday, March 4, 2005 6:44 PM

262 C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G

Locking
Most databases implement transactions, particularly when isolating different user transactions
from each other, using locks to restrict access to the data from other users. Simplistically, there
are two types of locks:

• A shared lock, which allows other users to read, but not update the data

• An exclusive lock, which prevents other transactions from even reading the data

For example, the server will lock rows that are being changed by a transaction until the
transaction is complete, and then the locks are released. This is all done automatically, usually
without users of the database even being aware that locking is happening.

The actual mechanics and strategies required for locking are highly complex, with many
different types of locks being used, depending on circumstances. The documentation for
PostgreSQL describes eight different types of lock permutations. PostgreSQL also implements
an unusual mechanism for isolating transactions using a multiversion model, which reduces
conflicts between locks and significantly improves its performance compared with other
schemes.

Fortunately, users of the database generally need to worry about locking only in two
circumstances: avoiding deadlocks (and recovering from them) and explicit locking by an
application.

Avoiding Deadlocks
What happens when two different applications both try to change the same data at the same
time? It’s easy to see—just start up two psql sessions and attempt to change the same row in
both of them. This process is depicted in Table 9-8.

At this point, both sessions are blocked, since each is waiting for the other to release.
This behavior is a clue as to why PostgreSQL defaults to a Read Committed mode of trans-

action isolation. There is a trade-off between concurrency, performance, and minimizing the
number of locks held on one side, and consistency and ideal behavior on the other. As you
increase the isolation level, the multiuser performance of your database will degrade, as indi-
cated in Figure 9-4.

Table 9-8. Deadlock

Session 1 Session 2

UPDATE row 14

UPDATE row 15

UPDATE row 15

UPDATE row 14

MatthewStones_4789C09.fm Page 262 Friday, March 4, 2005 6:44 PM

C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G 263

Figure 9-4. Performance traded against isolation level

As the behavior of the database becomes more ideal, the number of locks required increases,
the concurrency between different users decreases, and so overall performance falls. It’s an
unfortunate but inevitable trade-off.

In general, if two user sessions try to access the same row, there is no real impact on the
users, except the second user must wait for the first user’s access to complete. A much more
serious occurrence is when two sessions block each other.

Try It Out: Experiment with Deadlocks

Let’s experiment using the bpfinal database schema we designed at the end of Chapter 8. Start
two psql sessions, connected to bpfinal, and try the following sequence of commands:

Session 1 Session 2

BEGIN

BEGIN

UPDATE customer SET fname = 'D'
WHERE customer_id = 15;

UPDATE customer SET fname = 'B'
WHERE customer_id = 14;

UPDATE customer SET fname = 'Bill'
WHERE customer_id = 14;

UPDATE customer SET fname = 'Dave'
WHERE customer_id = 15;

MatthewStones_4789C09.fm Page 263 Friday, March 4, 2005 6:44 PM

264 C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G

You will find that both sessions block, and then after a short pause, you’ll see a message
similar to this in one of the sessions:

ERROR: deadlock detected
DETAIL: Process 2018 waits for ShareLock on transaction 2788; blocked by
 process 2017.
Process 2017 waits for ShareLock on transaction 2789; blocked by process 2018.
bpfinal=>

The session seeing the error will have its update canceled; the other session will continue.
The session that had the deadlock message has been rolled back, and the changes lost. The
other session can continue and execute a COMMIT statement to make the database changes
permanent (or a ROLLBACK to abandon the changes).

How It Works

What happened here was PostgreSQL detected a deadlock where both sessions were blocked
waiting for the other, and neither can progress. Session 1 first locked row 15, then Session 2
came along and locked row 14. Session 1 then tried to lock 14, but couldn’t proceed, because
that row was locked by Session 2, and Session 2 tried to update row 15, but couldn’t because
that row was locked by Session 1. After a short interval, PostgreSQL’s deadlock detection code
detected that a deadlock was occurring and automatically canceled the transaction.

There is no way to be sure which session PostgreSQL will choose to terminate in advance.
It will try to pick the one that it considers to have done the least work, but this is far from a
perfect science.

Applications can, and should, take steps to prevent deadlocks from occurring. The simplest
technique is the one we suggested earlier: keep your transactions as short as possible. The
fewer the rows and the tables involved in a transaction, and shorter the time the locks must be
held, the less chance there is for a conflict to occur.

The other technique is almost as simple: try to make application code always process
tables and rows in the same order. In our example, if both sessions had tried to update the rows
in the same order, there would not have been a problem. Session 1 would have been able to
update both its rows and complete, while Session 2 briefly paused, before continuing after
Session 1’s transaction completed. It’s also possible to write code that retries when a deadlock
occurs, but it is always better to design your application to avoid the problem, rather than code
a retry after a failure.

Explicit Locking
Occasionally, you may find the automatic locking that PostgreSQL provides is not sufficient for
your needs. In that case, you may need to explicitly lock some rows or perhaps an entire table.
You should avoid explicit locking if at all possible. The SQL standard does not even define a way
of locking a complete table. This option is a PostgreSQL extension (a very common extension
you will see in many databases).

It is possible to lock rows or tables only inside a transaction. Once the transaction completes,
either with a COMMIT or ROLLBACK, all locks acquired during the transaction will be automatically
released. There is also no way of explicitly releasing locks during a transaction, for the very

MatthewStones_4789C09.fm Page 264 Friday, March 4, 2005 6:44 PM

C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G 265

simple reason that releasing the lock on a row that is changed during a transaction might allow
another application to change it, which would prevent a ROLLBACK undoing the initial change.

Locking Rows

The most common need is to lock a number of rows prior to making changes to them. This can
be a way of avoiding deadlocks as well. By locking in advance all the rows that you know you
will need to change, you can ensure other applications will not create a conflict part of the way
through your changes.

To lock a set of rows, we simply issue a SELECT statement, appending FOR UPDATE, as in this
example:

SELECT 1 FROM item WHERE sell_price > 5.0 FOR UPDATE;

Provided that we are in a transaction, this will lock all the rows in item where the sell_price is
greater than 5. In this case, we didn’t need any rows returned, so we simply selected 1, as a
convenient way of minimizing the data returned.

Try It Out: Lock Rows

Suppose we wanted to lock all the rows in the customer table where the customer lived in Nicetown,
because we need to change the telephone code (perhaps because the area code is being split
into several new ones). We need to ensure we can access all the rows, but require some proce-
dural code to then process each row in turn, calculating what the new telephone code should
be. Again, we will try this with the bpfinal database we created in Chapter 8.

bpfinal=> BEGIN
BEGIN
bpfinal => SELECT customer_id FROM customer WHERE town = 'Nicetown' FOR
 UPDATE;
 customer_id

 3
 6
(2 rows)

bpfinal =>

At this point, the two rows with customer_id values 3 and 6 have been locked, and we can
test this by trying to UPDATE them in a different psql session:

bpfinal l=> BEGIN;
BEGIN
bpfinal => UPDATE customer SET phone = '023 3376' WHERE customer_id = 2;
UPDATE 1
 bpfinal => UPDATE customer SET phone = '023 3267' WHERE customer_id = 3;

At this point, the second session blocks, until we press Ctrl+C to interrupt it, or the first
session commits or rolls back.

MatthewStones_4789C09.fm Page 265 Friday, March 4, 2005 6:44 PM

266 C H A P T E R 9 ■ T R A N S A C T I O N S A N D L O C K I N G

How It Works

The first session, using SELECT … FOR UPDATE, causes the rows with customer_ id values 3 and 6
to be locked. Other sessions are able to update different rows in the customer table, but not
rows 3 and 6 until the transaction that locked them completes.

Locking Tables

In PostgreSQL, it is possible to lock tables, though we strongly recommend you avoid this if at
all possible, and stick to the SQL standard mechanisms for ensuring client isolation.

The syntax for locking tables is as follows:

LOCK [TABLE] table-name
LOCK [TABLE] table-name IN [ROW | ACCESS] { SHARE | EXCLUSIVE } MODE
LOCK [TABLE] table-name IN SHARE ROW EXCLUSIVE MODE

Generally, applications that require a table to be locked use the simplest syntax:

LOCK TABLE table-name

This is the same as the following:

LOCK TABLE table-name ACCESS EXCLUSIVE MODE

This prevents any application from accessing the table in any way. Although rather draconian,
this is probably the behavior you want in the rare circumstances when a table-level lock is
required. For more details about the different types of locks, see the PostgreSQL documentation.

Summary
In this chapter, we looked at transactions and locking. We saw how transactions are useful
even in single-user databases, because they allow us to group SQL commands together in a
single atomic unit, which either happens or is abandoned. We next covered how transactions
work in a multiuser environment.

We then moved on to look at what the ANSI SQL standard terms undesirable phenomena,
and how different levels of transaction consistency are defined by eliminating different types
of undesirable behavior. We also discussed how eliminating undesirable features may cause
performance degradation, so it’s necessary to strike a balance between ideal behavior and
acceptable performance.

Finally, we looked at locking. We saw how simple techniques can reduce the risk of dead-
locks, where two or more applications can become stuck waiting for each other to complete.
We also discussed explicit locking, which allows us to lock specific rows in a table, or indeed a
whole table, within a transaction.

Although transaction and locking are not always the most interesting of topics, a general
understanding of how they work is very important to writing well-behaved applications. We
want to build applications that not only perform correctly, but also interact in the database in
a way that minimizes the performance implications, to get the most out of PostgreSQL’s
multiuser capabilities.

In the next chapter, we will explore other ways to get the most out of PostgreSQL, extending
its behavior by using stored procedures and triggers.

MatthewStones_4789C09.fm Page 266 Friday, March 4, 2005 6:44 PM

267

■ ■ ■

C H A P T E R 1 0

Functions, Stored Procedures,
and Triggers

In this chapter, we are going to examine a few ways in which we can extend and enhance the
features of PostgreSQL introduced thus far. Much of the material in this chapter is specific to
PostgreSQL, although most commercial relational database management systems, such as
Oracle, include similar features.

To begin, we will look at more of the operators that PostgreSQL supports within SELECT
statements, including advanced matching and mathematical operators that allow us to construct
sophisticated tests in WHERE clauses. Next, we will see how operators are implemented as functions
in PostgreSQL and look at a few additional functions that add to the expressive power of our
SELECT statements.

PostgreSQL allows a developer to extend the database server functionality by creating new
features using the C programming language and loading them into the server when the database
starts up. An extension can be as simple as a single extra function or as complex as a complete
programming language in its own right. Several such extensions, known as loadable procedural
languages, are included with the standard PostgreSQL distribution. These languages allow us
to create our own functions, known as stored procedures, quickly and more easily than writing in C.
We will take a brief look at one of the loadable languages, PL/pgSQL, in this chapter. PL/pgSQL is
PostgreSQL-specific, but similar languages are available in other databases. For example,
Oracle has PL/SQL, and Sybase has Transact-SQL.

Stored procedures can also be executed automatically by the PostgreSQL server when
particular conditions arise within the database. For example, when a row deletion from a table
is attempted, a stored procedure can be executed to enforce referential integrity by deleting
related rows in other tables, or perhaps preventing the deletion from occurring. These autono-
mous actions are known as triggers, and we will see them in action here as well.

In this chapter, we will cover the following topics:

• PostgreSQL operators

• PostgreSQL built-in functions

• Procedural languages, specifically PL/pgSQL

• Stored procedures

• SQL functions

• Triggers

MatthewStones_4789C10.fm Page 267 Wednesday, February 23, 2005 6:47 AM

268 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

Operators
We have already seen and used some simple operators in SELECT statements, beginning in
Chapter 4. For example, we can use a numerical comparison operator to limit a selection to
rows that obey a condition, such as items that have a cost price greater than $4:

bpfinal=# SELECT * FROM item WHERE cost_price > 4;
 item_id | description | cost_price | sell_price
---------+---------------+------------+------------
 1 | Wood Puzzle | 15.23 | 21.95
 2 | Rubik Cube | 7.45 | 11.49
 5 | Picture Frame | 7.54 | 9.95
 6 | Fan Small | 9.23 | 15.75
 7 | Fan Large | 13.36 | 19.95
 11 | Speakers | 19.73 | 25.32
(6 rows)

bpfinal=#

Here, the operator > is applied between the cost_price attribute and a given number.
We can go further and include other attributes and operators to create more complex

conditions:

bpfinal=# SELECT * FROM item WHERE (sell_price*100)%100 = 99;
 item_id | description | cost_price | sell_price
---------+-------------+------------+------------
 4 | Tissues | 2.11 | 3.99
(1 row)

bpfinal=#

Here, we have used the multiplication operator in conjunction with a remainder to list the
items that have a selling price that ends in .99.

We can also use operators to perform regular expression matches:

bpfinal=# SELECT * FROM item WHERE description ~* '^[PR].*E$';
 item_id | description | cost_price | sell_price
---------+---------------+------------+------------
 2 | Rubik Cube | 7.45 | 11.49
 5 | Picture Frame | 7.54 | 9.95
(2 rows)

bpfinal=#

Here, the operator performs a case-insensitive regular expression match to discover which
items have descriptions that start with a lowercase or uppercase p or r and end with e.

MatthewStones_4789C10.fm Page 268 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 269

As you can see, there are many operators supported by PostgreSQL. In fact, if you count the
different variations of the same operator (that is, consider comparing integers as being distinct
from comparing floating-point numbers or comparing strings), there are around 600 operators
available.

Operator Precedence and Associativity
Many of the PostgreSQL operators look and act very much like the normal arithmetic operators
that you will find in many programming languages. The operators have a precedence hard-coded
into the parser that determines the order in which operators are executed in compound
expressions. As usual, the precedence can be overridden using parentheses.

PostgreSQL allows the use of operators and functions outside WHERE clauses of SELECT
statements:

bpfinal=# SELECT 1+2*3;
 ?column?

 7
(1 row)
bpfinal=# SELECT (1+2)*3 AS answer;
 answer

 9
(1 row)

bpfinal=#

Here, we can see that the result of the expression 1+2*3 is reported as 7, displayed as an unknown
column and given the name ?column? by default. In the second example, the operator precedence
is overridden and the result is named as answer.

Although most of the operators behave exactly as you might expect if you have programmed in
C or any other programming language, some of the operator precedence rules may be surprising.
As in C, the Boolean operators have a lower precedence than arithmetic operators, so parentheses
are often required to get the desired operator execution order. If in doubt, make the order
explicit with parentheses.

PostgreSQL operators also display associativity, either right or left, which determines the
order in which operators of the same precedence are evaluated. Arithmetic operators such as
addition and subtraction are left associative, so that 1+2-3 evaluates as if it had been written
(1+2)-3. Others, such as the Boolean equality operator, are right associative, so that x = y = z
is evaluated as x = (y = z).

Table 10-1 lists the lexical precedence (in descending order) of the most common
PostgreSQL operators.

MatthewStones_4789C10.fm Page 269 Wednesday, February 23, 2005 6:47 AM

270 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

■Note Older versions of PostgreSQL supported operators for calculating natural logarithms and anti-logarithms
(: and ;), but these are deprecated and have been removed from recent releases of PostgreSQL, including
8.0. Use the ln and exp functions instead.

Arithmetic Operators
PostgreSQL provides a range of arithmetic operators. The most common arithmetic operators
are listed in Table 10-2. All of these have the same precedence and are left associative.

Table 10-1. PostgreSQL Operator Precedence

Operator Associativity Meaning

:: Typecast (synonym for CAST)

[] Left Array selection

. Left Object (schema, table, column) selection

- Right Unary minus (integer negation)

^ Left Exponentiation

* / % Left Multiplicative operators

+ - Left Additive operators

IS Test (for TRUE, FALSE, UNKNOWN, and NULL)

ISNULL Test (for NULL)

NOTNULL Test (for non-NULL)

OR Left Logical disjunction

IN Test for membership of a set

BETWEEN Test for inclusion in a range

LIKE ILIKE SIMILAR Test for a string match

<> Test for inequality

= Right Test for equality

NOT Right Logical negation

AND Left Logical conjunction

All other operators User-defined and built-in operators not
listed here all have the same precedence

MatthewStones_4789C10.fm Page 270 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 271

There are also a number of unary arithmetic operators, shown in Table 10-3.

In general, the arithmetic operators work as they should. PostgreSQL will use the version of the
operator that matches the argument used. So, when you divide one whole number by another, you
will get a whole number result. When you divide a floating-point number by another, you will
get a floating-point result. As shown in Table 10-2, to force a floating-point result, one of the
arguments should be cast as a floating-point number.

Table 10-2. Common PostgreSQL Arithmetic Operators

Operator Example Meaning

+ 2+3 is 5 Addition

- 3-2 is 1 Subtraction

* 2*3 is 6 Multiplication

/ 3/2 is 1

3/2.0 is 1.5

3/2::float8 is 1.5

Division

% 22 % 7 is 1 Remainder (modulo)

^ 4^3 is 64 Raise to power (exponentiation)

& 14 & 23 is 6 Binary AND

| 14 | 23 is 31 Binary OR

14 # 23 is 25 Binary XOR

>> 128 >> 4 is 8 Shift right

<< 1 << 4 is 16 Shift left

Table 10-3. PostgreSQL Unary Operators

Operator Example Meaning

% %2.3 is 2 Truncate

! 4! is 24 Factorial

!! !!4 is 24 Factorial as a left operator

@ @(-2) is 2 Absolute value

|/ |/64 is 8 Square Root

||/ ||/64 is 4 Cube root

~ ~15 is –16 Binary NOT

MatthewStones_4789C10.fm Page 271 Wednesday, February 23, 2005 6:47 AM

272 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

Comparison and String Operators
PostgreSQL provides the usual array of comparison operators, such as less-than and greater-
than. These operators work on many of the types that PostgreSQL supports, so for example,
you can use the greater-than operator to test for alphabetical ordering of strings as well as relative
sizes of numeric values.

The result of a comparison operator is either true or false, which psql will display as t or f.
A listing of available comparison operators is presented in Table 10-4.

Strings have their own set of operators in PostgreSQL. There are operators for concate-
nating strings and for matching strings according to various rules. They are summarized in
Table 10-5.

Table 10-4. PostgreSQL Comparison Operators

Operator Example Meaning

< 2 < 3

'axy' < 'azz'

Less than

<= 2 <= 3 Less than or equal to

<>

!=

2 <> 3

2 != 3

Not equal to

= 3 = 1+2 Equal to

> 3 > 2 Greater than

>= 3 >= 2 Greater than or equal to

Table 10-5. PostgreSQL String Operators

Operator Example Meaning

|| 'abc' || 'def' is 'abcdef' String concatenation

~~ 'xyzzy' ~~ '%zz%' Synonym for LIKE

!~~ 'xyzzy' !~~ '%aa%' Synonym for NOT LIKE

~ 'xyzzy' ~ 'y.*y' Regular expression substring match; use
leading ^ and trailing $ to anchor the
match to the beginning, end, or both

~* 'xyzzy' ~* '^X.*Y$' Regular expression match, case-insensitive

!~ 'xyzzy' !~ 'aa' Does not match (inverse of ~)

!~* 'xyzzy' !~* 'AA' Does not match, case-insensitive
(inverse of ~*)

MatthewStones_4789C10.fm Page 272 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 273

In a regular expression match, a string is compared to an expression similar to that used in
the UNIX grep utility or the Perl match operators.

Other Operators
PostgreSQL supports a whole host of additional operators for comparing and manipulating the
PostgreSQL-specific data types such as points, circles, time intervals, and IP addresses. For
more information, refer to Section II of the PostgreSQL documentation.

■Tip The PostgreSQL documentation can be installed as a set of HTML pages that can be viewed locally
with any web browser. Select file://usr/local/pgsql/doc/html/index.html or go online to
http://www.postgresql.org.

All of the operators are listed in the pg_operator table of the database, and psql can list all
of the operators and functions with the \do and \df internal commands.

Built-in Functions
PostgreSQL boasts a very long list of built-in functions that we can use in SELECT expressions.
A categorized summary of available functions follows:

• Functional equivalents to the operators presented in the preceding section

• Other mathematical functions

• Other functions for handling strings of characters

• Functions for handling dates and times

• Text-formatting functions

• Functions for the PostgreSQL geometric types such as point and circle

• IP address functions

The built-in functions (and user-defined ones) are recorded in a system table of the
PostgreSQL database, pg_proc. As at PostgreSQL version 8.0 and later, this table has more
than 1,700 entries.

In psql, you can list all functions and their arguments using the \df command. Also,
comments about any specific functions or group of functions can be displayed using the
\dd command.

MatthewStones_4789C10.fm Page 273 Wednesday, February 23, 2005 6:47 AM

274 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

Many built-in functions provide an equivalent function for each mathematical and logical
operator. Examples include int4shl and float8mul as the equivalent of the shift left operator
(<<) for integers and the multiplication operator (*) for floating-point values. Additional math-
ematical functions are listed in Table 10-6, all of which operate on floating-point numbers and
return a floating-point number, unless otherwise stated.

Trigonometric functions are supported, as listed in Table 10-7. All angular arguments and
results are in radians.

Table 10-6. Common PostgreSQL Mathematical Functions

Function Meaning

abs(x) Absolute value

degrees(r) Converts angular measures from radians to degrees

radians(d) Converts angular measures from degrees to radians

exp(x) Natural antilogarithm, raise e to a power

ln(x) Natural logarithm

log(x) Natural logarithm to base 10

log(b,x) Logarithm to a given base, b

mod(x,y) Remainder after dividing x by y (also has an integer version)

pi() Returns π

pow(x,y) Raises x to the power of y

random() Returns a random number between 0.0 and 1.0

round(x) Rounds to nearest whole number

round(x,d) Rounds to specified number of decimal places, d

trunc(x) Truncates to whole number (towards zero)

trunc(x,d) Truncates to specified number of decimal places, d

ceil(x) Returns smallest integer not less than given argument

floor(x) Returns largest integer not greater than given argument

sqrt(x) Square root

cbrt(x) Cube root

float8(i) Takes an integer argument and returns an equivalent float8

float4(i) Takes an integer argument and returns an equivalent float4

int4(x) Returns an integer, rounding if necessary

MatthewStones_4789C10.fm Page 274 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 275

PostgreSQL includes the standard SQL string functions, with their own syntax. These functions
are presented in Table 10-8. For these functions, a string can be of type char, varchar, or text.
PostgreSQL extends string-manipulation features with additional functions of its own. Refer to
the PostgreSQL documentation for more information.

An important formatting function worth mentioning here is the to_char function. It plays
the same role in PostgreSQL that printf does in C, handling all manner of formatting values for
printing or display. It will format a date and time value according to a date template, and can
format numeric values in many different ways (including roman numerals).

Table 10-7. PostgreSQL Trigonometric Functions

Function Meaning

sin Sine

cos Cosine

tan Tangent

cot Cotangent

asin Inverse sine

acos Inverse cosine

atan Inverse tangent

atan2 Two-argument arctangent, given a, b computes atan(a/b)

Table 10-8. Common PostgreSQL String Functions

Function Meaning

char_length(s)

character_length(s)

Length of a string

octet_length(s) Amount of storage consumed by a string

lower(s) Converts a string to lowercase

upper(s) Converts a string to uppercase

position(s1 in s2) Position at which s1 appears in s2

substring(s from n for m) Extracts a substring from s of length m starting at
position n

trim([leading | trailing | both] [s1] from s2) Removes characters s1 from string s2, either from
the start, the end, or both; removes spaces by default
if s1 not given

MatthewStones_4789C10.fm Page 275 Wednesday, February 23, 2005 6:47 AM

276 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

■Note For more information on all PostgreSQL functions, see the PostgreSQL documentation or browse the
regression tests distributed with the PostgreSQL source code.

Procedural Languages
As was mentioned in the chapter introduction, it is possible to define our own functions for use
within a PostgreSQL database. This is useful when we want to capture a particular calculation
or query and reuse it in a number of places.

The SQL needed to create a new function is CREATE FUNCTION, which has the following basic
syntax:

CREATE FUNCTION name ([ftype [, ...]])
 RETURNS rtype
 AS definition
 LANGUAGE 'langname'

The parts of the function definition do not need to be in this order, and a popular choice is
to state the language being used before the definition, like this:

CREATE FUNCTION name ([ftype [, ...]])
 RETURNS rtype
 LANGUAGE 'langname'
 AS definition

■Note There is another form of CREATE FUNCTION that allows compiled object code to be incorporated
into the PostgreSQL server, typically created from C source code.

A very simple function that increments its single argument might be written like this:

CREATE FUNCTION add_one(int4) RETURNS int4 AS '
 BEGIN
 RETURN $1 + 1;
 END;
' LANGUAGE 'plpgsql';

The definition of the function is given as a single string that may span several lines and may
be written in any language supported by PostgreSQL as a loadable procedural language. In this
case, PL/pgSQL is used, as indicated by the LANGUAGE clause specifying plpgsql. PL/pgSQL is
a programming language developed specifically for programming stored procedures for
PostgreSQL.

MatthewStones_4789C10.fm Page 276 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 277

■Note The loadable procedural languages PL/Tcl, PL/Perl, and PL/Python allow you to create PostgreSQL
extensions in the Tcl, Perl, and Python programming languages, respectively.

To handle a procedural language, PostgreSQL must first be extended by including a handler
function typically written in C. For PL/pgSQL, a handler is included in the distribution as a
shared library.

When a function is created, its definition is stored within the database. When the function
is called for the first time, the definition is compiled by the handler into an executable form and
then executed. This means that we may not be advised of an error in our function until we try
to use it.

Before writing our own functions in our loadable language of choice, we first must arrange
for PostgreSQL to support the language. This is what we will do next for PL/pgSQL.

Getting Started with PL/pgSQL
We will use PL/pgSQL as the loadable procedural language for the sample stored procedures in
this chapter. In a standard PostgreSQL installation, the handler function for PL/pgSQL is
included in the shared library plpgsql.so in the directory /usr/local/pgsql/lib for UNIX and
Linux, or plpgsql.dll in the \lib folder of an installation on Microsoft Windows.

Each PostgreSQL database on a server has its own list of procedural languages. When we
install a procedural language, we can choose which of the databases will run stored procedures
in that language. This is partly for security, as it is possible to create functions that will either
accidentally or maliciously consume CPU resources by, for example, looping indefinitely. This
could form the basis of a denial-of-service (DoS) attack by making the server so busy it cannot
respond to new requests. Therefore, by default, PostgreSQL databases do not have procedural
languages installed. To use PL/pgSQL, we need to install the handler ourselves.

■Note The database administrator can add languages to the template1 database, in which case, all new
databases will have those languages by default.

To install PL/pgSQL for our bpfinal database, we could use the CREATE LANGUAGE command
within psql and load the shared library, creating the handler function explicitly. This is complex
enough to warrant a helper script, and one is provided in the PostgreSQL installation. The
command we need is createlang:

createlang [options] langname dbname

The options are listed in Table 10-9.

MatthewStones_4789C10.fm Page 277 Wednesday, February 23, 2005 6:47 AM

278 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

Normal users cannot add languages to databases, so we will usually connect as the postgres
superuser:

$ createlang -U postgres plpgsql bpfinal

We can check that the language is present by listing languages with createlang, or by
querying the system table pg_language with psql or pgAdmin:

$ createlang -l bpfinal
Procedural Languages
 Name | Trusted?
---------+----------
 plpgsql | yes

$ psql -d bpfinal

bpfinal=# SELECT * FROM pg_language;
 lanname | lanispl | lanpltrusted | lanplcallfoid | lanvalidator | lanacl
----------+---------+--------------+---------------+--------------+---------------
 internal | f | f | 0 | 2246 |
 c | f | f | 0 | 2247 |
 plpgsql | t | t | 17601 | 17602 |
 sql | f | t | 0 | 2248 | {=U/postgres}
(4 rows)

bpfinal=#

■Note createlang can be used to install other procedural languages. The command to install Pl/Tcl, for
example, is createlang pltcl.

Table 10-9. createlang Script Options

Option Meaning

-h, --host=hostname Specifies the database server host

-p, --port=port Specifies the database server port

-U, --username=username Specifies username to connect as

-W, --password Prompts for password

-d, --dbname=dbname Sets the database to install language in

-L, --pglib=directory Finds language interpreter file in directory

-e, --echo Shows commands being sent to the server

-l, --list Shows a list of currently installed languages

MatthewStones_4789C10.fm Page 278 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 279

Superusers can remove support for languages from databases by executing DROP LANGUAGE
from within psql:

bpfinal=# DROP LANGUAGE 'plpgsql';
DROP LANGUAGE

bpfinal=#

Try It Out: Create a First Stored Procedure

We are now ready to begin working with PL/pgSQL stored procedures by writing our own
functions. Let’s start by checking that everything works by implementing the add_one function
shown earlier:

bpfinal=# CREATE FUNCTION add_one (int4) RETURNS int4 as '
bpfinal'# BEGIN return $1 + 1; end;' language 'plpgsql';
CREATE FUNCTION
bpfinal=# SELECT add_one(2) AS answer;
 answer

 3
(1 row)

bpfinal=#

How It Works

The CREATE FUNCTION command stores the definition of the function add_one written in PL/pgSQL
to the database. It is executed when the SELECT expression is evaluated. Note that PL/pgSQL
keywords such as BEGIN and LANGUAGE are not case-sensitive and the layout of the command
does not matter. We could have defined the function like this:

bpfinal=# CREATE function
bpfinal-# add_one(int4) RETURNS int4
bpfinal-# AS '
bpfinal'# BEGIN
bpfinal'# RETURN $1 + 1;
bpfinal'# END;
bpfinal'# '
bpfinal-# LANGUAGE 'plpgsql';
CREATE FUNCTION

bpfinal=#

Function Overloading
PostgreSQL considers functions to be distinct if they have different names, if they have a
different number of parameters, or if their parameters have different types. We can create
further add_one functions that deal with different types if we wish. Consider what happens
when we use our add_one function on a floating-point value:

MatthewStones_4789C10.fm Page 279 Wednesday, February 23, 2005 6:47 AM

280 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

bpfinal=# SELECT add_one(3.1);
ERROR: function add_one(numeric) does not exist
HINT: No function matches the given name and argument types. You may need to add
explicit type casts.

bpfinal=#

PostgreSQL returns an error, because it could not locate a version of the add_one function
that takes a floating-point value as its parameter.

■Note Earlier versions of PostgreSQL would have executed this add_one function by automatically
converting the floating-point value to an integer. The value 3.1 would have been rounded down to 3, and the
function would have returned 4.

If we wish to have an increment function for floating-point numbers, we just need to
create another definition of add_one:

bpfinal=# CREATE FUNCTION
bpfinal-# add_one(float8) RETURNS float8
bpfinal-# AS '
bpfinal'# BEGIN
bpfinal'# RETURN $1 + 1;
bpfinal'# END;
bpfinal'# '
bpfinal-# LANGUAGE 'plpgsql';
CREATE FUNCTION
bpfinal=# SELECT add_one(3.1);
 add_one

 4.1
(1 row)

bpfinal=#

This time, we get the result we want because PostgreSQL can find and execute an appro-
priate version of the add_one function. This behavior, known as function overloading, can be
quite useful, but also fairly confusing. To keep the functions distinct, we must refer to them in
a way that indicates their parameters. In this case, we have two functions that we can refer to
as add_one(int4) and add_one(float8).

■Tip A more convenient way to create functions is to edit script files containing function definitions and to
use the psql \i command to read them.

MatthewStones_4789C10.fm Page 280 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 281

Listing Functions
If we need to see the source code for our functions once they have been loaded into the data-
base, we can use the psql \df+ internal command or query the table used for storing procedures,
which is the pg_proc table:

bpfinal=# SELECT prosrc FROM pg_proc WHERE proname = 'add_one';
 prosrc

begin
 return $1 + 1;
end;

begin
 return $1 + 1;
end;

(2 rows)

bpfinal=#

Deleting Functions
Functions can be dropped from a database with DROP FUNCTION. We must be sure to specify the
correct version of a function for overloaded functions, and to drop all versions of a function if
we want to remove the function completely:

bpfinal=# DROP FUNCTION add_one(int4);
DROP FUNCTION
bpfinal=# DROP FUNCTION add_one(float8);
DROP FUNCTION

bpfinal=#

Quoting
One slight complication that arises when using PL/pgSQL for stored procedures concerns
quoting. The entire function definition is given to the CREATE FUNCTION command as a single
quoted string. This means that if we have single quotes within our function definition, they
must be escaped. We do this by using two quotes together to stand for a quote within a string.
If our procedure uses a quoted string with quotes embedded and already escaped, we must
escape those as well. It is possible to end up needing a row of four consecutive quotes (or
more). Here is an example:

create function ... as ' ... return ''string with a single '''' in it ''; ...' ...

MatthewStones_4789C10.fm Page 281 Wednesday, February 23, 2005 6:47 AM

282 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

Thankfully, in PostgreSQL version 8.0 and later, the feature called dollar quoting is avail-
able. Similar to the way that Perl and the UNIX/Linux shells work, dollar quoting allows us to
choose a string to use in place of an opening and closing quote. By choosing a suitable string
that does not occur in our procedure, we do not need to use any escapes. A dollar quote is a
string of zero or more characters between $ characters. So, the previous example looks like this:

create function ... as $$... return 'string with a single '' in it '; ... $$...

If we have the string $$ in our procedure, we can choose a different dollar quote:

create function ... as $WHAT$... return 'string with a $$ in it '; ... $WHAT$...

The examples in this chapter from now on will use dollar quoting. If you are using a version of
PostgreSQL before 8.0, we suggest that you upgrade to the latest version. Otherwise, you will
need to use traditional quoting.

Anatomy of a Stored Procedure
Now that we have seen how to create, execute, and drop a sample stored procedure, it is time
to move on to consider the construction of PL/pgSQL stored procedures in more detail.

PL/pgSQL is a block-structured language, like Pascal or C, with variables having declarations
and block scope. Each block has an optional label; it may have some variable declarations, and
encloses statements that make up the block between BEGIN and END keywords. The syntax for a
block is as follows:

[<<label>>]
[DECLARE declarations]
BEGIN
 statements
END;

■Note PL/pgSQL is case-insensitive. All keywords and variable names may be written in either case.

A PL/pgSQL function is defined with a CREATE FUNCTION statement with a block as the defi-
nition part, enclosed in quotes (either single quotes or dollar quotes).

-- For all PostgreSQL versions
CREATE FUNCTION name ([ftype [, ...]])
 RETURNS rtype
 AS 'block definition'
 LANGUAGE 'plpgsql';

MatthewStones_4789C10.fm Page 282 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 283

-- For PostgreSQL 8.0 and later
CREATE FUNCTION name ([[arg] ftype [, ...]])
 RETURNS rtype
 AS $$
 block definition
 $$ LANGUAGE plpgsql;

Within the definition, as shown in our examples, a double dash (--) introduces a comment
that extends to the end of the line and will be ignored. We’ll look at using comments shortly.

Function Arguments
A PL/pgSQL function can take zero or more parameters, and the types of the parameters are
given in parentheses after the function name. The types are built-in PostgreSQL types, such as
int4 or float8. All stored procedures must return a value, and the return type is specified in the
RETURNS clause of the function definition.

Within a function body, the parameters of the function are referred to as $1, $2, and so on,
in the order they are defined. We will see later that it is possible to give the parameters names
using an ALIAS declaration. In PostgreSQL 8.0, it became possible to give names to parameters
where they are declared.

Consider this simple stored procedure that provides a floating-point geometric average of
two integers:

-- geom_avg
-- get a geometric average of two integers
create function geom_avg(int4, int4) returns float8 as $$
begin
 return sqrt($1 * $2::float8);
end;
$$ language plpgsql;

Using parameter naming in PostgreSQL 8.0, we can declare the same function like this:

-- geom_avg
-- get a geometric average of two integers
create function geom_avg(a int4, b int4) returns float8 as $$
begin
 return sqrt(a * b::float8);
end;
$$ language plpgsql;

Notice that we have cast one of the integer values to a floating-point value so that we are
certain to pass a floating-point result of the multiplication to the sqrt function. If we do not do
this, we will run the risk of getting an error saying that the function sqrt(int4) does not exist,
as was the case before version 8.0 of PostgreSQL. Where functions are overloaded, the use of a
cast will ensure that we call the desired version of the function.

MatthewStones_4789C10.fm Page 283 Wednesday, February 23, 2005 6:47 AM

284 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

Comments
As you can see from the examples so far, PL/pgSQL allows comments to be included in function
definitions. In fact there are two types of comments: single-line comments and block comments.

A standard SQL single-line comment is introduced by two dashes (--). Everything following
the two dashes up to the end of the line is ignored:

-- This is a single line comment
create -- comments can
function -- come anywhere, and extend to the end of the line

Block comments are used to introduce larger blocks of text as comments or for temporarily
removing sections of code not required. The syntax is the same as C and C++, with blocks of
comments being surrounded by /* and */:

/*
 This is a block comment used to describe
 the use and behavior of the following function
*/
create function blah() returns integer as $$
begin
 /* comment out call to func
 func();
 */
 return 1;
end;
$$ language plpgsql;

Block comments cannot be nested, but you can use single-line comments to prevent the
block comment delimiters from being interpreted as a block comment.

Declarations
PL/pgSQL functions can declare local variables for use within the function. Each variable has a
type that can be one of the PostgreSQL built-in types, a user-defined type, or a type that corre-
sponds to a row in a table.

Variable declarations for a function are written in the DECLARE section of a function definition
or a block within a function. As is usual with block-structured languages such as C and C++,
variables declared for a block are visible only within that block or blocks within that block. Variables
declared in an inner block with the same name as a variable outside that block hide the outer
block’s variable:

DECLARE
 n1 integer;
 n2 integer;
BEGIN
 -- can use n1 and n2 in here
 n2 := 1;
 DECLARE
 n2 integer; -- hides the earlier n2
 n3 integer;

MatthewStones_4789C10.fm Page 284 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 285

 BEGIN
 -- can use n1, n2 and n3 in here
 n2 := 2;
 END;
 -- n3 no longer available here
 -- n2 still has value 1 here
END;

All variables used in a function must be declared before they can be used, except for loop
control variables that we will meet later. A variable may not have the same name as a PL/pgSQL
keyword, which are reserved. Table 10-10 lists the PostgreSQL PL/pgSQL keywords.

There are several ways to declare a variable, depending on its intended use. These decla-
ration variations are discussed next.

ALIAS

The simplest declaration is an ALIAS declaration that gives a name to a positional parameter to
a function. This helps us to write slightly more meaningful code, and code that is more robust
against changes in parameter numbers and ordering. The ALIAS declaration has this syntax:

Table 10-10. PostgreSQL PL/pgSQL Keywords

alias assign begin

close constant cursor

debug declare default

diagnostics dotdot else

elsif end exception

execute exit fetch

for from get

if in info

into is log

loop next not

notice null open

or perform raise

rename result_oid return

return_next reverse row_count

select then to

type when warning

while

MatthewStones_4789C10.fm Page 285 Wednesday, February 23, 2005 6:47 AM

286 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

name ALIAS FOR $n;

A new variable called name is made available, which acts as another name for the specified
positional parameter. For example, we might have written the geom_avg function as follows:

create function geom_avg(integer, integer) returns float8 as '
declare
 first alias for $1;
 second alias for $2;
begin
 return sqrt(first * second::float8);
end;
' language 'plpgsql';

As noted earlier, in PostgreSQL 8.0 we can create aliases for the positional parameters
automatically by naming them in the functional declaration. The following definition is equiv-
alent to the previous one:

create function geom_avg(first integer, second integer) returns float8 as $$
begin
 return sqrt(first * second::float8);
end;
$$ language plpgsql;

RENAME

It is also possible to rename variables with a RENAME declaration. This can be useful inside
trigger functions that we will see later, but is generally not recommended, as it can make code
difficult to read. The syntax of a RENAME declaration is as follows:

RENAME original TO new;

A Simple Variable Declaration

A simple variable is declared by giving it a name, a type, and optionally an initial value. Here is
the syntax:

name [CONSTANT] type [NOT NULL] [{ DEFAULT | := } value];

The CONSTANT modifier declares that the variable may not be changed. It must, therefore,
include an initial value in its declaration.

The NOT NULL clause instructs PostgreSQL to raise a runtime error if the variable is ever
given a NULL value.

The initial value does not need to be a constant, and it is evaluated and assigned each time
the function is called or when the block in which the variable is declared is entered. For example,
giving an initial value of now for a timestamp variable would result in the variable taking the
current time when it is executed, not when it was compiled.

The type may be a PostgreSQL built-in type; that is, you can declare variables with the same
data type or structure of another database item. The advantage of specifying the variable’s type
in this indirect fashion is that the stored procedure code remains correct, even when changes
are made in the database. The syntax is as follows:

MatthewStones_4789C10.fm Page 286 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 287

builtintype
variable%TYPE
table.column%TYPE

Here are some examples of variable declarations:

n integer := 1;
mypi constant float8 := pi();
pizza_pi mypi%TYPE;
mydesc item.description%type := 'extra large size pizza';

In the example, the declaration of mydesc will result in a variable suitable for handling the
description column in the item table of our sample database. If that column were defined as
char(64) when we declared the variable, but later changed to a char(80), the code using mydesc
would still work, and PostgreSQL would create the correct type of variable.

■Note We have assumed dollar quoting for the examples here. Using single quoting instead, we would need
to have double-quoted the string we initialize mydesc with, as this declaration will be appearing inside a
single-quoted string as part of a function definition.

A Composite Variable Declaration

A composite variable is one that corresponds to a complete row in a particular table. It has
fields that correspond to each column in the table. We can declare and use composite variables
in our stored procedures, either as rowtype or record.

To declare a composite variable, we use the rowtype declaration syntax as follows:

name table%rowtype;

The result of this declaration will be a variable that itself has fields, one for each column in
the table on which it is based. Consider the following:

contact customer%rowtype;

This will create a variable called contact with fields corresponding to columns in the customer
table. To use the fields, we use the syntax variable.field. Here is an example code fragment:

DECLARE
 contact customer%rowtype;
 address text;
BEGIN
 contact.zipcode := 'XY1 6ZZ';
 contact.fname := NULL;
 address := contact.addressline || contact.town;
...
END;

MatthewStones_4789C10.fm Page 287 Wednesday, February 23, 2005 6:47 AM

288 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

A second kind of composite type is the record type. This is a type that acts much like a
rowtype, but is not based on a particular table when it is defined. The record will have fields that
match whatever is assigned to the record at runtime. Records are useful in code that must work
as triggers that are called from different tables, such as in a general-purpose procedure used to
log row deletions. They can also be used to store the results of SELECT statements in a general
way. A record declaration is very simple:

name record;

We will see more of records when we cover assignment via selections and in triggers.

Assignments
PL/pgSQL variables are assigned new values in assignment statements. The syntax for an
assignment is as follows:

reference := expression;

reference is a variable name or field in a composite type, such as a rowtype or record. The
expression may be a constant; another variable; or a field reference of a complex expression
constructed with operators, casts, and function calls. Here are some examples of assignments:

n1: = 23;
long_variable_names_are_OK := (n1 + 45)/2;
f2 := add_one(n1)::float8 * sqrt(2.0);

/* Composite types may be assigned one field at a time
 by referring to individual fields: */

contact.zipcode := 'AB12 3CD';

SELECT INTO Statement

An alternative assignment mechanism is an extension to SELECT. We can assign a variable, a list
of variables, an entire row type variable, or a record with a SELECT INTO statement. The syntax is
an extension of the normal SQL SELECT:

SELECT expressions INTO target [FROM ...];

Some simple examples of using SELECT in place of an assignment operator follow:

SELECT sqrt(2.0) INTO sqrt2;
SELECT add_one(n1) INTO n1;
SELECT 1,2,3,4 INTO n1, n2, n3, n4;
SELECT 'Mole', 'Adrian' INTO contact.lname, contact.fname;

MatthewStones_4789C10.fm Page 288 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 289

We can assign an entire rowtype at once, if we specify values for each column in the correct
order:

DECLARE
 product item%rowtype;
BEGIN
 select NULL, 'Widget', '1.45', '1.99' into product;
END;

Where assigned values and variables are of different types, PostgreSQL will apply appropriate
casts where it can. In the preceding example, the cost and sell prices are of type numeric(7,2),
but they are successfully assigned from string values.

Assignments are executed by the PostgreSQL server as SELECT statements, even when
the := operator form is used. We can use the power of SELECT to assign variables based on the
content of the database by including a FROM clause and optional WHERE conditions:

SELECT * INTO product FROM item WHERE item_id = 9;

We must take care that the SELECT returns only one row, because additional rows will be
silently discarded; only the first returned row is assigned to variables listed. We will see a little
later that we can arrange for code to be executed for each row in a SELECT that returns
multiple rows.

It is possible that a SELECT will return no rows; in that case, the assignment will not be
performed. To detect this case, we can use the PostgreSQL special Boolean variable, called
FOUND, set during an assignment using SELECT INTO:

SELECT * INTO product FROM item WHERE description ~~ '%Cube%';
IF NOT FOUND THEN
-- take some recovery action
END IF;

PERFORM

In some cases, we may not wish to capture the result of a SELECT, possibly if it is used to call a
function with side effects. In this case, we can evaluate the expression or query and discard the
result with PERFORM:

PERFORM query;

The PERFORM statement essentially executes the SELECT query and ignores the result.

Execution Control Structures
PL/pgSQL provides structures for controlling the flow of execution within a function. These are
the return, conditional branch, and loop statements.

MatthewStones_4789C10.fm Page 289 Wednesday, February 23, 2005 6:47 AM

290 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

Returning from Functions

Returning a value from a function is accomplished by using a RETURN statement:

RETURN expression;

Processing for the function stops after the expression has been evaluated. The value of the
expression is made available to the caller of the function as the function result. The value must
be compatible with the return type declared for the function, and it will be cast if necessary.

In PL/pgSQL, a function must return a value, and a runtime error will occur if the end of
the outermost block of a function is reached without executing a RETURN.

Exceptions and Messages

A function’s execution can also be stopped if some condition arises that makes it impossible to
continue. Rather than return a value, the function may raise an exception. An exception causes
PostgreSQL to write an entry in the log, and it can cause a stored procedure to terminate immedi-
ately. The RAISE statement logs the exception, which can be one of several levels of seriousness.

RAISE level 'format' [, variable ...];

PostgreSQL defines several levels for exceptions, as listed in Table 10-11.

The DEBUG level is useful for capturing additional information during development. The
NOTICE level provides warnings for nonfatal errors. The warnings are made available to client
applications, if required, by the NOTIFY mechanisms. The EXCEPTION level is used for fatal errors,
where the stored procedure is unable to continue. For more information on configuring the
behavior of exceptions, refer to the PostgreSQL documentation.

The format string is used to lay out an error message. Within this string, each % character is
replaced in turn by the values of the variables. Unlike printf in C, you may not use expressions
in a RAISE statement, only identifiers.

Consider the following:

RAISE DEBUG 'The value of n is %', n;

This results in a log entry in the PostgreSQL log file (on Linux this is often /usr/local/
pgsql/data/postmaster.log) that reads something like this:

DEBUG: The value of n is 4

Table 10-11. PostgreSQL Exception Levels

Level Behavior

DEBUG, LOG, INFO Writes a message in the log (usually suppressed)

NOTICE, WARNING Writes a message in the log and sends it to the application

EXCEPTION Writes a message in the log and terminates the stored procedure

MatthewStones_4789C10.fm Page 290 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 291

Here is a sample procedure:

create function scope() returns integer AS $$
DECLARE
 n integer := 4;
BEGIN
 RAISE DEBUG 'n is %', n;
 return n;
END;
$$ language plpgsql;

If we execute this stored procedure within psql, no message is displayed:

bpfinal=# SELECT scope();
 scope

 4
(1 row)

bpfinal=#

When we increase the seriousness level in the RAISE statement to NOTICE, we do see a
message from psql, as well as in the log file:

bpfinal=# SELECT scope();
NOTICE: n is 4
 scope

 4
(1 row)

bpfinal=#

Finally, at level EXCEPTION, the stored procedure terminates prematurely with an error:

bpfinal=# SELECT scope();
ERROR: n is 4

bpfinal=#

Conditionals

PL/pgSQL supports several types of conditionals, which are constructs that execute one of two
or more sets of statements, or return one of two or more results, depending on a test. These are
probably the most useful parts of PL/pgSQL.

IF-THEN-ELSE

The most common conditional is the IF statement, similar to many other programming
languages. It has the following syntax:

MatthewStones_4789C10.fm Page 291 Wednesday, February 23, 2005 6:47 AM

292 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

IF expression
THEN
 statements
[ELSE
 statements]
END IF;

If the expression evaluates to true, the statements in the THEN part of the IF are executed.
Otherwise, if there is an (optional) ELSE part, the statements therein are executed.

As in other programming languages, IF statements can be nested by including another
IF statement inside the THEN or ELSE parts.

NULLIF and CASE

There are also two SQL conditional functions that return values depending on a test. These are
NULLIF and CASE, and they can be used in stored procedures and regular SQL in PostgreSQL.

The NULLIF function returns NULL if an input matches a specified value, and returns the
input unchanged if not. It has the following syntax:

NULLIF(input, value)

This returns NULL if the test input = value is true; otherwise, it returns input.
The CASE function chooses one of a number of values, depending on an input value.

The syntax is as follows:

CASE
 WHEN expression
 THEN expression
 ...
ELSE expression
END;

There may be as many WHEN/THEN pairs as needed. The expression as a whole returns the
result of evaluating the expression in the THEN part corresponding to the first WHEN expression to
yield true. If no WHEN parts match, the ELSE expression is evaluated. For example, the following
will set res to 5, 6, or 7, depending on whether n2 is 1, 2, or some other value:

res := CASE
 WHEN n2 = 1
 THEN 5
 WHEN n2 = 2
 THEN 6
 ELSE 7
END;

Loops

PL/pgSQL has a particularly rich set of looping mechanisms, also known as iterative control
structures, which provide ways to execute statements a number of times.

MatthewStones_4789C10.fm Page 292 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 293

The simplest loop is one that is uncontrolled, and unless terminated with an EXIT statement,
will run indefinitely:

[<<label>>]
LOOP
 statements
END LOOP;

All of PL/pgSQL LOOP constructs may be labeled, as can BEGIN ... END blocks. This label is
used as a target for an EXIT statement that causes the specified loop to be terminated (for
readers familiar with C, this would be equivalent to a multilevel version break—something that
C lacks):

EXIT [label] [WHEN expression];

This causes the LOOP labeled with label to be terminated, while execution continues at the
next statement after the end of the loop. The label must refer to the current LOOP or a containing
LOOP. If no label is given, the current loop is terminated. If a WHEN clause is given, the EXIT is not
performed unless expression evaluates to true.

Here is an example of an indefinite loop:

<<indefinite>>
LOOP
 n := n + 1;
 EXIT indefinite WHEN n >= 10;
END LOOP;

WHILE Loop

The WHILE loop is a structure that provides an alternative to the indefinite loop. It executes a set
of statements for as long as a condition remains true. The syntax is as follows:

[<<label>>]
WHILE expression
LOOP
 statements
END LOOP;

FOR Loop

We can arrange to execute a loop a fixed number of times with a FOR loop:

FOR name IN [REVERSE] from .. to
LOOP
 statements
END LOOP;

This type of loop executes its body once for each value in the range given by the integer
expressions from and to. A new variable is created for the loop and is called name. It takes each
of the values in the range in turn, incrementing by one each time the loop body is executed.

MatthewStones_4789C10.fm Page 293 Wednesday, February 23, 2005 6:47 AM

294 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

If REVERSE is specified, the loop runs in the opposite direction, with the variable name being
decremented.

Here is a simple example of a FOR loop in action:

FOR cid IN 1 .. 15
LOOP
 SELECT * INTO row FROM customer
 WHERE customer_id = cid;
 -- process a customer
END LOOP;

This loop executes 15 times, with the variable cid taking the values 1 through 15, selecting
the customers one at a time into a row variable. The lower and upper bounds on the loop variable
may be expressions, so we might try to scan the entire customer table, rather than just the first 15,
as follows:

SELECT COUNT(*) INTO ncustomers FROM customer;
FOR cid IN 1 .. ncustomers
...

A neater solution is an alternative form of the FOR loop that allows us to execute a loop once
for each row returned by an arbitrary SELECT:

FOR row IN SELECT ...
LOOP
 statements
END LOOP;

For each of the rows returned by the SELECT, the row variable is assigned and the statements
executed. The variable used to store the row must have been previously declared, either as a
record or a rowtype. The last row processed will still be available when the loop ends or is termi-
nated with an EXIT.

As an example, the following code fragment prints the family names of all our customers
when run in psql:

DECLARE
 row record;
BEGIN
 FOR row IN SELECT * FROM customer
 LOOP
 RAISE NOTICE 'Family Name is %', row.lname;
 END LOOP;
...
END

Now that we have met all of the programming structures in PL/pgSQL, it is time to consider
putting some of them to use.

MatthewStones_4789C10.fm Page 294 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 295

Try It Out: Create a Stored Procedure

Suppose that we would like to think about using the sample database to help with ordering
more products from our suppliers as we run low on stock. We already have a stock table that
keeps track of the number of available items we have to sell. We would like to be able to use this
information to automatically raise orders on our suppliers.

The following is a stored procedure that takes the first step toward the goal of automated
reordering. The reorders function looks in the stock table for items that have a stock holding
of less than a given value. For each of these items, it writes a record in a new table, reorders.

-- Drop if necessary and create a temporary table for raising orders
drop table reorders;
create table reorders
(
 item_id integer,
 message text
);

-- reorders
-- scan the stock table to raise reorders of item low on stock
create function reorders(min_stock int4) returns integer as $$
declare

 reorder_item integer;
 reorder_count integer;
 stock_row stock%rowtype;
 msg text;
begin
 select count(*) into reorder_count from stock
 where quantity <= min_stock;
 for stock_row in select * from stock
 where quantity <= min_stock
 loop
 declare
 item_row item%rowtype;
 begin
 select * into item_row from item
 where item_id = stock_row.item_id;
 msg = 'order more ' ||
 item_row.description || 's at ' ||
 to_char(item_row.cost_price,'99.99');
 insert into reorders
 values (stock_row.item_id, msg);
 end;
 end loop;
 return reorder_count;
end;
$$ language plpgsql;

MatthewStones_4789C10.fm Page 295 Wednesday, February 23, 2005 6:47 AM

296 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

Save the above code in sproc.sql (or download it from the Apress web site at
http://www.apress.com).

When we create the function and execute it specifying a minimum stock level of 3, we get
a return result of 3, indicating that there are three items with a current stock level less than or
equal to 3:

bpfinal=# \i sproc.sql
DROP TABLE
CREATE TABLE
CREATE FUNCTION
bpfinal=# SELECT reorders(3);
 reorders

 3
(1 row)
bpfinal=#

The reorders table has been populated with the item identifiers of the three items we are
running low on:

bpfinal=# SELECT * FROM reorders;
 item_id | message
---------+-------------------------------------
 2 | order more Rubik Cubes at 7.45
 5 | order more Picture Frames at 7.54
 10 | order more Carrier Bags at .01
(3 rows)

bpfinal=#

We can verify the result by querying the stock table:

bpfinal=# SELECT * FROM stock;
 item_id | quantity
---------+----------
 1 | 12
 2 | 2
 4 | 8
 5 | 3
 7 | 8
 8 | 18
 10 | 1
(7 rows)

bpfinal=#

How It Works

The reorders function uses a SELECT statement to retrieve all of the rows in the stock table that
have a low quantity level. A LOOP is used to iterate over the results of the SELECT. The body of the

MatthewStones_4789C10.fm Page 296 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 297

loop, which uses an INSERT to add to the reorders table, is executed for each row in the result
set. The return result from reorders is provided by another SELECT that counts the matching
rows in the stock table.

We could have used CREATE TEMPORARY TABLE to create the reorders table. In that case, the
table would automatically be dropped when we quit our database session. We used a CREATE
TABLE here so that the reorders table persists, which we might need if our reordering application
is separate from the stock check.

To complete the automated ordering system, we would need to extract the items and place
orders on the suppliers. We would also probably need to set minimum stock levels for each
product and add that to the item table. Similarly, the number of products to order may need to
be varied, perhaps on the basis of previous sales history or seasonal factors.

Dynamic Queries
Normally, database queries in a stored procedure are either fixed or simply parameterized. We
usually query a table for rows that have a specific column that matches a given value or insert
or update a row with new column values. This can be achieved with SELECT, INSERT, and UPDATE
statements using PL/pgSQL variables for the values to match or to use for column values:

INSERT INTO reorders VALUES (stock_row.item_id, msg);

There are some rare instances where we might like to be able to use the value of a variable
to specify a table or column name for an operation. PostgreSQL does not allow this, as it needs
to be able to optimize the query only once, rather than every time the query is executed.

However, PL/pgSQL supports a generic EXECUTE statement that allows us to execute an
arbitrary SQL statement, specified as a string:

EXECUTE query-string

The string for the query can be dynamically created within a stored procedure, using the
string-manipulation operators that we met earlier.

Special care needs to be taken to ensure that quoting of names and literal values is correct
within the string. To help with this, two functions are available. All table and column names
should be processed with quote_ident, which generates a string suitable for forming part of a
query. Values should be processed with quote_value.

Here is an example that creates a general-purpose update using variables for names
and values:

EXECUTE 'UPDATE '
|| quote_ident(tablename)
|| ' SET '
 || quote_ident(columnname)
 || ' = '
 || quote_literal(columnvalue)
 || ' WHERE '
...;

Note that this can be an inefficient way of accessing the database, as any queries that you
make must be interpreted and planned each time they need to be run.

MatthewStones_4789C10.fm Page 297 Wednesday, February 23, 2005 6:47 AM

298 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

Dynamic queries may also be used in FOR loops in place of the SELECT statement for iterating
across records. The syntax for this variant is as follows:

FOR row IN EXECUTE query-string
LOOP
 statements
END LOOP;

SQL Functions
Although in this chapter we have concentrated on PL/pgSQL as a method of creating stored
procedures, it is also possible to use SQL to create functions. To do this, you specify the proce-
dure language as 'sql' and use PostgreSQL SQL statements instead of PL/pgSQL.

As with PL/pgSQL, SQL functions take parameters, which can be referred to as $1, $2, and
so on. In the function definition, $1 is automatically replaced by the first argument of the function
call, $2 by the second argument, and so on. There are no control structures; you are restricted to
PostgreSQL SQL statements. While PL/pgSQL includes features such as variables, conditional
evaluation, and looping, SQL functions allow only argument substitution. The value returned
by a SQL function is the data returned by the last SQL statement executed, usually a SELECT.

The advantage of using SQL for stored procedures is that you do not need to load the
PL/pgSQL language handler into the database.

Although we have no looping, the following SQL function allows us to return more than
one row of data from our function.

CREATE FUNCTION sqlf(text) RETURNS setof

If we declare the function return type as setof type, and then use an appropriate SELECT,
we can arrange to return multiple rows. Here’s a function that returns all customers in a given
town:

CREATE FUNCTION sqlf(text) RETURNS setof customer AS $$
 SELECT * FROM customer WHERE town = $1;
$$ language sql;

When we run the function in psql, three rows are returned:

bpfinal=# SELECT sqlf('Bingham');
 sqlf
--
 (7,"Mr ",Richard,Stones,"34 Holly Way",Bingham,"BG4 2WE ","342 5982")
 (8,"Mrs ",Ann,Stones,"34 Holly Way",Bingham,"BG4 2WE ","342 5982")
 (11,"Mr ",Dave,Jones,"54 Vale Rise",Bingham,"BG3 8GD ","342 8264")
(3 rows)

bpfinal=#

Versions of PostgreSQL earlier than 8.0 could not handle entire rows at once in psql, and
would either give an error or return an OID referring to each row. All versions allow us to select

MatthewStones_4789C10.fm Page 298 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 299

a column at a time. To do this, we use the syntax column(function()) to extract the required
column. Here, we list the last names of customers in Bingham and give the results column a name:

bpfinal=# SELECT lname(sqlf('Bingham')) AS customer;
 customer

 Stones
 Stones
 Jones
(3 rows)

bpfinal=#

Triggers
In our stored procedure example, we developed a function that would allow us to discover
which products required restocking. The function wrote reminder messages into a reorders
table. For this to be useful, we would need to ensure that this procedure is executed on a regular
basis, perhaps once a day during an overnight batch process. It might be an advantage to find
a way of automatically making sure the reorders table is always up-to-date, without needing to
program our client applications to keep updating the entries.

In Chapter 8, we mentioned the concept of referential integrity—ensuring that the data in
our database makes sense at all times. For example, if we delete a customer, we need to ensure
that all of the order history relating to that customer is deleted at the same time. We have seen
constraints used to ensure that PostgreSQL enforces this kind of integrity.

For some applications, constraints are not quite enough. Suppose we want to prevent the
deletion of a customer when there are still outstanding orders for that customer, but allow
the deletion if all orders have been shipped.

We saw in Chapter 8 how column-level and table-level constraints could be used to enforce
more complex rules of data integrity, but these rules were essentially static. We could specify
that a related row must exist, or enforce a rule that you cannot delete while related rows exist.
However, we had no way of specifying complex conditions, such as that a row must not exist
unless some other condition is also true. Nor could we carry out more complex user-defined
actions when rows were added or deleted.

One solution to these problems is the use of triggers. With a trigger, we can arrange for
PostgreSQL to execute a stored procedure when certain actions are taken, like an INSERT, DELETE,
or UPDATE in a table.

The combination of stored procedures and triggers gives us the power to enforce quite
sophisticated business rules directly in the database. As we said in Chapter 8, the best place for
enforcing business rules about the data is in the database.

To use a trigger, we need to first define a trigger procedure. Then we create the trigger
itself, which defines when the trigger procedure will be executed.

MatthewStones_4789C10.fm Page 299 Wednesday, February 23, 2005 6:47 AM

300 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

Defining a Trigger Procedure
A trigger fires when a condition is met, and it executes a special type of stored procedure called
a trigger procedure. A trigger procedure is very similar to a stored procedure, but it is slightly
more restricted due to the manner in which it is called.

A trigger procedure is created as a function with no parameters and a special return type
of trigger.

■Note Versions of PostgreSQL before 7.3 used a return type of opaque in place of trigger. The opaque
return type is used for functions that return values which cannot be manipulated by PostgreSQL directly.

PostgreSQL will call a trigger procedure when changes are being made to a particular
table. The procedure must either return NULL or a row that matches the structure of the table
for which the trigger procedure has been called.

For AFTER triggers that are called following an UPDATE, it is generally recommended that a
trigger procedure return NULL. For BEFORE triggers, the return result is used to direct the update
about to be performed. If the trigger procedure returns NULL, the UPDATE is not performed. If a
data row is returned, it is used as the source for the UPDATE, giving the trigger procedure the
opportunity to change the data before it is committed to the database.

Creating Triggers
Triggers are created with the CREATE TRIGGER command, which has the following syntax:

CREATE TRIGGER name { BEFORE | AFTER }
 { event [OR ...] }
 ON table FOR EACH { ROW | STATEMENT }
 EXECUTE PROCEDURE func (arguments)

Here, event is one of INSERT, DELETE, or UPDATE.
The trigger effectively says, “Run this stored procedure every time this event occurs on

this table.”
The trigger is given a name that is used to delete the trigger when it is no longer required,

by executing this statement:

DROP TRIGGER name ON table;

The trigger fires when the specified event occurs—a DELETE, INSERT, or UPDATE. We can
request that the trigger fires after the event occurs; in which case, the called procedure will
have access to both the original data (for updates and deletes) and the new data (for inserts and
updates). We can also request that the trigger fire before the event occurs. In this case, we can
prevent the update from occurring, or change the data to be inserted or updated. We can specify
more than one event by listing them separated by OR.

MatthewStones_4789C10.fm Page 300 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 301

As we know, some SQL statements can affect multiple rows of data. Where a multiple-row
update causes a trigger to fire, we can choose whether the trigger fires for each row that is updated
or just once for the whole update. We specify ROW if we wish the trigger to fire multiple times;
otherwise, we specify STATEMENT.

The arguments passed to the function can be used to distinguish similar triggers, so that
one function can be used for more than one trigger.

To automate the updates on our reorders table, we might create a stored procedure called
reorder_trigger and create a trigger to call it whenever the stock table changes:

CREATE TRIGGER trig_reorder
AFTER INSERT OR UPDATE ON stock
FOR EACH ROW EXECUTE PROCEDURE reorder_trigger(3);

Note that the trigger procedure (reorder_trigger in this case) must have been defined
before we create the trigger itself.

We use the trigger procedure argument to pass a minimum stock quantity, which is 3 in
this case.

Try It Out: Create a Trigger

Here is a simple trigger procedure that updates the reorders table after the stock table has
been adjusted:

create function reorder_trigger() returns trigger AS $$
declare
 mq integer;
 item_record record;
begin
 mq := tg_argv[0];
 raise notice 'in trigger, mq is %', mq;
 if new.quantity <= mq
 then
 select * into item_record from item
 where item_id = new.item_id;
 insert into reorders
 values (new.item_id, item_record.description);
 end if;
 return NULL;
end;
$$ language plpgsql;

Now that we have a trigger procedure, we can define a trigger as follows:

CREATE TRIGGER trig_reorder
AFTER INSERT OR UPDATE ON stock
FOR EACH ROW EXECUTE PROCEDURE reorder_trigger(3);

MatthewStones_4789C10.fm Page 301 Wednesday, February 23, 2005 6:47 AM

302 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

Load the function and trigger definition from a script file:

bpfinal=# \i sproc.sql
...
CREATE FUNCTION
CREATE FUNCTION1;
CREATE TRIGGER

bpfinal=#

Then try adjusting the stock of an item so that it drops to 3 or below:

bpfinal=# UPDATE stock SET quantity = 3 WHERE item_id = 1;
NOTICE: in trigger, mq is 3
UPDATE 1

bpfinal=#

We can see that the trigger has fired and raised a notice to tell us. The update to the stock
proceeds, but the trigger also updates the reorders table, adding a new row:

bpfinal=# SELECT * FROM reorders;
 item_id | message
---------+-------------
 1 | Wood Puzzle
(1 row)

bpfinal=#

How It Works

The trigger procedure is called whenever an INSERT or UPDATE takes place on the stock table. It
checks the stock quantity as it appears after the UPDATE has taken place, and if it is less than the
minimum quantity, adds a record to the reorders table.

You may have noticed that we have used a couple of new features in the trigger procedure.
First, the trigger procedure arguments are not referred to as $1, $2, and so on. The arguments
are made available via one of a number of special variables for automatically triggering procedures.
The arguments are passed in an array named TG_ARGV, starting at TG_ARGV[0]. The special variables
made available to trigger procedures are listed in Table 10-12.

Second, inside the trigger procedures, two very special records are made available: OLD and
NEW. These contain (for ROW triggers) the data from the row being affected by the UPDATE that
fired the trigger. As you may guess, OLD contains data from before the UPDATE, and NEW contains
data from after the update (or proposed UPDATE for a BEFORE trigger).

MatthewStones_4789C10.fm Page 302 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 303

Try It Out: Create Another Trigger

As a final example, we can create another trigger function, which prevents a customer from
being deleted if there are any orders outstanding for that customer. We check whether the
date_shipped column in the orderinfo table is NULL for any orders placed by the customer
about to be deleted, and disallow the deletion. If there are no outstanding orders, we can allow
the deletion to go ahead, but we need to tidy up by deleting orders placed by this customer in
the past, as well as the information about the items in those orders.

create function customer_trigger() returns trigger AS $$
declare order_record record;
beginx
 -- about to delete a customer
 -- disallow if orders pending
 select * into order_record from orderinfo
 where customer_id = old.customer_id
 and date_shipped is NULL;
 if not found
 then
 -- all OK, delete of customer can proceed
 raise notice 'deletion allowed: no outstanding orders';

Table 10-12. PostgreSQL Trigger Procedure Variables

Variable Description

NEW A record containing the new database row

OLD A record containing the old database row

TG_NAME A variable containing the name of the trigger that fired and caused the
trigger procedure to run

TG_WHEN A text variable containing the text 'BEFORE' or 'AFTER', depending on the type
of the trigger

TG_LEVEL A text variable containing 'ROW' or 'STATEMENT', depending on the trigger
definition

TG_OP A text variable containing 'INSERT', 'DELETE', or 'UPDATE', depending on
the event that occurred resulting in this trigger being fired

TG_RELID An object identifier representing the table the trigger has been activated upon

TG_RELNAME The name of the table that the trigger has been fired upon

TG_NARGS An integer variable containing the number of arguments specified in the
trigger definition

TG_ARGV An array of strings containing the procedure parameters, starting at zero;
invalid indexes return NULL values

MatthewStones_4789C10.fm Page 303 Wednesday, February 23, 2005 6:47 AM

304 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

 -- for referential integrity we have to tidy up
 -- we will need to delete all completed orders
 -- but first delete the information about the orders
 for order_record in select * from orderinfo
 where customer_id = old.customer_id
 loop
 delete from orderline
 where orderinfo_id = order_record.orderinfo_id;
 end loop;

 -- now delete the order records
 delete from orderinfo
 where customer_id = old.customer_id;

 -- return the old record to allow customer to be deleted
 return old;
 else
 -- orders present return NULL to prevent deletion
 raise notice 'deletion aborted: outstanding orders present';
 return NULL;
 end if;
end;
$$ language plpgsql;

create trigger trig_customer before delete on customer
for each row execute procedure customer_trigger();

To verify the behavior of this trigger, let’s check it out. First, make one of the orders have a
NULL shipped date to indicate that it is still pending:

bpfinal=# UPDATE orderinfo SET date_shipped = NULL WHERE orderinfo_id = 3;
UPDATE 1
bpfinal=# SELECT * FROM orderinfo;
 orderinfo_id | customer_id | date_placed | date_shipped | shipping
--------------+-------------+-------------+--------------+----------
 1 | 3 | 2004-03-13 | 2004-03-17 | 2.99
 2 | 8 | 2004-06-23 | 2004-06-24 | 0.00
 4 | 13 | 2004-09-03 | 2004-09-10 | 2.99
 5 | 8 | 2004-07-21 | 2004-07-24 | 0.00
 3 | 15 | 2004-09-02 | | 3.99
(5 rows)

bpfinal=#

Now try to delete customer number 15 whose order number 3 is outstanding:

MatthewStones_4789C10.fm Page 304 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 305

bpfinal=# DELETE FROM customer WHERE customer_id = 15;
NOTICE: deletion aborted: outstanding orders present
DELETE 0

bpfinal=#

A notification is returned regarding outstanding orders. We see the delete affected no
rows, as it was not allowed to proceed.

Deleting customers with no outstanding orders presents no problem, as long as we delete
the entries in the orderinfo table first. This is because we are using a constraint on this table to
prevent just this sort of maverick deletion. The trigger takes care of this and, therefore, provides
us with another way to approach the referential integrity issue.

Customer number 3 has no outstanding orders, so we can delete that customer and let the
trigger do all the work:

bpfinal=# DELETE FROM customer WHERE customer_id = 3;
NOTICE: deletion allowed: no outstanding orders
DELETE 1

bpfinal=#

Checking the tables show no lingering sign of our deleted customer:

bpfinal=# SELECT * FROM orderinfo;
 orderinfo_id | customer_id | date_placed | date_shipped | shipping
--------------+-------------+-------------+--------------+----------
 2 | 8 | 2004-06-23 | 2004-06-24 | 0.00
 4 | 13 | 2004-09-03 | 2004-09-10 | 2.99
 5 | 8 | 2004-07-21 | 2004-07-24 | 0.00
 3 | 15 | 2004-09-02 | | 3.99
(4 rows)

bpfinal=# SELECT * FROM orderline;
 orderinfo_id | item_id | quantity
--------------+---------+----------
 2 | 1 | 1
 2 | 10 | 1
 2 | 7 | 2
 2 | 4 | 2
 3 | 2 | 1
 3 | 1 | 1
 4 | 5 | 2
 5 | 1 | 1
 5 | 3 | 1
(9 rows)

MatthewStones_4789C10.fm Page 305 Wednesday, February 23, 2005 6:47 AM

306 C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S

bpfinal=#
bpfinal=# SELECT customer_id, fname, lname FROM customer;
 customer_id | fname | lname
-------------+-----------+---------
 1 | Jenny | Stones
 2 | Andrew | Stones
 4 | Adrian | Matthew
 5 | Simon | Cozens
 6 | Neil | Matthew
 7 | Richard | Stones
 8 | Ann | Stones
 9 | Christine | Hickman
 10 | Mike | Howard
 11 | Dave | Jones
 12 | Richard | Neill
 13 | Laura | Hardy
 14 | Bill | O'Neill
 15 | David | Hudson
(14 rows)
bpfinal=#

Why Use Stored Procedures and Triggers?
There are numerous reasons for using stored procedures and triggers. Here are some of them:

• Provide central validation: We can enforce conditions on table updates in one place,
independent of our client applications. If the conditions need to change, they change in
one place only.

• Track changes: We can use a trigger to create an audit trail, writing to another table
when rows in a table are updated. This could record the user who made the change, the
time, the date, and perhaps even the data that changed.

• Enhance security: By using the PostgreSQL current_user variable, we can enforce our
own security.

• Defer deletions: We could use a trigger to mark rows for deletion at a later date, rather
than deleting them when an application tries to.

• Provide a mapping for clients: We can use triggers and stored procedures to create a
simpler, single-table version of some of our data that can be updated more easily by our
users. For example, we could create a table and link it to Microsoft Excel. As rows in this
table are updated, we can update rows in the “real” tables, which might have a more
complex structure.

MatthewStones_4789C10.fm Page 306 Wednesday, February 23, 2005 6:47 AM

C H A P T E R 1 0 ■ F U N C T I O N S , S T O R E D P R O C E D U R E S , A N D T R I G G E R S 307

Summary
In this chapter, we looked at ways in which we can extend the functionality of PostgreSQL
queries. We have seen that PostgreSQL provides many operators and functions that we can use
to refine queries and extract information.

The procedural languages supported by PostgreSQL allow us to develop quite sophisticated
server-side processing by writing procedures in PL/pgSQL, SQL, and other languages. This
provides the opportunity for the database server to implement complex application function-
ality independently of the client.

Stored procedures are stored in the database itself and may be called by the application or,
in the form of triggers, called automatically when changes are made to database tables. This
gives us another means of enforcing referential integrity.

For simple referential integrity, it’s generally best to stick to constraints, as they are more
straightforward, efficient, and less error-prone. The power of triggers and stored procedures
comes when your declarative constraints become very complex, or you wish to implement a
constraint that is too complex for the declarative form.

Now that we have covered some advanced PostgreSQL techniques, in the next chapter,
we will move on to the topic of how to care for a PostgreSQL database.

MatthewStones_4789C10.fm Page 307 Wednesday, February 23, 2005 6:47 AM

MatthewStones_4789C10.fm Page 308 Wednesday, February 23, 2005 6:47 AM

309

■ ■ ■

C H A P T E R 1 1

PostgreSQL Administration

In this chapter, we will look at how to care for a PostgreSQL database. This covers items ranging
from configuring access to the system through managing the placement of database files,
maintaining performance, and, crucially, backing up your system.

As we progress through this chapter, we will cover the following topics:

• System-level configuration of a PostgreSQL installation

• Database initialization

• Server startup and shutdown

• User and group management

• Tablespace management

• Database and schema management

• Backup and recovery

• Ongoing maintenance of a PostgreSQL server

While learning and experimenting with these administrative tasks, you will want to use a
test PostgreSQL system that doesn’t contain any information you particularly care about. Making
experimental system-wide changes or testing backup and restore procedures on a PostgreSQL
database that contains live data is not a good idea.

System Configuration
We saw in Chapter 3 how to install PostgreSQL, but we didn’t really look in any depth at the
resulting directory structure and files. Now we will explore the PostgreSQL file system and
main system configuration options.

The PostgreSQL file system layout is essentially the same on Windows and Linux platforms.
On a Linux system, the base directory of the installation will vary slightly, depending on which
installation method you used: installing from prepackaged executables, such as binary RPMs,
or compiling it yourself from source code. There may also be fewer or more directories, depending
on which options you installed.

MatthewStones_4789C11.fm Page 309 Wednesday, February 23, 2005 6:48 AM

310 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

On a Windows system, by default, your installation base directory will be something like
C:\Program Files\PostgreSQL\8.0.0, under which you will find several subdirectories. On Linux,
the base directory for a source code installation will generally be /usr/local/pgsql. For a prebuilt
binary installation, the location will vary. A common location is /var/lib/pgsql, but you may
find that some of the binary files have been put in directories already in the search path, such
as /usr/bin, to make accessing them more convenient.

Under the PostgreSQL base installation directory, you will normally find around seven
subdirectories, depending on your options and operating system:

• bin

• data

• doc

• include

• lib

• man

• share

On Windows, the man subdirectory will be omitted, but probably at least one additional
subdirectory, pgAdmin III, will be present. You will find additional directories, such and jdbc
and odbc, if you installed some of the optional components.

In this section, we will take a brief tour of the seven subdirectories, and along the way look
at the more important configuration files and the significant options in them that we might
wish to change.

The bin Directory
The bin directory contains a large number of executable files. Table 11-1 lists the principal files
in this directory.

Table 11-1. Principal Files in the bin Directory

Program Description

postgres Database back-end server

postmaster Database listener process (the same executable as postgres)

psql Command-line tool for PostgreSQL

initdb Utility to initialize the database system

pg_ctl PostgreSQL control—start, stop, and restart the server

createuser Utility to create a database user

dropuser Utility to delete a database user

createdb Utility to create a database

dropdb Utility to delete a database

MatthewStones_4789C11.fm Page 310 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 311

The data Directory
The data directory contains subdirectories with data files for the base installation, and also the
log files that PostgreSQL uses internally. Normally, you never need to know about the subdirec-
tories of the data directory.

Also in this directory are several configuration files, which contain important configuration
settings you may wish, or need, to change. Table 11-2 lists the user-accessible files in the data
subdirectory.

The pg_hba.conf File

The hba (host based authentication) file tells the PostgreSQL server how to authenticate users,
based on a combination of their location, type of authentication, and the database they wish
to access.

pg_dump Utility to back up a database

pg_dumpall Utility to back up all databases in an installation

pg_restore Utility to restore a database from backup data

vacuumdb Utility to help optimize the database

ipcclean Utility to delete shared memory segments after a crash (Linux only)

pg_config Utility to report PostgreSQL configuration

createlang Utility to add support for language extensions (see Chapter 10)

droplang Utility to delete language support

ecpg Embedded SQL compiler (optional, see Chapter 14)

Table 11-2. User-Accessible Files in the data Subdirectory

Program Description

pg_hba.conf Configures client authentication options

pg_ident.conf Configures operating system to PostgreSQL authentication name
mapping when using ident-based authentication

PG_VERSION Contains the version number of the installation, for example 8.0

postgresql.conf Main configuration file for the PostgreSQL installation

postmaster.opts Gives the default command-line options to the postmaster program

postmaster.pid Contains the process ID of the postmaster process and an identification
of the main data directory (this file is generally present only when the
database is running)

Table 11-1. Principal Files in the bin Directory (Continued)

Program Description

MatthewStones_4789C11.fm Page 311 Wednesday, February 23, 2005 6:48 AM

312 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

A common requirement is to add configuration lines to allow access to some, or all, data-
bases from remote machines. At the time of writing, the default configuration is quite secure,
preventing access to any database from any remote machine. (See the “Client Authentication”
section in the PostgreSQL documentation for full details.)

Each line in the pg_hba.conf file corresponds to a single allow or deny rule. Rules are processed
in the order in which they appear in the file, so deny rules should generally precede allow rules.
In PostgreSQL release 8.0, each line has the following five items:

• TYPE: This column is usually local or host for local machines or remote hosts over TCP/IP,
respectively.

• DATABASE: This column provides a comma-separated list of the databases for which this
rule applies, or the special name all, if the rule applies for all databases.

• USER: This column provides a comma-separated list of users for which the rule applies:
all for all users or +groupname for users belonging to a specific group. (Groups are covered in
the “Group Configuration” section later in this chapter.)

• CIDR-ADDRESS: CIDR stands for Classless Inter-Domain Routing. This column lists the
addresses for which the rule applies, often with a bit mask. For example, the entry
192.168.0.0/8 means the rule applies for all hosts in the 192 subnetwork.

• METHOD: This column specifies how users matching the previous conditions are to be
authenticated. There is a wide range of choices. Table 11-3 lists the common options.

A standard default configuration line would be something similar to this:

TYPE DATABASE USER CIDR-ADDRESS METHOD
local all all 127.0.0.1/32 md5

Table 11-3. Common Authentication Methods

Method Description

trust The user is allowed, with no need to enter any further passwords. Generally, you
will not want to use this option except on experimental PostgreSQL systems,
although it is a reasonable choice where security isn’t an issue.

reject The user is rejected. This can be useful for preventing access from a range of
machines, because the rules in the file are processed in order. For example, you
could reject all users from 192.168.0.4, but later in the file, accept connection
from other machines in the 192.168.0.0/8 subnet.

md5 The user must provide an MD5-encrypted password. This is a good choice for
many situations.

crypt This method is similar to the md5 method for pre-7.2 installations. All new instal-
lations should use md5 in preference.

password The user must provide a plain-text password. This is not very secure, but useful
when you are trying to identify login problems.

ident The user is authenticated using the client name from the user’s host operating
system. This works with the pg_ident.conf file.

MatthewStones_4789C11.fm Page 312 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 313

This allows all local users to access all databases, but the client system must provide the
password in an MD5-encoded form. Normally, this is transparent to the user, as the client will
determine that the password the client enters needs to be MD5-encoded before being sent to
the PostgreSQL server. An alternative would be to replace md5 with trust, which would say that
any user who had been able to log in to the local machine was also able to log in to the database,
without requiring further authentication.

■Note If you use MD5 authentication, you must ensure that your PostgreSQL users have passwords, or the
MD5-authenticated login will fail.

Generally, this minimal configuration is fine for local users, but it doesn’t allow any access
for users across the network. To do that, we need to add lines to the pg_hba.conf file. Suppose
we wanted to allow all users on the subnetwork 192.168.0.* access to all databases, providing
they had the appropriate MD5-encoded password. This is probably the most common type of
addition needed to the standard configuration file. We would add the following extra line to the
pg_hba.conf file:

host all all 192.168.0.0/16 md5

Now suppose some additional administrators require access from outside this subnet, but
we don’t want to permit ordinary users access. We would add a line to allow members of the
PostgreSQL admins group access from anywhere on the 192 subnetwork, like this:

host all +admins 192.0.0.0/8 md5

Note that there is additional configuration required to allow remote connections, which
must be set in the postmaster.opts file, as explained in the description of that file a bit later in
this chapter.

The pg_ident.conf File

This pg_ident.conf file is used in conjunction with the ident option of pg_hba.conf. This works
by determining the username on the machine the client logged in to, and maps that name to a
PostgreSQL username. It relies on the Identification Protocol, defined in RFC 1413. We would
not generally consider this a very secure method of access control.

The postgresql.conf File

postgresql.conf is the main configuration file that determines how PostgreSQL operates. The
file consists of a large number of lines, each of the form:

option_name = value

This sets the required behavior for each option. Where the option is a string, the value should
be enclosed in single quotes. Numbers do not need to be quoted. Boolean options should be
set to either true or false.

MatthewStones_4789C11.fm Page 313 Wednesday, February 23, 2005 6:48 AM

314 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

Table 11-4 lists the main options in the postgresql.conf file.

Table 11-4. Principal postgresql.conf Options

Option Value and Meaning

listen_addresses Sets the address on which PostgreSQL accepts connec-
tions. This will normally be localhost, but for machines
with multiple IP addresses, you may wish to specify a
specific IP address.

port Sets the port on which PostgreSQL is listening. By default,
this is 5432.

max_connections Sets the number of concurrent connections allowed. On
most operating systems, this will be 100. Increasing this
number will increase the system resource overhead; in
particular, the amount of shared memory in use will
be increased.

superuser_reserved_connections Sets the number of connections from the maximum which
are reserved for superusers. By default, this is 2. You may
wish to increase it to ensure superusers are never prevented
from connecting to the database because too many ordinary
users are connected.

authentication_timeout Defines how long a client has to complete authentication
before it is automatically disconnected. By default, this is
60 seconds. You may wish to decrease it if you see many
unauthorized people attempting to connect to the database.

shared_buffers Sets the number of buffers being used by PostgreSQL.
A typical value would be 1000. Decreasing this value saves
system resources on a lightly loaded system. Increasing it
may improve performance on a heavily used production
system.

work_mem Tells PostgreSQL how much memory it can use before
creating temporary files for processing intermediate
results. The default is 1MB. If you have very large tables
and plenty of memory, increasing this value may improve
performance.

log_destination Determines where PostgreSQL logs server messages by
providing a comma-separated list of filenames.

log_min_messages Sets the level of message that is logged. The options, from
most logging down to least logging, are debug5, debug4,
debug3, debug2, debug1, info, notice, warning, error, log,
fatal, and panic. By default, notice will be used.

log_error_verbosity Sets the amount of detail written to the logs. The default is
default. Setting this option to terse reduces the amount
written. Setting it to verbose writes more information.

MatthewStones_4789C11.fm Page 314 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 315

The postmaster.opts File

This postmaster.opts file sets the default invocation options for the postmaster program, which
is the main PostgreSQL program. Typically, it will contain the full path to the postmaster program,
a -D option to set the full path to the principal data directory, and optionally, a -i flag to enable
network connections. The postmaster.opts options are listed in Table 11-5.

log_connections Logs connections to the database. This is false by default,
but if you are running a secure database, you almost
certainly need to change this to true.

log_disconnections Logs disconnections from the database.

search_path Controls the order in which schemas are searched. The
default is $user,public. (See the “Schema Management”
section later in this chapter.)

default_transaction_isolation Sets the default transaction isolation level, which was
discussed in Chapter 9. The default is read committed,
which is generally a good choice.

deadlock_timeout Sets the length of time before the system checks for dead-
locks when waiting for a lock on a database table. By default,
this is set to 1000 milliseconds. You may want to increase
it on a heavily loaded production system.

statement_timeout Sets a maximum time, in milliseconds, that any statement
is allowed to execute. By default, this is set to 0, which
disables this feature.

stats_start_collector If set to true, PostgreSQL collects internal statistics, usable
by the pg_stat_activity and other statistics views.

stats_command_string If set to true, enables the collection of statistics on
commands that are currently being executed.

datestyle Sets the default date style, which was discussed in Chapter 4.
The default is iso, mdy.

timezone Sets the default time zone. By default, this is set to unknown,
which means PostgreSQL should use the system time zone.

default_with_oids Controls whether the CREATE TABLE command defaults to
creating tables with OIDs. By default, this is set to true at
the time of writing. This option may be required in the
future should PostgreSQL default to not creating OIDs but
you have an older application which relies on them being
present. However, we strongly suggest that you do not
assume OIDs are present.

Table 11-4. Principal postgresql.conf Options (Continued)

Option Value and Meaning

MatthewStones_4789C11.fm Page 315 Wednesday, February 23, 2005 6:48 AM

316 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

Here is an example of a postmaster.opts file from Linux, allowing network connections:

/usr/local/pgsql/bin/postmaster '-i' '-D' '/usr/local/pgsql/data'

And here is a typical Windows file (which would all be on a single line), disallowing remote
connections:

C:/Program Files/PostgreSQL/8.0.0/bin/postmaster.exe "-D"
 "C:/Program Files/PostgreSQL/8.0.0/data"

Notice the different quoting required on Windows systems.

Other PostgreSQL Subdirectories
The following are the other subdirectories normally found under the PostgreSQL base installation
directory:

• The doc directory: This contains the online documentation, and may contain additional
documentation for user-contributed additions, depending on your installation choices.

• The include and lib directories: These contain the header and library files needed to
create and run client applications for PostgreSQL. See Chapters 13 and 14 for details of
libpq and ecpg, which use these directories.

• The man directory: On Linux (and UNIX) only, these contain the manual pages. Adding
this to your MANPATH, (for example, $ export MANPATH=$MANPATH:/usr/local/pgsql/man)
will allow you to view the PostgreSQL manual pages using the man command.

• The share directory: This contains a mix of configuration sample files, user-contributed
material, and time zone files. There is also a list of standard SQL features supported by
the current version of PostgreSQL.

Table 11-5. postmaster Options

Option Description

-B nbufs Sets the number of shared memory buffers to nbufs.

-d level Sets the level of debug information (level should be a number 1 through 5)
written to the server log.

-D dir Sets the database directory (/data) to dir. There is no default value. If no
-D option is set, the value of the environment variable PGDATA is used.

-i Allows remote TCP/IP connections to the database.

-l Allows secure database connections using the Secure Sockets Layer (SSL)
protocol. This requires the -i option (network access) and support for SSL to
have been compiled in to the server.

-N cons Sets the maximum number of simultaneous connections the server will accept.

-p port Sets the TCP port number that the server should use to listen on.

--help Gets a helpful list of options.

MatthewStones_4789C11.fm Page 316 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 317

Database Initialization
When PostgreSQL is first installed, we must arrange for a database to be created. We did this
back in Chapter 3 by using initdb.

■Note Almost all PostgreSQL installations, with the exception of those built from source, arrange for
initdb to be called automatically if there is no database when the machine starts up.

It is important to initialize the PostgreSQL database correctly, as database security is
enforced by user permissions on the data directories. We need to stick to the following steps
to ensure that our database will be secure:

• Create a user to own the database. We recommend a user called postgres.

• Create a directory (data) to store the database files.

• Ensure that the postgres user owns that directory.

• Run initdb, as the postgres (never root) user to initialize the database.

Often, an installation script for a PostgreSQL package will perform these steps for you
automatically. On Windows, this is always done automatically. However, if you need to change
the defaults, or if you are manually installing the program, you need to perform these steps.

The initdb utility supports a few options. The most commonly used ones are listed in
Table 11-6.

The default database installation created by initdb contains information about the data-
base superuser account (we have been using postgres), a template database called template1,
and other database items. This initial template database is very important, as it is used as a
default template for all subsequent database creations.

To create additional databases, we must connect to the database system and request that
a new database be created. We can use the command-line createdb utility, or, more commonly,
we will do it from inside the database itself once we have logged in. We will meet both these
options a little later in this chapter, in the “Database Management” section. A connection
requires a username (probably with password) and a database name. In the initial installation,
we have only one user, usually postgres, we can connect with and only one database.

Table 11-6. Common initdb Options

Option Description

-D dir, --pgdata=dir Specify the location of the data directory for this database.

-W, --pwprompt Cause initdb to prompt for a database superuser password. A
password will be required to enable password authentication.

MatthewStones_4789C11.fm Page 317 Wednesday, February 23, 2005 6:48 AM

318 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

Before we can connect to the database system, the server process must be running, as
described in the next section.

Server Control
The PostgreSQL database server runs as a listener process on UNIX and Linux systems, and
as a system service on Windows systems. As we saw in Chapter 3, the server process is called
postmaster and must be running for client applications to be able to connect to and use the
database.

If you wish to, you can start the postmaster process manually on Linux. On Windows, you
should always use the Control Panel’s Services applet, as shown in Figure 11-1.

Figure 11-1. Controlling the PostgreSQL service on Windows

The rest of this section applies only to Linux (or UNIX) users.

Running Processes on Linux and UNIX
Without any command-line arguments, the server will run in the foreground, log messages to
the standard output, and use a database stored at the location given by the environment vari-
able $PGDATA, if no -D option is specified.

Normally though, we will want to start the process in the background and log messages to
a file. When a connection attempt is made to the database, the postmaster process starts another
process called postgres to handle the database access for the connecting client.

It is the back-end server that reads the data and makes changes on behalf of one client
application. There can be multiple postgres processes supporting many clients at once, but
the total number of postgres processes is limited to a maximum, maintained by postmaster.
The postmaster program has a number of parameters that allow us to control its behavior, as
we saw when we examined the postmaster.opts file earlier in this chapter.

MatthewStones_4789C11.fm Page 318 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 319

When it has successfully started, the postmaster process creates a file that contains its
process ID and the data directory for the database. By default for source-code built systems,
the file is /usr/local/pgsql/data/postmaster.pid.

The server log file should be redirected using a normal shell redirect for the standard
output and standard error:

postmaster >postmaster.log 2>&1

As mentioned earlier, the postmaster process needs to be run as a non-root user created to
be the owner of the database. We created such a user (postgres) in Chapter 3.

Starting and Stopping the Server on Linux and UNIX
The standard PostgreSQL distribution contains a utility, pg_ctl, for controlling the postmaster
process. We saw this briefly in Chapter 3, but we revisit it here for a more detailed exploration
of its features.

The pg_ctl utility is able to start, stop, and restart the server; force PostgreSQL to reload
the configuration options file; and report on the server’s status. The principal options are
as follows:

pg_ctl start [-w] [-s] [-D datadir] [-p path][-o options]

pg_ctl stop [-w] [-D datadir] [-m [s[mart]] [f[ast]] [i[mmediate]]]

pg_ctl restart [-w] [-s] [-D datadir] [-m [s[mart]] [f[ast]] [i[mmediate]]]
[-o options]

pg_ctl reload [-D datadir]

pg_ctl status [-D datadir]

To use pg_ctl, you need to have permission to read the database directories, so you will
need to be using the postgres user identity.

The options to pg_ctl are described in Table 11-7.

Table 11-7. pg_ctl Options

Option Description

-D datadir Specifies the location of the database. This defaults to $PGDATA.

-l, --log filename Appends server log messages to the specified file.

-w Waits for the server to come up, instead of returning immediately.
This waits for the server pid (process ID) file to be created. It times
out after 60 seconds.

-W Does not wait for the operation to complete; returns immediately.

-s Sets silent mode. Prints only errors, not information messages.

-o "options" Sets options to be passed to the postmaster process when it is started.

-m mode Sets the shutdown mode (smart, fast, or immediate).

MatthewStones_4789C11.fm Page 319 Wednesday, February 23, 2005 6:48 AM

320 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

When stopping or restarting the server, we have a number of choices for how we handle
connected clients. Using pg_ctl stop (or restart) with smart (or s) is the default. This waits for
all clients to disconnect before shutting down. fast (f) shuts down the database without waiting
for clients to disconnect. In this case, client transactions that are in progress are rolled back
and clients forcibly disconnected. immediate (i) shuts down immediately, without giving the
database server a chance to save data, requiring a recovery the next time the server is started.
This mode should be used only in an emergency when serious problems are occurring.

We can check that PostgreSQL is running using pg_ctl status. This will tell us the process
ID of the listener postmaster and the command line used to start it:

pg_ctl status
pg_ctl: postmaster is running (pid: 486)
Command line was:
/usr/local/pgsql/bin/postmaster '-i' '-D' '/usr/local/pgsql/data'

#

If you have built PostgreSQL from source code, you will normally want to create a script for
inclusion in /etc/init.d. A basic version of such a script was shown in Chapter 3. Most package-
based installations will provide a standard script for you. Do ensure that the PostgreSQL server
gets the opportunity for a clean shutdown whenever the operating system shuts down.

PostgreSQL Internal Configuration
We have now seen how to configure our PostgreSQL server, able to accept the remote connections
as required. It’s now time to look at the configuration elements of PostgreSQL that are set internally
to the server. We will be looking at the following topics:

• Users and groups

• Tablespaces

• Databases and schemas

• Permissions

Configuration Methods
Generally, there are (at least) three ways of configuring items internal to PostgreSQL:

• SQL Commands: We can use SQL, which has a large number of statements dedicated to
maintaining configuration information internal to the database. Many of these are standard
SQL statements (termed DDL, for Data Definition Language), usable on a wide range
of databases, but it is an area where most databases have proprietary SQL elements.
Learning how to use SQL to configure databases is important, as it helps you understand
what is actually happening. Also, it is essential to know in case the graphical tools you
might prefer are not available, or the bandwidth or connection available to the database
is very poor.

MatthewStones_4789C11.fm Page 320 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 321

• Graphical tools: We can use a graphical tool. At the time of writing, the premier graph-
ical tool for PostgreSQL is pgAdmin III (http://www.pgadmin.org), which was introduced
in Chapter 5. This tool, shown in Figure 11-2, is free for all uses; runs on Linux, FreeBSD,
and Windows 2000/XP; and is very easy to use.

Figure 11-2. pgAdmin III is a popular tool for administering PostgreSQL databases.

• Command-line versions: Some configuration options, notably those for creating users
and databases, have a command-line version available. Although these can be handy,
particularly for getting started, they are not generally the preferred way of configuring
PostgreSQL. If you wish to use them, you can simply invoke the command-line version
with a parameter of --help to see usage information. It’s then easy to see how the options
map onto the underlying SQL syntax.

Generally, configuration must be done as an administrative user, which is postgres by
default, as we saw in Chapter 3. For the rest of this chapter, we will assume you are connected
to the database server as postgres, an administrative user.

User Configuration
It’s a good idea to give your users their own accounts, because then it is possible to more easily
manage changes in personnel, such as employees moving to different roles where they no
longer should have access to the database. Users are managed with the CREATE USER, ALTER USER,
and DROP USER commands.

MatthewStones_4789C11.fm Page 321 Wednesday, February 23, 2005 6:48 AM

322 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

Creating Users

The CREATE USER command has the following syntax:

CREATE USER username
 [WITH
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | CREATEDB | NOCREATEDB
 | CREATEUSER | NOCREATEUSER
 | IN GROUP groupname [, ...]
 | VALID UNTIL 'abstime']

Generally, you will always give each user a password. If you specify the option CREATEUSER,
then the user will be an administrative user, able to create other users. Those administrative
users’ psql login will also have a # prompt, rather than the > prompt.

The CREATEDB option allows the user to create databases. If you have groups (see the next
section), you can assign the user to one or more groups with the IN GROUP option. The VALID
UNTIL option allows you to express a time at which the user account will expire.

For example, the following creates a user, neil, who can create other users and databases,
but whose account will expire on December 31, 2006:

CREATE USER neil PASSWORD 'secret'
 CREATEDB CREATEUSER
 VALID UNTIL '2006-12-31';

Using the createuser Utility

PostgreSQL also has a utility, createuser, which we saw briefly in Chapter 3, to help with the
creation of PostgreSQL users if you wish to do this from the operating system command line.
This utility has the following form:

createuser [options...] username

Options to createuser allow you to specify the database server for which you want to create
a user and to set some of the user privileges, such as database creation. Table 11-8 lists the
createuser options.

Table 11-8. Command-Line createuser Options

Option Description

-h host, --host host Specifies the database server host. This defaults to the
local machine.

-p port, --port port Specifies the port. This defaults to the standard PostgreSQL
listener port, 5432.

-U user, --username=user Specifies the user as whom you wish to connect to the server.

-q, --quiet Does not print a response.

MatthewStones_4789C11.fm Page 322 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 323

The createuser utility is simply a wrapper that is used to execute some PostgreSQL commands
to create the user.

Modifying Users

We modify users with the ALTER USER command. This command uses almost exactly the same
options as the CREATE USER command, but can be used only with an existing username.

ALTER USER username
 [WITH
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | CREATEDB | NOCREATEDB
 | CREATEUSER | NOCREATEUSER
 | VALID UNTIL 'abstime']

There is also a special variant for renaming a user:

ALTER USER username RENAME TO new-username

So, if we wanted to prevent the user neil we created earlier from creating databases, we
would use the following:

ALTER USER neil NOCREATEDB;

Listing Users

We can have a quick look at the users configured on our database using the system view
pg_user. Here, we just select a small number of columns, to keep the output easier to read:

-d, --createdb Allows this user to create databases.

-a, --adduser Allows this user to create new users.

-P, --pwprompt Prompts for a password to assign to the new user. A user
password is required for authentication when the newly
created user attempts to connect.

-i, --sysid=ID number Specifies the user’s ID number. Generally, you should not use
this option but allow a default value to be used.

-e, --echo Prints the command sent to the server to create the user.

--help Prints a usage message.

Table 11-8. Command-Line createuser Options (Continued)

Option Description

MatthewStones_4789C11.fm Page 323 Wednesday, February 23, 2005 6:48 AM

324 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

bpsimple=# SELECT usesysid, usename, usecreatedb, usesuper, valuntil
FROM pg_user;
 usesysid | usename | usecreatedb | usesuper | valuntil
----------+----------+-------------+----------+------------------------
 100 | rick | t | f |
 1 | postgres | t | t |
 101 | neil | f | f | 2006-12-31 00:00:00+00
(3 rows)

bpsimple=#

You can see the same information by using the \du command in psql, or visually in
pgAdmin III.

Removing Users

We can remove users with the DROP USER command, which is very simple:

DROP USER username;

A command-line alternative named dropuser is also available. Its syntax is as follows:

dropuser [options...] username

The options to dropuser include the same server connection options as createuser
(see Table 11-8), plus the -i option to ask the system to prompt for confirmation before deleting
the user.

Managing Users Through pgAdmin III

All these user management tasks can be done through pgAdmin III. To create a new user, right-
click the Users part of the tree and select New User. This brings up the New User dialog box, as
shown in Figure 11-3. To modify a user, click a username and select Properties.

If you click the SQL tab in the dialog box, you can even see the SQL that will be executed.
This is helpful for checking how you do something in SQL, if you know how to do it graphically,
but are not quite sure of the exact SQL syntax.

MatthewStones_4789C11.fm Page 324 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 325

Figure 11-3. Creating a user in pgAdmin III

Group Configuration
Groups are a configuration convenience—a useful way of grouping users together for adminis-
trative purposes. Later in the chapter, in the “Privilege Management” section, we will see how
having groups makes it easier to give and remove privileges from a group of users in a single
command. As with user configuration tasks, we can perform the group configuration tasks
described here through pgAdmin III as well.

Creating Groups

The syntax for the CREATE GROUP command is as follows:

CREATE GROUP groupname [WITH USER comma-separated-list-of-users]

For example, to add a new group, editors, and make the existing users jason and sofia
members, we would use the following statement:

CREATE GROUP editors WITH USER jason, sofia

Altering Groups

We can add and remove users from a group using ALTER GROUP, which has the following syntax:

ALTER GROUP groupname ADD USER username
ALTER GROUP groupname DROP USER username

As with CREATE GROUP, the name can be a comma-separated list of usernames.

MatthewStones_4789C11.fm Page 325 Wednesday, February 23, 2005 6:48 AM

326 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

We can also rename a group with ALTER GROUP:

ALTER GROUP groupname RENAME TO new-groupname

Suppose we wanted to remove the user jason from our editors group and add the user
rick. We would use ALTER GROUP commands like this:

bpsimple=# ALTER GROUP editors DROP USER jason;
ALTER GROUP
bpsimple=# ALTER GROUP editors ADD USER rick;
ALTER GROUP
bpsimple=#

Listing Groups

We can display our groups and their users with the system view pg_group, as follows:

bpsimple=# SELECT * from pg_group;
 groname | grosysid | grolist
---------+----------+-----------
 usr | 100 | {100,101}
(1 row)

bpsimple=#

The grolist column is a list of the usesysid columns we saw when we looked at the
pg_user view, from which we can determine the usernames. The \dg command in psql gives
similar information.

Dropping Groups

We can remove groups with the DROP GROUP command, which is very simple:

DROP GROUP groupname

Note that dropping a group does not delete the users in that group.

Tablespace Management
One of the key manageability features introduced in PostgreSQL release 8.0 was the concept of
tablespaces. This makes it much easier for administrators to control how PostgreSQL’s data
tables are stored in the file system, which is useful for tasks such as managing large tables and
improving performance by distributing the load across different disk drives. Prior to version
8.0, it was possible to control how PostgreSQL placed its files, but it was not easy.

A tablespace is actually quite a simple concept. It’s a named PostgreSQL object, which
corresponds to a physical location on the host operating system. Later, in the “Database Manage-
ment” section, we will see how to create databases inside a tablespace, which means that the
data files for that database go in the physical location associated with the tablespace. Tablespaces
can be created only by administrative users possessing CREATE USER privileges.

Before creating a tablespace, we must first create a physical disk location to which to map
the tablespace.

MatthewStones_4789C11.fm Page 326 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 327

Creating Tablespaces

Suppose we want to create a new location for storing PostgreSQL files on our Linux server in
/opt/pgdata. We need to do this from the operating system command line, not from within
psql. First, we must create the directory:

mkdir /opt/pgdata

We must then change the ownership and group of the directory to be that of the operating
system user we used when we installed PostgreSQL, usually postgres, using the chown command.

ls -ld /opt/pgdata
drwxr-xr-x 2 root root 4096 Nov 21 14:07 /opt/pgdata
chown postgres.postgres /opt/pgdata
ls -ld /opt/pgdata
drwxr-xr-x 2 postgres postgres 4096 Nov 21 14:07 /opt/pgdata
#

Now we are ready to create a PostgreSQL tablespace associated with our new directory. We
must do this from within the psql program. Directories you wish to associate with a tablespace
must always be empty before they can be associated. The command for creating tablespaces is
very simple:

CREATE TABLESPACE tablespacename [OWNER ownername] LOCATION 'directory'

If no owner is specified, then it defaults to the person executing the command. So, here is
the command to add a new tablespace to our installation:

bpsimple=# CREATE TABLESPACE datainopt LOCATION '/opt/pgdata';

We can see our tablespace by examining the pg_tablespace view, as follows:

bpsimple=# SELECT * FROM pg_tablespace;
 spcname | spcowner | spclocation | spcacl
------------+----------+-------------+--------
 pg_default | 1 | |
 pg_global | 1 | |
 datainopt | 1 | /opt/pgdata |
(3 rows)

bpsimple=#

We can see the file system locations in the spclocation column. The spcowner column is
the ID of the user who owns the tablespace, and spcacl is ownership information. The other
two tablespaces, pg_default and pg_global, are the system default tablespaces, which are
always present. We can see similar information using the \db command in psql.

Altering Tablespaces

At the time of writing, it is not possible to move a tablespace’s physical location. We can only
change its owner and name, as follows:

MatthewStones_4789C11.fm Page 327 Wednesday, February 23, 2005 6:48 AM

328 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

ALTER TABLESPACE tablespacename OWNER TO newowner
ALTER TABLESPACE oldname RENAME TO newname

Dropping Tablespaces

We can also drop a tablespace, but we must delete all the objects in the tablespace first, or the
command will fail. Here is the command syntax:

DROP TABLESPACE tablespacename

That’s all there is to creating, altering, and deleting tablespaces. This may all have seemed
a bit pointless, especially since we’ve been working with only a small sample database. But
next, we move on to creating databases, and it will become clearer how useful tablespaces can
be for controlling the physical placement of database files, providing a big benefit in larger or
more demanding PostgreSQL installations.

Database Management
The key elements to any database installation are the actual databases—the objects in which
all the tables and data are stored. Different database systems manage the internal databases in
a variety of ways, but PostgreSQL is very straightforward. Each installation of the PostgreSQL
server (sometimes referred to as a database cluster) can manage and serve many individual
databases. Tablespaces, usernames, and groups are common across the whole PostgreSQL
installation. This can be seen clearly in the way pgAdmin III lays out its tree structure, as shown
in Figure 11-4.

Figure 11-4. Object layout inside the PostgreSQL database server

MatthewStones_4789C11.fm Page 328 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 329

Creating Databases

PostgreSQL databases are created within psql with the CREATE DATABASE command, which has
the following syntax:

CREATE DATABASE dbname
 [[WITH] [OWNER [=]owner]
 [TEMPLATE [=] template]
 [ENCODING [=] encoding]
 [TABLESPACE [=] tablespace]]

The database name must be unique within the PostgreSQL installation. The OWNER option
allows the administrator to create a database owned by someone else, which is handy for users
who cannot create their own databases.

The TABLESPACE option allows us to specify in which of the tablespaces we created earlier
to place the underlying operating systems files for storing our data. This allows us to more
easily control our disk usage. If no tablespace is specified, the files go in a tablespace named
pg_default, which is automatically created when PostgreSQL is installed.

The TEMPLATE and ENCODING options specify the database layout and the multibyte encoding
required. These are safely omitted in normal use. Refer to the PostgreSQL documentation for
more details.

■Note To use psql, we must be connected to a database, so to create our first database, we must connect
to template1 (the default database) usually as the default user, postgres. We did this in Chapter 3 to create
our first database.

Altering and Listing Databases

We can change the name and owner of a database with the ALTER DATABASE command, as
follows:

ALTER DATABASE dbname RENAME TO newname
ALTER DATABASE dbname OWNER TO newowner

■Note There is also a variant of the ALTER DATABASE command for setting database options. For more
information, see the PostgreSQL online documentation.

To list our databases, we can use the \l command in psql.

Deleting Databases

To delete a database, we use the DROP DATABASE command, which has the following syntax:

DROP DATABASE dbname

MatthewStones_4789C11.fm Page 329 Wednesday, February 23, 2005 6:48 AM

330 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

We cannot drop a database that has any open connections, including our own connection
from psql or pgAdmin III. We must switch to another database or template1 if we want to
delete the database we are currently connected to.

Creating and Deleting Databases from the Command Line

PostgreSQL provides two wrapper utilities, createdb and dropdb, to allow database creation
and deletion, respectively, from the operating system command line. These utilities have the
following forms:

createdb [options...] dbname [description]
dropdb [options...] dbname

The options for these utilities are very similar to the createuser and dropuser utilities
described earlier. They are listed in Table 11-9.

If we create a new database in the tablespace datainopt we created earlier, we can see the
layout of the underlying database files. We connect to the database server as the administrative
user to the default database template1, and then we use psql to check the tablespace. Finally,
we create the new database:

Table 11-9. Command-Line createdb and dropdb Options

Option Description

-h, --host=hostname Specifies the database server host or socket directory

-p, --port=port Specifies the database server port

-U, --username=username Specifies the username to connect as

-W, --password Prompts for password

-D, --tablespace=tablespace Sets the default tablespace for the new database

-E, --encoding=encoding Sets the encoding for the new database

-O, --owner=owner Specifies the database user to own the new database

-T, --template=template Specifies the template database to copy for the new database

-e, --echo Shows the commands being sent to the server

-q, --quiet Specifies not to write any messages

--help Shows this help, then exits

--version Outputs version information, then exits

MatthewStones_4789C11.fm Page 330 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 331

psql -U postgres template1
Welcome to psql 8.0.0, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query
 \q to quit

template1=#
template1=# SELECT * FROM pg_tablespace;
 spcname | spcowner | spclocation | spcacl
------------+----------+-------------+--------
 pg_default | 1 | |
 pg_global | 1 | |
 datainopt | 1 | /opt/pgdata |
(3 rows)

template1=# CREATE DATABASE example1 OWNER rick TABLESPACE datainopt;
CREATE DATABASE
template1=#

We can then look at the underlying operating system files from the command line:

cd /opt/pgdata
ls -l
total 8
drwx------ 2 postgres postgres 4096 Nov 27 13:35 17864
-rw------- 1 postgres postgres 4 Nov 21 14:19 PG_VERSION
#

The rather strange number, 17864, is simply a name that PostgreSQL has chosen to use as
a directory to store the files. The PG_VERSION file is used by PostgreSQL internally to track which
version of software was used to create the database.

Schema Management
Inside each database, there is one more level before the actual tables: a schema, which is a
grouping of closely related database objects. Up to now, we have ignored the existence of
schemas, because PostgreSQL’s default behavior is to create a schema called public and place
all the tables in that schema. By default, PostgreSQL assumes that it should look for any table
your SQL accesses in the public schema. This means that users who have no need of schemas
can pretty much ignore them.

MatthewStones_4789C11.fm Page 331 Wednesday, February 23, 2005 6:48 AM

332 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

Now that we have created a database, we can consider the use of schemas inside that data-
base to control the grouping of tables. Schemas have two purposes:

• To help manage the access of many different users to a single database

• To allow extra tables to be associated with a standard database, but kept separate

Suppose we had an application using PostgreSQL, but we had built our own reporting on
top of that application, and in the process needed to add some additional tables to the database.
Without schemas, we would need to manage the names of the tables (and other database objects),
so our additional tables never clashed with names that might appear in future versions of the
application. Worse, if we had an upgrade that required the application database to be re-created,
we may need to discard our tables and re-create them. With schemas, we can add a new schema to
store our additional tables away from the application tables, but our reporting application can
access both sets of tables, by simply prefixing the table names with the schema name in which
the required table resides.

We will start by looking at how schemas are created and managed, and how tables are
created inside named schemas. Then we will look at how this can help manage our database.

Creating Schemas

We create a new schema using the CREATE SCHEMA command, which has the following syntax:

CREATE SCHEMA schemaname [AUTHORIZATION owner-of-schema]

We must be connected to the database in which we wish to create the new schema before
running this command.

We can also add a helpful comment to our schema, using the COMMENT syntax:

COMMENT ON SCHEMA schemaname IS 'some helpful text'

Let’s connect to our example1 database, and create a new schema owned by the user rick:

template1=# \c example1 postgres
You are now connected to database "example1" as user "postgres".
example1=# CREATE SCHEMA schema1 AUTHORIZATION rick;
CREATE SCHEMA
example1=#example1=# COMMENT ON SCHEMA schema1 IS 'An example schema';
COMMENT
example1=#

Listing Schemas

We can list our schemas with the \dn command in psql, although the pgAdmin III graphical
version is somewhat clearer, as shown in Figure 11-5.

MatthewStones_4789C11.fm Page 332 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 333

Figure 11-5. Viewing our schema in pgAdmin III

If you use the \dn command in pgsql to list the schemas, you will see some additional
schemas, such as pg_catalogue and pg_toast. PostgreSQL uses these internally, and we can
ignore them. The pgAdmin III program hides them, since users usually do not need to know
they exist.

Dropping Schemas

Schemas are dropped with the DROP SCHEMA command, which has the following syntax:

DROP SCHEMA schemaname [CASCADE]

The CASCADE option tells PostgreSQL to drop all objects in the schema. In general, it’s probably
safer to delete the tables first, then delete the schema once it is empty, as that way you are less
likely to accidentally delete some tables you wanted to keep.

Creating Tables in a Schema

If we want to create a table in our new schema, we simply prefix the table name with the name
of the schema, using this syntax:

CREATE TABLE schemaname.tablename
(
 column definitions
);

MatthewStones_4789C11.fm Page 333 Wednesday, February 23, 2005 6:48 AM

334 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

Let’s connect to our example1 database as the user rick and create a table:

example1=# \c example1 rick
Password:
You are now connected to database "example1" as user "rick".
example1=> CREATE TABLE schema1.table1
example1-> (
example1(> col1 int,
example1(> col2 varchar(32)
example1(>);
CREATE TABLE
example1=>

Now we can use our table, but we must specify the table name as schema1.table1, not just
table1, or the table is hidden from us, because it’s not in the schema named public:

example1=> INSERT INTO table1(col1, col2) VALUES(1, 'one');
ERROR: relation "table1" does not exist
example1=> INSERT INTO schema1.table1(col1, col2) VALUES(1, 'one');
INSERT 17869 1
example1=>

Setting the Schema Search Path

We can control the way in which PostgreSQL searches different schema names by setting the
schema search_path, as follows:

example1=> SHOW search_path;

 search_path

 $user,public
(1 row)

example1=> SET search_path TO schema1, public;
SET
example1=>

Now it’s possible to access our table without the prefix of the schema1 name:

example1=> INSERT INTO table1(col1, col2) VALUES(2, 'two');
INSERT 17870 1
example1=>

You will have noticed that when we showed the search path, as well as the default schema
public, there was also a value $user. This means that if you created a schema with the same
name as the user, by default, that would have been searched first for the table name. We can
see this behavior in practice by experimenting with a different user, neil:

MatthewStones_4789C11.fm Page 334 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 335

example1=> \c example1 neil
Password:
You are now connected to database "example1" as user "neil".
example1=# CREATE SCHEMA neil AUTHORIZATION neil;
CREATE SCHEMA
example1=# CREATE TABLE neil.table1 (
example1(# col1 int,
example1(# col2 varchar(32)
example1(#);
CREATE TABLE
example1=# INSERT INTO neil.table1(col1, col2) VALUES(42, 'this is neil');
INSERT 17482 1
example1=# SELECT * FROM table1;
 col1 | col2
------+--------------
 42 | this is neil
(1 row)

example1=#

But if we go back to being the user rick in the example1 database, reset the schema search
path to include schema1, and select again, we see our old table, not the table the user neil
created in the neil schema:

example1=# \c example1 rick
Password:
You are now connected to database "example1" as user "rick".
example1=> SET search_path TO schema1;
SET
example1=> SELECT * FROM table1;
 col1 | col2
------+------
 1 | one
 2 | two
(2 rows)

example1=>

By default, rick does not see the schema neil, because only schemas called rick and
public are searched, but when rick’s search path is set to search schema1, it finds the original
table table1 rather than the table of the same name owned by neil.

This is easy to see in pgAdmin III, as shown in Figure 11-6. Notice that both the schemas
schema1 and neil have a table called table11.

MatthewStones_4789C11.fm Page 335 Wednesday, February 23, 2005 6:48 AM

336 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

Figure 11-6. Two tables with the same name, in the same database

This ability to subdivide schemas in a database, both by explicit name by using the
schemaname.tablename syntax and by automatically searching through a defined list of schemas,
is a powerful technique if you need to use it. If, on the other hand, you have no need to use
schemas, you can just accept the default public schema, and more or less ignore the existence
of schemas.

Listing Tables in a Schema

Currently, there is no shortcut command from the psql prompt to list the tables in a schema,
though it is possible to access the information by using the pg_tables system catalog, for example:

example1=> SELECT schemaname, tablename, tableowner FROM pg_tables
WHERE schemaname = 'schema1';
 schemaname | tablename | tableowner
------------+-----------+------------
 schema1 | table1 | rick
 schema1 | table2 | rick
(2 rows)

example1=>

MatthewStones_4789C11.fm Page 336 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 337

If you use SELECT * FROM pg_tables, you can see all the tables and schemas, but the format
isn’t particularly user-friendly.

Privilege Management
PostgreSQL controls access to the database by using system privileges that may be granted and
revoked using the GRANT command. By default, users may not write data to tables that they did
not create. Privileges may be removed with the REVOKE command. Permissions can also be
managed via pgAdmin III.

Granting Privileges

The GRANT command has the several versions, all based around the same syntax:

GRANT privilege [, ...] ON object [, ...]
TO { PUBLIC | GROUP group | username } [WITH GRANT OPTION]

The basic GRANT command gives a list of privileges to an object or list of objects. The WITH
GRANT OPTION allows the user or group granted the privilege to subsequently GRANT those priv-
ileges to others. In general, this is not a good idea, because you want to give as few users as
possible administration-type privileges. The supported privileges are shown in Table 11-10.

The object may be the name of a table, a view, a tablespace or a group. The keyword PUBLIC
is an abbreviation, meaning all users.

For instance, to allow the authors group to read the customer table and to add new customers,
we could do the following, assuming we already have sufficient privileges to perform this:

bpfinal=# GRANT SELECT,INSERT ON customer TO GROUP editors;
GRANT
bpfinal=#

Table 11-10. Grant Privileges

Privilege Description

SELECT Allows rows to be read

INSERT Allows new rows to be created

DELETE Allows rows to be deleted

UPDATE Allows existing rows to be changed

RULE Allows creation of rules for a table or view

REFERENCES Allows creation of foreign key constraints (as mentioned in Chapter 8;
permission must be granted on both tables involved in the relationship)

TRIGGER Allows creation of triggers on a table

EXECUTE Allows execution of stored procedures

ALL Grants all privileges

MatthewStones_4789C11.fm Page 337 Wednesday, February 23, 2005 6:48 AM

338 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

Revoking Privileges

Privileges are revoked (taken away), by the REVOKE command, which is very similar to GRANT:

REVOKE privilege [, ...]
ON object [, ...]
FROM { PUBLIC | GROUP groupname | username }

For example, we can deny the user rick any access to the customer table with the following
command:

bpfinal=# REVOKE ALL ON customer FROM rick;
REVOKE
bpfinal=#

A user group permission will still allow access, even if a particular user doesn’t have the
permission specifically. If, for example, the group authors has permission to access the customer
table, and rick is a member of that group, he will still be allowed access. To complete the
permission change, we would need to delete rick from all groups that can access the table.

■Caution You need to be careful that your permissions are consistent. For example, if you have a table
with a serial column, which uses a sequence to create the values, then you must grant permissions on both
the table and the sequence for a user to successfully insert rows. PostgreSQL will not warn you if you create
combinations of permissions on different objects that are not logically consistent.

Database Backup and Recovery
Backup and recovery is an area all too often overlooked, with disastrous consequences. A data-
base system depends on its data, and data can be lost in a number of ways—from a bolt of
lightning frying the hard drive, to finger trouble deleting the wrong files, to bad programming
corrupting the contents of the database. All PostgreSQL databases should be backed up on a
regular basis. Keeping a copy of your data elsewhere will protect you should a problem arise.

A well-thought-out backup and recovery plan is one that has been tested and shown to
work, preferably with an automated backup process. It will help reduce the impact of any data
loss to a minor inconvenience, rather than an enterprise-terminating experience.

Even though PostgreSQL uses ordinary files in the file system to store its data, it is not
advisable to rely on normal file backup procedures for PostgreSQL databases. If the database is
active when copies of the PostgreSQL files are taken, we cannot be sure that the internal state
of the database will be consistent when it is restored. In theory, we could shut down the data-
base server before copying the files, but there is a better way. PostgreSQL provides its own backup
and restore mechanisms: pg_dump, pg_dumpall, and pg_restore. In addition, it is possible to do
backups directly from pgAdmin III.

MatthewStones_4789C11.fm Page 338 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 339

In what circumstances might PostgreSQL lose data? Fortunately it’s not very many. These
circumstances and the corresponding action are listed in Table 11-11.

Creating a Backup
The easiest way to back up a database is to run pg_dump and redirect its output to a file. The
pg_dump command syntax is very simple.

pg_dump [dbname] [options…]

We will discuss the full set of options that pg_dump offers shortly. For now, we just need to
know that -U specifies a username.

Here is a very simple command to back up our bpfinal database:

$ pg_dump -U postgres bpfinal > bpfinal.backup

In essence, the backup scheme is to produce a large SQL (and PostgreSQL internal
commands) script that, if executed, will re-create the database in its entirety. By default, the
pg_dump output is a human-readable text script, which contains statements for creating users
and privileges, creating tables, and adding data. Here is a small sample:

--
-- Name: stock; Type: TABLE; Schema: public; Owner: rick
--

CREATE TABLE stock (
 item_id integer NOT NULL,
 quantity integer NOT NULL
);

Table 11-11. PostgreSQL’s Handling of Hazardous Events

Event PostgreSQL Action

Client crash PostgreSQL will roll back any transactions (see
Chapter 9) in progress for that client.

Client network failure PostgreSQL will roll back any transactions in
progress for that client.

Server crash PostgreSQL will roll back incomplete transac-
tions when the server restarts.

Operating system crash with no data loss PostgreSQL will roll back incomplete transac-
tions when the server restarts.

Accidental deletion of database data or table Manual recovery from a backup is required.

Accidental deletion from the operating system
of PostgreSQL’s files

Manual recovery from a backup is required.

Disk failure or other crash corrupting
PostgreSQL’s files

Manual recovery from a backup is required.

MatthewStones_4789C11.fm Page 339 Wednesday, February 23, 2005 6:48 AM

340 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

ALTER TABLE public.stock OWNER TO rick;
--
-- Data for Name: stock; Type: TABLE DATA; Schema: public; Owner: rick
--

COPY stock (item_id, quantity) FROM stdin;
1 12
2 2
4 8
5 3
7 8
8 18
10 1
\.

To restore the database from a backup, we need to execute the script. The script will contain
commands for creating and populating tables, but does not contain the database creation. We
must first create a database to restore into, and then run the script. As a side effect, this gives us
a way of copying a database within an installation, or renaming it. Assuming we have an empty
database created, say newbpfinal, we can restore the data from the original by using psql to
execute the backup script:

$ createdb newbpfinal
$ psql -f bpfinal.backup newbpfinal

Here, the -f option to psql causes it to read commands from a file instead of from the user.
We can back up all of the databases in our installation (including internal system tables

used by PostgreSQL) in one go by using pg_dumpall as the database superuser (postgres):

$ su - postgres
$ pg_dumpall > all.backup

This has the advantage of also backing up items that are common across all of the data-
bases, such as user information. We lose the opportunity, however, to rename databases.

There are many options to pg_dump that allow us to select a single table to back up, to
compress the backup file as it is produced, to include table definitions, and to specify the
format of the dump output. The most useful options are listed in Table 11-12.

Table 11-12. Common pg_dump Options

Option Description

-f, --file=filename Specifies a filename (default is standard output)

-F, --format=c|t|p Specifies an output file format (custom, tar, or plain text)

-v, --verbose Uses verbose mode

-Z, --compress=0-9 Specifies the compression level for compressed formats

--help Shows some help text

MatthewStones_4789C11.fm Page 340 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 341

The -s option is often useful to create a copy of the database structure, without the data.
Often, it’s useful to have one or more copies of the live database, but with small amounts of test
data for developers to work on. In countries with tight data protection laws, such as the United
States and countries in the European Union, it is often a legal necessity to tightly restrict access
to personal data, so live data cannot be used for test purposes.

■Caution From time to time, new versions of PostgreSQL are released, containing new features or
enhancements that you will want to take advantage of. Before attempting to upgrade to a new version of
PostgreSQL, back up your data. Unless you are sure that your data can be re-created, or it is not important, it
is best to be safe. Sometimes, a database backup and restore operation is required when upgrading to a new
version of PostgreSQL. Refer to the release notes for your new version of PostgreSQL to discover if a backup
and restore procedure is recommended.

Restoring from a Backup
To restore using an archive, we have several choices. If we did our backup into a plain-text file
(we didn’t specify any -F options to pg_dump), then we can simply feed the script into psql from
the command line. This is a good option for small databases, because a plain-text file that can
be viewed, or even edited if required, is very useful to have.

$ pg_dump -U postgres bpsimple > bpsimple.bak
$ createdb -U rick bpsimple2
$ psql -U rick -d bpsimple2 < bpsimple.bak

-a, --data-only Dumps only the data, not the schema

-C, --create Includes commands to create database in dump

-c, --clean Drops objects prior to creation

--disable-triggers Disables triggers during a data-only restore

-d, --inserts Dumps data as INSERT commands, rather than COPY commands

-s, --schema-only Dumps only the schema, no data

-S, --superuser=name Specifies the superuser username

-t, --table=table Dumps the named table only

-h, --host=hostname Specifies the database server host or socket directory

-p, --port=port Specifies the database server port number

-U, --username=name Connects as the specified database user

Table 11-12. Common pg_dump Options (Continued)

Option Description

MatthewStones_4789C11.fm Page 341 Wednesday, February 23, 2005 6:48 AM

342 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

Notice we used the command-line createdb utility to create the database, ready to be
loaded into. We could have connected to the database with psql and used the normal CREATE
DATABASE command just as easily.

To restore a backup that contains an entire installation, we need only connect to a PostgreSQL
installation that contains the default database, template1. A full backup created by pg_dumpall
contains SQL statements to create each database in the backup. We need to run the backup
and restore as the database superuser to have sufficient permissions to read and write all of the
data, as follows:

$ psql -f all.backup template1

If we did our backup into a custom or tar format file (using the -F option to pg_dump, rather
than allowing pg_dump to use its default format), then we must use the pg_restore utility to
recover the database. A backup created using pg_dump with custom or tar formatting cannot be
restored by reading the backup into psql as though it were an SQL script. The pg_restore utility
has the following form:

pg_restore [archive] [options...]

The most common options to pg_restore are listed in Table 11-13.

To back up our bpfinal database, compressing the backup as it’s created, we use this
command:

Table 11-13. Common pg_restore Options

Option Description

-d, --dbname=dbname Connects to database dbname

-f, --file=filename Specifies a filename (by default, standard input is used)

-F, --format=c|t Specifies the backup file format (custom or tar)

-l, --list Prints a summarized listing of the archive’s contents

-v, --verbose Uses verbose mode

--help Shows some help text

-a, --data-only Restores only the data, not the schema

-c, --clean Cleans (drops) the schema prior to creation

-C, --create Creates the target database

-s, --schema-only Restores only the schema, not the data

-t, --table=tablename Restores the named table

-h, --host=hostname Specifies the database server host or socket directory

-p, --port=port Specifies the database server port number

-U, --username=username Connects as the specified database user

-e, --exit-on-error Exits on error (the default is to continue)

MatthewStones_4789C11.fm Page 342 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 343

$ pg_dump -U postgres -F c bpfinal --compress=9 > bpf.zb

In real life, we would then archive this backup, perhaps after testing it on a different data-
base installation to ensure it was a valid backup.

■Caution Do not test backup and restore procedures on a live database while you are learning. Practice
on a database installation from which you can afford to lose the data!

Suppose the database dbfinal has been lost, perhaps because of a disk failure. Using psql,
we create a new bpfinal database:

example1=> \c template1 postgres
You are now connected to database "template1" as user "postgres".
template1=# CREATE DATABASE bpfinal OWNER rick;
CREATE DATABASE
template1=#

Now we can use pg_restore to get our database back:

$ pg_restore -U postgres -d bpfinal bpf.zb

The pg_dump format using -F c will create a smaller backup file than can usually be achieved
with a plain-text format, even if you then compress the file, which gives the pg_dump with -F c
option followed by pg_restore an advantage for larger databases.

However, the flexibility of a script that can be viewed and easily restored into a database of
a different name is very useful. In general, we suggest that you stick to plain-text formats of
pg_dump, which can be restored only by using psql.

On Linux, it’s easy to compress and decompress the backup file on the fly. For example,
here we back up our bpfinal database, compressing the backup as it’s created, and then restore it
to a database called bpx, decompressing the archive as it’s read:

$ pg_dump -U postgres bpfinal | gzip -9 > bpf.bc
$ createdb -U rick bpx
$ zcat bpf.bc | psql -U postgres bpx

This avoids the need for the additional disk space to store the uncompressed file during
either backup or recovery.

Backing Up and Restoring from pgAdmin III
In this chapter, we have seen how pgAdmin III often provides a user-friendly mechanism for
many of the administrative tasks we must perform. You will not be surprised to discover that
pgAdmin III can also provide a GUI for backup and restore operations. Of course, it’s more
difficult to automate backups using a GUI tool, but it does offer an easy way to make them.

To make a backup in pgAdmin III, right-click the database to back up and select Backup
from the context menu that appears. In the dialog box that appears, select a file to back up into,
as shown in Figure 11-7.

MatthewStones_4789C11.fm Page 343 Wednesday, February 23, 2005 6:48 AM

344 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

Figure 11-7. Using pgAdmin III to perform a backup

Once the backup has finished, click the Databases object of the database connection (the
group object that can be expanded to show all the databases in a server) and create a new data-
base to restore your data into. Then right-click the database to restore into, and you should see
a Restore option, as shown in Figure 11-8.

MatthewStones_4789C11.fm Page 344 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 345

Figure 11-8. pgAdmin III ready to restore some data

In the Restore Database dialog box, shown in Figure 11-9, select the file you used to back
up to earlier. This dialog box also contains a list of options, allowing partial restores, as shown
in Figure 11-9. Select options as applicable, and then click OK to restore the data to a different
database.

MatthewStones_4789C11.fm Page 345 Wednesday, February 23, 2005 6:48 AM

346 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

Figure 11-9. pgAdmin III Restore Database dialog box

POINT-IN-TIME RECOVERY

A common problem with backups is that they were often taken some time before the event that caused the
backed up data to need to be restored, so all the intervening work is lost. If you did a backup at 2 A.M., but the
disk drive in your server failed at 5 P.M., then even after restoring from backup, you have lost many hours’ work.

Starting with version 8.0 of PostgreSQL, a new feature is available, called point-in-time recovery, or often
just PITR, which is based on the new Write Ahead Logging (WAL) features of PostgreSQL 8. PITR helps to miti-
gate the problem of lost work by storing additional log files of transactions away from the main database.
Provided that the event that caused the main database to be corrupted didn’t also corrupt the log files, then,
after restoring the main database files, it is possible to “replay” events in the additional log files to recover
events between the backup and the crash. Indeed, it is possible to replay the commands to an arbitrary point
in time, hence the naming of this feature.

Interested readers should consult the section in the manual on online backups and PITR, but be warned
this topic is reasonably complex. You should experiment with PITR on a test server before considering it for
production use.

MatthewStones_4789C11.fm Page 346 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 347

Database Performance
Performance is frequently an issue with larger databases. No matter how quickly the database
runs, there is almost always someone who will ask if it can be made to go quicker, or run at the
same speed on a lower-specification machine.

In this book, we have been working with a small database with relatively few tables, each
containing a handful of rows. We have not been concerned with the speed at which PostgreSQL
responds to queries or the physical size of the database, because with such a small database,
PostgreSQL is very quick, even on quite lowly specified hardware.

Optimizing databases is an advanced skill, requiring database design techniques and
detailed knowledge of the internal workings of a database system. PostgreSQL includes a
sophisticated optimizer that attempts to execute database queries as efficiently as possible,
but, in some cases, it requires a helping hand.

Here, we will look at a few relatively simple ways to help maintain and perhaps improve
PostgreSQL database performance, beginning with discovering how the database is currently
performing.

Monitoring Behavior
There are two ways you can look at what PostgreSQL is doing:

• Monitoring the operating system activity

• Looking at some of the statistics PostgreSQL collects internally

Monitoring Operating System Activity

A standard way to get a quick look at the PostgreSQL user processes on Linux is to use the ps
command to look for processes owned by postgres. Here is an example on a database with
several remote connections:

$ ps -ef | grep postgres
postgres 2006 1 0 13:32 tty1 00:00:00 /usr/local/pgsql/bin/postmaster
-i -D /usr/local/pgsql/data
postgres 2009 2006 0 13:32 tty1 00:00:00 postgres: writer process
postgres 2010 2006 0 13:32 tty1 00:00:00 postgres: stats buffer
postgres 2011 2010 0 13:32 tty1 00:00:00 postgres: stats collector
postgres 13180 2006 0 19:51 tty1 00:00:00 postgres: rick bpsimple
 192.168.0.2(3170) idle
postgres 13181 2006 0 19:51 tty1 00:00:00 postgres: rick example1
 192.168.0.2(3171) idle
postgres 13195 2006 0 20:13 tty1 00:00:00 postgres: postgres template1
 192.168.0.2(3217) idle
root 13218 2032 0 20:19 tty2 00:00:00 psql -U postgres template1
postgres 13219 2006 0 20:19 tty1 00:00:00 postgres: postgres template1
$

The operating system command top is also useful to see what a Linux system is doing.

MatthewStones_4789C11.fm Page 347 Wednesday, February 23, 2005 6:48 AM

348 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

Viewing PostgreSQL Statistics

The PostgreSQL statistics collector has a number of views that show internal statistics.
As an example, here is the information available in pg_stat_activity, which provides a list

of the current processes and users (some columns are omitted in this example):

template1=# SELECT * FROM pg_stat_activity;
datid | datname | procpid | usesysid | usename
------+-----------+---------+----------+----------+
 1 | template1 | 13219 | 1 | postgres |
18414 | bpfinal | 13230 | 101 | neil |
18182 | bpsimple | 13180 | 100 | rick |
17864 | example1 | 13181 | 100 | rick |
 1 | template1 | 13195 | 1 | postgres |

template1=#

It’s also useful to check for locking. This can be done by reading the pg_locks view:

template1=# SELECT * FROM pg_locks;
 relation | database | transaction | pid | mode | granted
----------+----------+-------------+------+-----------------+---------
 | | 7595 | 2249 | ExclusiveLock | t
 16837 | 1 | | 2249 | AccessShareLock | t
(2 rows)

template1=#

See the PostgreSQL online documentation for more details about the pg_stat_activity
and pg_locks views.

Using VACUUM
The PostgreSQL SQL VACUUM command has two uses:

• Reclaiming database storage space

• Updating optimizer statistics

The VACUUM command has the following syntax:

VACUUM [FULL] [FREEZE] [VERBOSE] ANALYZE
 [table [(column [, ...])]]

Reclaiming Space

Over a period of time, a PostgreSQL data table will accumulate defunct rows—rows that occupy
space in the database, but that can no longer be accessed.

Recall from Chapter 9 that during a transaction that is updating rows in a table, users must
still be able to query the table and get consistent results. PostgreSQL creates new rows for the
data in the transaction and makes them available once the transaction is committed. Meanwhile,

MatthewStones_4789C11.fm Page 348 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 349

queries see the old rows. When the transaction is completed, we have a table that contains both
the old and new rows, but one set is no longer accessible. It is the space consumed by these
inaccessible rows that VACUUM reclaims.

The command VACUUM by itself runs across the tables in a database, and marks unused rows
as suitable for reuse when data is inserted. It doesn’t shrink the database, but it does run very
efficiently, with little effect on other users. The following is an example of VACUUM output. We
add the VERBOSE option to see some statistics, and select the customer table for vacuuming. By
default, VACUUM will reclaim storage in all tables in the active database.

bpfinal=> VACUUM VERBOSE customer;
INFO: vacuuming "public.customer"
INFO: index "customer_pk" now contains 15 row versions in 2 pages
DETAIL: 0 index pages have been deleted, 0 are currently reusable.
CPU 0.00s/0.00u sec elapsed 0.00 sec.
INFO: "customer": found 0 removable, 15 nonremovable row versions in 1 pages
DETAIL: 0 dead row versions cannot be removed yet.
There were 0 unused item pointers.
0 pages are entirely empty.
CPU 0.00s/0.00u sec elapsed 0.00 sec.
VACUUM
bpfinal=>

With the FULL option, VACUUM reclaims all spare space and returns it to the operating system.
Unfortunately this requires extensive locking on the database and much disk activity to reorga-
nize file layouts, so it can affect the performance of other users. The FREEZE option is required
only by people preparing a template database; you should not use it on normal databases. In
all cases, VERBOSE provides additional output (usually a lot of it!).

The ANALYZE option recomputes various statistics that PostgreSQL uses to plan its database
queries, as explained next.

Updating Optimizer Statistics

As we have seen in earlier chapters, SQL is a declarative language. We tell PostgreSQL the result
we want, and it is up to the database to work out the best way of getting that result. For example,
we might say that we want to find all the customers who ordered Linux CDs between two specific
dates and live in Newtown. The database may choose to scan the customer table for each customer
and look for their order information, or it may decide to scan the item table for the Linux CD
item, pick each order, and see which customer placed it and when.

Depending on the structure of the database, the primary keys, and the number of rows in
the tables, one way may be much faster than another. PostgreSQL tries to work out which way
to perform the query will be the fastest. This is what the query optimizer does: it creates a query
plan for a query before executing it. The plan is normally based on both the structure of the
database and the size of the tables involved in the query, and as described in the next section,
the availability of indexes on queried columns.

We can view the query plan for any particular query by using the EXPLAIN SQL statement:

EXPLAIN [VERBOSE] query

MatthewStones_4789C11.fm Page 349 Wednesday, February 23, 2005 6:48 AM

350 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

Here it is in action:

bpfinal=> EXPLAIN SELECT customer_id FROM customer WHERE zipcode='BG3 8GD';
 QUERY PLAN
--
 Seq Scan on customer (cost=0.00..1.19 rows=1 width=4)
 Filter: (zipcode = 'BG3 8GD'::bpchar)
(2 rows)

bpfinal=>

In our sample database, most queries will be performed using sequential scans of the
tables, as the tables are very small. PostgreSQL estimates a cost associated with each part of the
query that it is planning and tries to minimize the total.

As we can see in the results of the EXPLAIN statement, PostgreSQL is estimating a cost of
between 0 and 1.19 for a scan of the customer table. It is also estimating that two rows will be
found. PostgreSQL has no choice in this case but to look at each customer record in turn,
comparing the zipcode.

If we look at a more complicated query, we see that the output can get quite complex:

bpfinal=> EXPLAIN SELECT * FROM customer, orderinfo
bpfinal-> WHERE customer.customer_id = orderinfo.customer_id;
 QUERY PLAN
--
 Hash Join (cost=1.06..2.34 rows=5 width=436)
 Hash Cond: ("outer".customer_id = "inner".customer_id)
 -> Seq Scan on customer (cost=0.00..1.15 rows=15 width=408)
 -> Hash (cost=1.05..1.05 rows=5 width=28)
 -> Seq Scan on orderinfo (cost=0.00..1.05 rows=5 width=28)
(5 rows)

bpfinal=>

You can get more detailed information, including the total runtime required, by adding
the ANALYZE option to EXPLAIN:

bpfinal=> EXPLAIN ANALYZE SELECT * FROM customer, orderinfo
bpfinal-> WHERE customer.customer_id = orderinfo.customer_id;
 QUERY PLAN

--
 Hash Join (cost=1.06..2.41 rows=5 width=111) (actual time=26.668..26.827 rows=
5 loops=1)
 Hash Cond: ("outer".customer_id = "inner".customer_id)
 -> Seq Scan on customer (cost=0.00..1.15 rows=15 width=85) (actual time=0.0
13..0.083 rows=15 loops=1)
 -> Hash (cost=1.05..1.05 rows=5 width=26) (actual time=5.300..5.300 rows=0
loops=1)

MatthewStones_4789C11.fm Page 350 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 351

 -> Seq Scan on orderinfo (cost=0.00..1.05 rows=5 width=26) (actual ti
me=5.257..5.273 rows=5 loops=1)
 Total runtime: 27.099 ms
(6 rows)

bpfinal=>

The cost estimates that are used by PostgreSQL are based on the tables’ vital statistics,
such as the number of rows that are present. These statistics are not kept precisely up-to-date
as the server runs, but must be recomputed from time to time. This is what VACUUM ANALYZE
does. Here’s an example:

bpfinal=# VACUUM ANALYZE;
VACUUM
bpfinal=#

Vacuuming from the Command Line

PostgreSQL provides a utility, vacuumdb, for performing the database vacuum from the command
line. Its syntax is as follows:

vacuumdb [options] database

The main options to vacuumdb are listed in Table 11-14.

■Tip For a PostgreSQL database of any size in regular use, run VACUUM ANALYZE or
vacuumdb --analyze daily, perhaps as part of an overnight routine. This will ensure that the space
occupied by the data remains at a minimum, and the statistics used by the query optimizer remain up-to-date,
keeping performance at its best.

Table 11-14. Common vacuumdb Options

Option Description

-a, --all Vacuums all databases

-d, --dbname=dbname Specifies the database to vacuum

-t, --table='table' Vacuums the specified table only

-f, --full Does full vacuuming

-z, --analyze Updates optimizer statistics

-v, --verbose Uses verbose mode

--help Shows some help text

-h, --host=hostname Specifies the database server

-p, --port=port Specifies the database server port

-U, --username=username Specifies the username to use

MatthewStones_4789C11.fm Page 351 Wednesday, February 23, 2005 6:48 AM

352 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

Vacuuming from pgAdmin III

It’s also possible to run a VACUUM operation from pgAdmin III. Right-click the database and
select Maintenance from the context menu. As shown in Figure 11-10, the Maintain Database
dialog box includes a choice for a VACUUM operation, as well as VACUUM options.

Figure 11-10. pgAdmin III maintenance options

Creating Indexes
As we saw in the previous section, PostgreSQL creates a query plan for a query based on costs
of selecting and scanning data. A sequential scan of all the rows in a table will become very
expensive as the number of rows in the table increases. Databases use indexes to speed up
searches for rows that contain specific data, as the cost of an index scan is typically much less
than a sequential scan.

In fact, PostgreSQL will automatically create an index for a column defined as a primary
key for a table. This means that, for example, locating a customer given their customer_id will
be very quick, but locating a customer by ZIP code will still require a sequential scan.

We can create additional indexes for a table by using the SQL CREATE INDEX command,
which has the following syntax:

CREATE [UNIQUE] INDEX indexname ON table(column)

MatthewStones_4789C11.fm Page 352 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 353

The UNIQUE option specifies that the column we are indexing does not contain duplicate
entries; each row has a unique value for this column. Once a unique index has been created,
any attempt to add or alter data so that this condition is broken will result in an error. Use this
option only if you are sure that your data will never have duplicate data for the index column.

Our sample database has too little data to really benefit from indexes, so let’s create a new
table to demonstrate the effect of an index.

We can create a large table by reading in a long list of words (such as /usr/share/dict/words
on most Linux systems) into a table. The example we use here contains more than 100,000 words.
We can use the \copy command in psql to read data directly from a file. We use the example1
database we created earlier in the chapter as a location for our new table:

example1=> CREATE TABLE words (word varchar(100));
CREATE TABLE
example1=> \copy words from 'file-with-many-words'
\.
example1=> SELECT COUNT(*) FROM words;
 count

 106172
(1 row)

example1=>

Now that we have a large table, we can ask PostgreSQL how it would go about finding the
word Zulu, which we know is near the end of the word list:

example1=> EXPLAIN ANALYZE SELECT word FROM words WHERE word = 'Zulu';
 QUERY PLAN

--
Seq Scan on words (cost=0.00..22.50 rows=5 width=168) (actual time=315.460..31
5.728 rows=1 loops=1)
 Filter: ((word)::text = 'Zulu'::text)

 Total runtime: 315.869 ms
(3 rows)

example1=>

Despite the fact that there are more than 100,000 rows, PostgreSQL estimates a maximum
cost of 22.5 for a scan of the table. This is just a guess, and we know that it is wildly inaccurate,
since PostgreSQL will need to search almost to the end of the table to find the right row. To help
PostgreSQL make a better estimate, we need to use VACUUM ANALYZE to update the table statistics
after our insertion:

MatthewStones_4789C11.fm Page 353 Wednesday, February 23, 2005 6:48 AM

354 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

example1=> VACUUM ANALYZE words;
VACUUM
example1=> EXPLAIN ANALYZE SELECT word FROM words WHERE word = 'Zulu';
 QUERY PLAN

--
Seq Scan on words (cost=0.00..1960.15 rows=3 width=11) (actual time=280.491..2
80.726 rows=1 loops=1)
 Filter: ((word)::text = 'Zulu'::text)
 Total runtime: 280.874 ms
(3 rows)

example1=>

Now PostgreSQL is estimating a cost of up to 1960 for a scan on this table. This demon-
strates why it is important to run VACUUM regularly to keep the statistics up-to-date, especially
after significant data updates, insertions, or deletions.

When we perform the query to retrieve Zulu, we see a very slight pause (though on today’s
computers, even searching 100,000 rows is only a very slight pause):

example1=> SELECT * FROM words WHERE word='Zulu';
word

Zulu
(1 row)

example1=>

If we turn on the timing option in psql, we can see the actual time:

example1=> \timing
Timing is on.
example1=> SELECT word FROM words WHERE word = 'Zulu';
 word

 Zulu
(1 row)

Time: 141.000 ms
example1=> \timing
Timing is off.
example1=>

We can speed up access to the words table by creating an index, like this:

MatthewStones_4789C11.fm Page 354 Wednesday, February 23, 2005 6:48 AM

C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 355

example1=> CREATE INDEX words_idx ON words(word);
CREATE INDEX
example1=>

We can see the predicted benefit by looking at the query plan again:

example1=> EXPLAIN ANALYZE SELECT word FROM words WHERE word = 'Zulu';
 QUERY PLAN

--
Index Scan using words_idx on words (cost=0.00..5.62 rows=3 width=11) (actual
time=0.681..0.695 rows=1 loops=1)
 Index Cond: ((word)::text = 'Zulu'::text)
 Total runtime: 0.837 ms
(3 rows)

example1=>

example1=> SELECT * FROM words WHERE word='Zulu';
word

Zulu
(1 row)

example1=>

PostgreSQL will now use the index, and the estimated cost has dropped dramatically. If you
are on a slow enough machine, or used enough words, you may even be able to notice the
increase in performance.

If we look at the actual time required now that we have an index, we can see the improvement:

example1=> \timing
Timing is on.
example1=> SELECT word FROM words WHERE word = 'Zulu';
 word

 Zulu
(1 row)

Time: 6.000 ms
example1=> \timing
Timing is off.
example1=>

MatthewStones_4789C11.fm Page 355 Wednesday, February 23, 2005 6:48 AM

356 C H A P T E R 1 1 ■ P O S T G R E S Q L A D M I N I S T R A T I O N

While indexes can dramatically speed up a database, and they are the key to maximizing
performance, they do not come without a cost. An index will speed up access where selections
are being made on matches with the indexed column, but they will make data insertions and
updates slower, because the index must be updated as well as the actual data. Indexes also
consume space within the database.

We need to take care in selecting which database tables and columns to index, balancing
the improved selection performance against increased database size and decreased update
speed. So which tables and columns should we index? Think about what each table is used for
and what kinds of queries are likely to be made. Consider creating an index for the following:

• Tables that have many rows and are updated infrequently

• Columns that are not primary or foreign keys, but may be used in complex joins

• Columns that will be searched for an exact or prefix match

There are no hard-and-fast rules, and sometimes experimentation is needed.

Summary
In this chapter, we first looked at the layout of a PostgreSQL installation, in particular it’s
configuration files and the key options in those files we might want to adjust. Then we looked
at database initialization and server control.

Next, we discussed how we can manage the internals of a PostgreSQL server: creating
databases, adding users, and managing how PostgreSQL places the physical files underlying
the internal databases.

Then we looked at performing backups. Finally, we saw some simple measures we might
take to maintain, or even improve, database performance.

The most important topic in this chapter was backups. However reliable PostgreSQL is—
and it is very reliable—we cannot stress how important it is that you not only back up your data
regularly, but also that you have tested how you would restore that data before you suffer a data
loss. However, please don’t experiment with restoring data on a production server; mistakes
can be serious.

In the next chapter, we will return to the topic of database design, which we looked at
briefly in Chapter 2. It presents more formal guidelines for how to design a database, and how
to enforce data integrity using constraints, which we met in Chapter 8.

MatthewStones_4789C11.fm Page 356 Wednesday, February 23, 2005 6:48 AM

357

■ ■ ■

C H A P T E R 1 2

Database Design

So far in this book, we have been working with a database for our simple customer/orders/
products data, but we have taken the design of the tables and columns mostly for granted. Now
that we understand more about the capabilities of relational databases, we are in a position to
backtrack a little and look at a very important aspect of databases: designing the database
structure, more formally known as a database schema.

When researching this chapter, we asked a friend with excellent database design skills,
honed over several years, what he thought was the most important aspect of database design.
His simple answer was, “Practice.” Unfortunately, we can’t provide a substitute for practice,
but we can provide a foundation for understanding database design as you gain experience.
We will explain the basics in this chapter. Also, we’ll work through how we arrived at the design
in our sample database.

In this chapter, we’ll be looking at the following aspects of database design:

• What constitutes good database design

• Stages in database design

• Logical design

• Physical database model development

• Normal forms

• Common design patterns

What Is a Good Database Design?
The very first step in designing a database is to understand the problem. Just as when you are
designing applications, it is important to understand the problem area well, before getting
immersed in any detailed design. With an understanding of the problem, you can determine
what you are trying to achieve with your database design.

Understanding the Problem
Is your planned system going to replace an existing system? If so, you have a head start, because
whatever its failings or shortcomings, an existing system will have captured many important

MatthewStones_4789C12.fm Page 357 Tuesday, March 8, 2005 2:21 PM

358 C H A P T E R 1 2 ■ D A T A B A S E D E S I G N

features required of the replacement system. Even if there is an existing system, it’s important
that you talk to the potential users of the system. If it’s a database for your personal use, you
still need to ask questions, but ask them of yourself.

When interviewing, particularly if you are interviewing more than one person at a time,
there are some steps you can take to make the interview as productive as possible:

• Don’t try to interview too many people at the same time. Two or three is about the most
you should talk to at any one time.

• Inform people in advance about what you are trying to discover and send them your
main questions a couple of days prior to the interview.

• See if you can get a helper to jot down notes for you, so you can concentrate on under-
standing what the users are saying.

• Keep the interview session short and make sure you cover the major issues, even if you
need to leave some minor details undecided during the actual meeting. If some items
are left unresolved, request answers by a specified date, say in a week.

• Always circulate detailed minutes after the meeting, certainly within two working days,
with an explicit request to return comments within a week if any points are disputed.

The actual questions you ask will depend on your particular application. At initial interviews,
start out by asking users to describe the purpose of the system and its principal functions. Try
to avoid the “how” and focus on the “what.” People will often try to tell you how things are
done in the current system. However, you need to know why they are done, so you can under-
stand the purpose better.

Potential users hold the key to a good design, even if they don’t know it. If you are creating
a system for your personal use, it is worthwhile to take the time to consider precisely what you
need to do, and to try to anticipate how this may change over the time.

Taking Design Aspects into Account
It’s important to understand what you are trying to achieve with a database design. Different
features will be important in different systems. For example, you may be building a database to
collect some survey data, where once the results have been extracted, there will be no further
use for the database. In this case, designing in flexibility for future expansion is usually not the
most effective use of your time and energy.

Let’s look at the aspects of design that may need to be taken into account when designing
a database.

Ability to Hold the Required Data

The ability to hold the required data is a fairly crucial requirement of all databases, since storing
data is the very reason for having a database. However, even this apparently universal require-
ment can have degrees of necessity. If you are designing a reasonably complex database that you
expect to evolve over time, you should seriously consider what are the “must-have” require-
ments and implement those first, putting to one side the “nice-to-have” requests.

MatthewStones_4789C12.fm Page 358 Tuesday, March 8, 2005 2:21 PM

C H A P T E R 1 2 ■ D A T A B A S E D E S I G N 359

Database design usually evolves through a number of design iterations, just as in the spiral
model of application design, where the design iterates through a number of design-code-
implement loops as the system evolves, or the Rational Unified Process, where a number of
iterations occur, always working on the key requirements first. With database design, getting
the fundamentals correct the first time tends to be even more important than with application
design. Once the first iteration of the database is in use and storing real data, significant design
changes to the core structure will generally prove difficult and time-consuming, and may
require design changes in applications accessing the database.

In most database designs, even very complex ones, only about 25% of the tables (at most)
in the final database implementation are fundamental to the design. Identifying and designing
these core tables must be the first goal. The remaining tables are important, but they are usually
peripheral to the core of the design.

Ability to Support the Required Relationships

The design of the database should support the relationships among the data entities. It is all
too easy to become so focused on the details of the data to be stored that you overlook relation-
ships between the data items, yet this is the key breakthrough of relational databases. An
application using a database design that captures all the data, but neglects these relationships,
will almost always eventually suffer from data-integrity problems and excessive complexity, as
other parts of the system attempt to make up for the design failings in the underlying database.

Ability to Solve the Problem

The best-designed databases are worthless if they don’t solve the problem that they were created
to tackle. Throughout the design process, you must stay in touch with the problem area. If
possible, communicate with the intended users of the database and explain the design to them
as the major design decisions are being made.

Simply mailing the users copies of your database schema will almost certainly not do. You
need to sit with them and talk through the design, explaining in business terms what the design
achieves, and more important, what assumptions you have made and any limitations the design
imposes. When you do this, remember to explain carefully how each major data entity can
relate to other entities. If your design allows only a local IT support person to support a single
department, you must mention such limitations.

It’s also important, where practical, to carefully select the users you consult. The most valuable
people to talk to are usually those with the broadest experience of the problem. Unfortunately,
these also tend to be most senior personnel, and therefore often the busiest and most difficult
to get time with.

Ability to Impose Data Integrity

The data-integrity aspect is closely related to the earlier point about relationships. The whole
purpose of a database is to store data, and the quality of that data must be very important to
database designers. A lot of real-world data inevitably has deficiencies: uncertainties, hand-
written forms that have illegible entries, or missing information. These are never excuses for
allowing any further deterioration in data quality in the database.

MatthewStones_4789C12.fm Page 359 Tuesday, March 8, 2005 2:21 PM

360 C H A P T E R 1 2 ■ D A T A B A S E D E S I G N

Choose data types with care, impose column constraints, and if necessary, write trigger
functions to maintain the data in the database with as much rigor as is reasonably practical. Of
course, some common sense and pragmatism is called for sometimes, but never invent data if
something is missing. If you are entering a survey into the database, for example, and some
users were unable to answer some questions, it is better to store the fact that the answer was
unknown than to enter a best guess.

Ability to Impose Data Efficiency

Data efficiency is a difficult aspect of database design, because, as Donald Knuth (Professor
Emeritus of The Art of Computer Programming at Stanford University) is widely quoted as
saying, “Premature optimization is the root of all evil.” Although he was referring to application
design, this is just as true, perhaps even more so, with database design.

Unfortunately, in a large, heavily used database, it is sometimes necessary to do things
that spoil the purity of the design in order to achieve more practical performance goals. You
should always get the design right first, before you even consider any optimizations. Often,
there are quite simple things, such as adding an index or rewriting a query, that can provide
dramatic performance improvements, without compromising the core design.

What you should avoid is the temptation to arbitrarily make many small changes, such as
changing a varchar type to a char type, or experimenting with indexes on different attributes.
Generally, these are a waste of time and can result in a poor and inconsistent database schema,
which will be difficult to maintain. You need to invest time in profiling the application first, to
determine where any bottlenecks lie, and only then consider what may need changing. Even
then, changing the database design itself (as opposed to less-structural changes such as adding
an index or rewriting a query) should be very much a last resort.

Ability to Accommodate Future Change

People in the software business are often surprised at just how long software remains in use,
usually well beyond its design lifetime. With databases, this is even more noticeable, because
migrating data from an old design to a new one is often a significant problem in its own right.
There will always be pressure to enhance the existing database design, rather than start from
scratch and then migrate the data at a later date.

Often, you will find that any changes you have made to your design in the supposed interests
of efficiency make your design harder to evolve. As Alan Perlis said in one of his programming
epigrams, “Optimization hinders evolution” (http://www.cs.yale.edu/homes/perlis-alan/
quotes.html).

Stages in Database Design
Once you know what you are trying to achieve with the database design, you’re ready to begin
the design process. As we hinted earlier when discussing the need to understand the problem,
database design is rarely a purely technical problem. A significant aspect is to understand the
needs and expectations of users before converting those requirements into a technical design. After
gathering information, you can proceed to logical design, and then determining relationships.

MatthewStones_4789C12.fm Page 360 Tuesday, March 8, 2005 2:21 PM

C H A P T E R 1 2 ■ D A T A B A S E D E S I G N 361

Gathering Information
The first stage in designing a database is to gather information about what it is for. Why are you
designing a database in the first place? It is important to have a clear objective before you
attempt to collect more detailed requirements. You should be able to define, in a small number
of sentences—perhaps just a single sentence—your aim with the database. If you can’t come
up with a simple way of describing your objective, then perhaps the objective is not yet well
understood or defined.

Bear this initial simple definition in mind, and if further down the track, it all seems to be
getting overcomplicated and suffering from “feature-bloat,” then go back to basics, focusing
again on the key objectives. Once you have a clear idea of what you are trying to achieve, you
can start to expand on this initial requirement.

If your new database will be replacing an existing database, your first task should be to
understand the structure of the original database—whether it’s relational, flat file, or perhaps
just a spreadsheet. Even if the existing system is badly flawed, you can still learn from it, both
good things and bad. It’s likely that many of the items it currently stores will also be required in
the new system, and seeing some existing data can often give you a good feel for what real-
world data looks like. Ask what the existing system does well and what it does badly, or not at
all. This will give you clues as to how the existing design needs to be amended.

You should write down what the system needs to do, because writing things down focuses
the mind. If reports will be generated, try creating a mock-up for users to comment on. If it will
take data that comes from existing paper-based forms, get hold of a copy, preferably with some
real data already filled in.

At this stage, you should also be thinking about relationships and business rules, and
noting any specific features and requirements that are mentioned. You need to be careful to
determine which are simply rather arbitrary “this is the way we do things” type rules and prone
to change, and which are factual rules about the nature of things and much less likely to change.
The former are rules you will probably choose to enforce only with triggers or at the application
level, so they are easy to modify. The latter are rules you should probably build into the design
of the database, enforcing data integrity at a low level, since they are fundamental and unlikely
to change.

Developing a Logical Design
The first stage of actual design is to develop a logical design. This has several steps. This stage
concentrates on the logical database structure, rather than focusing on implementation detail.

Determining Entities

Once you have gathered information about the initial objectives and business requirements,
you should be in a position to identify the principal entities (the key objects that will need to
appear in the database). At this point, you shouldn’t worry too much about minor entities.
You just need to stay focused on the big picture and pick out the key objects that define the
problem area.

In our sample database, we would identify customers, orders, and products as the key
objects that we need to work with. Additional details, such as the need to track stock or how
entities relate, are not important at this stage.

MatthewStones_4789C12.fm Page 361 Tuesday, March 8, 2005 2:21 PM

362 C H A P T E R 1 2 ■ D A T A B A S E D E S I G N

Once you believe you have identified the major components of your database, you need to
identify the attributes of those components, in an informal way. For example, for our sample
database, we would probably draw up a list of our main components, with the attributes
written in plain language, like this:

Customers and Potential Customers
Name

Address

Phone number

Orders
Products ordered

Date placed

Date delivered

Shipping information

Product Information
Description

Buy price

Sell price

Barcodes

Stock on hand

■Note Name is currently not a reserved keyword in the SQL standard, but it may become a reserved word
in the future. Currently, PostgreSQL will accept this as a column identifier, but at some point in the future, it
may become illegal, so it is best avoided. At this stage, we are just working with plain language, so for initial
design purposes, we will continue to use Name as an attribute of customers.

Notice that we have not yet worried about how we might store an address, nor about
minor complexities, such as the possibility that each product might have several different
barcodes. We have also kept the attributes names quite general, for example “Address” and
“Shipping information.” This helps to keep the list of attributes reasonably short and general,
so we avoid focusing on the finer details too early and losing sight of the core of the design.

At this stage, some people find it helpful to write a brief description of each entity. In our
small database, this is a little superfluous, as the components are so simple, but in larger data-
bases, particularly those dealing with more abstract ideas, this can be helpful. If we were writing
descriptions for the “Product information” attribute, we might have the following:

MatthewStones_4789C12.fm Page 362 Tuesday, March 8, 2005 2:21 PM

C H A P T E R 1 2 ■ D A T A B A S E D E S I G N 363

Once you have finished this stage, take the time to check the information you gathered
initially, and make sure nothing important has been overlooked.

Converting Entities to Tables

Now you are ready to take a more technical step, and start converting components and attribute
lists into something that will begin to look like a database. First, pick some sensible names for
the tables.

We always name our tables in the singular form, and try to stick to a 250 single word, even
if that is slightly artificial. In our sample database, it’s easy to convert our names to more
succinct versions such as customer or order. So rather than Product Information, we use item.
Some designers prefer to use the plural for table names, but the key is to be consistent.

Next, convert the attributes into more meaningful names, and also break down some of
the more general descriptions into the columns you would like to see in a database. When
breaking down descriptions into column names, it’s very important to ensure that each column
holds just a single attribute. As we will see later in the chapter, this is essential to ensuring the
database is in first normal form, a key design requirement for relational databases.

Again consistency is important, so be consistent in the way you pick attribute names. The
more consistent you are in your choice of names, column types, sizes, and so on, the easier
your database will be to maintain in the long term.

Starting with our customer table, we have three main attributes: Name, Address, and Phone
number. Name is reasonably easy to break down. People normally have a title of some form,
such as Mr., Mrs., or Dr., so we need to have a column for this. Names are quite complex. People are
often tempted to use a single column for names, assuming that they can always break down the
names later if required. The clue is in the word assume. Never assume—making assumptions is
always risky, even more so in the early stages of a database design.

Suppose you have a customer with a double-barrelled last name, such as Rose Martin, or
a Germanic last name, such as von Neumann. Some people might choose to enter two first
names, as well as a last name, such as Jennifer Ann Stones. We may have a table of data like this:

Product Information Description

Description Up to 75 characters that describe the product

Buy price The price paid to the supplier per item of product, excluding any
delivery costs or tax

Sell price The price to be paid for the item, excluding sales tax and shipping costs

Barcodes The EAN13 barcode

Stock on hand The quantity in stock, including any corrections applied during an
inventory check

MatthewStones_4789C12.fm Page 363 Tuesday, March 8, 2005 2:21 PM

364 C H A P T E R 1 2 ■ D A T A B A S E D E S I G N

With this structure, it would be impossible to reliably extract the first and last names at a
later date. If you need to separate the components of the name, it is much better to capture the
separation of names at the point of entry, and store them separately in the database, like this:

Notice that we have also decided that we are not interested in middle names, and we
decide as a point of principle to store only a single first name.

Now it’s possible at some point in the future to handle the components of the name
separately, so we can write to Dr. von Neumann, and start the letter “Dear John,” rather than
“Dear John von.” That sort of carelessness does not impress customers.

Our next item is Address. Addresses are always hard to handle in a database, because the
form of address varies widely even in a single country. For example, in the United Kingdom,
addresses are written in the form:

20 James Road,
Great Barr,
Birmingham
M11 2BA

Another address might have no house number at all:

Arden House,
Warwick Road,
Acocks Green,
Birmingham
B27 6BH

Title Name

Miss Jennifer Ann Stones

Dr John von Neumann

Mr Andrew Stones

Mr Adrian Alan Matthew

Mr Robert Rose Martin

Title Fname Lname

Miss Jennifer Stones

Dr John von Neumann

Mr Andrew Stones

Mr Adrian Matthew

Mr Robert Rose Martin

MatthewStones_4789C12.fm Page 364 Tuesday, March 8, 2005 2:21 PM

C H A P T E R 1 2 ■ D A T A B A S E D E S I G N 365

United States addresses are similar, although the ZIP code is slightly different from the
British postcode style:

2560 Ninth Street,
Suite 219,
Berkeley,
California
94710

In Germany and Austria, addresses are written very differently:

Getreidegasse 9
A-5020 Salzburg

(Which just happens to be a very attractive street where Mozart was born.)
Designing a standard address structure is not easy, and often there is no perfect solution.

Usually, a minimum design would be to separate out a postal town and ZIP code or equivalent,
which is what we have done in our sample database. In real use, it is probably better to have at
least three lines for an address, a town, a ZIP code, a state (if applicable), and a country if that
might be required.

■Note If you live outside the United States, a fault you sometimes see on web forms is assuming that
everyone has a state part of the address and providing a handy drop-down box to select the state, or making
it a mandatory field, but forgetting to allow the “not relevant” option for the rest of the world. It is very annoying
for people outside the United States trying to enter an address and discovering that state entry is mandatory,
when it has no meaning for most of the world’s population!

It is usually best to avoid insisting on a house number, as you will cause problems for
people in office buildings with a name, or people who live in apartments in condominiums and
have an apartment number as well as a street address number.

Another possibility is to accept an undefined number of address lines, by splitting the
address lines out into a separate table. If you do this, you must remember to impose an order
on the lines, so you get the address details in the correct order. Generally, most designers
consider this overkill, and splitting the address into a fixed number of lines is sufficient. In general,
we would recommend ensuring that the town and ZIP code are separately identified, just leaving
additional lines for the remainder of the address. Occasionally, too much subdivision is a
bad thing.

Assuming a simplified design for our address columns, we get the following for the
customer table columns:

MatthewStones_4789C12.fm Page 365 Tuesday, March 8, 2005 2:21 PM

366 C H A P T E R 1 2 ■ D A T A B A S E D E S I G N

Customer
Title

Fname

Lname

Addressline

Town

Zipcode

Phone

Our item (Product Information) table is already very close to having columns described:

Item
Description

Buy price

Sell price

Barcodes (may be several)

Stock quantity

Notice that we have postponed the problem of multiple barcodes per item for now. We will
return to this later.

Our order table is similar:

Order
Items ordered

Quantity of each item

Date placed

Date delivered

Shipping information

We have again postponed the details of some issues, such as multiple products being put
on the same order. It’s clear we will need to further break down this table before we can imple-
ment it in a real database.

Determining Relationships and Cardinality
At this point, you should have a list of the main entities, and although it might not be a complete
list, it should be at least a reasonable first pass at the main attributes for each entity. Now comes an
important phase in designing a database: breaking out those attributes that can occur several
times for each entity and deciding how the different entities relate to each other. This is often
referred to as cardinality.

Some people like to consider the relationships even before generating an attribute list. We
find that listing the main attributes helps in understanding the entities, so we perform that step
first. There is no definitive right and wrong way; use whichever works best for you.

MatthewStones_4789C12.fm Page 366 Tuesday, March 8, 2005 2:21 PM

C H A P T E R 1 2 ■ D A T A B A S E D E S I G N 367

Drawing Relationship Diagrams

With databases, a graphical representation of the structure of the data can be extremely helpful
in understanding the design. At this stage, you are working on what is termed a conceptual
model. You are not yet concerned about the finer implementation detail, but more about the
logical structure of our data. In a conceptual data model, tables are shown as boxes, with rela-
tionships between the tables shown using lines, with symbols at the end of the line indicating
the type of relationship, or the cardinality. Relationships between tables are always in two
directions; therefore, there will always be a symbol at each end, and you read the diagram
toward the table of interest. The symbols we will be using here are shown in Table 12-1.

■Note There are many different diagramming techniques and styles in use in database circles. We will use
a common notation; you will find other notation styles in use.

Suppose we had a relationship between two tables, A and B, as shown in Figure 12-1.

Figure 12-1. Simple relationship between two tables

This means that the tables have the following relationship:

• For each row in table A, there must be exactly one row in table B.

• For each row in table B, there can be zero, one, or many rows in table A.

Table 12-1. Cardinality Symbols

Relationship Symbol

Zero or one

Exactly one

Zero or many

One or many

MatthewStones_4789C12.fm Page 367 Tuesday, March 8, 2005 2:21 PM

368 C H A P T E R 1 2 ■ D A T A B A S E D E S I G N

For example, if table A is order and table B is customer, this would say, “For each order,
there must be exactly one customer. For each customer there can be zero, one, or many orders.”

Now that we have the basics of the diagram elements for drawing table relationships, we
can look at our example with customers, orders, and products. Our customer table has no
multiple attributes, so we can leave it alone for now. Let’s tackle our item table next, as this is
reasonably straightforward.

Our only difficulty with the item table is that each item could have more than one barcode.
As we discussed earlier in the book, having an unknown number of repeating columns in a
database table is not generally possible. (PostgreSQL does have an array data type, but that is
quite unusual and should be used with caution; we prefer to stick to standard column types.)
Suppose most items have two barcodes, but some have three, so we decide that an easy solu-
tion is to add three columns to the item table: barcode1, barcode2, and barcode3. This seems like
a nice solution to the problem, but it doesn’t stand up to closer scrutiny. What happens when
a product comes along that has four barcodes? Do we redesign our database structure to add a
fourth barcode column? How many columns are “enough”? As we saw in Chapter 2, having
repeated columns is very inflexible, and is almost always the wrong solution.

Another solution we might think of is to have a variable-length string, and “hide” barcodes
in that string, perhaps separated by a character we know doesn’t typically appear in barcodes,
such as a semicolon. Again, this is a very bad solution, because we have stored many pieces of
information in the same location. As with a good spreadsheet, it’s very important to ensure that
each entity is stored separately, so entities can be processed independently.

We need to separate the repeating information—the barcodes—into a new table. That way,
we can arrange to store an arbitrary number of barcodes for each item. While we are breaking
out the barcode, we also need to consider the relationship between an item and a barcode.
Thinking from the item side first, we know that each item could have no barcodes, one barcode,
or many barcodes. Thinking from the barcode end, we know that each barcode must be asso-
ciated with exactly one item. A barcode on a product is always the lowest level of identifier,
identifying different versions of products, such as promotional packs or overfill packs, while
the core product remains the same. We can draw this relationship as shown in Figure 12-2.

Figure 12-2. The relationship between item and barcode entities

This shows that each item can have zero, one, or many barcodes, but a barcode belongs to
exactly one item. Notice that we have not identified any columns to join the two tables. This
will come later. The important thing at this point is to determine relationships, not how we will
enforce them in the database.

Now we can move on to the order table, which is slightly harder to analyze. The first problem
is how to represent the products that have been ordered. Often, orders will consist of more
than one product, so we know that we have a repeating set of information relating to orders.
As before, this means that we must separate the products being ordered into another table.
We will call our main order table orderinfo, and call the table we split out to hold the products

MatthewStones_4789C12.fm Page 368 Tuesday, March 8, 2005 2:21 PM

C H A P T E R 1 2 ■ D A T A B A S E D E S I G N 369

ordered orderline, since we can imagine each row of this table corresponding to a line on a
paper order.

Now we need to think about the relationship between the orderinfo and orderline tables.
It makes no sense to have an order for nothing, or to prevent a single order from having multiple
items, so we know that orderinfo to orderline must have a one-to-many relationship. Thinking
about an orderline, we realize that each orderline must relate to exactly one actual order, so
the relationship between the two is that for each orderline entry, there must be exactly one
orderinfo entry. Figure 12-3 illustrates this relationship.

Figure 12-3. The initial design for the orderline to orderinfo relationship

If you think about this a little more carefully, you can see a possible snag. When people go
into a shop, they do not generally order things one at a time:

• I’d like a coffee please.

• I’d like a coffee please.

• I’d like a donut please.

• I’d like a milkshake please.

• I’d like a coffee please.

• I’d like a donut please.

They are much more likely to express their order as follows:

I’d like three coffees and two donuts and a milkshake please.

Currently, our design copes perfectly with the first situation, but it can cope with the
second situation only by converting it to the many single lines situation.

Now we might decide this is okay, but if we are going to print out an order for a large round
of coffees, milkshakes, and donuts, it’s going to look a bit silly to the customer if each item has
a separate line. We are also making life difficult for ourselves if we do a discount on multiple
items ordered at the same time. For these reasons, we decide it would be better to store a quantity
against each line, as shown in Figure 12-4. This way, we can store each type of product in an
order only once, and store the quantity of the product required in a separate column.

Figure 12-4. The corrected design for the orderline to orderinfo relationship

MatthewStones_4789C12.fm Page 369 Tuesday, March 8, 2005 2:21 PM

370 C H A P T E R 1 2 ■ D A T A B A S E D E S I G N

Now we have a basic conceptual design for all our entities, as shown in Figure 12-5. It’s
time to relate them to each other.

Figure 12-5. First full set of entities

We can see that we have three core groups of entities, and look at how the three groups
relate to each other. In this simple database, it’s immediately obvious that customer rows must
relate to orderinfo rows. Looking at the relationship between items and orders, we can see that the
relationship is not between the orderinfo and the item, it is between the orderline and the item.

How exactly do customers relate to orders? Clearly, each order must relate to a single
customer, and each customer could have many orders, but could a customer have no orders?
Although not very likely, it could happen, perhaps while a customer account is being set up, so
we will allow the possibility of a customer with no orders.

Similarly, we must define the exact relationship between item and orderline. Each
orderline is for an item, so this relationship is exactly one. In the opposite direction, item
to orderline, any individual item could have never been ordered, or could appear on many
different order lines, so the relationship is zero or many. Adding these relationships gives us
Figure 12-6.

We now have what we believe to be a complete map of all the major entities and their most
important attributes, broken down where we think we need to store them in individual columns,
and a diagram showing the relationship between them. We have our first conceptual database
design.

MatthewStones_4789C12.fm Page 370 Tuesday, March 8, 2005 2:21 PM

C H A P T E R 1 2 ■ D A T A B A S E D E S I G N 371

Figure 12-6. The full conceptual data model

Validating the Conceptual Design

At this point, it’s vital that you stop and validate your initial conceptual design. A mistake at this
stage will be much harder to correct later. It is a well-known tenet of software engineering that
the earlier you find an error, the less it costs to fix. Some studies have suggested that the cost
of correcting an error increases by a factor of ten for each stage in the development process.
Invest in getting the requirements capture correct and the initial design right.

This doesn’t mean you can’t take an iterative approach if you prefer, but it is a little harder
with database design. This is because after the first iteration, you may have significant volumes
of live data in your database. Migrating this data to a later design can be challenging in its own
right, never mind the application developers not being impressed with needing changes in
their code to handle an “improvement” in the underlying database design!

If you have access to the future users of the system, this is the point at which you should go
back and talk to them. Show them the diagram, and explain to them what it means, step by
step, to check that what you have designed conforms to their expectations of the system. If
your design is partially based on an existing database, go back and revisit the original, to check
that you have not missed anything vital. Most users will understand a basic entity relationship
diagram such as this, provided that you sit with them and talk them through it. Not only does
it help you validate the design, but it also makes users feel involved and consulted in the
development.

Converting to a Physical Model
Once you have a logical model of the data, which has been checked for logical correctness, you
can start to move toward a physical representation of this design. This stage also has several steps.

MatthewStones_4789C12.fm Page 371 Tuesday, March 8, 2005 2:21 PM

372 C H A P T E R 1 2 ■ D A T A B A S E D E S I G N

Establishing Primary Keys
The first step is usually to decide what the primary keys of each table will be. Here, we will work
through our tables one at a time, considering them individually, and decide which piece of
data (attribute) in each row will make that row unique, if any. We will be generating candidate
keys—possible data items that make each row uniquely identifiable—and then picking one of
the candidate keys to be the primary key. If we can’t find any good candidate keys, we may
resort to a logical primary key, which is an attribute created specifically to act as a primary key.

■Tip If you do find that you need to create a special key to act as a primary key, this may be an indication
that your attribute list is not complete. It’s always worth revisiting your attribute list if you find there is no
obvious primary key.

We will first check for a single column that will be unique, and then look for combinations
that will be unique. We must also check that none of the columns in our candidate key could
ever be NULL. It would make no sense to have a primary key whose value, or part of whose value,
could be unknown. Indeed, SQL databases, including PostgreSQL, will automatically enforce
the restriction that you may not store a NULL value in a column being used as a primary key.

When looking for columns to use as a primary key, be aware that the shorter the field length,
the more efficient searching for particular values will be and the smaller the overhead in the
database will be. When you make a column a primary key, an index is constructed for that column,
both to enforce the requirement that its values are unique and also to enable the database to
find values in the column efficiently.

Generally, tables are searched using their primary key columns far more often than any
other column, so it is important that this can be done efficiently. You can imagine that searching a
column for a description that is 1,000 characters long will be much slower than searching for a
particular integer value. Having a primary key column that has many characters also makes the
index tree that must be built very large, adding to the overhead. For these reasons, it is important
that you try to choose columns with small fields as primary keys; integer values are ideal, short
strings, particularly fixed-length strings, are tolerable. Using other data types as primary key
columns is usually best avoided.

Now let’s identify primary keys for the tables in our sample database:

barcode table: This is straightforward. We have only one column, and there is only one
candidate key: barcode. Barcodes are unique, and generally short; therefore, this candidate
key makes a good primary key.

customer table: It’s reasonably easy to see that no single column will give us a unique key
for each row, so we move on to look at combinations of columns we might use. Let’s consider
some possibilities:

• First names and last name combined. This might be unique, but we can’t be certain
we will never have two customers with the same name.

MatthewStones_4789C12.fm Page 372 Tuesday, March 8, 2005 2:21 PM

C H A P T E R 1 2 ■ D A T A B A S E D E S I G N 373

• Last name and ZIP code. This is better, but still not guaranteed to be unique, since
there could be a husband and wife who are both customers.

• First name, last name, and ZIP code. This is probably unique, but again not a certainty.
It’s also rather messy and inefficient to need to use three columns to get to a unique
key. One is much preferable, though we will accept two.

There is no clear candidate key for the customer table, so we will need to generate a logical
key that is unique for each customer. To be consistent, we will always name logical keys
<table name>_id, which gives us customer_id.

orderinfo table: This table has exactly the same problem as the customer table. There is no
clear way of uniquely identifying each row, so again, we will create a key: orderinfo_id.

item table: We could use the description here, but descriptions could be quite a large text
string, and long text strings do not make good keys, since they are slow to search. There is
also a small risk that descriptions might not always be unique, even though they probably
should be. Again, we will create a key: item_id.

orderline table: This table sits between the orderinfo table and the item table. If we
decide that any particular item will appear on an order only once, because we handle
multiple items on the same order using a quantity column, we could consider the item to
be a candidate key. In practice, this won’t work, because if two different customers order
the same item, it will appear in two different orderline rows. We know that we will need to
find some way of relating each orderline row to its parent order in orderinfo, and since
there is no column present yet that can do this, we know we will need to add one. We can
postpone briefly the problem of candidate keys in the orderline table, and come back to it
in a moment.

Establishing Foreign Keys
After establishing primary keys, you can work on the mechanism to use to relate the tables
together. The conceptual model shows the way the tables relate to each other, and you have
also established what uniquely identifies each row in a table. When you establish foreign keys,
often all you need to do is ensure that the column you have in one table identified as a primary
key also appears in all the other tables that are directly related to that table.

After adjusting some column names in our tables to make them a little more meaningful,
and changing the relationship lines to a physical model version, where we simply draw an
arrow that points at the “must exist” table, we have a diagram that looks like Figure 12-7.

Notice how the diagram has changed from the conceptual model as we move to the physical
model. Now we are showing information about how tables could be physically related, not
about the cardinality of those relationships. We have shown the primary key columns underlined.

Don’t worry about the data types or sizes for columns yet; that will be a later step. We have
deliberately left all the column types as char(10). We will revisit the type and sizes of all the
columns shortly.

For now, we need to work out how to relate tables. Usually, this simply entails checking
that the primary key in the “must exist” table also exists in the table that is related to it. In this
case, we needed to add customer_id to orderinfo, orderinfo_id to orderline, and item_id to
barcode.

MatthewStones_4789C12.fm Page 373 Tuesday, March 8, 2005 2:21 PM

374 C H A P T E R 1 2 ■ D A T A B A S E D E S I G N

Figure 12-7. Initial conversion to a physical data model

Notice the orderline table in Figure 12-7. We can see that the combination of item_id and
orderinfo_id will always be unique. Adding in the extra column we need has solved our missing
primary key problem.

We have one last optimization to make to our schema. We know that, for our particular
business, we have a very large number of items, but wish to keep only a few of them in stock.
This means that for our item table, quantity_in_stock will almost always be zero. For just a
single column, this is unimportant, but consider the problem if we wanted to store a large
amount of information for a stocked item, such as the date it arrived at the warehouse, a
warehouse location, expiry dates, and batch numbers. These columns would always be empty for
unstocked items. For the purposes of demonstration, we will separate the stock information
from the item information, and hold it in its own table. This is sometimes referred to as a
subsidiary table.

Our physical design, with relationships added, primary keys defined (shown as underlined),
and the stock information broken out, looks like Figure 12-8.

Notice we have been careful to ensure that all related columns have the same name. We
didn’t need to do this. We could have had a customer_ident in the orderinfo table that matched
customer_id in the customer table. However, as we stressed earlier, database designs that empha-
size consistency are much easier to work with. So, unless there are very good reasons to do
otherwise, we strongly urge you to keep column names identical for columns that are related
to each other.

MatthewStones_4789C12.fm Page 374 Tuesday, March 8, 2005 2:21 PM

C H A P T E R 1 2 ■ D A T A B A S E D E S I G N 375

Figure 12-8. Conversion to physical data model with stock as a subsidiary table

It’s also a good idea to be consistent in your naming. If you need an ident column
as a primary key for a table, then stick to a naming rule, preferably one that is
<table name>_<something>. It doesn’t matter if you use id, ident, key, or pk as the suffix.
What is important is that the naming is consistent across the database.

Establishing Data Types
Once you have the tables, columns, and relationships, you can work through each table in turn,
adding data types to each column. At this stage, you also need to identify any columns that will
need to accept NULL values, and declare the remaining columns as NOT NULL. Notice that we start
from the assumption that columns should be declared NOT NULL, and look for exceptions. This
is a better approach than assuming NULL is allowed, because, as explained in Chapter 2, NULL
values in columns are often hard to handle, so you should minimize their occurrence where
you can.

Generally, columns to be used as primary keys or foreign keys should be set to a native
data type that can be efficiently stored and processed, such as integer. PostgreSQL will auto-
matically enforce a constraint to prevent primary keys from storing NULL values.

MatthewStones_4789C12.fm Page 375 Tuesday, March 8, 2005 2:21 PM

376 C H A P T E R 1 2 ■ D A T A B A S E D E S I G N

Assigning a data type for currency is often a difficult choice. Some people prefer a money
type, if the database supports it. PostgreSQL does have a money type, but the documentation
urges people to use numeric instead, which is what we have chosen to do in our sample data-
base. You should generally avoid using a type with undefined rounding characteristics, such
as a floating-point type like float(P). Fixed-precision types, such as numeric(P,S), are much
safer for working with financial information, because the rounding behavior is defined.

For text strings, there are a wide choice of options. When you know the length of a field
exactly, and it is a fixed length, such as barcode, you will generally choose a char(N) type, where
N is the required length. For other short text strings, we also prefer to us fixed-length strings,
such as char(4) for a title. This is largely a matter of preference, however, and it would be just
as valid to use a variable-length type for these strings.

For variable-length text columns, PostgreSQL has the text type, which supports variable-
length character strings. Unfortunately, this is not standard and, although similar extensions
do appear in other databases, the ISO/ANSI definition defines only a varchar(N) text type,
where N specifies a maximum length of the string. We value portability quite highly, so we stick
with the more standard varchar(N) type.

Again consistency is very important. Make sure all your numeric type fields have exactly the
same precision. Check that commonly used columns such as description and name, which
might appear in several tables in your database, aren’t defined differently (and thus used in
different ways) in each. The fewer unique types and character lengths that you need to use, the
easier your database will be to manage.

Let’s work through the customer table, seeing how we assign types. The first thing to do is
give a type to customer_id. It’s a column we added specially to be a primary key, so we can
make it efficient by using an integer type. Titles will be things like Mr, Mrs, or Dr. This is always
a short string of characters; therefore, we make it a char(4) type. Some designers prefer to
always use varchar to reduce the number of types being used, and that would also be a perfectly
valid choice. It’s possible not to know someone’s title, so we will allow this field to store NULL values.

We then come to fname and lname, for first and last names. It’s unlikely these ever need to
exceed 32 characters, but we know the length will be quite variable, so we make them both
varchar(32). We also decide that we could accept fname being a NULL, but not lname. Not knowing a
customer’s last name seems unreasonable.

In this database, we have chosen to keep all the address parts together, in a single long
field. As was discussed earlier, this is probably oversimplified for the real world, but addresses
are always a design challenge; there is no fixed right answer. You need to do what is appropriate
for each particular design.

Notice that we store phone as a character string. It is almost always a mistake to store
phone numbers as numbers in a database, because that approach does not allow interna-
tional dialing codes to be stored. For example, +44 (0)116 … would be a common way of
representing a United Kingdom dialing code, where the country code is 44, but if you are
already in the United Kingdom, you need to add a 0 before the area code, rather than dialing
the +44. Also, storing a number with leading zeros will not work in a numeric field, and in
phone numbers, leading zeros are very important.

We continue assigning types to columns in this way. The final type allocation for our physical
database design is shown in Figure 12-9.

MatthewStones_4789C12.fm Page 376 Tuesday, March 8, 2005 2:21 PM

C H A P T E R 1 2 ■ D A T A B A S E D E S I G N 377

Figure 12-9. Final conversion to physical data model

Completing the Table Definitions
At this point, you should go back and double-check that all the information you wish to store
in the database is present. All the entities should be represented, and all the attributes listed
with appropriate types.

You may also decide to add some lookup, or static data, tables. For example, in our sample
database, we might have a lookup table of cities or titles. Generally, these lookup tables are
unrelated to any other tables, and they are simply used by the application as a convenient way
of soft-coding values to offer the user. You could hard-code these options into an application,
but in general, storing them in a database, from which they can be loaded into an application
at runtime, makes it much easier to modify the options. Then the application doesn’t need
to be changed to add new options. You just need to insert additional rows in the database
lookup table.

Implementing Business Rules
After the table definitions are complete, you would write, or generate from a tool, the SQL to
create the database schema. If all is well, you can implement any additional business rules.

For each rule, you must consider if it is best implemented as a constraint, as discussed in
Chapter 8, or as a trigger, as shown in Chapter 10. In general, you use constraints if possible, as
these are much easier to work with. Some examples of constraints that we might wish to use in
our simple database were shown in Chapter 10.

MatthewStones_4789C12.fm Page 377 Tuesday, March 8, 2005 2:21 PM

378 C H A P T E R 1 2 ■ D A T A B A S E D E S I G N

Checking the Design
By now, you should have a database implemented, complete with constraints and possibly
triggers to enforce business rules. Before handing over your completed work, and celebrating a
job well done, it’s time to test your database again. Just because a database isn’t code in the
conventional sense doesn’t mean you can’t test it. Testing is a necessity, not an optional extra!

Get some sample data, if possible part of the live data that will go into the database. Insert
some of these sample rows. Check that attempting to insert NULL values into columns you don’t
think should ever be NULL results in an error. Attempt to delete data that is referenced by other
data. Try to manipulate data to break the business rules you have implemented as triggers or
constraints. Write some SQL to join tables together to generate the kind of data you would
expect to find on reports.

Once your database has gone into production, it is difficult to update your design. Anything
other than a minor change probably means stopping the system, unloading live data into text
files, updating the database design, and reloading the data. This is not something you want to
undertake any more than absolutely necessary. Similarly, once faulty data has been loaded
into a table, you will often find it is referenced by other data and difficult to correct or remove
from the database. Time spent testing the design before it goes live is time well spent.

If possible, go back to your intended users and show them the sample data being extracted
from the database, and how you can manipulate it. Even at this belated stage, there is much to
be gained by discovering an error, even a minor one, before the system goes live.

Normal Forms
No chapter on database design would be complete without a mention of normal forms and
database normalization. We have left these toward the end of the chapter, since they are rather
dry when presented on their own. Now that we have walked through the design stages, you
should see how the final design has conformed to these rules.

What is commonly considered the origins of database normalization is a paper written by
E.F. Codd in 1969, published in Communications of the ACM, Vol. 13, No. 6, June 1970. In later
work, various normal forms were defined. Each normal form builds on previous rules and
applies more stringent requirements to the design.

In classic normalization theory, there are five normal forms, although others have been
defined, such as Boyce-Codd normal form. You will be pleased to learn that only the first three
forms are commonly used, and those are the ones we will look at here.

The advantage of structuring your data so that it conforms to at least the first three normal
forms is that you will find it much easier to manage. Databases that are not well normalized are
almost always significantly harder to maintain and more prone to storing invalid data.

First Normal Form
First normal form requires that each attribute in a table cannot be further subdivided and that
there are no repeating groups. For example, in our database design, we separate the customer
name into a title, first name, and last name. We know we may wish to use them separately, so
we must consider them as individual attributes and store them separately.

MatthewStones_4789C12.fm Page 378 Tuesday, March 8, 2005 2:21 PM

C H A P T E R 1 2 ■ D A T A B A S E D E S I G N 379

The second part—no repeating groups—we saw in Chapter 2 when we looked at what
happened when we tried to use a simple spreadsheet to store customers and their orders. Once
a customer had more than one order, we had repeating information for that customer, and our
spreadsheet no longer had the same number of rows in all columns.

If we had decided earlier to hold both first names in the fname column of our customer
table, this would have violated first normal form, because the column fname would actually be
holding first names, which are clearly divisible entities. Sometimes, you need to take a pragmatic
approach and argue that, provided that you are confident you will never need to consider
different first names separately, they are, for the purposes of a particular database design, a
single entity. Alternatively, you could decide to store only a single first name, which is an equally
valid approach and the one we took for our sample database.

Another example of violating first normal form—one that is seen with worrying frequency—
is to store in a single column a character string where different character positions have different
meanings. For example, characters 1 through 3 tell you the warehouse, 4 through 11 the bay,
and 12 the shelf. This is a clear violation of first normal form, since you do need to consider
subdivisions of the column separately. In practice, this turns out to be very hard to manage.
Information being stored in this way should always be considered a design mistake, not a judi-
cious stretching of the first normal form rule.

Second Normal Form
Second normal form says that no information in a row must depend on only part of the primary
key. Suppose in our orderline table we had stored the date that the order was placed in this
table, as shown in Figure 12-10.

Figure 12-10. Example of breaking second normal form

Recall that our primary key for orderline is a composite of orderinfo_id and item_id. The
date the order was placed depends on only the orderinfo information, not on the item ordered,
so this would have violated second normal form. Sometimes, you may find you are storing data
that looks as though it may violate second normal form, but in practice it does not.

Suppose we changed our prices frequently. Customers would rightly expect to pay the
price shown on the day they ordered, not on the day it was shipped. In order to do this, we
would need to store the selling price in the orderline table to record the price in effect on the
day the order was placed. This would not violate second normal form, because the price stored
in the orderline table would depend on both the item and the actual order.

Third Normal Form
Third normal form is very similar to second normal form, but more general. It says that no
information in a column that is not the primary key can depend on anything except the primary
key. This is often stated as, “Non-key values must depend on the key, the whole key, and nothing
but the key.”

MatthewStones_4789C12.fm Page 379 Tuesday, March 8, 2005 2:21 PM

380 C H A P T E R 1 2 ■ D A T A B A S E D E S I G N

Suppose in our customer table we had stored a customer’s age and date of birth, as shown
in Figure 12-11. This would violate third normal form, because the customer’s age depends on
the date of birth, a non-key column, as well as the actual customer, which is given by customer_id,
the primary key.

Figure 12-11. Example of breaking third normal form

Although putting your database into third normal form (making its structure conform to
all of the first three normalization rules) is almost always the preferred solution, there are occa-
sions when it’s necessary to break the rules. This is called denormalizing the database, and is
occasionally necessary to improve performance. You should always design a fully normalized
database first, however, and denormalize it only if you know that you have a serious problem
with performance.

Common Patterns
In database design, there are a number of common patterns that occur over and over again. It’s
useful to recognize these patterns, because they generally can be solved in the same way. Here,
we will look briefly at three standard problems that have standard solutions.

Many-to-Many
You have two entities, which seem to have a many-to-many relationship between them. It is
never correct to implement a many-to-many table relationship in the physical database, so
you need to break the relationship down further.

The solution is almost always to insert an additional table, a link table, between the two
tables that apparently have a many-to-many relationship. Suppose we had two tables, author
and book. Each author could have written many books, and each book, like this one, could have
had contributions from more than one author. How do we represent this in a physical database?

The solution is to insert a table in between the other two tables. This link table normally
contains the primary key of each of the other tables. For the author and book example, we
would create a new table, bookauthor. As shown in Figure 12-12, this new table has a composite
primary key, where each component is the primary key of one of the other tables.

MatthewStones_4789C12.fm Page 380 Tuesday, March 8, 2005 2:21 PM

C H A P T E R 1 2 ■ D A T A B A S E D E S I G N 381

Figure 12-12. Many-to-many relationship

Now each author can appear in the author table exactly once, but have many entries in the
bookauthor table, one for each book the author has written. Each book appears exactly once in
the book table, but can appear in the bookauthor table more than once, if the book has more
than one author. However, each individual entry in the bookauthor table is unique—the
combination of book and author occurs only once.

Hierarchy
Another frequent pattern is a hierarchy. This can appear in many different guises. Suppose we
have many shops, each shop is in a geographic area, and these areas are grouped into larger
areas known as regions. It might be tempting to use the design shown in Figure 12-13, where
each shop stores the area and region in which it resides.

Figure 12-13. Flawed hierarchy

Although this might work, it’s not ideal. Once we know the area, we also know the region,
so storing both the area and region in the shop table is violating third normal form. The region
stored in the shop table depends on the area, which is not the primary key for the shop table. A
much better design is shown in Figure 12-14. This design correctly shows the hierarchy of shop
in an area, which is itself in a region.

It may still be that you need to denormalize this ideal design for performance reasons,
storing the region_id in the shop table. In this case, you should write a trigger to ensure that the
region_id stored in the shop table is always correctly aligned with that found by looking for the
region via the area table. This approach would add cost to the design, and increase the complexity
of insertions and updates, in order to reduce the database query costs.

MatthewStones_4789C12.fm Page 381 Tuesday, March 8, 2005 2:21 PM

382 C H A P T E R 1 2 ■ D A T A B A S E D E S I G N

Figure 12-14. Better hierarchy

Recursive Relationships
The recursive relationship pattern is not quite as common as the other two, but occurs frequently
in a couple of situations: representing the hierarchy of staff in a company and parts explosion,
where parts in an item-type table are themselves composed of other parts from the same table.

Let’s consider the staff example. All staff, from the most junior to senior managers, have
many attributes in common, such as name, phone number, employee number, salary, grades,
and address. Therefore, it seems logical to have a single table that is common to all members
of staff to store those details. How do we then store the hierarchy of management, particularly
as different areas of the company may have a different number of levels of management to be
represented?

One answer is a recursive relationship, where each entry for a staff member in the person
table stores a manager_id, to record the person who is their manager. The clever bit is that the
managers’ information is stored in the same person table, generating a recursive relationship.
So, to find a person’s manager, we pick up their manager_id, and look back in the same table for
that to appear as an emp_id. We have stored a complex relationship, with an arbitrary number
of levels, in a simple one-table structure, as illustrated in Figure 12-15.

Figure 12-15. Recursive relationship

Suppose we wanted to represent a slightly more complex hierarchy, such as shown in
Figure 12-16.

MatthewStones_4789C12.fm Page 382 Tuesday, March 8, 2005 2:21 PM

C H A P T E R 1 2 ■ D A T A B A S E D E S I G N 383

Figure 12-16. Simple office hierarchy

We would insert rows like this:

test=> INSERT INTO person(emp_id, name, manager_id) VALUES(1, 'Mr MD', NULL);
test=> INSERT INTO person(emp_id, name, manager_id) VALUES(2, 'Manager1', 1);
test=> INSERT INTO person(emp_id, name, manager_id) VALUES(3, 'Manager2', 1);
test=> INSERT INTO person(emp_id, name, manager_id) VALUES(4, 'Fred', 2);
test=> INSERT INTO person(emp_id, name, manager_id) VALUES(5, 'Barney', 2);
test=> INSERT INTO person(emp_id, name, manager_id) VALUES(6, 'Tom', 3);
test=> INSERT INTO person(emp_id, name, manager_id) VALUES(7, 'Jerry', 6);

Notice that the first number, emp_id, is unique, but the second number is the emp_id of the
manager next up the hierarchy. For example, Tom has an emp_id of 6, but a manager_id of 3, the
emp_id of Manager2, since this is his manager. Mr. MD doesn’t have a manager, so the link to his
manager is NULL.

This is fine, until we need to extract data from this hierarchy; that is, when we need to join
the person table to itself, a self join. To do this, we need to alias the table names, as explained in
Chapter 7. We can write the SQL like this:

test=> SELECT n1.name AS "Manager", n2.name AS "Subordinate" FROM person n1,
test-> person n2 WHERE n1.emp_id = n2.manager_id;

We are creating two alternative names for the person table, n1 and n2, and then we can join
the emp_id column to the manager_id column. We also name our columns, using AS, to make
the output more meaningful. This gives us a complete list of the hierarchy in our person table:

MatthewStones_4789C12.fm Page 383 Tuesday, March 8, 2005 2:21 PM

384 C H A P T E R 1 2 ■ D A T A B A S E D E S I G N

 Manager | Subordinate
------------+-------------
 Mr MD | Manager1
 Mr MD | Manager2
 Manager1 | Fred
 Manager1 | Barney
 Manager2 | Tom
 Tom | Jerry
(6 rows)

Resources for Database Design
There are many good books that deal with database design issues. The following are a few we
consider particularly helpful:

• Allen, Sharon, and Terry, Evan, Beginning Relational Data Modeling, Second Edition
(Apress, 2005; ISBN 1-59059-463-0). This book is a guide to developing data models for
relational databases.

• Hernandez, Michael J., Database Design for Mere Mortals: A Hands-On Guide to Relational
Database Design, Second Edition (Addison-Wesley, 2003; ISBN 0-20175-284-0). This book
covers obtaining design information, documenting it, and designing databases in detail.

• Bowman, Judith S.; Emerson, Sandra L.; and Darnovsky, Marcy, The Practical SQL
Handbook: Using Structured Query Language (Addison-Wesley, 1996; ISBN 0-20144-787-8).
This book has a short, but very well-written, section on database design. It is also a good
general-purpose book on how to write SQL.

• Pascal, Fabian, Practical Issues in Database Management: A Reference for the Thinking
Practitioner (Addison-Wesley, 2000; ISBN: 0-20148-555-9). This book is aimed at the
more experienced user. It tackles some of the more difficult issues that arise in relational
database design.

Summary
In this chapter, we took a brief look at database design, from capturing requirements, through
generating a conceptual design, and finally converting the conceptual design into a physical
database design or schema. Along the way, we covered selecting candidate keys, primary keys,
and foreign keys. We also looked at choosing data types for our columns, and talked about the
importance of consistency in database design.

We briefly mentioned normal forms, an important foundation of good design with rela-
tional databases. Finally, we looked at three common problem patterns that appear in database
design, and how they are conventionally solved.

In the next chapter, we will begin to look at ways to build client applications using
PostgreSQL, starting with the libpq library, which allows access to PostgreSQL from C.

MatthewStones_4789C12.fm Page 384 Tuesday, March 8, 2005 2:21 PM

385

■ ■ ■

C H A P T E R 1 3

Accessing PostgreSQL from C
Using libpq

In this chapter, we are going to begin examining ways to create client applications for PostgreSQL.
Up until now in this book, we have mostly used either command-line applications such as psql
that are part of the PostgreSQL distribution, or graphical tools such as pgAdmin III that have
been developed specifically for PostgreSQL. In Chapter 5, we learned how general-purpose
tools such as Microsoft Access and Excel can also be used to view and update data via ODBC
links, and to create applications. If we want complete control over our client applications, we
can consider creating custom interfaces. That’s where libpq comes in.

Recall that a PostgreSQL system is built around a client/server model. Client programs,
such as psql and pgAdmin III, could run on one machine, maybe a desktop PC running Windows,
and the PostgreSQL server itself could run on a UNIX or Linux server. The client programs send
requests across a network to the server. These messages are effectively the same as the SELECT
or other SQL statements that we have used in psql. The server sends back result sets, which the
client then displays.

Messages that are conveyed between PostgreSQL clients and the server are formatted and
transported according to a particular protocol. The client/server protocol (which has no official
name, but is sometimes referred to as the Frontend/Backend protocol) makes sure that appro-
priate action is taken if messages get lost, and it ensures that results are always fully delivered.
It can also cope, to a degree, with client and server version mismatches. Clients developed
with PostgreSQL release 6.4 or later should interoperate with future versions without too
many problems.

Routines for sending and receiving these messages are included in the libpq library. To
write a client application, all we need to do is use these routines and link our application with
the library. For the purposes of this chapter, we are going to assume some knowledge of the
C programming language.

The functions provided by the libpq library fall into three categories:

• Database connection and connection management

• SQL statement execution

• Retrieval of query result sets

MatthewStones_4789.book Page 385 Wednesday, February 23, 2005 6:49 AM

386 C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q

As with many products that have grown and evolved over many releases, there is often
more than one way of doing the same thing in libpq. In this chapter, we will concentrate on the
most common methods and provide hints concerning any alternatives and instances where
they might be particularly applicable.

Using the libpq Library
All PostgreSQL client applications that use the libpq library must be written so that the source
code includes the appropriate header file that defines the functions libpq provides, and the
application must be linked with the correct library, which contains the code for those functions.

Client applications are known as front-end programs to PostgreSQL and must include the
header file libpq-fe.h (the fe is for front-end). This header file provides definitions of the
libpq functions and hides the internal workings of PostgreSQL that may change between
releases. Sticking with libpq-fe.h will ensure that programs will compile with future releases
of libpq. The header files are installed in the include subdirectory of the PostgreSQL installation
(on UNIX and Linux, the default is /usr/local/pgsql/include). We need to direct the C compiler
to this directory so that it can find the header files using the -I option.

■Note The header file libpq-int.h that is also provided with the PostgreSQL distribution includes defi-
nitions of the internal structures that libpq uses, but it is not recommended that it be used in normal client
applications.

The libpq library will be installed in the lib directory of the PostgreSQL installation (the
default is /usr/local/pgsql/lib). To incorporate the libpq functions in an application, we need
to link against that library. The simplest way to do this is to tell the compiler to link with -lpq
and specify the PostgreSQL library directory as a place to look for libraries by using the -L option.

A typical libpq program has this structure:

#include <libpq-fe.h>

main()
{
 /* Connect to a PostgreSQL database */

 LOOP:
 /* Execute SQL statement */
 /* Read query results */

 /* Disconnect from database */
}

MatthewStones_4789.book Page 386 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q 387

The program would be compiled and linked into an executable program by using a
command line similar to this:

gcc -o program program.c -I/usr/local/pgsql/include -L/usr/local/pgsql/lib -lpq

If you are using a PostgreSQL installation that is part of a Linux distribution, such as Red
Hat Linux, you may find that the libpq library is installed in a location that the compiler searches by
default, so you need to specify only the include directory option, like this:

$ gcc -o program program.c -I/usr/local/pgsql/include -lpq

Other Linux distributions and other platform installations may place the include files and
libraries in different places. Generally, they will be in the include and lib directories of the base
PostgreSQL install directory.

Later in this chapter, we’ll see how using a makefile can make building PostgreSQL appli-
cations a little easier.

Making Database Connections
In general, a PostgreSQL client application may connect to one or more databases as it runs. In
fact, we can even connect to many databases managed by many different servers, all at the
same time. The libpq library provides functions to create and maintain these connections.

When we connect to a PostgreSQL database on a server, libpq returns a handle to that
database connection. This is represented by an internal structure defined in the header file as
PGconn, and we can think of it as analogous to a file handle. Many of the libpq functions require
a PGconn pointer argument to identify the target database connection, in much the same way
that the standard I/O library in C uses a FILE pointer.

Creating a New Database Connection
We create a new database connection using PQconnectdb, as follows:

PGconn *PQconnectdb(const char *conninfo);

The PQconnnectdb function returns a pointer to the new connection descriptor. The return
result will be NULL if a new descriptor could not be allocated, perhaps because there was a lack
of memory to allocate the new descriptor. A non-NULL pointer returned from PQconnectdb does
not mean that the connection succeeded, however. We need to check the state of the connec-
tion, as described shortly.

The single argument to PQconnectdb is a string that specifies to which database to connect.
Embedded in it are various options we can use to modify the way the connection is made. The
conninfo string argument consists of space-separated options of the form option=value. The
most commonly used options and their meanings are listed in Table 13-1. The table also shows
the environment variable used by default when a connection option is not specified. We will
return to the use of environment variables a little later in the chapter.

MatthewStones_4789.book Page 387 Wednesday, February 23, 2005 6:49 AM

388 C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q

For example, to connect to the bpfinal database on the local machine, we would use a
conninfo string like this:

"dbname=bpfinal"

To include spaces in option values, or to enter an empty value, the value must be quoted
with single quotes, like this:

"host=beast password='' user=neil"

The host option names the server we want to connect to. The PQconnectdb call will result in
a name lookup to determine the IP address of the server, so that the connection can be made.
Usually, this is done by using the Domain Name Service (DNS) and can take a short while to
complete. If you already know the IP address of the server, you can use the hostaddr option to
specify the address and avoid any delay while a name lookup takes place. The format of the
hostaddr value is a dotted quad, the normal way of writing an IP address as four byte values
separated by dots:

"hostaddr=192.168.0.111 dbname=neil"

If no host or hostaddr option is specified, PQconnectdb will try to connect to the local machine.
By default, a PostgreSQL server will listen for client connections on TCP port 5432. If you

need to connect to a server listening on a nondefault port number, you can specify this with the
port option.

Connecting Using Environment Variables

The options can also be specified by using environment variables, as listed in Table 13-1. For
example, if no host option is set in the conninfo argument, then PQconnectdb will interrogate
the environment to see if the variable PGHOST is set. If it is, the value $PGHOST will be used as the
host name to connect to. We could code a client program to call PQconnectdb with an empty
string and provide all the options by environment variables:

Table 13-1. Common PQconnectdb Connection Options

Option Meaning Environment Variable Default

dbname Database to connect to $PGDATABASE or name of user if not
set

user Username to use when connecting $PGUSER or name of user if not set

password Password for the specified user $PGPASSWORD or none if not set

host Name of the server to connect to $PGHOST or localhost if not set

hostaddr IP address of the server to connect to $PGHOSTADDR

port TCP/IP port to connect to on the server $PGPORT or 5432 if not set

MatthewStones_4789.book Page 388 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q 389

#include <libpq-fe.h>

int main()
{
 PGconn *conn = PQconnectdb("");
 ...
}

We could then assign a few environment variables and execute the program like so:

$ PGHOST=beast PGUSER=neil ./program

Checking the State of the Connection

As mentioned earlier, the fact that PQconnectdb returns a non-NULL connection handle does not
mean that the connection was made without error.

We need to use another function, PQstatus, to check the state of our connection:

ConnStatusType PQstatus(const PGconn *conn);

ConnStatusType is an enumerated type that includes (among others) the constants
CONNECTION_OK and CONNECTION_BAD. PQconnectdb will return one of these two values, depending
on whether or not the connection succeeded. The other status values in ConnStatusType are used
for alternative connection methods, such as connecting asynchronously using PQconnectStart,
as discussed in the “Working Asynchronously” section later in this chapter.

Closing a Connection

When we have finished with a database connection, we must close it, just as we would with
open file descriptors. We do this by passing the connection descriptor pointer to PQfinish:

void PQfinish(PGconn *conn);

A call to PQfinish allows the libpq library to release resources being consumed by the
connection.

Resetting a Connection

If problems arise with a connection, it may be useful to attempt to reset it. The PQreset function is
provided for this purpose. It will close the connection to the back-end server and try to make a
new connection with the same parameters that were used in the original connection setup:

void PQreset(PGconn *conn);

Writing a Connection Program

We can now write possibly the shortest useful PostgreSQL program (connect.c), which can be
used to check whether a connection can be made to a particular database. We will use environ-
ment variables to pass options in to PQconnectdb, but we could consider using command-line
arguments or even hard-coding if it were appropriate for our application.

MatthewStones_4789.book Page 389 Wednesday, February 23, 2005 6:49 AM

390 C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q

#include <stdlib.h>
#include <libpq-fe.h>

int main()
{
 PGconn *myconnection = PQconnectdb("");
 if(PQstatus(myconnection) == CONNECTION_OK)
 printf("connection made\n");
 else
 printf("connection failed\n");
 PQfinish(myconnection);
 return EXIT_SUCCESS;
}

Let’s execute the program, first without the required options, and then after assigning the
PGDATABASE and PGUSER environment variables:

$ gcc -o connect –I/usr/local/pgsql/include connect.c –L/usr/local/pgsql/lib -lpq
$./connect
connection failed
$ PGDATABASE=bpfinal PGUSER=neil ./connect
connection made
$

Using a Makefile
In the preceding example, we used suitable -L and -I options to the compiler. These are always
required to compile programs using libpq. If we use a makefile to control the compilation, we
can add these options to the CFLAGS and LDLIBS variables, respectively. This simplifies compilation.

Here is an extremely simple makefile that can be used to compile all of the sample programs in
this chapter. You can download it and the source code to the examples from the Downloads
area of the Apress web site (http://www.apress.com).

Makefile for sample programs
in Beginning PostgreSQL

Edit the base directories for your
PostgreSQL installation

INC=/usr/local/pgsql/include
LIB=/usr/local/pgsql/lib

CFLAGS=-I$(INC)
LDLIBS=-L$(LIB) -lpq

ALL=async1 async2 connect create cursor cursor2 print select1 select2 import

MatthewStones_4789.book Page 390 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q 391

all: $(ALL)

clean :
 @rm -f *.o *~ $(ALL)

Now we can build all of the programs at once by simply running make (as all of the programs
are specified as dependencies of the first target in the makefile: all). We can build a single
program with the command make program (where program is the name of the program we wish
to build).

Retrieving Information About Connection Errors
Note that both PQstatus and PQfinish can cope with a NULL pointer for the connection descriptor,
so in our example, we did not check that the return result from PQconnectdb was valid before
calling PQstatus and PQfinish. We can retrieve a readable string that describes the state of the
connection or an error that has occurred by calling PQerrorMessage:

char *PQerrorMessage(const PGconn *conn);

This function returns a pointer to a descriptive string. This string will be overwritten by
other libpq functions, so it should be used or copied immediately after the call to PQerrorMessage
and before any call to other libpq functions.

For example, we could have made our connection failure message more helpful, like this:

printf("connection failed: %s", PQerrorMessage(myconnection));

Then we would see the following, more informative error message:

connection failed: FATAL: database "neil" does not exist

Learning About Connection Parameters
If we need more information about a connection after it has been made, we might consider
using the members of the PGconn structure directly (defined in libpq-fe.h), but that would be
a bad idea. This is because the code would probably break in some future release of libpq if the
internal structure of PGconn changed. Nonetheless, we may have a genuine need to know more
about the connection, so libpq provides a number of access functions that return the values of
attributes of the connection:

• char *PQdb(const PGconn *conn): Returns the database name.

• char *PQuser(const PGconn *conn): Returns the username.

• char *PQpass(const PGconn *conn): Returns the user password.

• char *PQhost(const PGconn *conn): Returns the server name.

• char *PQport(const PGconn *conn): Returns the server port number.

• char *PQoptions(const PGconn *conn): Returns the options associated with a
connection.

All of these values will not change during the lifetime of a connection.

MatthewStones_4789.book Page 391 Wednesday, February 23, 2005 6:49 AM

392 C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q

Executing SQL with libpq
Now that we can connect to a PostgreSQL database from within a C program, the next step is
to execute SQL statements. The query process is initiated with the PQexec function:

PGresult *PQexec(PGconn *conn, const char *sql_string);

We pass a SQL statement to PQexec, and the server we are connected to via the non-NULL
connection conn executes it. The result is communicated via a result structure, a PGresult. Even
when there is no data to return, PQexec will return a valid non-NULL pointer to a result structure
that contains no data records.

■Note On rare occasions, PQexec may return a NULL pointer if there is not enough memory to allocate a
new result structure.

The string we pass to PQexec may contain any valid SQL statement, including queries,
insertions, updates, and database-management commands. They are the equivalent of SQL
statements run with the psql command-line tool, except that we do not need a trailing semi-
colon in the string to mark the end of the statement. The following are some examples we will
use shortly:

PQexec(myconnection, "SELECT customer_id FROM customer");
PQexec(myconnection, "CREATE TABLE number (value INTEGER, name VARCHAR)");
PQexec(myconnection, "INSERT INTO number VALUES (42, 'The Answer')");

Note that any double quotes within the SQL statement will need to be escaped with back-
slashes, as is necessary with psql.

As with connection structures, result objects must also be freed when we are finished with
them. We can do this with PQclear, which will also handle NULL pointers. Note that results are
not cleared automatically, even when the connection is closed, so they can be kept indefinitely
if required:

void PQclear(PGresult *result);

Determining Query Status
We can determine the status of the SQL statement execution by probing the result with the
PQresultStatus function, which returns one of a number of values that make up the enumer-
ated type ExecStatusType:

ExecStatusType PQresultStatus(const PGresult *result);

The most common status types are listed in Table 13-2. Other status types indicate some
unexpected problem with the server, such as it being backed up or taken offline.

MatthewStones_4789.book Page 392 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q 393

Here’s an example of a code fragment that uses PQresultStatus to determine the precise
results of a call to PQexec:

PGresult *result;
result = PQexec(myconnection, "SELECT customer_id FROM customer");
switch(PQresultStatus(result)) {
case PGRES_TUPLES_OK:
 /* may have some data to process, find out */
 if(PQntuples(result)) {
 /* process data */
 break;
 }
 /* no data, drop through to no data case */
case PGRES_COMMAND_OK:
 /* all OK, no data to process */
 break;
case PGRES_EMPTY_QUERY:
 /* server had nothing to do, a bug maybe? */
 break;
case PGRES_NONFATAL_ERROR:
 /* can continue, possibly retry the command */
 break;
case PGRES_BAD_RESPONSE:
case PGRES_FATAL_ERROR:
default:
 /* fatal or unknown error, cannot continue */
}

Table 13-2. Common PQresultStatus Status Types

Status Type Description

PGRES_EMPTY_QUERY Database access not required; usually, the result of an empty query
string. This status often points to a problem with the client program,
sending a query that requires the server to do no work at all.

PGRES_COMMAND_OK Success; command does not return data. This status means that
the SQL executed correctly, and the statement was of the type that
does not return data, such as CREATE TABLE.

PGRES_TUPLES_OK Success; query returned zero or more rows. This status means that
the SQL executed correctly, and the statement was of the type that
may return data, such as SELECT. It does not mean that there is, in
this instance, data to return. Further inquiries are necessary to
determine how much data is actually available.

PGRES_BAD_RESPONSE Failure; server response not understood. This indicates that the
SQL failed to execute.

PGRES_NONFATAL_ERROR Failure; nonfatal, can be retried. This indicates that the SQL failed
to execute.

PGRES_FATAL_ERROR Failure; fatal, cannot be retried. This indicates that the SQL failed
to execute.

MatthewStones_4789.book Page 393 Wednesday, February 23, 2005 6:49 AM

394 C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q

We will cover PQntuples in more detail when we return to the PGRES_TUPLES_OK case for
SELECT, in the “Extracting Data from Query Results” section later in the chapter.

One useful function that can aid with troubleshooting is PQresStatus. This function
converts a result status code into a readable string:

const char *PQresStatus(ExecStatusType status);

When an error has occurred, we can retrieve a more detailed textual error message by
calling PQresultErrorMessage, in much the same way as we did for connections:

const char *PQresultErrorMessage(const PGresult *result);

Executing Queries with PQexec
Let’s look at some simple examples of executing SQL statements. We will use a very small table
in our database as a way of trying things out. Later, we will perform some operations on our
sample customer table to return larger amounts of data.

We are going to create a database table called number. In it, we will store numbers and an
English description of them. The table will have entries like this:

 value | name
-------+-------------
 42 | The Answer
 29 | My Age
 29 | Anniversary
 66 | Clickety-Click

To create the table and insert values into it, we just need to call PQexec with an appropriate
string containing the SQL query we need to execute. Our program will contain calls like this:

PGconn *myconnection;
...
PQexec(myconnection,"CREATE TABLE number (value INTEGER, name VARCHAR)");
PQexec(myconnection,"INSERT INTO number VALUES (42, 'The Answer')");

We will need to take care of errors that arise. For example, if the table already exists, we will
get an error when we try to create it. In the case of creating the number table when it already
exists, PQresultErrorMessage will return a string that says this:

ERROR: Relation 'number' already exists

To make things a little easier, we will develop a function of our own to execute SQL state-
ments, check the results, and print errors. We will add more functionality to it as we go along.
The initial version follows. With it, we can execute SQL queries almost as easily as we can enter
commands to psql. Save this code in a file called create.c:

MatthewStones_4789.book Page 394 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q 395

#include<stdlib.h>
#include<libpq-fe.h>

void doSQL(PGconn *conn, char *command)
{
 PGresult *result;

 printf("%s\n", command);

 result = PQexec(conn, command);
 printf("status is %s\n", PQresStatus(PQresultStatus(result)));
 printf("result message: %s\n", PQresultErrorMessage(result));
 PQclear(result);
}

int main()
{
 PGresult *result;
 PGconn *conn;

 conn = PQconnectdb("");

 if(PQstatus(conn) == CONNECTION_OK) {
 printf("connection made\n");

 /* doSQL(conn, "DROP TABLE number"); */
 doSQL(conn, "CREATE TABLE number (\
 value INTEGER, \
 name VARCHAR \
)");
 doSQL(conn, "INSERT INTO number values(42, 'The Answer')");
 doSQL(conn, "INSERT INTO number values(29, 'My Age')");
 doSQL(conn, "INSERT INTO number values(29, 'Anniversary')");
 doSQL(conn, "INSERT INTO number values(66, 'Clickety-Click')");
 }
 else
 printf("connection failed %s\n", PQerrorMessage(conn));

 PQfinish(conn);
 return EXIT_SUCCESS;
}

Here, we create the number table and add some entries to it. If we rerun the program, we
will see a fatal error reported, as we cannot create the table a second time. Uncomment the
DROP TABLE command to change the program into one that destroys and re-creates the table
each time it is run.

MatthewStones_4789.book Page 395 Wednesday, February 23, 2005 6:49 AM

396 C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q

Of course, in production code, we would not be quite so cavalier in our approach to errors.
Here we have omitted returning a result from doSQL to keep things brief, and we push on
regardless of failures.

When compiled and run, the program should show some execution and status
information:

$ make create
$ PGDATABASE=bpfinal ./create
connection made
...
INSERT INTO number VALUES(66, 'Clickety-Click')
status is PGRES_COMMAND_OK
result message:
$

Creating a Variable Query
To include user-specified data into the SQL, we might create a string to pass to PQexec that
contains the values we want. To add all single-digit integers, we might write this:

for(n = 0; n < 10; n++) {
 sprintf(buffer,"INSERT INTO number VALUES(%d, 'single digit')", n);
 PQexec(buffer);
}

Updating and Deleting Rows
If we want to update or delete rows in a table, we can use the UPDATE and DELETE commands,
respectively:

UPDATE number SET name = 'Zaphod' WHERE value = 42
DELETE FROM number WHERE value = 29

If we were to add suitable calls to PQexec (or doSQL) to our program, these commands would
first change the descriptive text of the number 42 to Zaphod, and then delete both of the entries
for 29. We can check the result of our changes using psql:

$ psql -d bpfinal
bpfinal=# SELECT * FROM number;
 value | name
-------+-----------------
 66 | Clickety-Click
 42 | Zaphod
(2 rows)

bpfinal=#

MatthewStones_4789.book Page 396 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q 397

DELETE and UPDATE may affect more than one row in the table (or tuples as PostgreSQL likes
to call them); therefore, it is often useful to know how many rows have been changed. We can
get this information by calling PQcmdTuples:

const char *PQcmdTuples(const PGresult *result);

Strangely perhaps, PQcmdTuples returns not an integer as you might expect, but a string
containing the digits. We can modify the doSQL function to report the rows affected very simply:

printf("#rows affected %s\n", PQcmdTuples(result));

We will now see that PQcmdTuples returns an empty string for commands that do not have
any effect on rows at all—like CREATE TABLE—and the strings "1" and "2" for those that do—like
INSERT and DELETE.

We must be careful to distinguish commands that genuinely affect no rows, and those that
fail and therefore affect no rows. We must always check the result status to determine errors,
rather than just the number of rows affected.

Extracting Data from Query Results
Up until now, we have been concerned only with SQL statements that have not returned any
data. Now it is time to consider how to deal with data returned by calls to PQexec, the results of
SELECT statements.

When we perform a SELECT with PQexec, the result set will contain information about the
data the query has returned. Query results can seem a little tiresome to handle, as we do not
always know exactly what to expect. If we execute a SELECT, we do not know in advance whether
we will be returned zero, one, or several millions of rows. If we use a wildcard (*) in the SELECT
query, we do not even know which columns will be returned or what their names are. In general,
we will want to program our application so that it selects specified columns only. That way, if
the database design changes, perhaps when new columns are added, a function that does not
rely on the new column will still work as expected.

Sometimes (for example, if we are writing a general-purpose SQL program that is accepting
statements from the user and displaying results), it would be better if we could program in a
general way, and with libpq, we can. There are just a few more functions to learn:

• When PQexec executes a SELECT without an error, we expect to see a result status of
PGRES_TUPLES_OK. The next step is to determine how many rows are present in the result
set. We do this by calling PQntuples to get the total number of rows in our result (which
may be zero):

int PQntuples(const PGresult *result);

• We can retrieve the number of fields (attributes or columns) in our tuples by calling
PQnfields:

int PQnfields(const PGresult *result);

• The fields in the result are numbered starting from zero, and we can retrieve their names
by calling PQfname:

char *PQfname(const PGresult *result, int index);

MatthewStones_4789.book Page 397 Wednesday, February 23, 2005 6:49 AM

398 C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q

• The size of the field is given by PQfsize:

int PQfsize(const PGresult *result, int index);

• For fixed-sized fields, PQfsize returns the number of bytes that a value in that particular
column would occupy. For variable-length fields, PQfsize returns –1.

• The index number for a column with a given name can be retrieved by calling PQfnumber:

int PQfnumber(const PGresult *result, const char *field);

Let’s modify our doSQL function to print out some information about the data returned
from a SELECT query. Here’s our next version:

void doSQL(PGconn *conn, char *command);
{
 PGresult *result;

 printf("%s\n", command);

 result = PQexec(conn, command);
 printf("status is %s\n", PQresStatus(PQresultStatus(result)));
 printf("#rows affected %s\n", PQcmdTuples(result));
 printf("result message: %s\n", PQresultErrorMessage(result));

 switch(PQresultStatus(result)) {
 case PGRES_TUPLES_OK:
 {
 int n = 0;
 int nrows = PQntuples(result);
 int nfields = PQnfields(result);
 printf("number of rows returned = %d\n", nrows);
 printf("number of fields returned = %d\n", nfields);
 /* Print the field names */
 for(n = 0; n < nfields; n++) {
 printf(" %s:%d",
 PQfname(result, n), PQfsize(result, n));
 }
 printf("\n");
 }
 }
 PQclear(result);
}

Now when executing a SELECT, we can see the characteristics of the data being returned:

doSQL(conn, "SELECT * FROM number WHERE value = 29");

MatthewStones_4789.book Page 398 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q 399

This call results in the following output:

status is PGRES_TUPLES_OK
#rows affected
result message:
number of rows returned = 2
number of fields returned = 2
 value:4 name:-1

Notice that an empty string is returned by PQcmdTuples for queries that cannot affect rows,
and PQresultErrorMessage returns an empty string where there is no error. Now we are ready
to extract the data from the fields returned in the rows of our result set. The rows are numbered,
starting from zero.

Normally, all data is transferred from the server as strings. We can get at a character repre-
sentation of the data by calling the PQgetvalue function:

char *PQgetvalue(const PGresult *result, int tuple, int field);

If we need to know in advance how long the string returned by PQgetvalue is going to be,
we can call PQgetlength:

int PQgetlength(const PGresult *result, int tuple, int field);

As mentioned earlier, both the tuple (row) number and field (column) number start at zero.
Let’s add some data display to our doSQL function:

void doSQL(PGconn *conn, char *command)
{
 PGresult *result;

 printf("%s\n", command);

 result = PQexec(conn, command);
 printf("status is %s\n", PQresStatus(PQresultStatus(result)));
 printf("#rows affected %s\n", PQcmdTuples(result));
 printf("result message: %s\n", PQresultErrorMessage(result));

 switch(PQresultStatus(result)) {
 case PGRES_TUPLES_OK:
 {
 int r, n;
 int nrows = PQntuples(result);
 int nfields = PQnfields(result);
 printf("number of rows returned = %d\n", nrows);
 printf("number of fields returned = %d\n", nfields);
 for(r = 0; r < nrows; r++) {

MatthewStones_4789.book Page 399 Wednesday, February 23, 2005 6:49 AM

400 C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q

 for(n = 0; n < nfields; n++)
 printf(" %s = %s(%d),",
 PQfname(result, n),
 PQgetvalue(result, r, n),
 PQgetlength(result, r, n));
 printf("\n");
 }
 }
 }
 PQclear(result);
}

The complete result of the SELECT query is printed, including the lengths of the strings
containing the data:

SELECT * FROM number WHERE value = 29
Status is PGRES_TUPLES_OK
#rows affected
result message:
number of rows returned = 2
number of fields returned = 2
 value = 29(2), name = My Age(6),
 value = 29(2), name = Anniversary(11),

Note that the length of the data string does not include a trailing null (the character '\0',
not the SQL value NULL), which is present in the string returned by PQgetvalue.

■Caution String data, such as that used in columns defined as char(n), is padded with spaces. This can
give unexpected results if you are checking for a particular string value or comparing values for a sort. If you
insert the value Zaphod into a column defined as char(8), you will get back Zaphod<space><space>,
which will not compare as equal to Zaphod if you use the C library function strcmp. This little problem has
been known to plague even very experienced developers.

Handling NULL Results
There is one small complication that we must resolve before we go any further. The fact that
our query results are being returned to us encoded within character strings means that we
cannot readily tell the difference between an empty string and an SQL NULL value.

Fortunately, the libpq library provides us with a function that we can call to determine
whether a particular value of a field in a result set tuple is a NULL:

int PQgetisnull(const PGresult *result, int tuple, int field);

MatthewStones_4789.book Page 400 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q 401

We should call PQgetisnull when retrieving any field that may possibly be NULL. It returns 1 if
the field contains a NULL value; 0 otherwise. The inner loop of the previous sample program
would then become as follows:

 for(n = 0; n < nfields; n++) {
 if(PQgetisnull(result, r, n))
 printf(" %s is NULL,", PQfname(result, n));
 else
 printf(" %s = %s(%d),",
 PQfname(result, n),
 PQgetvalue(result, r, n),
 PQgetlength(result, r, n));
 }

Printing Query Results
The functions we have covered so far are sufficient to query and extract data from a PostgreSQL
database. If all we want to do is print the results, we can consider taking advantage of a printing
function supplied by libpq that outputs result sets in a fairly basic form. This is the PQprint func-
tion, which formats a result set in a tabular form, similar to that used by psql, and sends it to a
specified output stream:

void PQprint(FILE *output, const PGresult *result, const PQprintOpt *options);

PQprint is no longer actively supported by the PostgreSQL maintainers, however, so you
should not rely on it for production code. It is very useful during development and testing,
perhaps before creating a more sophisticated way of displaying results in a client program.

The PQprint arguments are an open file handle (output) to print to, a result set (result),
and a pointer to a structure that contains options that control the printing format (options).
The structure follows:

struct {
 pqbool header; /* print out names of columns in a header */
 pqbool align; /* pad out the values to make them line up */
 pqbool html3; /* format as an HTML table */
 pqbool expanded; /* expand tables */
 pqbool pager; /* use pager for output if needed */
 char *fieldSep; /* field separator */
 char *tableOpt; /* options for HTML table - place in <TABLE …> */
 char *caption; /* HTML <caption> */
 char **fieldName; /* Replacement set of field names */
} PQprintOpt;

The members of the PQprintOpt structure are fairly straightforward. The header member,
if set to a nonzero value, causes the first row of the output table to consist of the field names,
which can be overridden by setting the fieldName list of strings.

Each row in the output table consists of field values separated by the string fieldSep and
padded to align with the other rows if align is nonzero. Here is an example of PQprintOpt output:

MatthewStones_4789.book Page 401 Wednesday, February 23, 2005 6:49 AM

402 C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q

+-------------+-------+-----------+--------------+----------+----------+
| customer_id | title | fname | town | zipcode | phone |
+-------------+-------+-----------+--------------+----------+----------+
| 1 | Miss | Jenny | Hightown | NT2 1AQ | 023 9876 |
+-------------+-------+-----------+--------------+----------+----------+
| 3 | Miss | Alex | Nicetown | NT2 2TX | 010 4567 |
+-------------+-------+-----------+--------------+----------+----------+

If the output is likely to be very long, we can set pager to a nonzero value to ask for the
output to be paged; that is, passed through a filter that pauses the output every page or so. If
expanded is set to a nonzero value, the output format is changed to list each field in each row on
a line by itself.

We can produce HTML output suitable for inclusion in a web page by setting html3 nonzero.
We can specify table options and a caption by setting the tableOpt and caption strings. Here is
an example of a program (print.c) using PQprint to generate the HTML output:

#include <stdlib.h>
#include <libpq-fe.h>

int main()
{
 PGresult *result;
 PGconn *conn;

 conn = PQconnectdb("");
 if(PQstatus(conn) == CONNECTION_OK) {
 printf("connection made\n");
 result = PQexec(conn, "SELECT * FROM customer WHERE town = 'Bingham'");
 {
 PQprintOpt pqp;
 pqp.header = 1;
 pqp.align = 1;
 pqp.html3 = 1;
 pqp.expanded = 0;
 pqp.pager = 0;
 pqp.fieldSep = "";
 pqp.tableOpt = "align=center";
 pqp.caption = "Bingham Customer List";
 pqp.fieldName = NULL;
 printf("<html><head><title>Customers</title></head><body>\n");
 PQprint(stdout, result, &pqp);
 printf("</body></html>\n");
 }

 }

 PQfinish(conn);
 return EXIT_SUCCESS;
}

MatthewStones_4789.book Page 402 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q 403

The output of this program is HTML code, which is displayed on the screen (stdout).
The output is as follows:

$ PGDATABASE=bpfinal ./print

<html><head><title>Customers</title></head><body>
<table align=center><caption align=high>Bingham Customer List</caption>
<tr><th align=right>customer_id</th><th align=left>title</th><th align=left>fnam
e</th><th align=left>lname</th><th align=left>addressline</th><th align=left>tow
n</th><th align=left>zipcode</th><th align=right>phone</th></tr>
<tr><td align=right>7</td><td align=left>Mr </td><td align=left>Richard</td><td
 align=left>Stones</td><td align=left>34 Holly Way</td><td align=left>Bingham</t
d><td align=left>BG4 2WE </td><td align=right>342 5982</td></tr>
<tr><td align=right>8</td><td align=left>Mrs </td><td align=left>Ann</td><td ali
gn=left>Stones</td><td align=left>34 Holly Way</td><td align=left>Bingham</td><t
d align=left>BG4 2WE </td><td align=right>342 5982</td></tr>
<tr><td align=right>11</td><td align=left>Mr </td><td align=left>Dave</td><td a
lign=left>Jones</td><td align=left>54 Vale Rise</td><td align=left>Bingham</td><
td align=left>BG3 8GD </td><td align=right>342 8264</td></tr>
</table>
</body></html>

To see this in a browser, all we need to do is to redirect the output of the program to a file
(say list.html):

 $ PGDATABASE=bpfinal ./print > list.html

Then we view the output. Figure 13-1 shows what the HTML page looks like when viewed
in a browser.

Figure 13-1. Sample web page output

MatthewStones_4789.book Page 403 Wednesday, February 23, 2005 6:49 AM

404 C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q

Managing Transactions
Sometimes, we will want to ensure that a group of SQL commands are executed as a group, so
that the changes to the database are made either all together or none at all if an error occurs at
some point. This form of query grouping, known as a transaction, was introduced in Chapter 9.
As in standard SQL, we can manage this with libpq by using its transaction support.

Transaction behavior is implemented by calling PQexec with SQL statements that contain
BEGIN, COMMIT, and ROLLBACK:

PQexec(conn, "BEGIN WORK");

/* Make changes */

if(we changed our minds) {
 PQexec(conn, "ROLLBACK WORK");
}
else {
 PQexec(conn, "COMMIT WORK");
}

All of the facilities described in Chapter 9 can be utilized by our libpq programs by passing
the appropriate SQL query string to PQexec.

Using Cursors
When writing real-world applications, it’s likely we’ll need to deal with large quantities of data.
Thankfully, a PostgreSQL database is capable of storing tables with very large numbers of rows
in them.

When it comes to processing the results of queries that produce a large amount of data
however, we are at the mercy of the client application and its operating environment. A desktop
PC may well have trouble dealing with a million tuples returned all at once in a result set from
a single SELECT. A large result set can consume a great deal of memory and, if the application is
running across a network, may consume a lot of bandwidth and take a substantial time to be
transferred.

What we really need to do is perform the query and deal with the results bit by bit. For
example, if in our application we want to show our complete customer list, we could retrieve
all of them at once. However, it would be smarter to fetch them, say, a page of 25 at a time, and
display them in our application page by page.

We can do this with libpq by employing cursors. Cursors are an excellent general-purpose
way of accommodating the return of an unknown number of rows. If we search for a specific
ZIP code, particularly one provided by users, it’s not possible to know in advance if zero, one,
or many rows will be returned.

In general, you should avoid writing code that assumes either a single row or no rows are
returned from a SELECT statement, unless that statement is a simple aggregate, such as a SELECT
count(*) FROM type query, or a SELECT on a primary key, where you can be guaranteed the result
will always be exactly one row. When in doubt, use a cursor.

MatthewStones_4789.book Page 404 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q 405

To demonstrate dealing with multiple rows being returned from a query, we will explore
how to retrieve them one (or more) at a time using a FETCH, with the column values being
received into a result set in the same way that we have seen for all-at-once SELECT statements.
We’ll walk through developing a sample program that queries and processes the customer list
from the bpfinal database page by page using a cursor.

We will declare a cursor to be used to scroll through a collection of returned rows. The
cursor will act as our bookmark, and we will fetch the rows until no more data is available. To
use a cursor, we must declare it and specify the query that it relates to. We may use a cursor
declaration only within a PostgreSQL transaction, so we must begin a transaction, too:

PQexec(conn, "BEGIN work");
PQexec(conn, "DECLARE mycursor CURSOR FOR SELECT ...");

Now we can start to retrieve the result rows. We do this by executing a FETCH to extract the
data rows as many at a time as we wish (including all that remain):

result = PQexec(conn, "FETCH 1 IN mycursor");
result = PQexec(conn, "FETCH 4 IN mycursor");
result = PQexec(conn, "FETCH ALL IN mycursor");

The result set will indicate that it contains no rows when all of the rows from the query
have been retrieved. When we have finished with the cursor, we close it and end the
transaction:

PQexec(conn, "COMMIT work");
PQexec(conn, "CLOSE mycursor");

Let’s take a moment to examine the general structure employed when using a cursor:

#include <libpq-fe.h>

main()
{
 /* Connect to a PostgreSQL database */

 /* Create cursor for SQL SELECT statement */
 DO
 /* Fetch batch of query results */
 /* Process query results */

 UNTIL no more results
 /* close cursor */

 /* Disconnect from database */
}

For each of the batches of query results we fetch, we will have access to a PGresult pointer
that we can use in exactly the same way as before.

MatthewStones_4789.book Page 405 Wednesday, February 23, 2005 6:49 AM

406 C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q

Fetching All the Results at Once
First, let’s see a cursor in use (in cursor.c) fetching all the results at once, to make sure that we
have the correct SQL.

#include <stdlib.h>
#include <libpq-fe.h>

void doSQL(PGconn *conn, char *command)
{
 PGresult *result;
 printf("%s\n", command);

 result = PQexec(conn, command);
 printf("status is %s\n", PQresStatus(PQresultStatus(result)));
 printf("#rows affected %s\n", PQcmdTuples(result));
 printf("result message: %s\n", PQresultErrorMessage(result));

 switch(PQresultStatus(result)) {
 case PGRES_TUPLES_OK:
 {
 int r, n;
 int nrows = PQntuples(result);
 int nfields = PQnfields(result);
 printf("number of rows returned = %d\n", nrows);
 printf("number of fields returned = %d\n", nfields);
 for(r = 0; r < nrows; r++) {
 for(n = 0; n < nfields; n++)
 printf(" %s = %s(%d),",
 PQfname(result, n),
 PQgetvalue(result, r, n),
 PQgetlength(result, r, n));
 printf("\n");
 }
 }
 }
 PQclear(result);
}

int main()
{
 PGresult *result;
 PGconn *conn;

 conn = PQconnectdb("");

MatthewStones_4789.book Page 406 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q 407

 if(PQstatus(conn) == CONNECTION_OK) {
 printf("connection made\n");

 doSQL(conn, "BEGIN work");
 doSQL(conn, "DECLARE mycursor CURSOR FOR "
 "SELECT fname, lname FROM customer");
 doSQL(conn, "FETCH ALL IN mycursor");

 doSQL(conn, "CLOSE mycursor");
 doSQL(conn, "COMMIT work");

 }
 else
 printf("connection failed: %s\n", PQerrorMessage(conn));

 PQfinish(conn);
 return EXIT_SUCCESS;
}

When we execute this program, we see the customers listed all at once:

connection made
BEGIN work
status is PGRES_COMMAND_OK
#rows affected
result message:
DECLARE mycursor CURSOR FOR SELECT fname, lname FROM customer
status is PGRES_COMMAND_OK
#rows affected

result message:
FETCH ALL IN mycursor
status is PGRES_TUPLES_OK
#rows affected
result message:
number of rows returned = 15
number of fields returned = 2
 fname = Jenny(5), lname = Stones(6),
 fname = Andrew(6), lname = Stones(6),
 fname = Adrian(6), lname = Matthew(7),
 fname = Simon(5), lname = Cozens(6),
 fname = Neil(4), lname = Matthew(7),
 fname = Richard(7), lname = Stones(6),
 fname = Ann(3), lname = Stones(6),
 fname = Christine(9), lname = Hickman(7),

MatthewStones_4789.book Page 407 Wednesday, February 23, 2005 6:49 AM

408 C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q

 fname = Mike(4), lname = Howard(6),
 fname = Dave(4), lname = Jones(5),
 fname = Richard(7), lname = Neill(5),
 fname = Laura(5), lname = Hardy(5),
 fname = Bill(4), lname = O'Neill(7),
 fname = David(5), lname = Hudson(6),
 fname = Alex(4), lname = Matthew(7),
CLOSE mycursor
status is PGRES_COMMAND_OK
#rows affected
result message:
COMMIT work
status is PGRES_COMMAND_OK
#rows affected
result message:

Fetching Results in Batches
To modify the program to deal with the results, say four at a time, we need to be able to tell
when we have retrieved all of the results. This was easy when we were handling all of them at
once, since PQntuples will tell us how many results there are in our set. If we fetch results four
at a time, then PQntuples will return four for each batch of results, except the last, which will be
less than four (possibly zero). This is the test we will use (in cursor2.c). As our doSQL function
does not return a result, we will handle the batches directly with PQexec.

#include <stdlib.h>
#include <libpq-fe.h>
void printTuples(PGresult *result)
{
 int r, n;
 int nrows = PQntuples(result);
 int nfields = PQnfields(result);
 printf("number of rows returned = %d\n", nrows);
 printf("number of fields returned = %d\n", nfields);
 for(r = 0; r < nrows; r++) {
 for(n = 0; n < nfields; n++)
 printf(" %s = %s(%d),",
 PQfname(result, n),
 PQgetvalue(result, r, n),
 PQgetlength(result, r, n));
 printf("\n");
 }
}

void doSQL(PGconn *conn, char *command)
{
 PGresult *result;

MatthewStones_4789.book Page 408 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q 409

 printf("%s\n", command);

 result = PQexec(conn, command);
 printf("status is %s\n", PQresStatus(PQresultStatus(result)));
 printf("#rows affected %s\n", PQcmdTuples(result));
 printf("result message: %s\n", PQresultErrorMessage(result));

 switch(PQresultStatus(result)) {
 case PGRES_TUPLES_OK:
 printTuples(result);
 break;
 }
 PQclear(result);
}

int main()
{
 PGresult *result;
 PGconn *conn;
 int ntuples = 0;

 conn = PQconnectdb("");

 if(PQstatus(conn) == CONNECTION_OK) {
 printf("connection made\n");

 doSQL(conn, "BEGIN work");
 doSQL(conn, "DECLARE mycursor CURSOR FOR "
 "SELECT fname, lname FROM customer");
 do {
 result = PQexec(conn, "FETCH 4 IN mycursor");
 if(PQresultStatus(result) == PGRES_TUPLES_OK) {
 ntuples = PQntuples(result);
 printTuples(result);
 PQclear(result);
 }
 else ntuples = 0;
 } while(ntuples);

 doSQL(conn, "CLOSE mycursor");
 doSQL(conn, "COMMIT work");

 }

MatthewStones_4789.book Page 409 Wednesday, February 23, 2005 6:49 AM

410 C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q

 else
 printf("connection failed: %s\n", PQerrorMessage(conn));

 PQfinish(conn);
 return EXIT_SUCCESS;
}

With this version of the program, we can see several batches of four results processed at a
time, followed by a short batch:

connection made
...
DECLARE mycursor CURSOR FOR SELECT fname, lname FROM customer
status is PGRES_COMMAND_OK
#rows affected
result message:
number of rows returned = 4
number of fields returned = 2
 fname = Jenny(5), lname = Stones(6),
 fname = Andrew(6), lname = Stones(6),
 fname = Adrian(6), lname = Matthew(7),
 fname = Simon(5), lname = Cozens(6),
number of rows returned = 4
number of fields returned = 2
 fname = Neil(4), lname = Matthew(7),
 fname = Richard(7), lname = Stones(6),
 fname = Ann(3), lname = Stones(6),
 fname = Christine(9), lname = Hickman(7),
number of rows returned = 4
number of fields returned = 2
 fname = Mike(4), lname = Howard(6),
 fname = Dave(4), lname = Jones(5),
 fname = Richard(7), lname = Neill(5),
 fname = Laura(5), lname = Hardy(5),
number of rows returned = 3
number of fields returned = 2
 fname = Bill(4), lname = O'Neill(7),
 fname = David(5), lname = Hudson(6),
 fname = Alex(4), lname = Matthew(7),
number of rows returned = 0
number of fields returned = 2
CLOSE mycursor
status is PGRES_COMMAND_OK
#rows affected
result message:
...
$

MatthewStones_4789.book Page 410 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q 411

We can use all of the options of FETCH that we saw earlier to fetch results one at a time (with
the NEXT option), a batch at a time (by specifying a number), or all at once (with ALL).

Dealing with Binary Values
All of the data that we have dealt with in this chapter has been transferred in strings. We have
created INSERT statements with values in strings and dealt with the results of a SELECT again in
strings.

You might think that all this converting between formats is wasteful. Wouldn’t it be better
to have a binary interface? If you wanted to insert or select a floating-point value, such as average
fuel consumption, wouldn’t it be better to have it transferred directly from and to a C double?

The answer is both yes and no. PostgreSQL does have in libpq some ability to deal with
binary values, but the benefits are probably fairly slim. Currently, we can retrieve binary values
only if we use a cursor and include the BINARY option in its declaration:

DECLARE mycursor BINARY CURSOR FOR...

Then the PQbinaryTuples function will confirm that a result set returned from a FETCH of
that cursor contains binary data:

int PQbinaryTuples(const PGresult *result);

Now, in the case where binary tuples are being used, PQgetvalue will return not a string
pointer, but a pointer to a binary representation of the field, in the binary format native to the
server.

Dealing with issues such as variable-length data and the byte-ordering of multibyte values
(like currency data) can soon become decidedly messy. It is recommended that you stick with
string representations when using libpq. As discussed in the next chapter, you can handle
binary values a little more easily with embedded SQL.

Working Asynchronously
All of the examples we have looked at so far are using the libpq functions in a blocking mode.
This means that our programs call a libpq function and wait for it to return values. As we saw
earlier, we might request a large amount of data that may take some time to be received. In a
single-threaded (normal) application, if we’re using PQexec, there is nothing we can do until
PQexec returns. Users must wait. It’s also tricky to cancel a query if the results are no longer
needed. However, for most programs this will be sufficient, and short waits will not be a problem.
Fetching results a few at a time with a cursor is probably sufficient. In this section, we will cover
a more advanced technique that can give us precise control over the behavior of our application if
we need it.

An alternative approach to blocking, typically used for applications with a graphical user
interface, is to run in a nonblocking mode. In this type of program, we are sent messages when
something has happened, and our application must respond to those messages. So, in a
point-and-click application, we might be told when the user has pressed a mouse button,
entered data in a field, moved a window, and so on.

The structure of a nonblocking program generally revolves around an event loop:

MatthewStones_4789.book Page 411 Wednesday, February 23, 2005 6:49 AM

412 C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q

main()
{
 LOOP: {
 /* Wait for an event to occur */
 /* Find out what has event has occurred */
 switch(event type) {
 /* Process event */
 }
}

We essentially do nothing until some event occurs. When we receive a notification that
something has happened, we find out exactly what has occurred and perform an appropriate
action.

Sometimes, the programming language we are writing in hides the event loop from us, and
we just arrange for particular functions we have written to be called when a particular event
occurs. These functions are often called callbacks, and the main loop that forms the heart of
the application calls us back when it has something to say. This is the case for Visual Basic,
for example.

In libpq, PostgreSQL has some support for this nonblocking way of programming. It is
referred to as working asynchronously, because database actions performed on the server are
not synchronized with the client application, which can be performing other tasks instead of
simply waiting. Instead, we must ask PostgreSQL if anything has happened, and when it has,
we resume processing.

Executing a Query in Asynchronous Mode
Let’s take a look at how we can execute a query in asynchronous mode. We will use a pair of
functions that PQexec uses to do its work: PQsendQuery and PQgetResult.

The idea is that we call PQsendQuery to send our SQL to the server. Once it is on its way, we
can get on with other things.

int PQsendQuery(PGconn *conn, const char *query);

PQsendQuery returns zero if the query is not dispatched, and sets an error condition we can
retrieve with PQerrorMessage. Otherwise, it returns 1 to indicate successfully sending the query.

If the server responds immediately, the result set will be kept waiting for us until we are
ready to retrieve it. When we are ready, we will call PQgetResult one or more times to retrieve
the query results as they come in:

PGresult *PQgetResult(PGconn *conn);

PQgetResult will return a result set each time it’s called, until all the results from the active
query have been returned. The result set may contain no tuples if no further data was immedi-
ately available, but this does not mean that all the data has been received. At that point, PQgetResult
returns a NULL pointer. Each of the result sets returned by PQgetResult must be cleared when
we are finished with them by calling PQclear.

For this to work, we must make sure that neither PQsendQuery nor PQgetResult will block
and leave our application waiting for them. To help with PQsendQuery, we can set the connec-
tion itself to a nonblocking state by calling PQsetnonblocking:

MatthewStones_4789.book Page 412 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q 413

int PQsetnonblocking(PGconn *conn, int arg);

To prevent PQsendQuery from blocking, we make a call to PQsetnonblocking with a nonzero
argument. Then PQsendQuery will return an error if it would have otherwise blocked, and the
application may try again at a later point.

PQsetnonblocking returns zero if successful, and -1 if there is a problem in changing
the mode of the connection. We can check the blocking mode of a connection by calling
PQisnonblocking:

int PQisnonblocking(const PGconn *conn);

We get a nonzero value if the connection is in a nonblocking mode.
The programming we need to run this nonblocking operation is something like this

(async1.c):

#include <stdlib.h>
#include <libpq-fe.h>

void printTuples(PGresult *result)
{
 int r, n;
 int nrows = PQntuples(result);
 int nfields = PQnfields(result);
 printf("number of rows returned = %d\n", nrows);
 printf("number of fields returned = %d\n", nfields);
 for(r = 0; r < nrows; r++) {
 for(n = 0; n < nfields; n++)
 printf(" %s = %s(%d),",
 PQfname(result, n),
 PQgetvalue(result, r, n),
 PQgetlength(result, r, n));
 printf("\n");
 }
}

int main()
{
 PGresult *result;
 PGconn *conn;

 conn = PQconnectdb("");

 if(PQstatus(conn) == CONNECTION_OK &&
 PQsetnonblocking(conn,1) == 0) {
 printf("connection made\n");

MatthewStones_4789.book Page 413 Wednesday, February 23, 2005 6:49 AM

414 C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q

 PQsendQuery(conn, "SELECT * FROM customer");
 while(result = PQgetResult(conn)) {
 printTuples(result);
 PQclear(result);
 }
 }
 else
 printf("connection failed\n");

 PQfinish(conn);
 return EXIT_SUCCESS;
}

This program sends off a query, and then collects the results without blocking. As with the
earlier example of using cursors, we now have no easy way of telling how many rows will be
returned altogether, but this is rarely a problem in practice.

There are still some rare circumstances under which PQgetResult can block, one of them
being while the back-end server is busy. There are ways around this, using some lower-level
libpq functions. If you need to have very precise control over your connection, and you are
executing very complex queries that will cause the server to be busy for significantly long periods,
you can use the functions shown in Table 13-3.

Check out the PostgreSQL documentation that is included in the source code distribution
or at http://www.postgresql.org for details on using the PQisBusy, PQconsumeInput, and
PQflush functions.

If your application is using the select system call (not to be confused with the SQL SELECT
statement) to react to read and write events on file descriptors or network sockets, you can
include the PostgreSQL connection in the select, too. To do this, you must obtain the socket
that is being used by the database connection. This can be obtained from PQsocket:

int PQsocket(const PGconn *conn);

Table 13-3. libpq Functions for Controlling Blocking

Function Description

int PQisBusy(PGconn *conn); Returns 1 if the current query is busy, and
PQgetResult would block if it were called.

int PQflush(PGconn *conn); Tries to send any outstanding data that is waiting to
go to the server. It returns zero if it successfully
empties the queue, or it was already empty.

int PQconsumeInput(PGconn *conn); Transfers data waiting to be read on the database
connection into the internal libpq data structures.
It is normally called by functions like PQexec, but you
can make explicit calls to it when you need control
over blocking behavior of your applications.

MatthewStones_4789.book Page 414 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q 415

The socket will signal activity when there is back-end data to be processed, but there are a
couple of conditions that must be met for this to work:

• There must be no data outstanding to be sent to the server. We can ensure this by calling
PQflush until it returns zero.

• Data must be read from the connection by PQconsumeInput before calling PQgetResult.

Canceling an Asynchronous Query
If we need to cancel a query before we have read all of the results, we can do this by calling
PQrequestCancel, which will send an indication to the server to stop processing the query:

int PQrequestCancel(PGconn *conn);

PQrequestCancel will return 1 if it was able to send the cancellation, or 0 if it was unable to,
possibly because the query had already completed. A canceled query will manifest itself as a
result set bearing an error. Regardless of the result of PQrequestCancel, we may still be too late
to stop the results from appearing and may not see any error in a result set.

Although PQrequestCancel is useful when working in a nonblocking mode, it is also possible
to call it from a signal handler to terminate a long-running query on a blocking connection.

Making an Asynchronous Database Connection
It is also possible to establish the initial connection to the database in a nonblocking way by
using PQconnectStart and PQconnectPoll:

PGconn *PQconnectStart(const char *conninfo);
PostgresPollingStatusType *PQconnectPoll(PGconn *conn);

PQconnectStart is similar to PQconnectdb, except that it returns immediately, before the
connection requested in the conninfo string has been established. As long as the host name
parameter does not result in a DNS lookup, PQconnectStart will not block.

Before using the new connection, we must be sure that it is ready. First, we must call
PQstatus to make sure that the call to PQconnectStart did not fail and leave a connection with
a status of CONNECTION_BAD. We can then check the connection’s condition with PQconnectPoll,
which will not block. The return results from PQconnectPoll include the following:

PGRES_POLLING_FAILED /*the connection has failed*/
PGRES_POLLING_OK /*the connection has been made*/

By polling while the result is not PGRES_POLLING_FAILED, and until it becomes
PGRES_POLLING_OK, we can detect the end of the connection establishment process in a
nonblocking fashion.

Here is a sample program (async2.c) that makes an asynchronous database connection:

MatthewStones_4789.book Page 415 Wednesday, February 23, 2005 6:49 AM

416 C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q

#include <stdlib.h>
#include <libpq-fe.h>

int main()
{
 PGresult *result;
 PGconn *conn;

 /* Start an asynchronous connection */
 conn = PQconnectStart("");

 if(PQstatus(conn) == CONNECTION_BAD) {
 printf(" cannot start connect: %s\n", PQerrorMessage(conn));
 }
 else {
 /* do some work, calling PQconnectPoll from time to time */
 PostgresPollingStatusType status;
 do {
 printf("polling\n");
 status = PQconnectPoll(conn);
 }
 while(status != PGRES_POLLING_FAILED &&
 status != PGRES_POLLING_OK);

 if(status == PGRES_POLLING_OK)
 printf("connection made!\n");
 else
 printf("connection failed: %s\n", PQerrorMessage(conn));
 }
 PQfinish(conn);
 return EXIT_SUCCESS;
}

When we run this program, we see many polling messages before the connection is reported
as made or failed:

$ PGDATABASE=bpfinal ./async2
polling
polling
...
connection made!
$

MatthewStones_4789.book Page 416 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 3 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G L I B P Q 417

■Note If you run this program several times, you may see a different number of polling messages appear
before the connection is made. The exact number will depend on how long it takes the server to respond to
the connection request.

Summary
In this chapter, we looked at creating PostgreSQL applications in C. We saw how the libpq
library provides access to the low-level functions of PostgreSQL, allowing us to connect to a
database on a local machine or on a server across the network. We have used sample programs
to make and close connections, and execute SQL statements to query, insert, or update rows in
our database tables.

We have considered problems of handling large volumes of data and looked at how to use
cursors to marshal query results into manageable units. We have looked at the problem of
blocking and considered ways of creating applications that continue to service the user while
accessing a database server.

We can also access PostgreSQL from C using embedded SQL, which is the subject of the
next chapter.

MatthewStones_4789.book Page 417 Wednesday, February 23, 2005 6:49 AM

MatthewStones_4789.book Page 418 Wednesday, February 23, 2005 6:49 AM

419

■ ■ ■

C H A P T E R 1 4

Accessing PostgreSQL from C
Using Embedded SQL

In the previous chapter, we introduced the libpq library, a collection of C functions specific to
PostgreSQL that allow programs to connect to a database and select data from tables. We also
saw how to effectively execute standard SQL queries and perform updates, insertions, and
deletions on rows in the database tables using this library.

Although libpq does unleash the power of the PostgreSQL database system for our appli-
cations, it is in some ways unfortunate that the interface itself is unique to PostgreSQL, different
from any other C API we might use for accessing other relational databases. Another drawback
to using libpq is that it is not easy to see the SQL, as the supporting code tends to hide the
all-important SQL statements, and that makes it more difficult to maintain the code.

Help is at hand however. Many database systems, particularly commercial ones, support
the concept of embedded SQL. The SQL92 standard specified interfaces for embedding SQL in
various languages, not only in C, but also in FORTRAN, ADA, and others. In December 1998,
ANSI also ratified a standard for embedding SQL in Java, SQLJ, although that is not widely used.

Using embedded SQL in C code, following the SQL standards, enables us to create appli-
cations that are more portable to other databases. Furthermore, it makes writing code to access
PostgreSQL easier, since it provides a higher-level, more intuitive way of writing an application.
PostgreSQL supports this feature using a preprocessor known as ecpg, and an additional library
to support the code that is generated from ecpg.

In this chapter, we will explore how to use SQL in C programs by embedding SQL state-
ments directly in the source code. If you have used embedded SQL in another database system,
you will be right at home in this chapter.

Using ecpg
Using ecpg provides a method of writing SQL statements in a C program, rather than using
libpq function calls directly. This translator, better known as a preprocessor, works in much the
same way as the C preprocessor. It reads the program file and produces a C program file that
the compiler can understand. The embedded SQL is replaced with calls to ecpg library routines,
which, in turn, call the libpq library routines.

MatthewStones_4789.book Page 419 Wednesday, February 23, 2005 6:49 AM

420 C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L

■Note Oracle and Informix also have such translators in the form of PRO*C and ESQL/C, respectively, as do
many other commercial relational database systems. The PostgreSQL preprocessor for embedded SQL,
ecpg, closely follows the ANSI standard.

For our examples in this chapter, we use a test database with a number table, created with
psql as follows:

bpfinal=> CREATE database test;
CREATE DATABASE
bpfinal=> \c test
You are now connected to database "test".
test=> CREATE TABLE number (
test(> intval integer,
test(> name varchar
test(>);
CREATE TABLE
test=> INSERT INTO number(intval, name) VALUES(42, 'six times seven');
INSERT 19107 1
test=> INSERT INTO number(intval, name) VALUES(1, 'Numero Uno');
INSERT 19231 1
test=> INSERT INTO number(intval, name) VALUES(111, 'Nelson ');
INSERT 19253 1
test=>

Writing an esqlc Program
Now let’s look at a very simple example of an esqlc program titled update.pgc (we follow the
PostgreSQL standard of using the extension .pgc for our esqlc programs):

int main()
{
 EXEC SQL CONNECT TO test;
 EXEC SQL UPDATE number
 SET name = 'The Answer to the Ultimate Question'
 WHERE intval = 42;
 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

This program connects to the database (assumed to be on the local machine and accessible
using the same username as the current Linux login name without password) and updates one
of the rows in the number table. By default, ecpg arranges for our statements to be executed
within an open transaction, but it does not automatically end the transaction. At the end of our
program, we need to explicitly end the transaction by executing a COMMIT if the database changes
are correct. We will come back to more complex login requirements later in the chapter, in the
section “Making Database Connections.”

MatthewStones_4789.book Page 420 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L 421

You can see that we have simply written some SQL inside the main program. The embedded
SQL syntax is fairly simple, prefixing each SQL statement that needs to be translated with the
string EXEC SQL and terminating it with a semicolon:

EXEC SQL <some SQL statement>;

The keywords in embedded SQL are case-insensitive, including EXEC SQL, so we may write
them in either uppercase or lowercase. Variable names in embedded SQL are case-sensitive
and must match the corresponding declarations.

■Note Some developers like to use uppercase so that the SQL stands out from the surrounding C code;
others regard that as ugly and use lowercase. You should pick one case style and stick to it. We will stick to
our convention of putting structural SQL keywords in uppercase in the text of this book, which helps them to
stand out from the surrounding C code.

The next step is to use the translator to create a C file that we can compile. We can translate
our sample program by running ecpg, giving our program name as argument:

$ ecpg update.pgc
$

If you need to tell ecpg where to find additional include files, you can do so by adding a
command-line argument: -I<include file directory>.

Now we also have a C program file, update.c, that includes the translated source code for
our program. For the curious, let’s take a peek and see what is going on. Here is update.c:

/* Processed by ecpg (3.2.0) */
/* These include files are added by the preprocessor */
#include <ecpgtype.h>
#include <ecpglib.h>
#include <ecpgerrno.h>
#include <sqlca.h>
/* End of automatic include section */
#line 1 "update.pgc"

int main()
{
 { ECPGconnect(__LINE__, 0, "test" , NULL,NULL , NULL, 0); }
#line 5 "update.pgc"

 { ECPGdo(__LINE__, 0, 1, NULL, "UPDATE number SET name =
'The Answer to the Ultimate Question' WHERE
intval = 42", ECPGt_EOIT, ECPGt_EORT);}
#line 9 "update.pgc"

MatthewStones_4789.book Page 421 Wednesday, February 23, 2005 6:49 AM

422 C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L

 { ECPGtrans(__LINE__, NULL, "COMMIT");}
#line 10 "update.pgc"

 { ECPGdisconnect(__LINE__, "ALL");}
#line 11 "update.pgc"

 return 0;
}

We can see that the SQL has been replaced by calls to functions. These ecpg functions all
have names beginning with ecpg and are similar to the libpq ones we saw in the previous
chapter. The ecpg functions are made available as a separate library, but they use the standard
libpq library for their implementation.

To create an executable program, we need to compile update.c and link it with both the
ecpg and libpq libraries:

$ cc -o update update.c -L/usr/local/pgsql/lib -lecpg -lpq
$

The exact location you need to specify with -L may be different on your system, depending
on how PostgreSQL was installed. You may also need to add an -Idirectory command-line
argument to specify the location of the ecpg include files, such as -I/usr/local/pgsql/include.

Now when we run the program, it connects to the database, updates the row, and disconnects:

$./update
$

If when you try to run the program you get an error that the shared library file
libecpg.so.<some-numbers> does not exist, you may also need to set LD_LIBRARY_PATH to
include the directory containing this file, as in this example:

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/pgsql/lib
$ export LD_LIBRARY_PATH
$

There is nothing to see when the program runs, because it does not produce any output.
We can check with psql to see whether the update has happened correctly:

$ psql -d test
test=> SELECT * FROM number;
 intval | name
---------+------------------------------------
 1 | Numero Uno
 111 | Nelson
 42 | The Answer to the Ultimate Question
(3 rows)
test=> \q
$

MatthewStones_4789.book Page 422 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L 423

Using a Makefile
To make the process of invoking the translator and building embedded SQL applications
easier, we can use a makefile, similar to the one we used in the previous chapter. Here is a suit-
able makefile for ecpg programs:

Makefile for sample programs
In Beginning PostgreSQL

Edit the base directories for your
PostgreSQL installation

INC=/usr/local/pgsql/include
LIB=/usr/local/pgsql/lib

CFLAGS=-I$(INC)
LDLIBS=-L$(LIB) -lecpg -lpq
ECPGFLAGS= -I$(INC)

.SUFFIXES: .pgc

.pgc.c:
 ecpg $(ECPGFLAGS) $<

ALL= cursor insert insert2 select select2 select3 update update2

This makefile says that to create a .c file from a .pgc file, we need to run ecpg on the .pgc
file. We set a variable ECPGFLAGS to pass any command-line arguments we need to the translator.
The default rules take care of compiling and linking, so all we need to add is the ecpg library to
the LDLIBS variable.

■Note The makefile provided in the code bundle (available from the Downloads section of the Apress web
site, http://www.apress.com) has some additional options, notably an option to support the command
make clean to ensure the directory is set back to a clean state ready to compile all the code. We suggest
you do this, particularly if you change the version of PostgreSQL you are using, because if ecpg has changed,
then it is important to restart the compilation from the original source files.

Using the makefile, we can see the steps taken in creating our program:

$ rm -f update.c update
$ make update
ecpg -I/usr/local/pgsql/include update.pgc
cc -I/usr/local/pgsql/include -c -o update.o update.c
cc update.o -L/usr/local/pgsql/lib -lecpg -lpq -o update
rm update.o update.c
$

MatthewStones_4789.book Page 423 Wednesday, February 23, 2005 6:49 AM

424 C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L

Here, we have removed the intermediate file update.c and the executable update to force
make to carry out all of the required steps in building our program. Also notice that (for the GNU
version, at least) make deletes the intermediate file and object to keep things nice and tidy. We
end up with just update.pgc, the source code of our embedded SQL program, and an executable
binary, update.

Using ecpg Arguments
We can use some command-line arguments to control the behavior of ecpg, in the following form:

ecpg [-v] [-t] [-I include-dir] [-o output-file] file1 [file2 ...]

Table 14-1 describes each of these arguments.

The -t option is the most important one. It controls the way that ecpg uses transactions. By
default, no statements in the program will be committed to the database until we explicitly use
the COMMIT statement. This makes us fully responsible for using BEGIN and COMMIT statements
correctly. However, for simple programs, it’s sometimes useful if the database automatically
commits statements, one at a time, without requiring a COMMIT statement to be explicitly executed.
If you specify the -t option to ecpg, any SQL statement not in an explicit BEGIN/COMMIT block
will be automatically committed immediately after it is executed. (Note that this behavior has
changed significantly from earlier versions of ecpg.) In the sample makefile, we have specified
an explicit search path for include files (exactly as we did in the previous chapter for compiling
libpq applications) and the option to control transactions ourselves.

■Note If you want to take full control of transactions within your program, which is normally a good idea,
we recommend that you do not specify the –t argument to ecpg and use explicit BEGIN and COMMIT SQL
statements. The remaining examples in the chapter will work correctly only if they are processed by ecpg
without the -t argument.

Table 14-1. Principal Options for ecpg

Argument Description

-v Prints version and search path information to the standard error output (stderr)

--help Prints some help, including some more esoteric options not listed here

-t Turns on auto-commit mode, where each individual SQL statement is automat-
ically committed to the database, unless it is inside a BEGIN/COMMIT block

-o Specifies the name of the output file for the processed program code; defaults to
the same name as the input filename, substituting .c for .pgc as the extension

-I Adds the named directory to the list of directories searched to find header files
included in the source file

MatthewStones_4789.book Page 424 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L 425

Logging SQL Execution
Many of the ecpg library functions call a logging function internally for debugging purposes.
We can use this feature to generate a log of the SQL statements that our embedded SQL program
executes. To do this, we enable the debug output with a call to ECPGdebug:

void ECPGdebug(int logging, FILE *logstream);

We pass any nonzero value as the logging parameter to enable the debug output, and a
zero value to turn it off again. The information will be printed to the output stream given as
the logstream parameter.

Add the following line to the start of main in update.pgc, and then rebuild it:

ECPGdebug(1,stderr);

We will now be able to see the progress of our program as it runs:

$ make update
$./update
[2684]: ECPGdebug: set to 1
[2684]: ECPGconnect: opening database test on <DEFAULT> port <DEFAULT>
[2684]: ECPGexecute line 10: QUERY: update number set name =
'The Answer to the Ultimate Question' where intval = 42 on connection test
[2684]: ECPGexecute line 10 Ok: UPDATE 1
[2684]: ECPGtrans line 13 action = commit connection = test
[2684]: ecpg_finish: Connection test closed.

The number given in brackets at the start of each debug line is the process identifier for the
program, and it will be different for each run. This is useful for separating the output from
several programs running at the same time.

As ECPGdebug (and the other ECPG functions, if you call them explicitly) is PostgreSQL-specific,
if you use it in your applications, they will not be portable to other database implementations
that support embedded SQL. You should probably confine calls to ECPGdebug to the test and
debug phases of your application development, and either remove or include them only condi-
tionally using the C preprocessor.

Making Database Connections
The sample program update.pgc contains a very simple variant of the SQL statement to connect
to the database, where almost all of the options we might have used in the equivalent libpq
functions have been set to default values.

The following statement will attempt to connect to the database called test on the local
machine, using the current user as the login account and offering no password:

EXEC SQL connect to test;

We can specify in more detail which server to connect to, which port the database server is
listening on, and the user identity and password to use by employing the full version of the
CONNECT statement:

MatthewStones_4789.book Page 425 Wednesday, February 23, 2005 6:49 AM

426 C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L

EXEC SQL CONNECT database_url
 AS connection_name
 USER login_name
 USING password;

The connection parameters are as follows:

• The database_url specifies the location of the database and the method to be used to
connect to it in much the same way as a URL on the Internet locates a file or a web page.
An example of a common format would be bpfinal@docbox to specify a database bpfinal
on the server docbox. This is only one of several formats that are acceptable; others are
listed in Table 14-2.

• The connection_name is an identifier that can be used to identify the connection in
subsequent SQL statements.

• The login_name is the user identity to use. The password may be added to the username,
separated by a slash.

• The password is the user’s password. The keyword IDENTIFIED BY may be used as a
synonym for USING in a CONNECT statement when using passwords. The user details may
be taken from a variable if required. See the “Using Host Variables” section later in this
chapter for details on using variables in SQL statements.

If you are writing a program that uses multiple connections, then assigning them names
allows you to identify them as targets for SQL statements. To specify a particular database
connection, we use an extended form of the EXEC SQL syntax:

EXEC SQL AT connection_name <sql statement>;

Table 14-2. Forms for database_url Connection

Form Description

database_name Database on the local machine

database_name@server Database on a remote server

database_name@server:port Remote database on a nonstandard port

tcp:postgresql://server Default database on remote server connected via TCP socket

tcp:postgresql://server:port Remote database on a nonstandard port

tcp:postgresql://server/database_name Named remote database

Unix:postgresql://server Database connected by UNIX domain socket

Default Connect to the default database, unless the PGDATABASE
environment variable is set, in which case the database
specified in that is used

:host_variable Connection details taken from a C string variable

MatthewStones_4789.book Page 426 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L 427

We can also change the connection that is used for SQL statements (the current connection)
by using a SET statement:

EXEC SQL SET CONNECTION TO connection_name;

When we have finished with a database connection, we should close it to release the
resources. A database connection is closed with the DISCONNECT statement:

EXEC SQL DISCONNECT connection;

Where the optional connection argument may be one of the following:

• Default, for the default connection

• Current, for the current connection

• ALL, for all connections

• connection_name, for a named connection

Using ALL is usually a safe choice.
One function included in the ecpg library that can sometimes come in handy is ECPGstatus,

which returns a nonzero Boolean value (true) if a database connection is valid (that is, it is
connected to a database), and false otherwise:

bool ECPGstatus(int lineno, char *connection_name);

The parameters to ECPGstatus follow the standard for ECPG functions. The first parameter
is a line number (usually the C preprocessor macro __LINE__ is used). The second parameter is
a string used to identify the connection of interest. You can use the same connection specifier
or name as used in the embedded SQL CONNECT statement that established the connection.

To check that our sample program connected successfully, we could add this test to the code:

if(!ECPGstatus(__LINE__,"test")) {
 /* failed to connect */
}

Again, using ECPGstatus will make our program PostgreSQL-specific. The next section
presents a more standard way of detecting whether the connection failed, but only immedi-
ately after the attempt to connect is made.

Error Handling
Our sample program is rather cavalier in its approach. It carries on regardless of any errors that
might occur in executing any of the embedded SQL. As such, it is possible that the program will
hang if it fails to connect to a database and then attempts the update. As responsible developers,
we will want to catch and attempt to recover from errors that may occur.

MatthewStones_4789.book Page 427 Wednesday, February 23, 2005 6:49 AM

428 C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L

Reporting Errors
The embedded SQL standard defines a mechanism for reporting errors in embedded SQL, and
PostgreSQL supports this. A standard structure, the SQL control area, is defined and named
sqlca. It has the following general layout, expressed as a C structure:

struct
{
 char sqlcaid[8];
 long sqlabc;
 long sqlcode;
 struct
 {
 int sqlerrml;
 char sqlerrmc[70];
 } sqlerrm;
 char sqlerrp[8];
 long sqlerrd[6];
 char sqlwarn[8];
 char sqlext[8];
} sqlca;

The sqlca structure is used for communicating error messages and status values from
embedded SQL statement execution. You can see the exact definition for your setup by looking
in the sqlca.h include file installed with PostgreSQL. It is rather arcane, and the different codes
can appear a little odd. Furthermore, PostgreSQL does not implement all of the possible infor-
mation that can be communicated through sqlca fields, though it does implement all the
generally useful ones.

The sqlca structure is reset after each embedded SQL statement, so you must retrieve any
information you need from one statement before executing the next. The fields that are set in
the structure will depend on precisely what has happened, and the key to that is the sqlcode field.

The variable sqlca.sqlcode will be set to a result code, which will be zero if all went well.
For serious errors, a negative value will be returned. For example, if a database connection
attempt fails, sqlca.sqlcode will be set to -402. Nonfatal errors return positive values. A very
important positive result is the code 100, which is returned in the case where a SELECT returned
no data—not in itself an error, but a condition we are frequently interested in trapping.

If an error occurs, the string sqlca.sqlerrm.sqlerrmc will contain a message that describes
the error. The length of the error message string (which is null-terminated) is given in
sqlca.sqlerrm.sqlerrml. With PostgreSQL, the error message might seem unhelpful, as it
may contain text like error #-203 rather than anything truly meaningful. Several of the more
common error codes and their meanings are listed in Table 14-3.

MatthewStones_4789.book Page 428 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L 429

After an INSERT, UPDATE, or DELETE has successfully executed, the number of rows that were
affected is made available in sqlca.sqlerrd[2]. This field is also used when returning data with
SELECT and using cursors. Implementing cursors in embedded SQL is discussed later in this
chapter.

In some circumstances, a warning or other condition arises that, although not a fatal error,
needs to be brought to the program’s attention. When data is returned as a result of a SQL
statement, such as a SELECT, we can arrange for C variables in our program to receive the data,
as explained in the “Using Host Variables” section a little later in this chapter. If the data is too
long for the variable, it is truncated and a warning is raised.

The sqlca.sqlwarn array is used to convey information about warnings:

• sqlca.sqlwarn[0] will be set to W if a warning has been issued.

• sqlca.sqlwarn[1] will be set to W if data has been truncated when received into a
C variable.

• sqlca.sqlwarn[2] will be set to W when a nonfatal error has occurred.

Table 14-3. sqlca Error Codes

Error Code Description

-12 Out of memory.

-201 Too many arguments. Generally caused by a mismatch between the number
of host variables, which we will meet later in the chapter, and parameters in
the SQL statement you are attempting to execute.

-202 Too few arguments. Generally caused by a mismatch between the number of
host variables and parameters in the SQL statement you are attempting to
execute.

-203 Too many matches. A query has returned multiple rows, but the variables
receiving that data are only sufficient for a single row.

-208 Empty query. This is equivalent to PGRES_EMPTY_QUERY being returned from
libpq and probably indicates a program bug as the server was asked to do
no work.

-220 No such connection. The program tried to use a connection that does not exist.

-221 Not connected. The program has attempted to access data without a valid
connection being established.

-400 PostgreSQL error. The message will contain details of the error from the server.

-401 Transaction error. An error has occurred during a begin, commit, or rollback
of a transaction.

-402 Open failed. A connection to the database could not be established.

100 Not found. No data was returned by a query.

MatthewStones_4789.book Page 429 Wednesday, February 23, 2005 6:49 AM

430 C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L

To use the sqlca structure in our program, we need to instruct ecpg to include its definition
for us. We do this by using an include directive, such as this:

EXEC SQL include sqlca;

Here is an example of an update program to check the number of rows affected by our
update. This version (update2.pgc) alters the cost and sell price for an item in our main sample
database, bpfinal:

#include <stdio.h>

EXEC SQL include sqlca;

main()
{
 ECPGdebug(1,stderr);

 EXEC SQL CONNECT TO bpfinal;

 EXEC SQL UPDATE item
 SET cost_price = 1.75, sell_price = 2.99
 WHERE description = 'Linux CD';

 if(sqlca.sqlcode == 0)
 printf("rows affected: %d\n", sqlca.sqlerrd[2]);

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
}

When we run the program, we see quite a lot of output, because of the tracing:

$./update2
[2332]: ECPGdebug: set to 1
[2332]: ECPGconnect: opening database bpfinal on <DEFAULT> port <DEFAULT>
[2332]: ECPGexecute line 11: QUERY: update item set cost_price = 1.75 ,
sell_price = 2.99 where description = 'Linux CD' on connection bpfinal
[2332]: ECPGexecute line 11 Ok: UPDATE 1
rows affected: 1
[2332]: ECPGtrans line 18 action = commit connection = bpfinal
[2332]: ecpg_finish: Connection bpfinal closed.
$

The program extracts the number of rows affected by the UPDATE, if it completes successfully.
A zero code in sqlca.sqlcode indicates a successful UPDATE, and sqlca.sqlerrd[2] contains the
number of rows affected.

MatthewStones_4789.book Page 430 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L 431

Trapping Errors
We can arrange for our ecpg program to execute some code automatically whenever an error
or warning occurs. We can also arrange for code to run whenever we encounter the no data
pseudo-error code 100. For such tasks, the construct we use is the whenever statement:

EXEC SQL whenever condition action;

The condition can be one of the following options:

• sqlerror, for when an error has occurred

• sqlwarning, for when a warning was given

• not found, for when no data was returned

The action value can then be one of the following:

• sqlprint prints the error message to the standard error.

• goto label jumps to the specified label.

• continue is the default action of just continuing.

• do c_code executes a C function.

If it is acceptable just to print out messages for warnings, and to exit the program for fatal
errors, we can include code such as this in our application to trap and handle errors:

EXEC SQL whenever sqlwarning sqlprint;
EXEC SQL whenever sqlerror do GiveUp();

void GiveUp()
{
 fprintf(stderr, "Fatal error\n");
 sqlprint();
 exit(1);
}

PostgreSQL implements the whenever statement in ecpg by generating code to check
sqlca.sqlcode and sqlca.sqlwarn[0] after each embedded SQL statement and executing the
specified action if the check fails. The keyword sqlprint is shorthand for do sqlprint(), which
calls a library function to print out the associated error message.

These whenever functions to trap warnings and errors are PostgreSQL-specific, and not
available in standard embedded SQL. For this reason, you shouldn’t rely on them in your final
program code if there is any possibility of needing to port your code to another database at a
later date.

MatthewStones_4789.book Page 431 Wednesday, February 23, 2005 6:49 AM

432 C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L

■Tip Unfettered use of whenever in embedded SQL can make your code impossible to follow, with some
developers claiming that it’s just as bad as using goto statements. Having said that, it may be worth experi-
menting with whenever in small doses and with simple action code, as it can make for applications that are
easier to understand, and some programmers do prefer it. We generally err on the side of adding code to
explicitly test error and warning codes in production code, as we did in the previous chapter. It is possible,
and sometimes convenient, to mix the two approaches.

Using Host Variables
So far, we have simply executed fixed SQL statements in our sample program, but you may be
wondering how we can introduce some variable data. After all, using libpq, we could construct
a SQL statement in a string using sprintf perhaps, and thereby arrange for it to contain data
taken from variables.

Embedded SQL can also use variables in its statements, in a manner that is rather easier to
use than the string-manipulation tasks we must follow with libpq. We can refer to variables in
our embedded SQL by using their names prefixed by a colon. So, if we want to insert a new row
in our item table, we can do it like this:

EXEC SQL INSERT INTO item(description, cost_price, sell_price)
 VALUES(:description, :cost_price, :sell_price);

Notice that we can omit a value for item_id, either by specifying the list of columns excluding
item_id, as we do here, or by using the DEFAULT keyword in place of the host variable where
item_id should be. We can do this because the value is generated automatically when a row
is added to the item table. The variables found in this query (description, cost_price, and
sell_price) are referred to as host variables, as they are variables contained in the client appli-
cation, not within the server database.

Before we can use host variables in our program, we must let ecpg know about them. We
do this by declaring the variables we want to use in SQL statements in special declaration sections:

EXEC SQL BEGIN declare section;
declare host variables here
. . . .
EXEC SQL END declare section;

Declaration sections must appear where it is legal to declare a C variable; in other words,
at the start of a block or outside of functions. This is because they will be processed into normal
C variable declarations, as well as being recorded by ecpg as host variables.

Declaring Fixed-Length Variable Types
For simple values like integers and fixed-length strings, we can declare the host variables as
we would in C. The following is an example of a program (insert.pgc) that will allow us to add
new barcodes for an item in our database. We will accept the item identifier and barcode as
command-line parameters.

MatthewStones_4789.book Page 432 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L 433

#include <stdio.h>
#include <string.h>

EXEC SQL include sqlca;
EXEC SQL whenever sqlwarning sqlprint;
EXEC SQL whenever sqlerror do GiveUp();

void GiveUp()
{
 fprintf(stderr, "Fatal Error\n");
 sqlprint();
}

main(int argc, char *argv[])
{
 EXEC SQL BEGIN declare section;
 int item_id;
 char barcode[13];
 EXEC SQL END declare section;

// ECPGdebug(1, stderr); uncomment if you want to see some debug information

 if(argc != 3) {
 printf("usage: insert item barcode\n");
 exit(1);
 }

 item_id = atoi(argv[1]);
 strncpy(barcode, argv[2], sizeof(barcode));

 EXEC SQL CONNECT TO bpfinal;
 EXEC SQL BEGIN;
 EXEC SQL INSERT INTO barcode VALUES(:barcode, :item_id);
 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
}

Here, we declare two host variables, item_id and barcode, that correspond to the data
types (integer and fixed-length character field) for columns in the item table. We can use them
in our C code because they are normal C variables. We can use them in embedded SQL because
we have declared them to ecpg within a declare section. We simply prefix their names with a
colon when we use them in SQL.

When we compile and run the program, we can use it to add new barcodes to the database.
If we try to add a duplicate barcode, a fatal error occurs, and it is handled by a sql whenever
construction:

MatthewStones_4789.book Page 433 Wednesday, February 23, 2005 6:49 AM

434 C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L

$ make insert
$./insert 2 1234567890123
$./insert 2 1234567890123

Fatal Error
sql error 'duplicate key violates unique constraint "barcode_pk"' in line 33.
$

If we want to deal with other data types for our attributes, we declare them accordingly.
For floating-point numbers to handle prices that are stored in the database as numeric(7,2) we
use the C double type. For dates, we can use a character type long enough to store the date as
a string.

Working with Variable-Length Data
We encounter a slight problem when we come to the varchar data type. This type contains a
variable number of characters, and is not necessarily null-terminated, as with normal C char-
acter strings. We have no simple way of representing a varchar type in C, so we will need to
resort to a structure with two members: a character array of maximum length and an integer
count that records the number of valid characters in the array.

Fortunately, ecpg can take care of the declaration for us. We just need to use the pseudo-type
varchar instead of char when declaring the variable. ecpg declares a structure with two members
called arr and len, containing the characters and the length, respectively.

The next example, insert2.pgc, is a program for adding new products to the item table in
our database. We take a product description (which is a varchar(64)) and two floating-point
numbers representing cost and selling prices, and insert a new row in the table.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

EXEC SQL include sqlca;
EXEC SQL whenever sqlwarning sqlprint;
EXEC SQL whenever sqlerror do GiveUp();

void GiveUp()
{
 fprintf(stderr, "Fatal Error\n");
 sqlprint();
}

main(int argc, char *argv[])
{
 EXEC SQL BEGIN declare section;
 char dbname[] = "bpfinal";
 double cost_price, sell_price;
 varchar description[64];
 EXEC SQL END declare section;

MatthewStones_4789.book Page 434 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L 435

 if(argc != 4) {
 printf("usage: insert description cost_price sell_price\n");
 exit(1);
 }

 strncpy(description.arr, argv[1], sizeof(description.arr));
 description.len = strlen(description.arr);
 cost_price = atof(argv[2]);
 sell_price = atof(argv[3]);

 EXEC SQL CONNECT TO :dbname as bpfinal;
 EXEC SQL BEGIN;
 EXEC SQL at bpfinal INSERT INTO
 item(description, cost_price, sell_price)
 VALUES(:description, :cost_price, :sell_price);
 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT bpfinal;
}

We can insert a new item with a simple invocation:

$./insert2 "Widget" 1.87 2.93
$

Now check that the item table is updated with psql:

bpfinal=> SELECT * FROM item;
 item_id | description | cost_price | sell_price
---------+---------------+------------+------------
...
 12 | Widget | 1.87 | 2.93

bpfinal=>

We declare our host variables in the declare section, and use both members of the
description structure to create a host variable suitable to be used in the SQL statement for
inserting a new row.

As the item table uses a serial item_id, we can (and should) omit an item_id when adding
a new row to the table. We can do this by explicitly naming the columns we are going to supply
data for in the INSERT.

■Note If you need to insert a NULL into a column of a table row, you can use the keyword NULL in the
VALUES part of the INSERT statement.

In this program, by way of variation, we are also using a host variable to specify the data-
base to connect to and demonstrate the use of a named connection.

MatthewStones_4789.book Page 435 Wednesday, February 23, 2005 6:49 AM

436 C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L

Retrieving Data with ecpg
Now that we have introduced host variables, it’s time to consider extracting data from the data-
base, since host variables can also provide the storage for tuples (rows) returned by SELECT.
Here is a very simple example to get started. Let’s count the number of customers we have:

EXEC SQL BEGIN declare section;
int count;
EXEC SQL END declare section;

EXEC SQL SELECT count(*) INTO :count FROM customer;

We extend SELECT with an INTO clause that specifies the host variables we want to use to
retrieve information. In this example, an integer called count is declared, which after successful
execution of this SQL statement will contain the number of customers in our database.

Similarly, we can extract a row of data into variables by giving a list of host variables in the
INTO clause that matches the data we are selecting. To extract the details of a particular customer
by customer_id, we could write:

EXEC SQL SELECT addressline, zipcode INTO :addr, :zip
 FROM customer
 WHERE customer_id = 15;

The selected columns should always be explicitly listed in SELECT statements, rather than
using *. If there is a change to the database schema, your code will be much more resilient. If it
does fail, for instance because a column you refer to has been removed, you will at least receive
a helpful error message.

We can use host variables in the other clauses of SELECT statements, too. To take the
customer_id from a host variable, we could write:

WHERE customer_id = :id;

The following program, select.pgc, finds the maximum customer_id and uses it to retrieve
the ZIP code and first line of the address for that customer. Most of the code is very similar to
our earlier examples. Notice that we don’t need BEGIN or COMMIT statements, as no data in the
database is being changed.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

EXEC SQL include sqlca;
EXEC SQL whenever sqlwarning sqlprint;
EXEC SQL whenever sqlerror do GiveUp();

void GiveUp()
{
 fprintf(stderr, "Fatal Error\n");
 sqlprint();
}

MatthewStones_4789.book Page 436 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L 437

main(int argc, char *argv[])
{
 EXEC SQL BEGIN declare section;
 int id;
 char zip[10];
 VARCHAR address[64];
 int address_ind;
 EXEC SQL END declare section;

 EXEC SQL CONNECT TO bpfinal;
 EXEC SQL SELECT max(customer_id) into :id FROM customer;
 printf("we have %d customers\n", id);

 EXEC SQL SELECT addressline, zipcode INTO :address:address_ind, :zip
 FROM customer
 WHERE customer_id = :id;

 printf("address is%sNULL\n", address_ind? " ": " not ");
 printf("customer id: %d\n", id);
 printf("%.*s <%.*s>\n", sizeof(zip), zip, address.len, address.arr);

 EXEC SQL DISCONNECT ALL;
}

When we compile and run this program, we get the following output:

$./select
we have 15 customers
 address is not NULL
customer id: 15
MT2 6RT <4 The Square>

The program extracts data returned by a SELECT into a number of host variables, handling
both the possibility that the address is stored as a varchar, where we must retrieve the length of
the string explicitly, and that the address could be NULL, rather than an actual string of characters.

The address host variable is specially declared, varchar address[64]; which results in a
C structure containing both the length and the actual data; the possibility of NULL is handled
using an indicator variable, address_ind. We will look at these issues in the next two sections.

Dealing with Null-Terminated Strings
Ordinarily, C strings are terminated with a null character, and many library functions assume
that one is present. For example, if you print a string, the printf function outputs characters
until it reaches a null character in the string. Potentially worse is the case of copying character
data, as strcpy will blindly copy until a null is encountered.

Character data in the database is not necessarily null-terminated, and therefore column
data returned from a SELECT may cause a problem. When outputting data with printf, we may
see garbage because printf outputs characters from memory locations beyond the limit of our
data until it hits a C null character (\0). Copying with strcpy will continue until a null character

MatthewStones_4789.book Page 437 Wednesday, February 23, 2005 6:49 AM

438 C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L

is found, which may be at a location well beyond the end of the character data and, therefore,
cause corruption when the target string is overwritten.

One way to deal with this is to be very careful when copying character data for use in our
programs and make sure that we allow additional space for a null character and place one at
the end of our string.

Our sample select.pgc program uses a feature of printf to limit the amount of character
data that it will output. The precision field for the %s format allows us to state that we want a
maximum of a certain amount of output for the character data.

The following line will print the 10 characters of the fixed-length ZIP code, without requiring
a trailing null, and up to 64 characters of the first address line:

printf("%.10s %.64s\n", zip, address.arr);

In fact, for variable-length data, we will generally see a null terminator, except when the
data is of maximum length.

We can be a little more general with the printing of character data by supplying the field
precision in arguments to printf, so that if the database design changes, we can be a little more
robust. Here’s a version of the printf call that avoids explicit data lengths:

printf("%.*s %.*s\n", sizeof(zip), zip, address.len, address.arr);

Dealing with NULL Database Values
The second subtlety that we need to address is NULL database values. For instance, it is possible
that our customer has not given us an address and the column contains NULL.

We cannot readily distinguish between an empty string and a NULL value, or a zero integer
value and NULL, when we retrieve data into host variables. The situation is similar to that we
met in the previous chapter. In libpq, we have the function PQgetisnull to tell us whether a
result we have retrieved represents a NULL. In embedded SQL, we need to use indicator variables if
we want to be able to tell whether a returned value is NULL.

An indicator variable is an integer host variable that is used to show whether a retrieved
column value is NULL. The indicator is specified with its associated host variable by appending
the indicator to the variable, using a colon as a separator, as in this example:

SELECT addressline
 INTO :address:address_ind FROM customer
 WHERE ...

Here, we have used an indicator variable called address_ind, which will be set to a nonzero
value if the value retrieved into host variable address represents a NULL. We should not rely on
any particular value (empty string, zero, and so on) being transferred into a host variable that
has a NULL value.

■Tip It is a good idea to name your indicator variables in a way that makes it clear which host variable it
relates to. We suggest using a naming convention such as the one used here: adding a suffix _ind to mean
indicator variable.

MatthewStones_4789.book Page 438 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L 439

Handling Empty Results
So far in our sample programs in this chapter, we have been careful to make sure that when we
retrieve data, we obtain exactly one row. The column values are then extracted into host variables
for our program to use.

By making a small change to our select program to look up customers according to ZIP
code, we can demonstrate handling cases where no rows are returned. The following sample
program (select2.pgc) detects the case where no data is returned from a SELECT:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

EXEC SQL include sqlca;
EXEC SQL whenever sqlwarning sqlprint;
EXEC SQL whenever sqlerror do GiveUp();

void GiveUp()
{
 fprintf(stderr, "Fatal Error\n");
 sqlprint();
 exit(1);
}

main(int argc, char *argv[])
{
 EXEC SQL BEGIN declare section;
 int id;
 char title[4];
 int title_ind;
 char zip[10];
 varchar lname[32];
 varchar town[64];
 int town_ind;
 EXEC SQL END declare section;

 if(argc != 2) {
 printf("Usage: select zipcode\n");
 exit(1);
 }

 strncpy(zip, argv[1], sizeof(zip));

 EXEC SQL CONNECT TO bpfinal;

MatthewStones_4789.book Page 439 Wednesday, February 23, 2005 6:49 AM

440 C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L

 EXEC SQL SELECT customer_id, title, lname, town
 into :id, :title:title_ind, :lname, :town:town_ind
 FROM customer
 WHERE zipcode = :zip;

 if(sqlca.sqlerrd[2] == 0) {
 printf("no customer found\n");
 }
 else {
 printf("title is%sNULL\n", title_ind? " ": " not ");
 printf("town is%sNULL\n", town_ind? " ": " not ");
 printf("customer id: %d\n", id);
 printf("%.*s %.*s <%.*s>\n",
 sizeof(title), title,
 lname.len, lname.arr,
 town.len, town.arr);
 }
 EXEC SQL DISCONNECT ALL;
}

In this program, we use the fact the SQL control area will contain information about the
number of rows returned in sqlca.sqlerrd[2]. If this is zero, then we found no rows. Let’s use
the program to query some data.

$ make select2
$./select2 "NT2 2TX"
title is not NULL
town is not NULL
customer id: 3
Miss Matthew <Nicetown>
$./select2 "BG4 2XE"
no customer found
$./select2 "BG4 2WE"
Fatal Error
sql error SQL error #-203 in line 37.
$

When we specify a zipcode search, where we find a customer with a zipcode that matches,
we print out the details. Where there are no corresponding records, we get no records returned.
The query detects this and prints a suitable message.

Unfortunately, the third run showed that our program is not yet sufficiently robust! We
chose a zipcode that belonged to more than one customer, and this caused an error. In this
case, two customers have the same zipcode. As we cannot store details about both customers
in our host variables, the program aborted, displaying an error message. To solve the problem
of multiple rows being returned, we need to use a cursor, much as we did in the previous
chapter. This is the subject of the next section.

MatthewStones_4789.book Page 440 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L 441

Implementing Cursors in Embedded SQL
In general, if you cannot guarantee that your query will return a single row, the sensible
approach is to use a cursor. We saw these in the previous chapter using libpq. Now let’s see
how to use cursors with ecpg.

In case you skipped the previous chapter, it is worth reiterating the advice given there. In
general, you should avoid writing code that assumes a single row or no rows are returned from
a SELECT statement, unless that statement is a simple aggregate, such as a SELECT count(*) FROM
type query, or a SELECT on a primary key, where you can guarantee the result will always be
exactly one row. When in doubt, use a cursor.

To deal with multiple rows being returned from a query, we retrieve them one at a time
using a FETCH, with the column values being received into host variables in the same way as we
have seen for single-row SELECT statements. As with the libpq library, we declare a cursor to be
used to scroll through a collection of returned rows. The cursor acts as our bookmark, and we
fetch the rows until no more data is available.

To use a cursor, we must declare it and specify the query that it relates to. We may use a
cursor declaration only within a PostgreSQL transaction, even if the cursor does not update the
database:

EXEC SQL BEGIN;
EXEC SQL declare mycursor cursor for SELECT ... ;

The SELECT statement that we use to define the cursor may contain host variables for
conditions in WHERE clauses and so on, but it does not contain an INTO clause, as we are not
extracting data into host variables at this stage.

The next step is to open the cursor, to make it ready for fetching the results:

EXEC SQL open mycursor;

Now we can start to retrieve the result rows. We do this by executing a FETCH with an INTO
clause to extract the data values:

EXEC SQL fetch next from mycursor into :var1, :var2, ... ;

When there are no more result rows left to fetch, we will get a row count in
sqlca.sqlerrd[2] of zero and an sqlca.sqlcode of 100.

When we have finished with the cursor, we close it and end the transaction:

EXEC SQL close mycursor;
EXEC SQL COMMIT;

The following is a sample program (cursor.pgc) that uses a cursor to retrieve the results,
similar to a query we saw in Chapter 7. It extracts the dates on which the orders were placed by
customers living in a specified town.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

MatthewStones_4789.book Page 441 Wednesday, February 23, 2005 6:49 AM

442 C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L

EXEC SQL include sqlca;
EXEC SQL whenever sqlwarning sqlprint;
EXEC SQL whenever sqlerror do GiveUp();

void GiveUp()
{
 fprintf(stderr, "Fatal Error\n");
 sqlprint();
 exit(1);
}

main(int argc, char *argv[])
{
 EXEC SQL BEGIN declare section;
 varchar town[64];
 int town_ind;
 double shipping;
 char date[10];

 EXEC SQL END declare section;

 if(argc != 2) {
 printf("Usage: cursor town\n");
 exit(1);
 }

 town.len = strlen(argv[1]);
 strncpy(town.arr, argv[1], town.len);
 town.arr[town.len] = '\0';

// ECPGdebug(1, stderr);

 EXEC SQL CONNECT TO bpfinal;

 EXEC SQL declare mycursor cursor for
 SELECT oi.date_placed, oi.shipping FROM
 customer c, orderinfo oi WHERE
 c.customer_id = oi.customer_id and c.town = :town;

 EXEC SQL open mycursor;

 EXEC SQL whenever sqlwarning continue;
 EXEC SQL whenever sqlerror continue;

 while(sqlca.sqlcode == 0) {

MatthewStones_4789.book Page 442 Wednesday, February 23, 2005 6:49 AM

C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L 443

 EXEC SQL fetch from mycursor into :date, :shipping;

 if (sqlca.sqlcode == 0) {
 printf("%.*s <%.2f>\n", sizeof(date), date, shipping);
 }
 }

 EXEC SQL whenever sqlwarning sqlprint;
 EXEC SQL whenever sqlerror do GiveUp();

 EXEC SQL close mycursor;
 EXEC SQL DISCONNECT ALL;
}

This program now neatly takes care of the three cases we might have: finding no orders,
finding exactly one order, and finding many orders.

$ make cursor
$./cursor Erewhon
$./cursor Milltown
2000-09-02 <3.99>
$./cursor Bingham
2000-06-23 <0.00>
2000-07-21 <0.00>

Notice we mix the use of EXEC SQL whenever and more conventional error checking, with
the sqlca.sqlcode used to control the loop while data is successfully being retrieved from the
database. To ensure the code behaves as we expect, we must reset the warning and error
handing (EXEC SQL whenever sqlwarning continue and EXEC SQL whenever sqlerror continue)
before we get to the code where we wish to check sqlca.sqlcode. Once we complete the section
of code where we wish to handle errors by checking the sqlca.sqlcode explicitly, we return to
our previous error-handling behavior.

Debugging ecpg Code
Although ecpg does a good job of generating C code from pgc files, occasionally you will have a
problem compiling the code. This is usually because of a mistake in your C code rather than
anything ecpg has done, and you may want to look at the generated code from ecpg, using the
real line numbers in the generated C code. To do this, you need to employ a little trick to remove
the #line preprocessor directives ecpg inserts, which generally force compiler errors to refer to the
original .pgc file, not the .c file that is actually being compiled. This involves the following steps:

• Manually run ecpg to generate a .c file from the .pgc file.

• Use grep to remove the #line directives, writing a new temporary file.

• Move the temporary file back to its rightful place.

• Allow compilation to continue, or invoke the C compiler manually.

MatthewStones_4789.book Page 443 Wednesday, February 23, 2005 6:49 AM

444 C H A P T E R 1 4 ■ A C C E S S I N G P O S T G R E S Q L F R O M C U S I N G E M B E D D E D S Q L

Here is an example of how we might do this with cursor.pgc:

$ ecpg -I/usr/local/pgsql/include cursor.pgc
$ grep -v '^#line' cursor.c > _1.c

At this point, we have a C file, _1.c, which contains the preprocessed version of cursor.pgc,
but with all the compiler line control settings stripped out. We move this back to the original
filename, cursor.c, and then call make, to allow it to perform the final step in the compilation
process of generating an executable.

$ mv _1.c cursor.c
$ make
cc -I/usr/local/pgsql/include -L/usr/local/pgsql/lib -lecpg -lpq
 cursor.c -o cursor
$./cursor Milltown
2000-09-02 <3.99>
$

When we run the code, we see exactly the same output as before. However, if we did get an
error, the line numbers from cursor.c would be displayed, not those from cursor.pgc.

Summary
This chapter explained how to use SQL in C programs by embedding SQL statements directly
in the source code. The translator ecpg then generates C code that the compiler can understand
to produce an executable.

We covered how to connect to a database and deal with errors that may occur. We demon-
strated how to use host variables to provide values for INSERT and UPDATE statements.

Next, we saw how to implement simple SELECT statements and extract row data into host
variables, and then use host variables to specify part of the WHERE clause. We also saw how to
use indicator variables to detect null values in the data being retrieved. We then explored how
to use a cursor to retrieve multiple rows returned as a result of a more complex query.

In this chapter, we have built on what we learned in the previous chapter and used a more
portable way of interfacing PostgreSQL to C. In some ways, the libpq method allows slightly
more control over result sets and status information. It also allows an asynchronous mode of
operation. On the other hand, embedding SQL makes it easier to deal with binary values (as ecpg
takes care of all of the conversions needed), is more portable, and generally makes it much
easier to read the underlying SQL in the program. The method you choose depends on the
requirements of your application.

In the next chapter, we move onto another programming language we can use with
PostgreSQL: PHP.

MatthewStones_4789.book Page 444 Wednesday, February 23, 2005 6:49 AM

445

■ ■ ■

C H A P T E R 1 5

Accessing PostgreSQL
from PHP

With the proliferation of web-based interfaces for everything from online banking to univer-
sity course scheduling systems to online dating services, integrating database-driven back-ends
with browser-based front-ends has become an incredibly important (and sensitive) aspect of
online development. Web-based interfaces have achieved enormous success for the following
reasons:

• Web browsers offer a common and familiar interface for browsing data.

• Web-based applications can easily be integrated into an existing web site.

• Web (HTML) interfaces are easily created and modified.

In this chapter, we will explore various methods for accessing PostgreSQL from PHP. PHP
is a server-side, cross-platform scripting language for writing web-based applications. It allows
programmers to embed program logic in HTML pages, and thus serve dynamic web pages.
PHP allows us to create web-based user interfaces that interact with PostgreSQL. Here, we will
focus on designing PHP scripts that make effective use of PHP’s PostgreSQL interface.

■Note In this chapter, we will assume at least a basic understanding of the PHP language and the use of
PHP version 4 or 5 (most of the code examples and descriptions also apply to earlier versions of PHP, but there
may be a few differences in functionality). If you are unfamiliar with PHP, you might want to explore the PHP
web site, at http://www.php.net/. You can also refer to Beginning PHP 5 and MySQL: From Novice to
Professional, by Jason Gilmore (Apress, 2004; ISBN 1-893115-51-8).

Adding PostgreSQL Support to PHP
Before you can begin developing PHP scripts that interface with a PostgreSQL database, you
will need to include PostgreSQL support in your PHP installation.

If you are unsure whether your existing PHP installation already has PostgreSQL support,
create a simple script named phpinfo.php (which should be placed in your web server’s docu-
ment root), containing the following lines:

MatthewStones_4789C15.fm Page 445 Friday, February 25, 2005 5:20 PM

446 C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P

<?php
 phpinfo();
?>

Examine the output of this script in your web browser. If PostgreSQL support is available,
the browser output will contain a section similar to that shown in Figure 15-1.

Figure 15-1. Checking for PostgreSQL support in a PHP installation

Alternatively, if you’re running PHP version 4.3.0 or later, you can run php –m from the
command line and look for pgsql in the list of modules.

If your PHP installation already has PostgreSQL support, you can skip to the next section
in this chapter.

If you need to add PostgreSQL support and you are building PHP from source, this is fairly
easy. Simply pass the --with-pgsql option to the configure script:

$./configure --with-pgsql

You can optionally specify the directory of your PostgreSQL installation if the configure
script is unable to locate it by itself:

$./configure --with-pgsql=/var/lib/pgsql

Remember that you might need to pass additional options to the configure script depending
on your build requirements. For example, to build PHP with support for PostgreSQL, IMAP,
and LDAP, you would use the following command line:

$./configure --with-pgsql --with-imap --with-ldap

Refer to the PHP documentation (specifically, the INSTALL document included with the
PHP distribution) for additional compilation options and installation instructions. You can
also read these instructions online at http://www.php.net/manual/en/install.php.

Using the PHP API for PostgreSQL
All of the interaction with the PostgreSQL database is performed through the PostgreSQL
extension, which provides a comprehensive set of PHP functions. For a complete list of functions
and further information about them, refer to http://www.php.net/pgsql.

MatthewStones_4789C15.fm Page 446 Friday, February 25, 2005 5:20 PM

C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P 447

A simple PHP script follows. It opens a connection to a PostgreSQL database named
bpsimple, selects some rows, prints the number of rows in the result set, frees the memory
consumed by the rows, and then closes the connection.

<?php
 /* Connect to the PostgreSQL database and store the connection handle. */
 $db_handle = pg_connect('dbname=bpsimple user=jon password=secret');

 /* Define and execute our SQL query string. */
 $query = 'SELECT * FROM item';
 $result = pg_query($db_handle, $query);

 /* Print the number of rows in the result using pg_num_rows(). */
 echo 'Number of rows: ' . pg_num_rows($result);

 /* Free the memory used by the result set and close the connection handle. */
 pg_free_result($result);
 pg_close($db_handle);
?>

As you can see, interacting with the database from within PHP is fairly straightforward.
We will now cover the various aspects of the PHP PostgreSQL extension in more depth.

Making Database Connections
Before interacting with the database, a connection must first be opened. Each connection is
represented by a single variable. We’ll refer to this variable as the connection handle. PHP
allows you to have multiple connections open at once, each with its own unique connection
handle. This is useful in the case where a single PHP script needs to communicate with multiple
database servers.

Creating a New Database Connection
We open a database connection using the pg_connect() function. This function takes a connection
string as its only argument and returns a database connection handle. Here’s an example:

$db_handle = pg_connect('dbname=bpsimple user=jon password=secret');

In this example, the connection string specifies the database name (dbname=bpsimple),
a username (user=jon), and the user’s password (password=secret).

You have the option of using single quotes to delimit the connection strings, as used in the
previous example, but if you want to use PHP variables, remember to surround the connection
string in double quotes:

$dbname = 'bpsimple';
$user = 'jon';
$password = 'secret';

$db_handle = pg_connect("dbname=$dbname user=$user password=$password");

MatthewStones_4789C15.fm Page 447 Friday, February 25, 2005 5:20 PM

448 C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P

All of the standard PostgreSQL connection parameters are available in the connection
string. The most commonly used parameters and their meanings are shown in Table 15-1.

If the connection attempt fails, the pg_connect() function will return false. Failed connection
attempts can thus be detected by testing the return value:

<?php
 $db_handle = pg_connect('dbname=bpsimple user=jon password=secret');
 if ($db_handle) {
 echo 'Connection attempt succeeded.';
 } else {
 echo 'Connection attempt failed.';
 }
 pg_close($db_handle);
?>

As we mentioned, PHP supports multiple concurrent database connections. Each call to
pg_connect() will return a new connection handle. Each connection attempt specifies its own
connection string:

$db_handle1 = pg_connect('dbname=billing user=dan');
$db_handle2 = pg_connect('dbname=inventory user=tom');

Creating a Persistent Connection
PHP also supports persistent database connections. Persistent connections are held open
beyond the lifetime of the page request, whereas normal connections are closed at the end of
the page request. PHP maintains a list of currently open connections and, if a request is made
for a new persistent database connection with the same connection parameters as one of the
open connections in this list, a handle to the existing opened connection is returned instead.
This has the advantage of saving the script the additional overhead of creating a new database
connection when a suitable one already exists in the connection pool.

To open a persistent connection to PostgreSQL, use the pg_pconnect() function. This function
behaves exactly like the pg_connect() function described in the previous section, except that it
requests a persistent connection, if one is available.

Table 15-1. Common Connection Parameters

Parameter Meaning

dbname The name of the database to which we want to connect

user The username to use when connecting to the target database

password The user’s password, which authenticates the user’s access to the database

host The host name of the server on which PostgreSQL is running

hostaddr The IP address of the server on which PostgreSQL is running

port The TCP/IP port on which the PostgreSQL server is listening

MatthewStones_4789C15.fm Page 448 Friday, February 25, 2005 5:20 PM

C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P 449

The ideal use of a persistent connection is in those instances where multiple pages will always
request the same kind of database connection (meaning one containing the same connection
parameters). In such cases, persistent connections offer a substantial performance boost.

■Caution Use persistent connections with care. Overusing persistent connections could lead to a large
number of idle database connections to your database, each of which contributes toward the total number of
active connections. Once the maximum number of connections permitted by the database server is reached,
new connection attempts will be denied.

Closing Connections
When they’re no longer needed, connection handles can be closed. This frees any client and
server resources dedicated to maintaining the connection, thus making room for new connec-
tions.

PHP will automatically close any open nonpersistent database connections at the end of
the script’s execution. However, if necessary, such as when you need to close the connection
immediately, you can explicitly close database connections using the pg_close() function:

pg_close($db_handle);

If the provided connection handle is invalid, pg_close() will return false. Otherwise,
pg_close() will return true upon success.

■Note In the case of persistent connections, this function will not actually close the connection. Instead,
the connection will just be returned to the database connection pool.

Learning More About Connections
PHP provides a number of simple functions for retrieving information about a connection
handle, as listed in Table 15-2.

Table 15-2. Database Connection Information Functions

Function Description

pg_dbname() Returns the name of the current database

pg_host() Returns the host name associated with the current connection

pg_options() Returns the options associated with the current connection (except for the
database name)

pg_port() Returns the port number of the current connection

pg_tty() Returns the TTY name associated with the current connection

MatthewStones_4789C15.fm Page 449 Friday, February 25, 2005 5:20 PM

450 C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P

All of these functions require a connection handle as their sole argument and will return
either a string or a number upon success. Otherwise, they will return false. Here is an example:

<?php
 $db_handle = pg_connect('dbname=bpsimple user=jon password=secret');
 echo "<h1>Connection Information</h1>\n";
 echo 'Database name: ' . pg_dbname($db_handle) . "
\n";
 echo 'Hostname: ' . pg_host($db_handle) . "
\n";
 echo 'Options: ' . pg_options($db_handle) . "
\n";
 echo 'Port: ' . pg_port($db_handle) . "
\n";
 echo 'TTY name: ' . pg_tty($db_handle) . "
\n";
 pg_close($db_handle);
?>

Building Queries
SQL queries are merely strings, so they can be built using any of PHP’s string functions. Here is
an example:

$lastname = strtolower($lastname);
$query = "SELECT * FROM customer WHERE lname = '$lastname'";

This example converts $lastname to lowercase first. Then it builds the query string using PHP’s
standard string interpolation syntax.

Here is an alternative method for accomplishing the same task:

$query = "SELECT * FROM customer WHERE lname = '" . strtolower($lastname) . "'";

This example uses an inline call to strtolower(). Functions cannot be called from inside string
literals (in other words, between quotes), so we need to break our query string into two pieces
and concatenate them (using the dot operator). Unlike with the previous example, the result of
the strtolower() function will not affect the value of $lastname after this line is executed.

Here is another example that will build the same query:

$query = sprintf("SELECT * FROM customer WHERE lname = '%s'",
 strtolower($lastname));

This example uses the sprintf() function to generate the query string. The sprintf() function
uses special character combinations (such as %s) to format strings. More information about the
sprintf() function is available at http://www.php.net/sprintf.

Each of these approaches will produce exactly the same query string. The best method to
use depends on the situation. For simple queries, a direct string assignment will probably work
best, but when the situation calls for the interpolation or transformation of a large number of
variables, you might want to explore different approaches. In some cases, you might encounter
a trade-off between execution speed and code readability. This is true of most programming
tasks, so you will need to apply your best judgment.

Here’s an example of a complex query written as a long assignment string:

$query = "UPDATE table $tablename SET " . strtolower($column) . " = '" .
 strtoupper($value) . "'";

MatthewStones_4789C15.fm Page 450 Friday, February 25, 2005 5:20 PM

C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P 451

This could be rewritten using the PHP sprintf() function as follows:

$query = sprintf("UPDATE table %s SET %s = '%s'", $tablename,
 strtolower($column), strtoupper($value));

The second expression is clearly more readable than the first, although benchmarking will
show that this readability comes at a slight performance cost. In this case, the trade-off of read-
ability over execution speed is probably worth it, unless you are executing many such string
constructions per page request.

Creating Complex Queries
In an ideal world, all of our queries would be as simple as those used in the previous examples,
but we all know that is seldom true. Fortunately, PHP offers a number of convenient functions
to aid us in building more complex queries.

For example, consider the case where we need to perform a large number of row deletions.
In raw SQL, the query might look something like this:

DELETE FROM items WHERE item_id = 4 OR item_id = 6

Now, that query alone doesn’t appear all that complicated, but what if this query needed
to delete a dozen rows, specifying the item_id of each row in the WHERE clause? The query string
gets pretty long at that point, and because the number of expressions in the WHERE clause will
probably vary, we need to account for these details in our code.

We will probably receive our list of item IDs to be deleted from the user via some method
of HTML form input, so we can assume they will be stored in some kind of array format (at least,
that’s the most convenient means of storing the list). We’ll assume this array of item IDs is named
$item_ids. Based on that assumption, the preceding query could be constructed as follows:

<?php
 $db_handle = pg_connect('dbname=bpsimple user=jon password=secret');
 $query = 'DELETE FROM item WHERE item_id = ';
 $query .= implode(' or item_id = ', $item_ids);
 $result = pg_query($db_handle, $query);
 echo pg_affected_rows($result) . ' rows were deleted.’;
 pg_close($db_handle);
?>

This will produce an SQL query with an arbitrary number of item IDs. Based on this code,
we can write a generic function to perform our deletions:

<?php
 function sqlDelete($tablename, $column, $ids)
 {
 $query = '';
 if (is_array($ids) && !empty($ids)) {
 $query = "DELETE FROM $tablename WHERE $column = ";
 $query .= implode(" or $column = ", $ids);
 }
 return $query;
 }
?>

MatthewStones_4789C15.fm Page 451 Friday, February 25, 2005 5:20 PM

452 C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P

Executing Queries
Once the query string has been constructed, the next step is to execute it. Queries are executed
using the pg_query() function, which is responsible for sending the query string to the PostgreSQL
server and returning the result set.

Here’s a simple example to illustrate the use of pg_query():

<?php
 $db_handle = pg_connect('dbname=bpsimple user=jon password=secret');
 $query = 'SELECT * FROM customer';
 $result = pg_query($db_handle, $query);
 echo pg_num_rows($result) . ' rows were selected.’;
 pg_close($db_handle);
?>

As you can see, pg_query() requires two parameters: an active connection handle and a
query string. pg_query() will return a result set upon successful execution of the query. We will
work with result sets in the next section.

If the query fails, or if the connection handle is invalid, pg_query() will return false. There-
fore, it is prudent to test the return value of pg_query() so that we can detect such failures. The
following example includes some result checking:

<?php
 $db_handle = pg_connect('dbname=bpsimple user=jon password=secret');
 $query = 'SELECT * FROM customer';
 $result = pg_query($db_handle, $query);
 if ($result) {
 echo "The query executed successfully.
\n";
 } else {
 echo "The query failed with the following error:
\n";
 echo pg_last_error($db_handle);
 }
 pg_close($db_handle);
?>

In this example, we test the return value of pg_query(). If it is not false (in other words,
it has a value), $result represents a result set. Otherwise, if $result is false, we know that an
error has occurred. We can then use the pg_last_error() function to print a descriptive
message for that error. We will cover error messages in more detail later in this chapter.

Working with Result Sets
Upon successful execution of a query, pg_query() will return a result set identifier, through
which we can access the result set. The result set stores the result of the query as returned by
the database. For example, if a selection query were executed, the result set would contain the
resulting rows.

PHP offers a number of useful functions for working with result sets. All of them take a
result set identifier as an argument, so they can be used only after a query has been successfully
executed. We learned how to test for successful execution in the previous section.

MatthewStones_4789C15.fm Page 452 Friday, February 25, 2005 5:20 PM

C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P 453

We’ll start with the two simplest result functions: pg_num_rows() and pg_num_fields().
These two functions return the number of rows and the number of fields in the result set,
respectively. Here is an example:

<?php
 $db_handle = pg_connect('dbname=bpsimple user=jon password=secret');
 $query = 'SELECT * FROM customer';
 $result = pg_query($db_handle, $query);
 if ($result) {
 echo "The query executed successfully.
\n";
 echo "Number of rows in result: " . pg_num_rows($result) . "
\n";
 echo "Number of fields in result: " . pg_num_fields($result);
 } else {
 echo "The query failed with the following error:
\n";
 echo pg_errormessage($db_handle);
 }
 pg_close($db_handle);
?>

These functions will return -1 if they encounter an error.
There’s also the pg_affected_rows() function, which will return the number of rows

affected by the query. For example, if we were performing insertions or deletions with our
query, we wouldn’t actually be retrieving any rows from the database, so the number of rows or
fields in the result set would not be indicative of the query’s result. Instead, the changes take
place inside the database. pg_affected_rows() will return the number of rows that were affected
by these types of queries (in other words, the number of rows inserted, deleted, or updated):

<?php
 $db_handle = pg_connect('dbname=bpsimple user=jon password=secret');
 $query = 'DELETE FROM item WHERE cost_price > 10.00';
 $result = pg_query($db_handle, $query);
 if ($result) {
 echo "The query executed successfully.
\n";
 echo "Number of rows deleted: " . pg_affected_rows($result);
 } else {
 echo "The query failed with the following error:
\n";
 echo pg_errormessage($db_handle);
 }
 pg_close($db_handle);
?>

The pg_affected_rows() function will return zero if no rows in the database were affected
by the query, as in the case of a selection query.

Extracting Values from Result Sets
There are a number of ways to extract values from result sets. We will start with the simplest:
the pg_fetch_result() function, which retrieves a single value from a result set. In addition to
a result identifier, we also specify the row and field that we want to retrieve from the result set.

MatthewStones_4789C15.fm Page 453 Friday, February 25, 2005 5:20 PM

454 C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P

The row is specified numerically, while the field may be specified either by name or by numeric
index. Numbering always begins at zero. Here’s an example using pg_fetch_result():

<?php
 $db_handle = pg_connect('dbname=bpsimple user=jon password=secret');
 $query = 'SELECT title, fname, lname FROM customer';
 $result = pg_query($db_handle, $query);
 if ($result) {
 echo "The query executed successfully.
\n";
 for ($row = 0; $row < pg_num_rows($result); $row++) {
 $fullname = pg_fetch_result($result, $row, 'title') . " ";
 $fullname .= pg_fetch_result($result, $row, 'fname') . " ";
 $fullname .= pg_fetch_result($result, $row, 'lname');
 echo "Customer: $fullname
\n";
 }
 } else {
 echo "The query failed with the following error:
\n";
 echo pg_last_error($db_handle);
 }
 pg_close($db_handle);
?>

Using numeric indexes, this same block of code could also be written like this:

<?php
 $db_handle = pg_connect('dbname=bpsimple user=jon password=secret');
 $query = 'SELECT title, fname, lname FROM customer';
 $result = pg_query($db_handle, $query);
 if ($result) {
 echo "The query executed successfully.
\n";
 for ($row = 0; $row < pg_num_rows($result); $row++) {
 $fullname = '';
 for ($col = 0; $col < pg_num_fields($result); $col++) {
 $fullname .= pg_fetch_result($result, $row, $col) . ' ';
 }
 echo "Customer: $fullname
\n";
 }
 } else {
 echo "The query failed with the following error:
\n";
 echo pg_errormessage($db_handle);
 }
 pg_close($db_handle);
?>

The first example is a bit more readable, however, and doesn’t depend on the order of the
fields in the result set.

MatthewStones_4789C15.fm Page 454 Friday, February 25, 2005 5:20 PM

C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P 455

PHP also offers more advanced ways of retrieving values from result sets, because iterating
through rows of results isn’t especially efficient. PHP provides two functions, pg_fetch_row()
and pg_fetch_array(), that can return multiple result values at once. Each of these functions
returns an array.

pg_fetch_row() returns an array that corresponds to a single row in the result set. The array
is indexed numerically, starting from zero. Here is the previous example rewritten to use
pg_fetch_row():

<?php
 $db_handle = pg_connect('dbname=bpsimple user=jon password=secret');
 $query = 'SELECT title, fname, lname FROM customer';
 $result = pg_query($db_handle, $query);
 if ($result) {
 echo "The query executed successfully.
\n";
 for ($row = 0; $row < pg_num_rows($result); $row++) {
 $values = pg_fetch_row($result, $row);
 echo 'Customer: ' . implode(' ', $values) . "
\n";
 }
 } else {
 echo "The query failed with the following error:
\n";
 echo pg_last_error($db_handle);
 }
 pg_close($db_handle);
?>

As you can see, using pg_fetch_row() eliminates the multiple calls to pg_fetch_result().
It also places the result values in an array, which can be easily manipulated using PHP’s native
array functions.

In this example, however, we are still accessing the fields by their numeric indexes. Ideally,
we should also be able to access each field by its associated name. To accomplish that, we can
use the pg_fetch_array() function. This function also returns an array, but it allows us to
specify whether we want that array indexed numerically or associatively (using the field names
as keys). This preference is specified by passing one of the following as the third argument to
pg_fetch_array():

• PGSQL_ASSOC, to index the resulting array by field name

• PGSQL_NUM, to index the resulting array numerically

• PGSQL_BOTH, to index the resulting array both numerically and by field name

If you don’t specify one of these indexing methods, PGSQL_BOTH will be used by default.
Note that this will double the size of your result set, so you’re probably better off explicitly
specifying one of the other options. Also note that the field names will always be returned in
lowercase letters, regardless of how they’re represented in the database itself.

Here’s the example rewritten once more, now using pg_fetch_array():

MatthewStones_4789C15.fm Page 455 Friday, February 25, 2005 5:20 PM

456 C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P

<?php
 $db_handle = pg_connect('dbname=bpsimple user=jon password=secret');
 $query = 'SELECT title, fname, lname FROM customer';
 $result = pg_query($db_handle, $query);
 if ($result) {
 echo "The query executed successfully.
\n";
 for ($row = 0; $row < pg_num_rows($result); $row++) {
 $values = pg_fetch_array($result, $row, PGSQL_ASSOC);
 $fullname = $values['title'] . ' ';
 $fullname .= $values['fname'] . ' ';
 $fullname .= $values['lname'];
 echo "Customer: $fullname
\n";
 }
 } else {
 echo "The query failed with the following error:</ br>\n";
 echo pg_last_error($db_handle);
 }
 pg_close($db_handle);
?>

PHP also allows us to fetch the result values with the pg_fetch_object() function. Each
field name will be represented as a property of an object. Thus, fields cannot be accessed
numerically. Written using pg_fetch_object(), our example looks like this:

<?php
 $db_handle = pg_connect('dbname=bpsimple user=jon password=secret');
 $query = 'SELECT title, fname, lname FROM customer';
 $result = pg_query($db_handle, $query);
 if ($result) {
 echo "The query executed successfully.
\n";
 for ($row = 0; $row < pg_num_rows($result); $row++) {
 $values = pg_fetch_object($result, $row);
 $fullname = $values->title . ' ';
 $fullname .= $values->fname . ' ‘;
 $fullname .= $values->lname;
 echo "Customer: $fullname
\n";
 }
 } else {
 echo "The query failed with the following error:
\n";
 echo pg_last_error($db_handle);
 }
 pg_close($db_handle);
?>

Getting Field Information
PostgreSQL supports a notion of NULL field values. PHP doesn’t necessarily define NULL
the same way PostgreSQL does, however. To account for this, PHP provides the

MatthewStones_4789C15.fm Page 456 Friday, February 25, 2005 5:20 PM

C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P 457

pg_field_is_null() function so that we may determine whether a field value is NULL based on
the PostgreSQL definition of NULL:

if (pg_field_is_null($result, $row, $field)) {
 echo "$field is NULL.";
}

The pg_field_name() and pg_field_num() functions return the name or number of a given
field. The fields are indexed numerically, starting with zero:

<?php
 $db_handle = pg_connect('dbname=bpsimple user=jon password=secret');
 $query = 'SELECT title, fname, lname FROM customer';
 $result = pg_query($db_handle, $query);
 echo 'Field 1 is named: ' . pg_field_name($result, 1) . "
\n";
 echo 'Field item_id is number: ' . pg_field_num($result, 'fname');
 pg_close($db_handle);
?>

Note that pg_field_name() will return the field name as specified in the SELECT statement.
We can determine the (internal) size, printed (character) length, and type of fields using

the functions pg_field_size(), pg_field_prtlen(), and pg_field_type(), respectively.

<?php
 $db_handle = pg_connect('dbname=bpsimple user=jon password=secret');
 $query = 'SELECT title, fname, lname FROM customer';
 $result = pg_query($db_handle, $query);
 echo 'Field fname is number: ' . pg_field_num($result, 'fname') . "
\n";
 echo 'Field 1 is named: ' . pg_field_name($result, 1) . "
\n";
 echo 'Type of field 1: ' . pg_field_type($result, 1) . "
\n";
 echo 'Size of field 1: ' . pg_field_size($result, 1) . "
\n";
 echo 'Length of field 1: ' . pg_field_prtlen($result, $row, 1);
 pg_close($db_handle);
?>

As usual, the numeric field indexes start at zero. Field indexes may also be specified as a
string representing the field name.

Also, if the size of the field is variable, pg_field_size() will return a -1 or false on an error.
pg_field_prtlen() will return -1 on an error.

Freeing Result Sets
Query results will remain in memory until the script finishes execution. Typically, this won’t
present a problem, as the resources are released very quickly. However, in cases where several
large datasets are required, you might want to consider releasing query resources as possible.
One function, pg_free_result(), is available for this task.

pg_free_result($result);

MatthewStones_4789C15.fm Page 457 Friday, February 25, 2005 5:20 PM

458 C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P

Using this function is necessary only if you’re especially worried about memory consumption
in your script, and you know you won’t be using this result set again later on in your script’s
execution.

Type Conversion of Result Values
PHP does not offer the diverse data type support you might find in other languages, so values
in result sets are sometimes converted from their original data type to a PHP-native data type.
For the most part, this conversion will have very little or no effect on your application, but it is
important to be aware that some type conversion may occur:

• All integer and OID types are converted to integer values.

• All forms of floating-point numbers are converted to double values.

• All other types (such as arrays) are represented as string values.

Error Handling
Nearly all PostgreSQL-related functions return some sort of predictable value on an error
(generally false or -1). This makes it fairly easy to detect error situations so that a script can fail
gracefully. Here is an example:

$db_handle = pg_connect('dbname=bpsimple user=jon password=secret');
if (!$db_handle) {
 header("Location: http://www.example.com/error.php");
 exit;
}

In this example, the user would be redirected to an error page if the database connection
attempt failed.

We can use pg_last_error() to retrieve the text of the actual error message as returned by
the database server. pg_last_error() will always return the text of the last error message gener-
ated by the server. Be sure to take that into consideration when designing your error handling
and display logic.

The pg_last_notice() function works exactly like pg_last_error(), except that it displays
the last notice message (usually a nonfatal warning), instead of the last error message.
pg_last_notice() is available only in PHP 4.3.0 and later.

You will find that, depending on your level of error reporting, PHP can be fairly verbose
when an error occurs, often outputting several lines of errors and warnings. In a production
environment, it is often undesirable to display this type of message to the end user. The most
direct solution is to lower the level of error reporting in PHP (controlled via the
error_reporting configuration variable in the php.ini). The second option is to suppress these
error messages directly from PHP code on a per-function-call basis. The PHP language uses
the @ symbol to request error suppression. For example, no errors will be output from the
following code:

 $db_handle = pg_connect('host=nonexistent_host');
 $result = @pg_query($db_handle, 'SELECT * FROM item');

MatthewStones_4789C15.fm Page 458 Friday, February 25, 2005 5:20 PM

C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P 459

Without the @ symbol, the second line would generate an error complaining about the lack
of a valid database connection (assuming your error reporting level was high enough to cause
that error to be displayed). Note that this error could still be detected by testing the value of
$result, though, so suppressing the error message output doesn’t preclude our dealing with
error situations programmatically. Furthermore, we could display the error message at our
convenience using the pg_last_error() function.

Getting and Setting Character Encoding
If character encoding support is enabled in PostgreSQL, PHP provides functions for getting
and setting the current client encoding. The default encoding is based on whichever encoding
was selected when the database was created, usually SQL_ASCII.

The supported character sets are SQL_ASCII, EUC_JP, EUC_CN, EUC_KR, EUC_TW, UNICODE,
MULE_INTERNAL, LATIN[1-9], KOI8, WIN, ALT, SJIS, BIG5, and WIN1250.

The pg_client_encoding() function will return the current client encoding:

$encoding = pg_client_encoding($db_handle);
pg_set_client_encoding()

We can set the current client encoding using the pg_set_client_encoding() function:

pg_set_client_encoding($db_handle, 'UNICODE'

Using PEAR
The PHP Extension and Application Repository (PEAR) is an attempt to replicate the function-
ality of Perl’s CPAN in the PHP community. The following are the official goals of PEAR:

• To provide a consistent means for library code authors to share their code with other
developers

• To give the PHP community an infrastructure for sharing code

• To define standards that help developers write portable and reusable code

• To provide tools for code maintenance and distribution

PEAR is primarily a large collection of PHP classes that make use of PHP’s object-oriented
programming capabilities.

■Note To use PEAR, you need to be familiar with PHP’s syntax for working with classes. PHP 4’s
object-oriented extensions are documented at http://www.php.net/manual/en/language.oop.php.
PHP 5’s object-oriented extensions are documented at http://www.php.net/manual/en/
language.oop5.php. More information on PEAR is available at http://pear.php.net/.

MatthewStones_4789C15.fm Page 459 Friday, February 25, 2005 5:20 PM

460 C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P

Using PEAR’s Database Abstraction Interface
PEAR includes a database (DB) abstraction interface. The advantage of using a database
abstraction interface instead of calling the database’s native functions directly is code inde-
pendence. If you use a database abstraction interface, and you need to move your project to a
different database, the task will be trivial.

PEAR’s DB interface also adds some value-added features, such as convenient access to
multiple result sets and integrated error handling. All of the database interaction is handled
through the DB classes and objects. This is conceptually similar to Perl’s DBI interface.

The main disadvantage to a database abstraction interface is the performance overhead it
incurs on your application’s execution. Once again, this is a situation where there is a trade-off
between code flexibility and performance.

The following example illustrates the use of the DB interface. Note that this example assumes
that the PEAR DB interface has already been installed and that it can be found via the current
include_path setting.

<?php
 /* Import the PEAR DB interface. */
 require_once "DB.php";

 /* Database connection parameters. */
 $username = "jon";
 $password = "secret";
 $hostname = "localhost";
 $dbname = "bpsimple";
 $protocol = "unix";

 /* Construct the DSN – Data Source Name. */
 $dsn = "pgsql://$username:$password@$hostname+$protocol/$dbname";

 /* Attempt to connect to the database. */
 $db = DB::connect($dsn);

 /* Check for any connection errors. */
 if (DB::isError($db)) {
 die ($db->getMessage());
 }

 /* Execute a selection query. */
 $query = 'SELECT title, fname, lname FROM customer';
 $result = $db->query($query);

 /* Check for any query execution errors. */
 if (DB::isError($result)) {
 die ($result->getMessage());
 }

MatthewStones_4789C15.fm Page 460 Tuesday, March 1, 2005 3:16 PM

C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P 461

 /* Fetch and display the query results. */
 while ($row = $result->fetchRow(DB_FETCHMODE_ASSOC)) {
 $fullname = $row['title'] . ' ';
 $fullname .= $row['fname'] . ' ';
 $fullname .= $row['lname'];
 echo "Customer: $fullname
\n";
 }

 /* Disconnect from the database. */
 $db->disconnect();
?>

As you can see, this code, while not using any PostgreSQL functions directly, still follows
the same programmatic logic of our previous examples. It is also easy to see how this example
could be adapted to use another type of database (Oracle or MySQL, for example) without
much effort.

Error Handling with PEAR
Using the PEAR DB interface offers developers a number of additional advantages. For example,
PEAR includes an integrated error-handling system. Here is some code to demonstrate error
handling:

<?php
 /* Import the PEAR DB interface. */
 require_once 'DB.php';

 /* Construct the DSN – Data Source Name. */
 $dsn = "pgsql://jon:secret@localhost+unix/bpsimple";

 /* Attempt to connect to the database. */
 $db = DB::connect($dsn);

 /* Check for any connection errors. */
 if (DB::isError($db)) {
 die ($db->getMessage());
 }
?>

Here, we see the first instance of PEAR’s error-handling capabilities: DB::isError(). If the
call to DB::connect() fails for some reason, it will return a PEAR_Error instance, instead of a
database connection object. We can test for this case using the DB::isError() function, as
shown in the example.

Knowing an error occurred is important, but finding out why that error occurred is even
more important. We can retrieve the text of the error message (in this case, the connection
error generated by PostgreSQL) using the getMessage() method of the PEAR_Error object. This
is also demonstrated in the preceding example.

MatthewStones_4789C15.fm Page 461 Friday, February 25, 2005 5:20 PM

462 C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P

The error-handling system can be configured at runtime, as follows:

/* Make errors fatal. */
$db->setErrorHandling(PEAR_ERROR_DIE);

Note that we have changed PEAR’s error-handling behavior with the call to the
setErrorHandling() method. Setting the error-handling behavior to PEAR_ERROR_DIE will
cause PHP to exit fatally if an error occurs.

Here’s a list of the other error-handling behaviors:

• PEAR_ERROR_RETURN, to simply return an error object (default)

• PEAR_ERROR_PRINT, to print the error message and continue execution

• PEAR_ERROR_TRIGGER, to use PHP’s trigger_error() function to raise an internal error

• PEAR_ERROR_DIE, to print the error message and abort execution

• PEAR_ERROR_CALLBACK, to use a callback function to handle the error before aborting
execution

Additional information about the PEAR_Error class and PEAR error handling is available
from http://pear.php.net/manual/en/core.pear.pear-error.php.

Preparing and Executing Queries with PEAR
PEAR also includes a handy method of preparing and executing queries. Here’s an abbreviated
example demonstrating the prepare() and execute() methods of the DB interface. This example
assumes we already have a valid database connection (from DB::connect()):

/* Set up the $items array. */
$items = array(
 '6241527836190' => 1,
 '7241427238373' => 2,
 '7093454306788' => 3
);

/* Prepare our template SQL statement. */
$statement = $db->prepare('INSERT INTO barcode VALUES(?,?)');

/* Execute the statement for each entry in the $items array. */
while (list($barcode, $item_id) = each($items)) {
 $db->execute($statement, array($barcode, $item_id));
}

The call to the prepare() method creates a SQL template that can be executed repeatedly.
Note the two wildcard spots in the statement that are specified using question marks. These
placeholders will be replaced with actual values later on when we call the execute() method.

MatthewStones_4789C15.fm Page 462 Friday, February 25, 2005 5:20 PM

C H A P T E R 1 5 ■ A C C E S S I N G P O S T G R E S Q L F R O M P H P 463

Assuming we have an array of $items that contain barcodes and item IDs, we will want to
perform one database insertion per item. To accomplish this, we construct a loop to iterate
over each entry in the $items array, extract the barcode and item ID, and then execute the
prepared SQL statement.

As we mentioned, the execute() method will replace the placeholder values in the prepared
statement with those values passed to it in the second argument in array form. In this example,
this would be the array($barcode, $item_id) argument. The placeholder values are replaced in
the order that these new values are specified, so it’s important to get them right.

Summary
In this chapter, we examined the ways that a PostgreSQL database can be accessed from the
PHP scripting language. We covered the various aspects of database connections, query building
and execution, result set manipulation, and error handling. We also introduced the PEAR data-
base abstraction interface.

In the next chapter, we’ll explore how to access a PostgreSQL database from Perl.

MatthewStones_4789C15.fm Page 463 Friday, February 25, 2005 5:20 PM

MatthewStones_4789C15.fm Page 464 Friday, February 25, 2005 5:20 PM

465

■ ■ ■

C H A P T E R 1 6

Accessing PostgreSQL
from Perl

As earlier chapters have shown, communicating with PostgreSQL generally involves a lot of
string manipulation. One language that excels at string manipulation is Perl.

In Chapter 13, we demonstrated that the libpq interface is a powerful way to access a
PostgreSQL database, but there are disadvantages. We need to use string manipulation to pass
values to queries and to retrieve results, and for short programs, the C code dealing with strings
can overshadow the database interactions. As Chapter 13 pointed out, although binary access
is possible, its benefits are minimal. With Perl, strings are much more sophisticated, supporting
functionality such as joining, splitting, pattern matching, and automatic conversion to and
from other data types.

Perl has also historically been associated with web server processing (although more modern
mechanisms such as PHP, described in the previous chapter, are taking over that role). Having
interfaces to databases definitely adds benefits.

If you know even a little about Perl, you will be aware that one of the language’s axioms is
that there is always more than one way to tackle any given job. In fact, Perl enthusiasts would
be disappointed if they had to limit their options to single figures. We do not propose to bombard
you with numerous techniques for accessing PostgreSQL databases from Perl, however. Instead,
we will present a single methodology.

There are essentially three ways to access PostgreSQL from Perl:

• Low-level access, which is essentially a Perl mapping of the libpq C interface (Module Pg)

• High-level access, using a database independent layer (DBI)

• Access by embedding the Perl interpreter (similar to the description in Chapter 14)

We will describe only the high-level DBI access mechanism, because it is the simplest to
install and use. This method is database-independent, yet is still very flexible and powerful. If
you are interested in a libpq-style of working, we suggest taking a look at Module Pg, which is
part of the DBD::Pg database driver. PL/Perl requires a version of Perl to have been initially built
as a shared library—libperl.so, as opposed to the more usual libperl.a (see the instructions
for building Perl found in Perl source distributions).

MatthewStones_4789C16.fm Page 465 Friday, March 4, 2005 6:44 PM

466 C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L

■Note The code in this chapter will not make use of many Perl idioms, so it should be readable by most
C programmers. However, we will assume a basic understanding of the Perl language. If you are unfamiliar
with the language, some useful starting points are http://www.perl.org and http://www.cpan.org.
You can also refer to Beginning Perl, Second Edition, by James Lee with Peter Wainwright and Simon Cozens
(Apress, 2004; ISBN 1-59059-391-X) or Learning Perl, Third Edition, by Randal L. Schwartz and Tom Phoenix
(O’Reilly, 2001: ISBN 0-59600-132-0).

Installing Perl Modules
The Perl programming language supports the concept of modules—additional functions that
can be integrated into a Perl installation to provide extra features. Many developers have devel-
oped modules to extend Perl, providing diverse functionality, including network protocols for
file transfer or sending e-mail, parsing and manipulating XML documents, generating graph-
ical images, and more. Much of Perl’s standard functionality is provided by modules included
with a basic Perl installation.

In this chapter, we will be using several modules that are not included in the base Perl
installation. Because installing modules is a fairly common task, the Perl community has developed
a standard process for finding and installing modules. This process has itself been encapsulated in
a Perl module, the CPAN module, which we will meet in a moment.

Perl modules can be written in several languages, not just Perl. Modules written in a language
other than Perl need to be compiled before they can be installed, but binaries are often available to
download. On Linux systems, compiling from source rarely causes a problem, since program-
ming language compilers are usually available in a Linux distribution. For Microsoft Windows
users, compiling Perl modules from source will require a development environment (typically
Visual C++ or Visual Studio .NET) to be installed. Precompiled modules for Windows users of
ActiveState’s version of Perl (http://www.activestate.com) are available and can be installed
without a development environment by using the PPM (Perl Package Manager) utility provided
with Perl.

We recommend that Windows users use ActiveState Perl and PPM to install the modules
required for this chapter. Linux, UNIX, and Mac OS X users can use the CPAN module to build
modules from source.

Using CPAN
CPAN is the Comprehensive Perl Archive Network, at http://www.cpan.org, a central repository
for virtually every Perl module in existence. It should be a familiar resource to just about any
Perl programmer.

The source code for a module will typically be available as a compressed source tarball
with a name that reflects the module name and version, for example DBI-1.45.tar.gz.

The build-and-install sequence is so uniform that there is a convenient shortcut. If you do
not already have the CPAN module installed (you can check this by running perldoc CPAN),
install that first (you will need to do this one installation manually). With the CPAN module
installed, you can then download, build, and install any module from the CPAN archive with a
single command.

MatthewStones_4789C16.fm Page 466 Friday, March 4, 2005 6:44 PM

C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L 467

■Note The first time the CPAN module is used, it will prompt for configuration information, such as the locations
of utilities it needs and the method needed to connect to the Internet. If you do not need to use a proxy and
your Perl installation is a normal one, it is usually okay to allow the CPAN module to autoconfigure.

If you need to install a module manually, a standard command sequence for building and
installing modules is used for all CPAN modules:

1. Configure any environment variables that might be needed in the compilation of the
module. The details will be available in the documentation that accompanies each module.

2. Create a makefile by executing a Perl script that each module must provide:

$ perl Makefile.PL

3. Use the makefile to build the module:

$ make

4. Verifying that the build succeeded is optional, but usually a good idea. Modules will
provide a test target in the makefile that will run tests to confirm that the module has
been built correctly:

$ make test

5. The final step copies the built files to their correct places within the local Perl installation.
This installation step must be carried out by a user with permission to write files in the
Perl installation. Usually, this will be the root user:

make install

■Note CPAN modules adopt conventions beyond this build sequence, such as documentation, which can
be viewed using the perldoc command after the module has been installed; for example: perldoc DBI.

Using PPM
As mentioned earlier, users of ActiveState’s Perl have a shortcut similar to the CPAN module in
the ppm command. You can use ppm to download and install precompiled modules for Perl on
Microsoft Windows.

MatthewStones_4789C16.fm Page 467 Friday, March 4, 2005 6:44 PM

468 C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L

C:\Documents and Settings\Neil>ppm
PPM - Programmer's Package Manager version 3.1.
Copyright (c) 2001 ActiveState Corp. All Rights Reserved.
ActiveState is a devision of Sophos.

Entering interactive shell. Using Term::ReadLine::Stub as readline library.

Type 'help' to get started.

ppm> install DBI
====================
Install 'DBI' version 1.45 in ActivePerl 5.8.4.810.
====================

Installing the Perl DBI
If you have programmed databases in Windows, you will be familiar with the Open Database
Connectivity (ODBC) API or more recent APIs, such as ADO or OLE DB. Similarly, if you have
used Java with databases, you will have come across JDBC. These programming interfaces are
an attempt to abstract from the details of the actual database in use and provide some higher-
level, database-independent layer. The benefit to us is that we need to learn only one API, but
can still use our applications with numerous different databases. DBI, the Database Interface,
is Perl’s implementation of this sort of scheme.

As with other database-independent APIs, DBI is structured as the client API module and
one or more driver, or DBD (Database Driver), modules. You can have several different data-
bases open at the same time and access them via essentially the same code in your Perl scripts,
as illustrated in Figure 16-1.

Figure 16-1. Perl DBI architecture

MatthewStones_4789C16.fm Page 468 Friday, March 4, 2005 6:44 PM

C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L 469

There are many DBD modules that provide DBI access to different data sources, including
PostgreSQL and Oracle, as shown in Figure 16-1. In this chapter, we will be using DBD::PgPP,
a Pure Perl module for accessing PostgreSQL databases specifically, and DBD::ODBC, a module
for accessing ODBC data sources.

The DBI module is actually a collection of modules (called a bundle) that contains a few
DBDs, but not one for PostgreSQL, so we will need to install a suitable DBD ourselves. You can
find more information about DBI at its home page, http://dbi.perl.org/, or in Programming
the Perl DBI, by Alligator Descartes and Tim Bunce (O’Reilly, 2000; ISBN 1-56592-699-4).

■Tip Another useful driver is DBD::CSV. This emulates database accesses using comma-separated value
(CSV) text files, and it can be useful for quickly prototyping scripts without the need to set up a real database
server.

Installing DBI and the PostgreSQL DBD on Windows
The modules we need for this chapter are DBI, DBD::PgPP, and DBD::ODBC. All three of these are
available via PPM and can be installed with the ppm command.

C:\Documents and Settings\Neil>ppm
PPM - Programmer's Package Manager version 3.1.
Copyright (c) 2001 ActiveState Corp. All Rights Reserved.
ActiveState is a devision of Sophos.

Entering interactive shell. Using Term::ReadLine::Stub as readline library.

Type 'help' to get started.

ppm>

■Note For the module installations to succeed, ppm requires an active Internet connection to download the
module packages.

MatthewStones_4789C16.fm Page 469 Friday, March 4, 2005 6:44 PM

470 C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L

First, we install the DBI bundle:

ppm> install DBI
====================
Install 'DBI' version 1.45 in ActivePerl 5.8.4.810.
====================
Downloaded 537570 bytes.
Extracting 73/73: blib/arch/auto/DBI/Driver_xst.h
Installing C:\Perl\site\lib\auto\DBI\dbd_xsh.h
Installing C:\Perl\site\lib\auto\DBI\DBI.bs
Installing C:\Perl\site\lib\auto\DBI\DBI.dll
Installing C:\Perl\site\lib\auto\DBI\DBI.exp
Installing C:\Perl\site\lib\auto\DBI\DBI.lib
Installing C:\Perl\site\lib\auto\DBI\dbipport.h
Installing C:\Perl\site\lib\auto\DBI\dbivport.h
…
Installing C:\Perl\site\lib\Win32\DBIODBC.pm
Installing C:\Perl\bin\dbiprof
Installing C:\Perl\bin\dbiprof.bat
Installing C:\Perl\bin\dbiproxy
Installing C:\Perl\bin\dbiproxy.bat
Successfully installed DBI version 1.45 in ActivePerl 5.8.4.810.
ppm>

Next, we install the Pure Perl driver for PostgreSQL, DBD::PgPP:

ppm> install DBD::PgPP
====================
Install 'DBD-PgPP' version 0.04 in ActivePerl 5.8.4.810.
====================
Downloaded 10205 bytes.
Extracting 5/5: blib/arch/auto/DBD/PgPP/.exists
Installing C:\Perl\html\site\lib\DBD\PgPP.html
Installing C:\Perl\site\lib\DBD\PgPP.pm
Successfully installed DBD-PgPP version 0.04 in ActivePerl 5.8.4.810.
ppm>

Finally, we install the ODBC driver, DBD::ODBC:

ppm> install DBD::ODBC
====================
Install 'DBD-ODBC' version 1.11 in ActivePerl 5.8.4.810.
====================
Downloaded 76740 bytes.
Extracting 11/11: blib/arch/auto/DBD/ODBC/ODBC.lib
Installing C:\Perl\site\lib\auto\DBD\ODBC\ODBC.bs
Installing C:\Perl\site\lib\auto\DBD\ODBC\ODBC.dll
Installing C:\Perl\site\lib\auto\DBD\ODBC\ODBC.exp
Installing C:\Perl\site\lib\auto\DBD\ODBC\ODBC.lib
Installing C:\Perl\html\site\lib\DBD\ODBC.html

MatthewStones_4789C16.fm Page 470 Friday, March 4, 2005 6:44 PM

C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L 471

Installing C:\Perl\html\site\lib\DBD\ODBC\Changes.html
Files found in blib\arch: installing files in blib\lib into architecture depende
nt library tree
Installing C:\Perl\site\lib\DBD\ODBC.pm
Installing C:\Perl\site\lib\DBD\ODBC\Changes.pm
Successfully installed DBD-ODBC version 1.11 in ActivePerl 5.8.4.810.
ppm>

Installing DBI and the PostgreSQL DBD from Source
On a Linux, UNIX, or Mac OS X system, we can install the Perl modules for DBI using the CPAN
module described earlier.

■Note For these module installations to succeed, the CPAN module requires an active Internet connection
to download the module source packages.

As noted earlier, it is possible to download, compile, and install a module in a single step if
the installation is performed as a user with permission to write to the Perl installation. However,
we recommend that you keep the use of superuser privileges to a minimum and install each
module in two stages:

• The first stage is the downloading, compiling, and testing of each module. This can
performed by a regular user.

• The second stage is the copying of the module files to the Perl installation, which is
performed by an administration user (usually root).

For this chapter, we will install DBI and DBD::PgPP. The ODBC module DBD::OBDC can also
be installed, but requires database-specific ODBC drivers to be installed first. As DBD::PgPP
provides all of the functionality we need for accessing PostgreSQL, we will limit ourselves to
that module.

■Note An alternative DBD module, DBD::Pg, is more commonly used on Linux and UNIX-based systems.
The scripts used in this chapter should all work with DBD::Pg with little or no modification.

As a regular user, use the CPAN module to download, build, and test each module.

$ perl –MCPAN –e 'install DBI'
…
 /usr/bin/make install -- NOT OK
 You may have to su to root to install the package
$

MatthewStones_4789C16.fm Page 471 Friday, March 4, 2005 6:44 PM

472 C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L

The CPAN module extracts the contents of the package in a subdirectory called .cpan.
As you can see from the error message, the installation step will fail, as you do not have the
correct permissions at this stage. To complete the installation, you must, as root, run make
install in the appropriate package build directory:

$ su
password:
cd ~neil/.cpan/build/DBI-1.45
make install
…
#

The same procedure is used to build the PostgreSQL DBD driver:

$ perl –MCPAN –e 'install DBD::PgPP'
…
 /usr/bin/make install -- NOT OK
 You may have to su to root to install the package
$

And then install it:

$ su
password:
cd ~neil/.cpan/build/DBD-PgPP-0.05
make install
…
#

Using DBI
As you might expect, a database-independent layer does not have the same API as the PostgreSQL-
specific API we met in Chapter 13. In fact, precisely because DBI aims to be totally database-
independent, you may find that it cannot achieve the same level of conciseness and efficiency
as a PostgreSQL-specific interface, such as libpq from C.

A Perl program using DBI generally takes the following form:

#!/usr/bin/perl –w

use DBI;
use strict;

Connect to a PostgreSQL database
Prepare reusable SQL statements
LOOP:
 # Execute a SQL statement
 # Read query results

Disconnect from database

MatthewStones_4789C16.fm Page 472 Friday, March 4, 2005 6:44 PM

C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L 473

The first thing to notice is that only the DBI module is referenced:

use DBI;

You don’t need to explicitly import the specific drivers for any particular databases you may
be using.

When the database connection is made, DBI will locate and load the appropriate DBD if it
is not already present, or fail with an error. This means that Perl database programs can be
written in an entirely database-independent way, with the precise access mechanism being
resolved at runtime.

In the following sections, we will look at DBI functions for each of the steps in this general
Perl program.

Making Database Connections
A Perl DBI client application may connect to one or more databases as it runs. We can connect
to many databases managed by different servers at the same time if necessary. The DBI inter-
face provides functions to create and use these connections.

We connect to a database using the DBI->connect function, which uses the name and loca-
tion of the database, the method of connection (DBD driver), and user credentials to make the
connection for us. It returns a handle to that database connection that we can then use to
execute queries against the connected database.

As is traditional in Perl, there are several ways of passing the required information to
DBI->connect, which can lead to some confusion. Here we will look at the most common mech-
anisms, starting with the full version of DBI->connect:

$dbh = DBI->connect($dsn, $uname, $pwd, \%attrs);

The first argument, $dsn, is a data source name (DSN). It specifies the database that we
wish to connect to using a string of a particular form. The second and third arguments ($uname
and $pwd) are the user ID and password with which to access the database, and the final, optional,
argument (%attrs) is a hash containing attributes that are used to configure the behavior of this
particular database connection.

■Note For those new to Perl, code that begins with a $ symbol represents scalar variables (numbers or
strings—Perl converts between these data types as required). Lists (simple arrays) begin with an @ symbol,
and hashes (associative arrays) with a % character. You use @ or % only when referring to the complete collection.
For individual elements, you still use a $ symbol.

For example, to connect to our sample database over a network using a database user-
name of neil with a password of password, we could use the following:

my $conn = DBI->connect("DBI:PgPP:dbname=bpfinal;host=192.168.0.111",
 "neil","password");

Of course, this does tie our program to connecting to a particular database, so it is usually
better to use variable arguments derived from program arguments, defaults, and environment

MatthewStones_4789C16.fm Page 473 Friday, March 4, 2005 6:44 PM

474 C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L

variables, as we will discuss shortly. First, let’s look at the DSN specification and connection
attributes you can configure.

Specifying Data Source Names (DSNs)

The DSN string consists of three elements separated by colons:

• The first element is always dbi or DBI.

• The second element is the name of the DBD driver to use and is case-sensitive.

• The third element is driver-specific, but typically consists of a list of options to be passed
to the driver.

For example, the following connects to a local database (running on the same machine as
the Perl script using DBI) using the PgPP DBD driver:

dbi:PgPP:dbname=bpfinal

The following DSN uses the ODBC driver to connect to a data source called PostgreSQL:

DBI:ODBC:PostgreSQL

In Chapter 5, we created an ODBC data source for Windows that represented the sample data-
base running on a remote server. This form of DSN can be used by a Perl DBI script to access
that database.

Finally, here is an example that uses the PgPP DBD driver to connect to a database on a
remote server:

DBI:PgPP:dbname=bpfinal;host=192.168.0.111;port=5432

Here, the IP address of the server is specified, but a DNS-resolvable host name could be used
instead. If the PostgreSQL server is running on a nonstandard port number, this can be speci-
fied in the DSN as well, as shown here.

The most common driver options supported by PgPP are shown in Table 16-1. They are
given in the DSN as a sequence of option=value pairs separated by semicolons, as shown in the
preceding example. Other options supported by PgPP are described in the PgPP documentation.

Table 16-1. Some PgPP Connection Options

PgPP Option Meaning

dbname Database names; defaults to the name of the current user

host Host name or address; defaults to localhost

port TCP port to connect to the database; defaults to PostgreSQL standard 5432

MatthewStones_4789C16.fm Page 474 Friday, March 4, 2005 6:44 PM

C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L 475

Setting Connection Attributes

As noted earlier, you can optionally specify connection attributes in your connection state-
ment. One important connection attribute is AutoCommit. Setting this to 1 causes DBI to treat
each operation as a single transaction; setting it to 0 gives you explicit transaction processing:

$dbh = DBI->connect("DBI:PgPP:dbname=bpfinal",
 "neil", "",
 { AutoCommit => 0 });

This example disables automatic committing, so you must insert calls to $dbh->commit (or
$dbh->rollback) as necessary to end transactions.

Table 16-2 lists some additional interesting attributes. There are a few other less common
attributes; see the DBI and PostgreSQL DBD documentation for details.

You can access the attributes after connection and, in some cases, change them. For example,
the following reads and sets the transaction state:

$oldState = $conn->{ AutoCommit };
$conn->{ AutoCommit } = 0;

■Caution Changing connection attributes after a connection is made is not recommended. This is because
some DBDs do not support dynamic changing and, therefore, you would be limiting script portability.

Using DBI Environment Variables

The DBI module takes note of some environment variables to set values for certain attributes
and to configure some behavior. Table 16-3 shows some of the variables that are used by
DBI->connect when making a connection to a database. We recommend that you do not use
these environment variables, as it is better to be explicit about your intentions when calling
DBI functions.

Table 16-2. Some DBI Connection Attributes

Attribute Meaning

PrintError As well as filling in $DBI::errstr, this causes the error message to be sent to
stderr. This can be useful for quick-and-dirty testing, but generally is not
particularly friendly toward end users.

RaiseError Errors will cause the program to die (unless you wrap the call in an eval
block) instead of just returning an error status. Like PrintError, this is
probably not something you will want end users to see.

Name The name of the database, usually the same as the string passed into connect.

MatthewStones_4789C16.fm Page 475 Friday, March 4, 2005 6:44 PM

476 C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L

Connecting to a Database

Here is a very simple program that we can use to try out various ways of connecting to a
PostgreSQL database with Perl DBI (connect.pl).

#!/usr/bin/perl -w

use DBI;
use strict;

my $dsn = $ARGV[0] if defined $ARGV[0];
my $conn = DBI->connect($dsn,"neil","") || die "Error $DBI::err [$DBI::errstr]";
printf "Connected: State is %s\n", $conn -> state || "OK";
$conn -> disconnect;

In this code, we connect as user neil to a database given by a command-line argument.
Processing is simply terminated on error, with the error number and error string printed out
via Perl’s die function.

If the DBI and DBD modules are installed correctly, we should be able to connect to our
database using the DSN examples shown earlier:

S:\Chapter16>perl connect.pl DBI:ODBC:PostgreSQL
Connected: State is OK
S:\Chapter16>perl connect.pl DBI:PgPP:dbname=bpfinal;host=192.168.0.111
Connected: State is OK

If the DSN is incorrect, or a connection cannot be made, we will see an error message.
In some cases, particularly with the current PgPP driver, the error message is not as helpful

as it might be, and Perl dies before we can print an error message (here, the server is not available):

S:\Chapter16>perl connect.pl DBI:PgPP:dbname=bpfinal;host=192.168.0.110
dbih_getcom given an undefined handle (perhaps returned from a previous call
which failed) at C:/Perl/site/lib/DBI.pm line 600.

■Tip To catch instances where Perl dies when loading a DBD driver, use Perl’s eval to execute the
connect.

Table 16-3. Some DBI Enviroment Variables

Variable Usage

DBI_DSN Used when a DSN is not specified, in DSN format dbi:driver:options

DBI_DRIVER Used for a driver name if the DSN omits it, in the form dbi::options

DBI_USER Used as the username if DBI->connect $uname parameter is undef (as distinct
from an empty string)

DBI_PASS Used as the user password if DBI->connect $pwd parameter is undef

MatthewStones_4789C16.fm Page 476 Friday, March 4, 2005 6:44 PM

C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L 477

The return value from DBI->connect is a handle to the database connection, or undef on
error. If there has been an error, the variables $DBI::err and $DBI::errstr are set appropriately.
Once a connection has been made and the variable $conn refers to a valid database connection
handle, the variables $DBI::err and $DBI::errstr are also available as $conn->err and
$conn->errstr, respectively.

At the end of processing, the database connection is closed with $conn->disconnect. Although
the connection will be closed anyway when the application exits (possibly with a warning
message appearing), it is recommended that you explicitly disconnect to avoid problems with
uncommitted transactions.

Executing SQL
When executing SQL against a database, DBI splits an operation into two or three steps: prep-
aration then execution of a SQL statement and, if required, fetching the results of a query.

The preparation step is made explicit because it may be more efficient when executing the
same operation several times. The database server may be able to optimize access by preparing
a statement, saving the preparation results, and executing the prepared statement several times:

my $sth = $conn->prepare($command);
my $nrows = $sth->execute;
...
my $nrows = $sth->execute;

The result of the preparation step is a statement handle, which we use to process the oper-
ation, and the result value of the execution is the number of rows affected (or undef if there was
an error, in which case $conn->err and $conn->errstr will be set).

In some cases, when we know we will want to execute the statement only once, the two
steps can be combined into a single do function call:

my $nrows = $conn->do($command);

Notice the lack of a statement handle here. This means there is no way to extract the results of
a query, so do is useful only for nonquery operations.

Here is an example Perl program that executes some SQL statements that do not return a
set of results:

#!/usr/bin/perl -w

use DBI;
use strict;

Function for nonquery commands
sub doSQL
{
 my ($conn, $command) = @_;

 print $command, "\n";

MatthewStones_4789C16.fm Page 477 Friday, March 4, 2005 6:44 PM

478 C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L

 my $sth = $conn->prepare($command);
 my $nrows = $sth->execute;
 print "status is ", $conn->err, "\n" if $conn->err;
 print "#rows affected is ", $nrows, "\n";
 print "error message: ", $conn->errstr, "\n" if $conn->err;
}

my $conn = DBI->connect("DBI:ODBC:PostgreSQL") or die $DBI::errstr;

doSQL($conn, "DROP TABLE number");
doSQL($conn, "CREATE TABLE number (value INTEGER, name VARCHAR)");
doSQL($conn, "INSERT INTO number values(42, 'The Answer')");
doSQL($conn, "INSERT INTO number values(29, 'My Age')");
doSQL($conn, "INSERT INTO number values(29, 'Anniversary')");
doSQL($conn, "INSERT INTO number values(66, 'Clickety Click')");
doSQL($conn, "UPDATE number SET name = 'Zaphod' WHERE value = 42");
doSQL($conn, "DELETE FROM number WHERE value = 29");

$conn->disconnect;

Executing this program results in the SQL being executed as expected:

S:\Chapter16>perl select_dbi1.pl
DROP TABLE number
#rows affected is 0E0
CREATE TABLE number (value INTEGER, name VARCHAR)
#rows affected is 0E0
INSERT INTO number values(42, 'The Answer')
#rows affected is 1
INSERT INTO number values(29, 'My Age')
#rows affected is 1
INSERT INTO number values(29, 'Anniversary')
#rows affected is 1
INSERT INTO number values(66, 'Clickety Click')
#rows affected is 1
UPDATE number SET name = 'Zaphod' WHERE value = 42
#rows affected is 1
DELETE FROM number WHERE value = 29
#rows affected is 2

When we execute a SQL query that returns results—a SELECT statement—we need to be
able to examine the result set. DBI makes this very easy in Perl, as explained in the next section.

Working with Result Sets
After a statement has been executed, the statement handle can be used to extract any results that
have been returned. The return value of the execute call itself is intended to be the number of rows
in the result set. However, some database systems do not actually report the number of rows
returned by a query; they just return rows until none are left. Because DBI is database-independent

MatthewStones_4789C16.fm Page 478 Friday, March 4, 2005 6:44 PM

C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L 479

and can be used with many different databases, strictly speaking, the return value of the execute
function is deemed to be unreliable, but it does always appear to be correct for a PostgreSQL server.

Fetching Results

The DBI->fetchrow_array function returns the next row of data from a query result set as a list
of field values, with NULL values being represented by undef values. We can process a complete
result set with the following Perl loop:

 while(my @row = $sth->fetchrow_array) {
 # print out row fields
 print " ", join(" ", @row), "\n";
 # process the row as required ...
 }

The join function simply concatenates all the elements in an array, regardless of its size,
with the given separator string. If we do know how many columns there are, however, we can
use another of Perl’s tricks: an array of variables on the left side of an assignment.

($number, $value) = $result ->fetchrow_array

Here, $number and $value are a pair of variables to which the first and second column values
will be assigned.

There are other variants of the fetchrow_array function, as listed in Table 16-4.

We mentioned the do function for nonquery statements earlier. There is a similar shortcut,
or to be more precise, a set of them, for queries that you know you will not want to reuse.
selectrow_array and selectall_arrayref perform the prepare and execute operations followed
by the corresponding fetch function in one call. Consult the documentation for further details
on these and other variants of the query operations that DBI makes available.

Using Statement Handle Attributes

The statement handle has a number of attributes that are useful for processing result sets.
Typically, we would like to know the number of fields that are being returned in each row and
the names of the fields. These usually correspond to the columns in the database table being
queried. Some useful statement handle attributes are listed in Table 16-5.

Table 16-4. Some Functions for Fetching Rows

Function Description

fetchrow_arrayref Returns a reference to an internal array (which is reused when the
next fetch occurs), thus avoiding the copy that fetchrow_array does,
although the application must consume the data immediately.

fetchrow_hashref Returns a reference to a hash with the column names as keys and the
data as the corresponding values.

fetchall_arrayref Returns all of the query results in a reference to a single array. This
provides a portable and reliable way to determine the number of rows,
but may lead to excessive memory use if there are a lot of them.

MatthewStones_4789C16.fm Page 479 Friday, March 4, 2005 6:44 PM

480 C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L

■Note All of the statement attributes are read-only. Depending on the database, some may not be available
until after execute has been called. It is best to examine them only after statement execution.

We can use the statement handle attributes to extend our sample program to display the
results of a SELECT query. The following function will print a complete result set.

Function specifically for queries
sub doSQLquery
{
 my ($conn, $command) = @_;

 print $command, "\n";

 my $sth = $conn->prepare($command);
 my $nrows = $sth->execute;
 print "status is ", $conn->err, "\n" if $conn->err;
 print "error message: ", $conn->errstr, "\n" if $conn->err;

 print "number of rows returned (unreliable) = ", $sth->rows, "\n";
 print "number of fields returned = ", $sth->{NUM_OF_FIELDS}, "\n";
 print "fields: ", join(" ", @{$sth->{NAME}}), "\n";

 while(my @row = $sth->fetchrow_array) {
 print " ", join(" ", @row), "\n";
 }
}

The following is an example of a call to doSQLquery:

Table 16-5. Some Statement Handle Attributes

Attribute Description

NUM_OF_FIELDS Number of fields returned in a query

NUM_OF_PARAMS Number of placeholders

NAME Reference to an array containing the names of the columns

NAME_lc Same as NAME, but always returns lowercase

NAME_uc Same as NAME, but always returns uppercase

NULLABLE Reference to an array containing flags indicating if each column can
contain NULL values

Statement The string used to create the statement

TYPE Reference to an array indicating the type of each column

MatthewStones_4789C16.fm Page 480 Friday, March 4, 2005 6:44 PM

C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L 481

doSQLquery($conn, "SELECT * FROM number WHERE value = 29");

When we run the sample program with this call included, we see the result set being printed:

S:\Chapter16>perl select_dbi2.pl
DROP TABLE number
#rows affected is 0E0
CREATE TABLE number (value INTEGER, name VARCHAR)
#rows affected is 0E0
INSERT INTO number values(42, 'The Answer')
#rows affected is 1
INSERT INTO number values(29, 'My Age')
#rows affected is 1
INSERT INTO number values(29, 'Anniversary')
#rows affected is 1
INSERT INTO number values(66, 'Clickety-Click')
#rows affected is 1
SELECT * FROM number WHERE value = 29
number of rows returned (unreliable) = 2
number of fields returned = 2
fields: value name
 29 My Age
 29 Anniversary
UPDATE number SET name = 'Zaphod' WHERE value = 42
#rows affected is 1
DELETE FROM number WHERE value = 29
#rows affected is 2

When you have finished with a statement handle, you should release it by setting the variable
to undef, or simply by leaving its scope. An alternative is to call the following:

$sth->finish;

You should also call this if you intend to reuse a query. It will flush the results buffer; otherwise,
you run the risk of getting rows back from a previous query. Reusing queries is discussed in the
next section.

Binding Parameters
We said earlier that DBI splits operations into a preparation stage and an execution step, so
that you could execute the same query multiple times. Why would you want to do that? Wouldn’t
you get the same result each time, assuming that some other process is not changing the database?
This would be true, if not for one of the extra bits of functionality that DBI offers: the ability to
bind parameters.

Instead of having a completely specified string as a SQL statement, we can insert question
marks as placeholders, with which actual values are associated later. This is similar to ecpg’s
host variable syntax described in Chapter 14. We prepare the statement once and execute it
with different values, with one argument for each placeholder. As an example, the following
will return rows with value 14 and 15:

MatthewStones_4789C16.fm Page 481 Friday, March 4, 2005 6:44 PM

482 C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L

my $sth = $conn->prepare("SELECT * FROM number WHERE value = ?");
$sth->execute(14);
Process rows...
$sth->execute(15);
Process rows...

Each question mark placeholder in the SQL statement is replaced by the corresponding
argument in execute. For example, $sth->execute(14) can be expressed as follows:

$sth->bind_param(1, 14); # Note: parameters are numbered from 1
$sth->execute;

This hasn’t bought us much; in fact, it’s more typing. However, it can be useful when a
statement has a large number of placeholders and we want to change only a few between
executions. DBI also supports binding by reference, which, although intended for passing
values in and out of shared procedures, can reduce the amount of typing a little:

my $num;
my $sth = $conn->prepare("SELECT * FROM number WHERE value = ?");
$sth->bind_param_inout(1,\$num, 10);
$num = 14;
$sth->execute;
Process rows...
$num = 15;
$sth->execute;
Process rows...

As this uses a reference, any changes in the value of the variable are immediately available
to DBI without extra effort. Additionally, a third argument is necessary, to indicate the maximum
size of a returned value, irrelevant in this particular instance, but required nonetheless.

Binding also works on the results of queries. The following is a replacement for doSQLquery’s
results processing:

sub doSQLquery
{
 my ($conn, $command) = @_;

 print $command, "\n";

 my $sth = $conn->prepare($command);
 my $nrows = $sth->execute;
 print "status is ", $DBI::err, "\n" if $DBI::err;

 print "number of rows returned (unreliable) = ", $sth->rows, "\n";

 my($name, $value);
 $sth->bind_col(1, \$value); # 1st column mapped on to $value
 $sth->bind_col(2, \$name); # 2nd column mapped on to $name

MatthewStones_4789C16.fm Page 482 Friday, March 4, 2005 6:44 PM

C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L 483

 while($sth->fetch) {
 print " name = ", $name, ", value = ", $value, "\n";
 }
}

Binding may offer some efficiency gains (this depends on the database in use), but it
definitely can improve the clarity of the code.

Using Other DBI Features
So far, we’ve mainly looked at PostgreSQL-specific use of DBI. Now let’s briefly investigate
some of the additional database-independent features.

We can enumerate the available drivers, and in some cases databases, quite easily, as
shown in the following script:

#!/usr/bin/perl -w

use DBI;
use strict;

foreach my $driver (DBI->available_drivers())
{
 print "Driver ", $driver;

 eval { print "\n", join("\n ", DBI->data_sources($driver)), "\n\n" };
 print " - error ", $@, "\n\n" if ($@);
}

The DBI->available_drivers function returns a list of all the DBDs on the system, though
it performs no tests that they are usable, or even loadable. For some DBDs, it is possible to
determine which databases are available, via DBI->data_sources. This function does attempt to
load the driver, which could fail for some reason, so we enclose it in an eval block. The return
value of an eval is the expression inside the block, and any error status shows up in $@, hence
the check for that being non-null. This script generates the following on one of our computers:

Driver ODBC
DBI:ODBC:MS Access Database
 DBI:ODBC:Excel Files
 DBI:ODBC:dBASE Files
 DBI:ODBC:PostgreSQL

Driver PgPP
dbi:PgPP:

We have only scratched the surface of DBI, there is much more information in the online
documentation.

MatthewStones_4789C16.fm Page 483 Friday, March 4, 2005 6:44 PM

484 C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L

Using DBIx::Easy
If you have been browsing the database sections of CPAN, you will have noticed a number of
DBIx modules. These are miscellaneous modules enhancing various aspects of DBI programming.
One of these modules is particularly interesting: DBIx::Easy (home page http://www.linuxia.de,
though you should be able to find everything via CPAN), a simplified interface to DBI.
DBIx::Easy supports only a limited subset of DBDs, but fortunately, PostgreSQL (via ODBC and
Module Pg, but not PgPP at the time of writing) is one of them.

This module makes some database operations look, well, a little less “database-y.” We’ll
leave it to you to decide whether this is a good thing. As an example, you can have the results of
a query returned as a hash (strictly, a reference to a hash). One other useful feature is that you
do not need to check the return value of every database operation. You can install a single error
handler instead.

Here’s our ubiquitous Perl script again, using DBIx::Easy, showing both of these features:

#!/usr/bin/perl -w

use DBIx::Easy;
use strict;
sub myErrorHandler
{
 my($statement, $err, $msg) = @_;
 die"Oops, \"$statement\" failed ($err) - $msg";
}

Note: we have to specify the DB type and the dbname explicitly
my $conn = new DBIx::Easy("Pg", "bpfinal");

$conn->install_handler(\&myErrorHandler);

$conn->process("DROP TABLE number");
$conn->process("CREATE TABLE number (value INTEGER, name VARCHAR)");
$conn->insert("number", name => "The Answer", value => 42);
$conn->insert("number", name => "My Age", value => 29);
$conn->insert("number", name => "Anniversary", value => 29);
$conn->insert("number", name => "Clickety-Click", value => 66);

my $numbers = $conn->makemap("number", "name", "value", "value = 29");
foreach my $name (keys(%$numbers)) {
 print $name, " has value ", $$numbers{$name}, "\n";
}

$conn->update("number", "value = 42", name => "Zaphod");
$conn->process("DELETE FROM number WHERE value = 29");
$conn->commit;

MatthewStones_4789C16.fm Page 484 Friday, March 4, 2005 6:44 PM

C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L 485

Now this looks quite a bit different from the earlier scripts. This is because DBIx::Easy
provides separate process, insert, update, and makemap (query) operations, so it would be inap-
propriate to combine them all into the previous pair of doSQL functions.

Notice how the error handler is installed. Instead of testing each function for success or
failure (which, admittedly, we have not been particularly rigorous about in earlier code samples),
we can rely on the handler being called on any error. In this case, all it does is abort the script,
but you may wish to provide something more sophisticated in your own programs.

The impact of process, insert, and update should be fairly obvious, but makemap deserves
some explanation. This function takes the name of a table, two column names, and an optional
WHERE clause:

$conn->makemap($table, $keycol, $valuecol, $where)

This effectively executes the following query:

SELECT $keycol, $valuecol FROM $table WHERE $where

The results are inserted into a hash, as if by the following code fragment:

while(my ($key, $value) = $sth->fetchrow_array) {
 $map{$key} = $value;
}

As a hash can map each key on to only one value, multiple mappings in the source table
will be lost. For example, if the table contained two rows (A, B) and (A, C), only one of those will
appear in the resultant hash, since the earlier one returned from the database is overwritten by
the later one.

Another limitation is that only two columns can be processed at a time, unlike a general
query that can return any specified number of columns. Note that this is not the same as the
hash returned by fetchrow_hashref function in DBI. This function returns a single row, with
the hash key attribute being the column name and the hash value the column data.

Creating XML from DBI Queries
Now that we’ve broached the subject of DBIx modules, it’s worth mentioning Matt Sergeant’s
DBIx::XML_RDB, for simplifying the creation of well-formed XML from the results of DBI queries.

Here is another version of the Perl script, this time producing XML as the query result
(changes from the select_dbi.pl are highlighted):

#!/usr/bin/perl -w

use DBI;
use DBIx::XML_RDB;
use strict;

Function for nonquery commands
sub doSQL
{
 my ($conn, $command) = @_;

MatthewStones_4789C16.fm Page 485 Friday, March 4, 2005 6:44 PM

486 C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L

 print $command, "\n";

 my $sth = $conn->prepare($command);
 my $nrows = $sth->execute;
 print "status is ", $DBI::err, "\n" if $DBI::err;
 print "#rows affected is ", $nrows, "\n";
 print "error message: ", $DBI::errstr, "\n" if $DBI::err;
}

Function specifically for queries
sub doSQLquery
{
 my ($conn, $command) = @_;

 print $command, "\n";

 $conn->DoSql($command);

 print $conn->GetData;
}

my $connXml = DBIx::XML_RDB->new("bpfinal", "PgPP") or die $DBI::errstr;
my $conn = $connXml->{dbh};
doSQL($conn, "DROP TABLE number");
doSQL($conn, "CREATE TABLE number (value INTEGER, name VARCHAR)");
doSQL($conn, "INSERT INTO number values(42, 'The Answer')");
doSQL($conn, "INSERT INTO number values(29, 'My Age')");
doSQL($conn, "INSERT INTO number values(29, 'Anniversary')");
doSQL($conn, "INSERT INTO number values(66, 'Clickety-Click')");
doSQLquery($connXml, "SELECT * FROM number WHERE value = 29");
doSQL($conn, "UPDATE number SET name = 'Zaphod' WHERE value = 42");
doSQL($conn, "DELETE FROM number WHERE value = 29");

This time, the database is opened with the following:

my $connXml = DBIx::XML_RDB->new("", "PgPP") or die $DBI::errstr;
my $conn = $connXml->{dbh};

DBIx::XML_RDB->new returns an XML_RDB connection handle, which is not the same as a DBI
handle. An examination of the module’s source shows that it contains a DBI handle, however,
which can be used for any nonquery operations (though, strictly, you should not rely on this,
and it would be better not to mix XML_RDB operations with other database operations).

XML_RDB’s query operation, DoSql, appends XML to an internal string, which can be extracted
by GetData, as shown in the doSQLquery function. The results of our query are as follows:

MatthewStones_4789C16.fm Page 486 Friday, March 4, 2005 6:44 PM

C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L 487

<?xml version="1.0"?>
<DBI driver="dbname=bpfinal">
 <RESULTSET statement="SELECT * FROM number WHERE value = 29">
 <ROW>
 <value>29</value>
 <name>My Age</name>
 </ROW>
 <ROW>
 <value>29</value>
 <name>Anniversary</name>
 </ROW>
 </RESULTSET>
</DBI>

The DBIx::XML_RDB module itself is limited to producing XML from database queries, though
the package includes a couple of scripts for converting a table to and from XML. sql2xml.pl
uses the XML query facility to dump a complete table, and xml2sql.pl reads it back in again.

SQL to XML
The sql2xml.pl script in the DBIx::XML_RDB package includes the options listed in Table 16-6.

If you dump the usage, for example, by executing the command with no parameters, it iden-
tifies itself as sql2xls.pl and mentions Excel files, so it looks like the documentation has not
quite kept up with the code.

You can run the script on the table created by the earlier Perl programs with the following
command (all one line):

$ /usr/lib/perl5/site_perl/5.6.0/DBIx/sql2xml.pl
 -sn dbname=bpfinal -driver PgPP
 -table number -output xml.txt -uid neil

Table 16-6. Some Options for sql2xml.pl

Option Description

-sn servername Data source name

-driver dbi_driver Driver that DBI uses; default is ODBC

-uid username Username

-pwd password Password (optional)

-table tablename Table to extract

-output outputfile File in which to place XML output

MatthewStones_4789C16.fm Page 487 Friday, March 4, 2005 6:44 PM

488 C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L

It is more than likely that your path does not include the directory containing these scripts,
so this example specifies the full path specification (you may need to alter this for your Perl
installation’s location). The output file, xml.txt, contains the following:

<?xml version="1.0"?>
<DBI driver="dbname=bpfinal">
 <RESULTSET statement="SELECT * FROM number ORDER BY 1">
 <ROW>
 <value>42</value>
 <name>Zaphod</name>
 </ROW>
 <ROW>
 <value>66</value>
 <name>Clickety-Click</name>
 </ROW>
 </RESULTSET>
</DBI>

As you can see, this looks almost identical in format to the earlier query example, showing
that the script is a fairly thin wrapper on top of the DBIx::XML_RDB module’s functionality.

XML to SQL
The reverse script in the DBIx::XML_RDB package, xml2sql.pl, has similar options, as shown in
Table 16-7.

Before you can use the xml2sql.pl script, however, you need to install XML::Parser, again
found via CPAN.

Table 16-7. Some Options for xml2sql.pl

Option Description

-sn servername Data source name

-driver dbi_driver Driver that DBI uses; default is ODBC

-uid username Username

-pwd password Password (optional)

-table tablename Table to create

-input inputfile File to read XML input from

-x Delete contents of table before inserting

MatthewStones_4789C16.fm Page 488 Friday, March 4, 2005 6:44 PM

C H A P T E R 1 6 ■ A C C E S S I N G P O S T G R E S Q L F R O M P E R L 489

■Tip Other packages, such as Ron Bourret’s XML-DBMS, permit more complex interactions. See
http://www.rpbourret.com/xmldbms/ for more information.

Summary
Although there are numerous ways to use databases with Perl, in this chapter, we concentrated
on the most important as far as PostgreSQL programming is concerned: the database-independent
layer, DBI.

Within the scope of DBI, we have the option of easily using other database back-ends with
the same client code. There is also a lot of existing DBI extension code, in the form of DBIx
modules, to make our programming job simpler.

In the next chapter, we’ll explore how to access a PostgreSQL database from Java.

MatthewStones_4789C16.fm Page 489 Friday, March 4, 2005 6:44 PM

MatthewStones_4789C16.fm Page 490 Friday, March 4, 2005 6:44 PM

491

■ ■ ■

C H A P T E R 1 7

Accessing PostgreSQL
from Java

The Java Database Connectivity (JDBC) API is the de facto standard used by Java programs for
accessing external resource managers, mainly relational databases, in a resource manager-
independent manner. This means a Java application written with ANSI-compliant SQL can use
standard JDBC classes and interfaces to be reasonably portable across databases from different
relational database management system vendors. The JDBC API comprises the core JDBC API
and the extension API. The core API mainly defines the standard interfaces for the following:

• Creating a connection to the database

• Creating statements

• Accessing result sets

• Querying database and result set meta data

The core classes and interfaces are defined in the java.sql package and are available with
the Java 2 Platform, Standard Edition (J2SE).

The extension API defines more sophisticated interfaces for handling XA resources, distrib-
uted transactions, pooled connections, and connection factories. XA resources can be used to
handle distributed transactions and two-phase commits, where a single transaction may need
to span several multiple databases. These classes and interfaces belong to the javax.sql package
and are available with the Java 2 Platform, Enterprise Edition (J2EE).

In this chapter, we will be concentrating on the JDBC core API, looking at how Java language
programs can use JDBC for accessing data residing in PostgreSQL databases.

■Note In this chapter, we will assume that you have a basic understanding of Java, and also that you have
a Java development environment installed.

Using a PostgreSQL JDBC Driver
The JDBC API defines interfaces only for the objects used for performing various database-related
tasks like opening and closing connections, executing SQL statements, and retrieving the results.

MatthewStones_4789C17.fm Page 491 Friday, March 4, 2005 6:45 PM

492 C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A

It doesn’t provide the implementation classes for these interfaces. Nevertheless, portable Java
language programs do not need to be aware of the implementation classes and should use only
the standard interfaces.

As good object-oriented citizens, we all write our programs to interfaces and not imple-
mentations. Either the resource manager vendor or a third party provides the implementation
classes for the standard JDBC interfaces. These software implementations are called JDBC
drivers. JDBC drivers transform the standard JDBC calls to the external resource manager-specific
API calls. Figure 17-1 depicts how a database client written in Java accesses an external resource
manager using the JDBC API and the JDBC driver.

Figure 17-1. JDBC API definition and implementation layers

Depending on the mechanism of implementation, JDBC drivers are broadly classified into
four types:

• Type 1 JDBC drivers implement the JDBC API on top of a lower-level API like ODBC. These
drivers are not generally portable because of the dependency on native libraries.
These drivers translate the JDBC calls to ODBC calls, and ODBC then sends the request
to the external data source using native library calls. The JDBC-ODBC driver that comes
with the software distribution for J2SE is an example of a type 1 driver.

• Type 2 drivers are written in a mixture of Java and native code. Type 2 drivers use vendor-
specific native APIs for accessing the data source. These drivers transform the JDBC calls
to vendor-specific calls using the vendor’s native library. Like type 1 drivers, type 2
drivers are not portable, because they depend on native code. The advantage of type 2
JDBC drivers is that in some circumstances, particularly for local database access, they
can be very efficient.

• Type 3 drivers use pure Java at the client, which then communicates with an intermediate
middleware server for accessing the external data sources. The calls to the middleware
server are database-independent. However, the middleware server makes vendor-specific
native calls for accessing the data source.

The driver implements
the interfaces defined
in the JDBC API

Java Database Client

JDBC API

JDBC Driver

External Resource Manager

Java SE or EE

MatthewStones_4789C17.fm Page 492 Friday, March 4, 2005 6:45 PM

C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A 493

• Type 4 drivers are written in pure Java and they implement the JDBC interfaces and
translate the JDBC-specific calls to vendor-specific data-access calls. They implement
the data transfer and network protocol for the target resource manager. Most of the
leading database vendors provide type 4 drivers for accessing their database servers, and
generally this is the best type of driver to choose. Type 4 drivers are available for PostgreSQL.

Installing a PostgreSQL JDBC Driver
JDBC drivers for PostgreSQL can be downloaded from http://jdbc.postgresql.org/. There,
you will find precompiled JDBC drivers for PostgreSQL. Be careful to select the appropriate
combination of JDBC driver for your Java runtime and PostgreSQL version combination. You
will normally be looking for a JDBC 3 driver for your release of PostgreSQL.

Once you have a driver file, which will probably be named something like
postgresql-8.0.309.jdbc3.jar, you need to ensure it is in your CLASSPATH. You can do this by
altering your environment, by copying the file to the /lib/ext subdirectory of your Java runtime
environment, or by using the -cp option to the java command when you execute your program.

Additionally, the source for the driver is available from http://jdbc.postgresql.org/
if you want to build it yourself (or just to have a look and see how it works). Instructions for
building are contained in the download. Here are the general steps:

1. Download and install the latest version of the Ant build tool from http://ant.apache.org/.
Since Ant is a Java-based build tool, these steps are applicable to all environments that
support Java.

2. Unpack the PostgreSQL JDBC source file bundle to the local file system. The top-level
directory contains a build definition for Ant, as well as a Readme file.

3. Make sure you have all the required class files for Ant in the CLASSPATH. The required
files include the Ant classes available in the lib directory of the Ant installation and a
JAXP-compliant XML parser.

■Tip JAXP stands for Java API for XML Processing. The Apache Xerces project is a JAXP-compliant XML
parser that can be downloaded from http://xml.apache.org. This is split into two files: xml-apis.jar,
for building, and xercesImpl.jar, which is required for both building and runtime.

4. Run the Ant build script.

Using the Driver Interface and DriverManager Class
The java.sql package defines an interface called java.sql.Driver, which needs to be imple-
mented by all the JDBC drivers, and a class called java.sql.DriverManager, which acts as the
interface to the database. The primary task of the DriverManager class is to manage the various

MatthewStones_4789C17.fm Page 493 Friday, March 4, 2005 6:45 PM

494 C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A

registered JDBC drivers. The DriverManager also provides methods for getting connections to
databases, managing JDBC logs, and setting the login timeout. When a JDBC client requests
the DriverManager to make a connection to an external resource manager, it delegates the task
to an appropriate driver class implemented by the JDBC driver provided either by the resource
manager vendor or a third party.

In this section, we will discuss the roles of java.sql.DriverManager and java.sql.Driver in
the JDBC API. However, before we discuss the main JDBC functions, we need to briefly mention
the way exceptions and warnings are handled.

SQL Exceptions and Warnings

The core JDBC API provides four exception classes, which you may need to catch:

• BatchUpdateException: This exception is thrown when an error occurs during the execution
of a SQL batch. The class gives a method to get the update counts of the SQL statements
that were executed successfully in the batch as an array of integers.

• DataTruncation: This exception is thrown when the data is unexpectedly truncated
during data reads or writes. The class provides methods to access the number of bytes
that should have been transferred and those actually transferred, whether the truncation
occurred for a column or a parameter, whether the truncation occurred on a read or a
write, and the index of the column or the parameter.

• SQLException: This is the superclass of all the other SQL exceptions. This class provides
access methods for the database error code and SQL state for the error that caused this
exception. Most of the methods discussed in this chapter will throw an instance of
SQLException if a database-access error occurs (as you’ll notice from their signatures).

• SQLWarning: This subclass of SQLException is thrown to indicate warnings during database
access.

Managing Drivers

The DriverManager class provides the following methods for managing drivers:

• public static void registerDriver(Driver driver) throws SQLException: The
registerDriver method is normally used by the implementation classes of the
java.sql.Driver interface, provided by the JDBC drivers, to register themselves with
the DriverManager. DriverManager uses registered drivers for delegating database
connection requests.

• public static void deregisterDriver(Driver driver) throws SQLException: The
deregisterDriver method is used for deregistering a driver that is already registered
with the DriverManager.

• public static Enumeration getDrivers(): The getDrivers method returns an enumer-
ation of all the drivers currently registered with the DriverManager. The signature shown
here is for Java Development Kit (JDK) 1.4 and earlier versions. In JDK 1.5, the signature
changes to public Enumeration<Driver> getDrivers().

MatthewStones_4789C17.fm Page 494 Friday, March 4, 2005 6:45 PM

C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A 495

• public static Driver getDriver(String url) throws SQLException: The getDriver
method locates a driver corresponding to the passed JDBC URL.

Specifying the Server and Database

JDBC URLs are used for uniquely identifying the resource manager type and resource manager
location. This means that even though a JDBC driver can handle any number of connections
identified by different JDBC URLs, the basic URL format, including the protocol and subpro-
tocol, is specific to the driver used.

JDBC clients specify the JDBC URL when they request a connection. The DriverManager
can find a driver that matches the requested URL from the list of registered drivers and delegate
the connection request to that driver if it finds a match.

JDBC URLs take the following format:

<protocol>:<subprotocol>:<resource>

The protocol is always jdbc, but the subprotocol and resource depend on the type of
resource manager you use. The URL for PostgreSQL has this format:

jdbc:postgresql://<host>:<port>/<database>

Here, host is the host address (either an IP address or a machine name) on which the PostgreSQL
server process is accepting connections, and database is the name of the database to which the
client wishes to connect. The port parameter is optional, and it is required only if your
PostgreSQL service is listening on a port other than the default 5432.

As an example, if we wish to connect to the database bpfinal on the machine at IP address
192.168.0.3 using the default port, we would use the following URL in our Java code:

String url = "jdbc:postgresql://192.168.0.3/bpfinal";

Managing Connections

The DriverManager class provides the getConnection method for managing connections to
databases. This method has three alternative signatures:

• public static Connection getConnection(String url) throws SQLException: The
getConnection method creates a connection to the database specified by the JDBC URL.
The class java.sql.Connection is covered in detail in the “Making Database Connections”
section later in this chapter.

• public static Connection getConnection(String url,String user,String password)
throws SQLException: This form of the getConnection method gets a connection to the
database specified by the JDBC URL using the specified username and password.

• public static Connection getConnection(String url,Properties info) throws
SQLException: This form of the getConnection method gets a connection to the database
specified by the JDBC URL, and the instance of the class java.util.Properties is used
for specifying the security credentials. The user property is used for specifying the user-
name, and the password property is used for specifying the password.

MatthewStones_4789C17.fm Page 495 Friday, March 4, 2005 6:45 PM

496 C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A

Managing JDBC Logging

The DriverManager class provides the following methods for managing JDBC logs:

• public static PrintWriter getLogWriter(): The PrintWriter method gets a handle to
an instance of the class java.io.PrintWriter to which the logging and tracing informa-
tion are written.

• public static void setLogWriter(PrintWriter writer): The setLogWriter method sets
the PrintWriter class to which all the log information is written by the DriverManager
and all the registered drivers.

• public static void println(String message) throws SQLException: This println
method writes the message to the current log stream.

Managing Login Timeouts

Two methods are provided by the DriverManager class for managing logins:

• public static int getLoginTimeout(): The getLoginTimeout method gets the maximum
time in seconds the DriverManager would wait for getting a connection.

• public static void setLoginTimeout(int seconds): The setLoginTimeout method sets
the maximum time, in seconds, the DriverManager would wait for getting a connection.

Implementing java.sql.Driver

The java.sql.Driver interface defines the methods that need to be implemented by all JDBC
driver classes. The driver implementation classes are required to have static initialization code
to register them with the current DriverManager. This is done so that the DriverManager has the
driver in the list of registered drivers, and it delegates a connection request to an appropriate
driver class depending on the JDBC URL specified. The curious can take a look at the source
code for the org.postgresql.Driver class, which is the driver implementation for the PostgreSQL
JDBC driver.

One obvious way of checking that you have a driver available is using the static forName()
method on the class java.lang.Class:

try {
 Class.forName("org.postgresql.Driver");
} catch(ClassNotFoundException e) {
 // Handle exception
}

This will throw a ClassNotFoundException if the class org.postgresql.Driver is not found
in the CLASSPATH. So, you need to make sure that the postgres.jar file that contains the required
classes is available in the CLASSPATH, as we mentioned previously.

The sequence diagram shown in Figure 17-2 depicts a typical JDBC client getting a connection
to a PostgreSQL database running locally, using the username meeraj and the password waheeda.

MatthewStones_4789C17.fm Page 496 Friday, March 4, 2005 6:45 PM

C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A 497

Figure 17-2. Connection sequence

The following code snippet corresponds to the sequence of events depicted in Figure 17-2,
assuming a database named test on the local machine:

try {

 // Load the JDBC driver
 Class.forName("org.postgresql.Driver");

 // Create a properties object with username and password
 Properties prop = new Properties();
 prop.setProperty("user", "meeraj");
 prop.setProperty("password", "waheeda");

 // Set the JDBC URL
 String url = "jdbc:postgresql:test";

 // Get the connection
 Connection con = DriverManager.getConnection(url, prop);

} catch(ClassNotFoundException e) {
 // Handle exception
} catch(SQLException e) {
 // Handle exception
}

jdbcClient

Class.for Name("org.postgosql.Driver")

setProperty("user","meeraj")

setProperty("password","Wahcoda")

getConnection("ldbc:postgpsql:test",prop):java.sql.Connection

java.lang.Class java.sql.DriverManager

PROP
Properties

MatthewStones_4789C17.fm Page 497 Friday, March 4, 2005 6:45 PM

498 C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A

The following methods are defined for the java.sql.Driver interface:

• public boolean acceptsURL(String url) throws SQLException: The acceptsURL method
returns True if the driver implementation class can open a connection to the specified
URL. The implementation classes normally return True if they can recognize the
subprotocol specified in the JDBC URL.

• public Connection connect(String url,Properties info) throws SQLException: The
connect method returns a connection to the specified URL using the properties defined
in the argument info. The DriverManager normally calls this method when it receives
connection requests from JDBC clients.

• public int getMajorVersion(): The getMajorVersion method returns the major revision
number of the driver.

• public int getMinorVersion(): The getMinorVersion method returns the minor revision
number of the driver.

• public boolean jdbcCompliant(): The jdbcCompliant method returns True if the driver
is JDBC-compliant. A fully compliant JDBC driver should conform strictly to the JDBC
API and at least the SQL92 Entry Level specifications.

Making Database Connections
The java.sql.Connection interface defines the methods required for a persistent connection to
the database. The JDBC driver vendor implements this interface. A vendor-neutral database
client will always use only the interface, not the implementation class.

JDBC clients use statements, prepared statements, and callable statements for issuing SQL
statements to the database. Statements generally are used for the following tasks:

• Getting and setting auto-commit mode

• Getting meta information about the database

• Committing and rolling back transactions

In this section, we will cover the various methods defined in the java.sql.Connection
interface. We will discuss statements in more detail in the “Using JDBC Statements” section
later in this chapter.

Creating Database Statements
Database statements are used for sending SQL statements to the database. The
java.sql.Connection interface defines the following set of methods for creating database
statements:

• public Statement createStatement() throws SQLException: The createStatement
method is used for creating instances of the java.sql.Statement interface. This interface
can be used for sending SQL statements to the database. The java.sql.Statement inter-
face is normally used for sending SQL statements that don’t take any arguments.

MatthewStones_4789C17.fm Page 498 Friday, March 4, 2005 6:45 PM

C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A 499

• public Statement createStatement(int resType, int resConcurrency) throws
SQLException: This is the same as the previous method, but it lets the JDBC clients
specify the result set type and result set concurrency. Result sets are used for retrieving
the results back to the client from the database. Result sets are discussed in the “Working
with JDBC Result Sets” section later in this chapter. The result set type identifies the
direction in which the result set can be traversed. The concurrency defines how multiple
threads can access the result set simultaneously.

• public PreparedStatement prepareStatement(String sql) throws SQLException: Prepared
statements can precompile and store SQL statements. The java.sql.PreparedStatement
interface is normally used for sending SQL statements that take arguments. To facilitate
this process, this method is used to create instances of the java.sql.PreparedStatement
interface. The SQL statements passed to prepared statements can use parameter place-
holders using ? for sending IN parameters.

• public Statement prepareStatement (String sql, int resType, int resConcurrency)
throws SQLException: This is the same as the previous method, but it lets the JDBC
clients specify the result set type and result set concurrency.

• public CallableStatement prepareCall(String sql) throws SQLException: The
prepareCall method is used to create instances of the interface
java.sql.CallableStatement. The java.sql.CallableStatement interface is normally
used for sending calls to the database’s stored procedures that take IN and OUT parameters.
The stored procedure calls, passed to prepared statements, can use parameter place-
holders using ? for specifying both IN and OUT parameters.

• public Statement prepareCall (String sql, int resType, int resConcurrency)
throws SQLException: This prepareCall method is the same as the previous method, but
it lets the JDBC clients specify the result set type and result set concurrency.

Handling Transactions
The java.sql.Connection interface defines the following methods for handling database
transactions:

• public boolean getAutoCommit() throws SQLException: The getAutoCommit method gets
the current auto-commit mode.

• public void setAutoCommit(boolean autoCommit) throws SQLException: The setAutoCommit
method sets the auto-commit mode, which we discussed in Chapter 9. If it is set to True,
SQL statements will be automatically committed; otherwise, the clients need to issue an
explicit commit command.

• public void commit() throws SQLException: The commit method commits the current
transaction associated with the connection.

• public void rollback() throws SQLException: The rollback method rolls back the
current transaction associated with the connection.

MatthewStones_4789C17.fm Page 499 Friday, March 4, 2005 6:45 PM

500 C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A

• public int getTransactionIsolation() throws SQLException: The
getTransactionIsolation method gets the current transaction isolation level. As
explained in Chapter 9, the transaction isolation level dictates whether dirty reads,
repeatable reads, or phantom reads can be performed.

• public void setTransactionIsolation(int level) throws SQLException: The
setTransactionIsolation method sets the transaction isolation level.

Retrieving Database Meta Data
The java.sql.Connection interface provides a method to get the database meta data:

public DatabaseMetaData getMetaData() throws SQLException

This method returns an instance of a class that implements java.sql.DatabaseMetaData inter-
face, throwing an instance of SQLException if a database-access error occurs.

To demonstrate, the following is a simple example of using Java to retrieve and display
some of the PostgreSQL meta data. The PostgreSQLMetaData.java class will first load the
PostgreSQL JDBC driver and get a connection a database called bpfinal, running on the
machine named gw1. Then it obtains a handle to the database meta data from the connection
and prints the meta data to the screen.

import java.sql.Connection;
import java.sql.DatabaseMetaData;
import java.sql.DriverManager;

public class PostgreSQLMetaData {

 public static void main(String args[]) throws Exception {

 Class.forName("org.postgresql.Driver");
 String url = "jdbc:postgresql://gw1/bpfinal";
 Connection con =
 DriverManager.getConnection(url,"rick","password");
 DatabaseMetaData dbmd = con.getMetaData();

 System.out.print("Database Product Name : ");
 System.out.println(dbmd.getDatabaseProductName());

 System.out.print("Database Product Version : ");
 System.out.println(dbmd.getDatabaseProductVersion());

 System.out.print("Driver Major Version : ");
 System.out.println(dbmd.getDriverMajorVersion());

 System.out.print("Driver Minor Version : ");
 System.out.println(dbmd.getDriverMinorVersion());

MatthewStones_4789C17.fm Page 500 Friday, March 4, 2005 6:45 PM

C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A 501

 System.out.print("Driver Name : ");
 System.out.println(dbmd.getDriverName());

 System.out.print("Driver Version : ");
 System.out.println(dbmd.getDriverVersion());

 System.out.print("JDBC URL : ");
 System.out.println(dbmd.getURL());

 System.out.print("Supports Transactions : ");
 System.out.println(dbmd.supportsTransactions());

 System.out.print("Default Transaction Isolation level : ");
 System.out.println(dbmd.getDefaultTransactionIsolation());

 System.out.print("Uses Local Files : ");
 System.out.println(dbmd.usesLocalFiles());

 con.close();

 }
}

You can compile the class with the following command:

$ javac PostgreSQLMetaData.java

Then invoke the Java interpreter on the class (assuming the JDBC driver .jar file is available in
the CLASSPATH):

$ java PostgreSQLMetaData

If this fails with an error, such as Exception in thread "main"
java.lang.ClassNotFoundException: org.postgresql.Driver, it indicates it cannot find the
PostgreSQL JDBC .jar file. You should check that the .jar file is accessible in the CLASSPATH, or
put it in the current directory and use the -cp option on the command line.

If everything is okay, running this code will produce something like the following output,
depending on the version of PostgreSQL you are running:

Database Product Name : PostgreSQL
Database Product Version : 8.0.0
Driver Major Version : 8
Driver Minor Version : 0
Driver Name : PostgreSQL Native Driver
Driver Version : PostgreSQL 8.0devel JDBC3 with SSL (build 307)
JDBC URL : jdbc:postgresql://gw1/bpfinal
Supports Transactions : true
Default Transaction Isolation level : 2
Uses Local Files : false

MatthewStones_4789C17.fm Page 501 Friday, March 4, 2005 6:45 PM

502 C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A

The java.sql.DatabaseMetaData interface can be used to retrieve a lot more information,
such as catalog names, table names, and SQL features supported. Refer to the Java documen-
tation for more details.

Working with JDBC Result Sets
A JDBC ResultSet object represents a two-dimensional array of data produced as a result of
executing SQL SELECT statements against databases using JDBC statements. JDBC statements
are covered in detail in the “Using JDBC Statements” section later in this chapter.

JDBC result sets are represented by the java.sql.ResultSet interface. The JDBC vendor
provider supplies the implementation class for this interface.

Getting the Result Set Type and Concurrency
Executing appropriate methods against JDBC Statement objects creates objects of type
java.sql.ResultSet. As we have already seen in the section about using the java.sql.Connection
interface, when we create Statement objects, we can specify the type and scroll sensitivity of the
result sets that may be created by those Statement objects.

Result sets can be one of the following types:

• TYPE_FORWARD_ONLY: Forward-only result sets can be traversed only in the forward direction.
This means once you move the current cursor pointer to the nth row, you can’t move
back to (n–1)th row. These are generally the most efficient types of result sets.

• TYPE_SCROLL_INSENSITIVE: This type of ResultSet object is scrollable and not sensitive to
changes made by other threads.

• TYPE_SCROLL_SENSITIVE: This type of ResultSet object is scrollable and sensitive to changes
made by other threads.

The ResultSet interface defines a method to get the result set type:

public int getType() throws SQLException

The type can be set only when the statements are created using Connection objects, as explained in
the previous section.

Result sets also can have one of the two following concurrency types:

• CONCUR_READ_ONLY: These result sets are read-only and are not updatable.

• CONCUR _UPDATEABLE: These result sets are updatable.

The ResultSet interface defines a method to get the result set concurrency:

public int getConcurrency() throws SQLException

The concurrency can be set only when the statements are created using Connection objects, as
explained in the previous section.

MatthewStones_4789C17.fm Page 502 Friday, March 4, 2005 6:45 PM

C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A 503

Traversing Result Sets
The ResultSet interface defines various methods for traversing the result sets, manipulating
the cursor position, and accessing fetch direction. In this section, we will look at these methods.

Scrolling Result Sets

The following methods are available for scrolling result sets:

• public boolean next() throws SQLException: The next method moves the current
cursor pointer to the next row and returns True if there are more rows.

• public boolean first() throws SQLException: The first method moves the current
cursor pointer to the first row and returns True if the cursor is on the first row. This
method cannot be executed against a forward-only cursor.

• public boolean last() throws SQLException: The last method moves the current
cursor pointer to the last row and returns True if the cursor is on the last row. This
method cannot be executed against a forward-only cursor.

• public boolean absolute(int rows) throws SQLException: The absolute method moves
the current cursor pointer forward or backward from the start or end of the result set to
the row specified by the argument. The cursor is moved forward from the start if the
value of rows is positive, and it is moved backward from the end if the value of rows is
negative.

• public boolean relative(int row) throws SQLException: The relative method moves
the current cursor pointer forward or backward from the current position to the row
specified by the argument. The cursor is moved forward if the value of rows is positive,
and it is moved backward if the value of rows is negative.

• public boolean previous() throws SQLException: The previous method moves the
current cursor pointer to the previous row. This method cannot be executed against a
forward-only cursor.

Querying the Cursor Position

The following methods are available for querying the cursor position:

• public boolean isBeforeFirst() throws SQLException: The isBeforeFirst method
returns True if the cursor position is before the first row.

• public boolean isAfterLast() throws SQLException: The isAfterLast method returns
True if the cursor position is after the last row.

• public boolean isFirst() throws SQLException: The isFirst method returns True if the
cursor position is at the first row.

• public boolean isLast() throws SQLException: The isLast method returns True if the
cursor position is at the last row.

MatthewStones_4789C17.fm Page 503 Friday, March 4, 2005 6:45 PM

504 C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A

• public void beforeFirst() throws SQLException: The beforeFirst method moves the
cursor to the start of the result set, before the first row.

• public void afterLast() throws SQLException: The afterLast method moves the
cursor to the end of the result set, after the last row.

Manipulating Fetch Direction and Size

The ResultSet interface defines some methods that give a hint to the driver of the direction and
the size in which the rows will be fetched, so that it can fetch records from the database accord-
ingly. The following methods are available for manipulating the fetch direction and size:

• public int getFetchDirection() throws SQLException: The getFetchDirection method
returns the current fetch direction. The JDBC API defines three fetch directions that
might be returned, each declared as a static final int value of the jdbcStatement class:
FETCH_FORWARD, FETCH_REVERSE , and FETCH_UNKNOWN.

• public void setFetchDirection(int direction) throws SQLException: The required
direction is set using the setFetchDirection method. An instance of SQLException is
thrown if a fetch direction other than FETCH_FORWARD to a forward-only result set occurs.

• public int getFetchSize() throws SQLException: The getFetchSize method gets the
current fetch size.

Accessing Result Set Data
The interface defines methods for retrieving data from the current row in the result set. The
data can be retrieved as appropriate data types. These methods take the general format
getXXX(col), where XXX can be one of the different data types (such as int, short, string) and
col is an integer giving the column number in the current row from which data is to be fetched.
Column numbers start from 1. Alternatively, you can specify the column names instead, which
is generally a safer approach because it protects you from schema changes. Regardless of the
data type, all columns can be fetched as a string. All of these methods throw an instance of
SQLException if a database error occurs.

Here are some of the main data-access methods for getting boolean, int, and string data
(refer to the Java documentation for a complete list):

• public boolean getBoolean(int i)

• public boolean getBoolean(String col)

• public int getInt(int i)

• public int getInt(String col)

• public String getString(int i)

• public String getString(String col)

MatthewStones_4789C17.fm Page 504 Friday, March 4, 2005 6:45 PM

C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A 505

Table 17-1 lists the mapping of Java types to PostgreSQL data types and JDBC data types.
The different JDBC types are defined in the class java.sql.Types.

Working with Updatable Result Sets
We can create updatable result sets from statements that specified the result set concurrency
as CONCUR_UPDATEABLE. We can modify the data in updatable result sets, as well as add and
remove rows. In this section, we will look at the methods available for modifying the state of
result sets.

Deleting Data

The interface defines the following methods for deleting the current row and verifying the
deletion:

• public void deleteRow() throws SQLException: This method deletes the current row
from the result set and from the database. This method cannot be called when the cursor
is on INSERT row (a special row in a result set for adding data to the underlying database).

• public boolean rowDeleted() throws SQLException: The rowDeleted method checks
whether the current row has been deleted and returns True if it has been.

Table 17-1. Data Type Cross Reference

Java Type JDBC Type PostgreSQL Type

java.lang.Boolean tinyint int2

java.lang.Byte tinyint int2

java.lang.Short smallint int2

java.lang.Integer integer int4

java.lang.Long bigint int8

java.lang.Float float float(7)

java.lang.Double double float(8)

java.lang.Character char char(1)

java.lang.String varchar text

java.sql.Date date date

java.sql.Time time time

java.sql.Timestamp timestamp timestamp

java.lang.Object JAVA_OBJECT oid

MatthewStones_4789C17.fm Page 505 Friday, March 4, 2005 6:45 PM

506 C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A

Updating Data

The result set interface defines a set of updateXXX methods for updating the data in the current
row of the result set. However, these methods don’t in themselves update the underlying data
in the database; the updateRow method must be called to actually change the data in the data-
base. The following lists a few of the more commonly used updateXXX methods (for a complete
listing, see the Java documentation), and then the methods for processing updates:

• public void updateBoolean(int i, boolean x): Sets the data in the specified column to
the specified boolean value.

• public void updateBoolean(String col, boolean x): Sets the data in the specified
column to the specified boolean value.

• public void updateInt(int i, int x): Sets the data in the specified column to the
specified int value.

• public void updateInt(String col, int x): Sets the data in the specified column to the
specified int value.

• public void updateString(int i, String x): Sets the data in the specified column to
the specified string value.

• public void updateString(String col, String x): Sets the data in the specified column
to the specified string value.

• public void updateRow() throws SQLException: After updating the data in the result set,
if you wish to write your change to the database, you must call the updateRow method.
This method updates the underlying database with the data changed using the updateXXX
methods.

• public void refreshRow() throws SQLException: The refreshRow method refreshes the
current row the most recent data from the database.

• public void cancelRowUpdates() throws SQLException: This method cancels the updates
made to the current row.

• public boolean rowUpdated() throws SQLException: The rowUpdated method checks
whether the current row held in the working data set (not the one stored in the database)
has been updated and returns True if it has been.

Inserting Data

Result sets have a special row called the INSERT row for adding data to the underlying database.
To move the cursor to the INSERT row, use the following method:

public boolean moveToInsertRow() throws SQLException

The cursor can then be returned to the previous row using this method:

public boolean moveToCurrentRow() throws SQLException

To actually insert the INSERT row into the database, use the following method:

public boolean insertRow() throws SQLException

MatthewStones_4789C17.fm Page 506 Friday, March 4, 2005 6:45 PM

C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A 507

An instance of SQLException is thrown if the cursor is not on INSERT row (or if a database-access
error occurs).

Using Other Relevant Methods
Two other relevant methods are available with the java.sql.ResultSet interface.

This close method releases the database and JDBC resources:

public void close() throws SQLException

The getMetaData method gets the result set meta data as an instance of a class that imple-
ments the java.sql.ResultSetMetaData interface:

public ResultSetMetaData getMetaData() throws SQLException

This interface defines a host of methods for accessing the result set meta data, including the
following:

• Catalog name

• Column class name

• Column count

• Column display size

• Column label

• Column type

• Column type name

Refer to the Java documentation for a complete listing.

Creating JDBC Statements
The JDBC API defines three types of statements for sending SQL statements to the database:

• Statements: Statements are generally used for sending SQL statements that don’t
take any arguments. The methods required for Statement objects are defined by the
java.sql.Statement interface. The JDBC driver provider supplies the implementation
class for this interface.

• Prepared Statements: Prepared statements are generally used for sending precompiled
SQL statements that take IN arguments. The methods required for PreparedStatement
objects are defined in the java.sql.PreparedStatement interface. This interface extends
the java.sql.Statement interface.

• Callable Statements: Callable statements are generally used for making calls to database
stored procedures and can take both IN and OUT arguments. The methods required for
CallableStatement objects are defined in the java.sql.CallableStatement interface.
This interface extends the java.sql.PreparedStatement interface.

MatthewStones_4789C17.fm Page 507 Friday, March 4, 2005 6:45 PM

508 C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A

■Note Callable statements are supported in versions of the PostgreSQL JDBC driver from 7.4 onwards.

Using Statements
The java.sql.Statement interface is normally used for sending SQL statements to the database
that don’t have IN or OUT parameters. The JDBC driver vendor provides the implementation
class for this interface. The common methods required by the different JDBC statements are
defined in this interface. The methods defined by java.sql.Statement allow you to perform the
following tasks:

• Execute SQL statements

• Query results and result sets

• Handle SQL batches

• Get and set query time out

• Close the statement to release resources

• Get and set escape processing

• Get and clear SQL warnings

• Get and set cursor names

Here, we will cover the main tasks of executing statements, querying result sets, and handling
SQL batches. See the Java documentation for information about the additional methods.

Executing SQL Statements

The java.sql.Statement interface defines methods for executing SQL statements such as
SELECT, UPDATE, INSERT, DELETE, and CREATE.

Use the executeQuery method to send a SELECT statement to the database and get back
the result:

public ResultSet executeQuery(String sql) throws SQLException

Here is an example that simply returns a result set containing everything from the
mytable table:

try {
 Connection con = DriverManager.getConnection(url, prop);
 Statement stmt = con.createStatement();
 ResultSet res = stmt.executeQuery("SELECT * FROM mytable");
} catch(SQLException e) {
 // Handle exception
}

MatthewStones_4789C17.fm Page 508 Friday, March 4, 2005 6:45 PM

C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A 509

You can use the execute method to send a SQL statement to the database that may fetch
multiple result sets (like a stored procedure):

public boolean execute(String sql) throws SQLException

This returns True if the next result is a ResultSet object.
For SQL statements that don’t return result sets—like INSERT, UPDATE, and DELETE statements,

as well as data definition language statements—use executeUpdate:

public int executeUpdate(String sql) throws SQLException

This returns the number of rows affected by the SQL statement.

Querying Results and Result Sets

The Statement interface defines various methods for retrieving information about the result of
executing a SQL statement.

Although executing a SQL statement can create several result sets, a Statement object can
have only one result set open at a time. The getResultSet method returns the current result set
associated with the Statement object:

public ResultSet getResultSet() throws S.Exception

This method returns NULL if there is no more of the result set available or the next result is an
update count generated by executing an UPDATE, INSERT, or DELETE statement.

The getUpdateCount method returns the update count for the last executed UPDATE, INSERT,
or DELETE statement:

public int getUpdateCount() throws SQLException

This method returns -1 if there is no more update count available or the next result is a result
set generated by executing a SELECT statement.

The getMoreResults method gets the Statement object’s next result set:

public boolean getMoreResults() throws SQLException

This method returns False if there is no more of the result set available or the next result is an
update count.

Methods are also provided for performing the following get or set tasks:

• The result set concurrency with which the statement was created

• The result set fetch direction

• The fetch size

Handling SQL Batches

The Statement interface also provides methods for sending a batch of SQL statements to the
database:

MatthewStones_4789C17.fm Page 509 Friday, March 4, 2005 6:45 PM

510 C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A

• public void addBatch(String sql) throws SQLException: The addBatch method adds
the specified SQL to the current batch. Generally, the SQL statements are INSERT, UPDATE,
or DELETE.

• public void clearBatch() throws SQLException: The clearBatch method clears the
current batch.

• public int[] executeBatch() throws SQLException: The executeBatch method executes
the current batch. This method returns an array of updated counts.

Writing a JDBC Client Using Statements

It’s time to try out the key elements we have learned so far. To demonstrate the use of JDBC, we
will write a JDBC client, called StatementClient.java, that will perform the following tasks:

• Get a connection to the database.

• Create a Statement object.

• Insert two records into the customer table.

• Select those records back from the database.

• Delete those records.

• Close the connection.

Later, we will update this example to use prepared statements, which are generally more
efficient.

First, we must import the relevant classes:

import java.sql.Connection;
import java.sql.Statement;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.DriverManager;

Next, declare a main method:

public class StatementClient {

 public static void main(String args[]) throws Exception {

Load the driver, and connect to the database bpfinal on the server gw1:

 Class.forName("org.postgresql.Driver");
 String url = "jdbc:postgresql://gw1/bpfinal";
 Connection con =
 DriverManager.getConnection(url,"rick","password");

MatthewStones_4789C17.fm Page 510 Friday, March 4, 2005 6:45 PM

C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A 511

Create a statement, and add two INSERT statements using a batch:

 Statement stmt = con.createStatement();
 System.out.println("Inserting records");
 stmt.addBatch("INSERT INTO customer(title,fname," +
 "lname,addressline,town,zipcode,phone) values " +
 "('Mr','Fred','Flintstone','31 Bramble Avenue'," +
 "'London','NT2 1AQ','023 9876')");
 stmt.addBatch("INSERT INTO customer(title,fname," +
 "lname,addressline,town,zipcode,phone) values " +
 "('Mr','Barney','Rubble','22 Ramsons Avenue'," +
 "'London','PWD LS1','111 2313')");

Now execute the batch:

 stmt.executeBatch();
 System.out.println("Records Inserted");
 System.out.println();

Select records from the table:

 System.out.println("Selecting all records");
 String selectSQL = "SELECT title, fname, lname, town" +
"FROM customer";
 ResultSet res = stmt.executeQuery(selectSQL);

Retrieve the meta data for the result set, and use it to set the number of columns returned
and display the column titles:

 ResultSetMetaData rsmd = res.getMetaData();
 int colCount = rsmd.getColumnCount();

 for(int i = 1; i <= colCount; i++) {
 System.out.print(rsmd.getColumnLabel(i) + "\t");
 }
 System.out.println();

Loop through all the rows retrieved, displaying the data:

 while(res.next()) {
 for(int i = 1;i <= colCount; i++) {
 System.out.print(res.getString(i) + "\t");
 }
 System.out.println();
 }
 System.out.println();

MatthewStones_4789C17.fm Page 511 Friday, March 4, 2005 6:45 PM

512 C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A

Delete the rows we just inserted, checking how many rows were deleted:

 System.out.println("Deleting records");
 String deleteSQL = "DELETE FROM customer" +
"WHERE (fname = 'Fred' AND lname = 'Flintstone')" +
"OR (fname = 'Barney' AND lname = 'Rubble')";
 System.out.println("Records deleted: "
+ stmt.executeUpdate(deleteSQL));

Finally, we must close the resources we have used:

 res.close();
 stmt.close();
 con.close();
 }
}

Compile the class:

$ javac StatementClient.java

The output will be similar to the following, truncated for brevity:

$ java StatementClient
Inserting records
Records Inserted

Selecting all records
title fname lname town
Miss Jenny Stones Hightown
Mr Andrew Stones Lowtown
Miss Alex Matthew Nicetown
Mr Adrian Matthew Yuleville
...
Mr David Hudson Milltown
Mr Fred Flintstone London
Mr Barney Rubble London

Deleting records
Records deleted: 2

Using Prepared Statements
Prepared statements are used for executing precompiled SQL statements, and they are modeled in
the JDBC API using the java.sql.PreparedStatement interface. This interface extends the
java.sql.Statement interface, and the JDBC driver vendor must provide the implementation
class for this interface.

Prepared statements are created using the Connection objects as we have already seen, but
in addition, they can also be used for executing SQL statements with parameter placeholders
for IN statements defined using the symbol ?.

MatthewStones_4789C17.fm Page 512 Friday, March 4, 2005 6:45 PM

C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A 513

Prepared statements are recommended for executing the same SQL statements more than
once using different values for the IN parameters. This is because each time the database engine
sees a SQL statement, it must parse it to determine its meaning, and also perform some
processing to determine what it considers the most cost-efficient way of executing the state-
ment. If the statement’s execution doesn’t involve much work, these preparatory steps can be
a very significant part of the overall execution time of the command. Using a prepared state-
ment allows the database to parse and generate an execution plan for the statement just once,
which can significantly reduce the overhead.

Executing Prepared SQL Statements

The java.sql.PreparedStatement interface defines methods for executing SQL statements,
such as SELECT, UPDATE, INSERT, DELETE, and CREATE. Unlike the corresponding methods defined
in the Statement interface, these methods don’t take the SQL statements as arguments. The
SQL statements are defined when the prepared statements are created using the Connection
objects.

Use the executeQuery method to execute the SELECT statement associated with the prepared
statement and get back the result:

public ResultSet executeQuery() throws SQLException

Here is an example:

try {
 String sql = "SELECT * FROM customer WHERE fname = ? ";
 Connection con = DriverManager.getConnection(url,prop);
 PreparedStatement stmt = con.prepareStatement(sql);
 stmt.setString(1, "Fred");
 ResultSet res = stmt.executeQuery();
} catch(SQLException e) {
 // Handle exception
}

The execute method executes SQL statements that return results associated with prepared
statements:

public boolean execute() throws SQLException

This returns True if the next result is a ResultSet object.
The executeUpdate method executes SQL statements associated with prepared statements

that don’t return result sets, such as INSERT and UPDATE:

public int executeUpdate() throws SQLException

This returns the number of rows affected by the SQL statement.

Updating Data

The prepared statement interface defines a set of setXXX methods for setting the values of the
IN parameters for the precompiled SQL statements defined using the symbol ?. The parameter

MatthewStones_4789C17.fm Page 513 Friday, March 4, 2005 6:45 PM

514 C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A

indexes start from 1. The setXXX method used should be compatible with the expected SQL type.
The following are a few of the more common methods (see the Java documentation for others):

• public void setBoolean(int index, boolean x): Sets the IN parameter specified by the
argument index to the boolean value specified by x.

• public void setInt(int index, int x): Sets the IN parameter specified by the argument
index to the int value specified by x.

• public void setString(int index, string x): Sets the IN parameter specified by the
argument index to the string value specified by x.

The interface also defines a method for clearing the current values of all parameters
immediately:

public void clearParameters() throws SQLException

Writing a JDBC Client Using Prepared Statements

Now we will rewrite the previous StatementClient.java example using prepared statements
and see how the same INSERT statement can be executed multiple times using different values.

The key changes are highlighted:

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.DriverManager;

public class PreparedStatementClient {

 public static void main(String args[]) throws Exception {

// Load the JDBC driver and get a connection.
// Create a prepared statement from the connection:

 Class.forName("org.postgresql.Driver");
 String url = "jdbc:postgresql://gw1/bpfinal";
 Connection con =
 DriverManager.getConnection(url,"rick","password");

 PreparedStatement stmt;

 String insertSQL = "INSERT INTO customer(title,fname," +
 "lname,addressline,town,zipcode,phone) VALUES " +
 "(?,?,?,?,?,?,?)";

 stmt = con.prepareStatement(insertSQL);

 System.out.println("Inserting records");

MatthewStones_4789C17.fm Page 514 Friday, March 4, 2005 6:45 PM

C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A 515

 stmt.setString(1,"Mr");
 stmt.setString(2,"Fred");
 stmt.setString(3,"Flintstone");
 stmt.setString(4,"31 Bramble Avenue");
 stmt.setString(5,"London");
 stmt.setString(6,"NT2 1AQ");
 stmt.setString(7,"023 9876");
 stmt.executeUpdate();

 stmt.clearParameters();

 stmt.setString(1,"Mr");
 stmt.setString(2,"Barney");
 stmt.setString(3,"Rubble");
 stmt.setString(4,"22 Ramsons Avenue");
 stmt.setString(5,"London");
 stmt.setString(6,"PWD LS1");
 stmt.setString(7,"111 2313");
 stmt.executeUpdate();

// Select the records from the customer table and
// print the contents to the standard output:
 System.out.println("Selecting all records");
 String selectSQL = "SELECT title, fname, lname, town FROM customer";
 stmt = con.prepareStatement(selectSQL);
 ResultSet res = stmt.executeQuery();

// Retrieve the meta data from the result set
 ResultSetMetaData rsmd = res.getMetaData();
 int colCount = rsmd.getColumnCount();

// Display the column titles
 for(int i = 1;i <= colCount; i++) {
 System.out.print(rsmd.getColumnLabel(i) + "\t");
 }
 System.out.println();

 while(res.next()) {
 for(int i = 1;i <= colCount; i++) {
 System.out.print(res.getString(i) + "\t");
 }
 System.out.println();
 }
 System.out.println();

MatthewStones_4789C17.fm Page 515 Friday, March 4, 2005 6:45 PM

516 C H A P T E R 1 7 ■ A C C E S S I N G P O S T G R E S Q L F R O M J A V A

// Delete the records from the customer table and print the number of records
deleted:

 System.out.println("Deleting records");
 String deleteSQL = "DELETE FROM customer " +
"WHERE (fname = 'Fred' AND lname = 'Flintstone') " +
"OR (fname = 'Barney' AND lname = 'Rubble')";
 stmt = con.prepareStatement(deleteSQL);
 System.out.println("Records deleted: " + stmt.executeUpdate());

// Close the result set, statement and connection to free up resources:
 res.close();
 stmt.close();
 con.close();

 }
}

Summary
In this chapter, we have seen how PostgreSQL databases can be accessed from Java language
programs using JDBC.

The JDBC API continues to evolve. The JDBC 3 driver particularly saw significant changes,
and the Java Development Kit (JDK) 1.5 platform also introduces some minor changes. Also
starting to appear are persistence layers, such as Hibernate and Java Data Objects (JDO), which
help to bridge the object world of the Java programmer to the relational world of the SQL-based
database.

In the next chapter, we will look at how to access PostgreSQL databases from C#.

MatthewStones_4789C17.fm Page 516 Friday, March 4, 2005 6:45 PM

517

■ ■ ■

C H A P T E R 1 8

Accessing PostgreSQL from C#

In the previous chapter, we explained how to access PostgreSQL databases from Java. In this
chapter, we will look at how to access your PostgreSQL database from a similar language, C#.
If you have Java experience, you’ll be quite familiar with the similar C# syntax. However, the
techniques for accessing PostgreSQL from C# are somewhat different from those used with Java.

In this chapter, we will look at three main ways to access PostgreSQL from C#:

• Using the ODBC .NET Data Provider on Windows

• Using the Npgsql library on Linux

• Using the Npgsql library on Windows

The first section of this chapter examines how to use the standard ODBC .NET Data Provider
method with Windows systems. Then we will focus on using Npgsql. Other alternatives for C#
access to PostgreSQL are starting to appear, such as PgOleDb (http://gborg.postgresql.org/
project/oledb) and the Advanced Data Provider (http://advanced-ado.sourceforge.net/),
but Npgsql has been around longer. Also, as of PostgreSQL release 8.0, Npgsql is an optional
part of the Windows installation set.

Using the ODBC .NET Data Provider on Windows
Users of Microsoft’s Visual Studio will find that once the ODBC .NET foundation is working,
ADO.NET (Microsoft’s Database API for the .NET Framework) simply runs on top of the ODBC
connection, exactly as it would for any other ODBC data source. This approach does not need
any PostgreSQL-specific drivers, apart from the ODBC driver, which we assume you have
already installed, as described in Chapter 3.

■Note For more information about ADO.NET, see a book devoted to that topic, such as Mahesh Chand’s
A Programmer's Guide to ADO.NET in C# (Apress, 2002; ISBN 1-89311-539-9).

Setting Up the ODBC .NET Data Provider
If you don’t already have the ODBC data driver for ADO.NET, installing it is your first task. (This
driver is not installed by default in the current release of Visual Studio 2003.) You can check by

MatthewStones_4789C18.fm Page 517 Friday, March 4, 2005 6:47 PM

518 C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C #

seeing if a resource called Microsoft.Data.Odbc is available to your projects. If not, you’ll need
to add it as an update.

To obtain the ODBC provider for .NET, go to the Microsoft MSDN site and look in the
“SDKs, Redistributables & Service Packs” section for “ODBC .NET Data Provider.” (Unfortu-
nately, the exact location tends to move about, but it’s usually fairly easy to find by searching.)
This should take you to a page where you can download an installable file such as
odbc_netversion10.msi. Go ahead and install this file.

Finally, add Microsoft.Data.Odbc as a reference, by right-clicking the References section
of the Solution Explorer pane in your Visual Studio project before proceeding.

Connecting to the Database
There are two ways to specify the database connection string, which determines how your
program will connect to the database:

• Construct a connection string with the driver and details, such as database and user
from within your program, much as you can for other databases, but using {PostgreSQL}
as the driver choice.

• Create a predefined connection string through the Control Panel’s Administrative Tools
and add a new data source name (DSN). You can use either a User DSN, specific to the
current user, or a System DSN, which will be available to all users. This will allow you to
specify a name for the data source, plus the server, database name, username, and pass-
word (as well as many other options that you should leave as the default values). You can
then use this DSN in your programs, without needing to specify any of the details again.

■Note Whether you should use a User DSN or System DSN depends on your circumstances. For example,
if there are other users of the machine and they will also need access to the new DSN, you should use a
Systems DSN. If you are the only user of the machine, a User DSN is probably more appropriate.

The following vs-connect.cs program demonstrates how to connect using both connec-
tion string styles. First, it specifies all the details in the connection string, and then it uses a
preconfigured DSN, producing just enough output to demonstrate that both methods work
correctly. The two key sections are highlighted.

// vs-connect.cs
using System;
using System.Data;
using Microsoft.Data.Odbc;

class PostgreSQL
{
 static void Main(string[] args) {

 // First all details in one version
 // The string is split and concatenated to fit the book layout

MatthewStones_4789C18.fm Page 518 Friday, March 4, 2005 6:47 PM

C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C # 519

 const string CONNECTION_STRING =
 "DRIVER={PostgreSQL};SERVER=192.168.0.3;" +
 "UID=rick;PWD=password;DATABASE=bpfinal";
 OdbcConnection conn = new OdbcConnection();
 conn.ConnectionString = CONNECTION_STRING;
 conn.Open();
 Console.WriteLine("Version: {0}", conn.ServerVersion);
 conn.Close();
 Console.ReadLine();

 // And now using a preconfigured DSN
 conn.ConnectionString = "dsn=PostgreSQL-bpfinal";
 conn.Open();
 Console.WriteLine("Version: {0}", conn.ServerVersion);
 conn.Close();
 Console.ReadLine();
 }
}

Although specifying the complete list of connection variables is more long-winded, it does
mean that you won’t need to configure any DSNs on the machines where the code will execute,
which may be a significant advantage.

Retrieving Data into a Dataset
Once a connection has been established to a PostgreSQL database, you can use standard ADO.NET
methods for accessing the data. The following vs-dataset.cs program demonstrates the basics,
showing that once you have a connection to a PostgreSQL database, you really can treat it just
like any other ODBC .NET data source. The key section is highlighted.

■Note Remember that you will need to add the Microsoft.Data.Odbc assembly to the project references.

// vs-dataset.cs
using System;
using System.Data;
using Microsoft.Data.Odbc;

class PostgreSQL
{
 static void Main(string[] args)
 {

MatthewStones_4789C18.fm Page 519 Friday, March 4, 2005 6:47 PM

520 C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C #

 const string CONNECTION_STRING =
 "DRIVER={PostgreSQL};SERVER=192.168.0.3;" +
 "UID=rick;PWD=password;DATABASE=bpfinal";
 OdbcConnection conn = new OdbcConnection();
 conn.ConnectionString = CONNECTION_STRING;
 conn.Open();
 DataSet ds = new DataSet();
 OdbcDataAdapter da = new OdbcDataAdapter("SELECT * FROM customer", conn);
 da.Fill(ds, "customer");
 DataTable dt = ds.Tables["customer"];
 foreach(DataRow dr in dt.Rows)
 {
 Console.Write("Name: {0}, {1}, {2}\n", dr[1], dr["fname"], dr["lname"]);
 }
 conn.Close();
 Console.WriteLine();
 Console.ReadLine();
 }
}

This creates a new empty DataSet object, and then creates an OdbcDataAdapter using a
selection of data from the customer table and the OdbcConnection object opened earlier in the code.

It then uses the data adapter to fill the dataset with the retrieved data,
da.Fill(ds, "customer"), giving it the table name customer.

Next, the program instantiates a DataTable object from the ds table customer, DataTable dt
= ds.Tables["customer"]. With a data table in hand, we are nearly finished, leaving only the
step of iterating through the rows: foreach(DataRow dr in dt.Rows). Each DataRow object then
contains the columns for the current row, which we can access using either an index, dr[1], or
a column name, dr["fname"].

As you can see, once you connect to PostgreSQL using a standard ADO.NET data adapter,
you access PostgreSQL in basically the same way as you access other relational databases from
C# using Visual Studio.

Using Npgsql in Mono
In this section, we will look at Npgsql (http://gborg.postgresql.org/project/npgsql). This is
a solution primarily for users of Mono (http://www.mono-project.com), the open-source imple-
mentation of the .NET Framework, based on the ECMA (http://www.ecma-international.org)
standards for C# (ECMA 334) and its infrastructure (ECMA 335).

At the time of writing, Mono is the most practical way to use C# and its associated frame-
work using exclusively open-source software. Npgsql is an open-source implementation of
a .NET data provider for C#, roughly analogous to a Java class type 4 driver, as described in
Chapter 17. It is implemented completely in C# and provides an interface directly to the
network protocol that PostgreSQL uses. This makes it highly portable to any system supporting
C# and its runtime, and enables access to PostgreSQL databases both locally and across the
network. It can support all types of projects, from Console to Windows Forms.

MatthewStones_4789C18.fm Page 520 Friday, March 4, 2005 6:47 PM

C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C # 521

Npgsql is available separately, but it is also bundled with the Mono distribution and the
Windows distribution of PostgreSQL 8.0. (We also hope that, in the future, it will be available in
any Mono package included by the main Linux distributions.)

At the time of writing, Npgsql is still evolving. Functionally, it is almost complete, but there
may be some slight differences in the version you have from the one used here. In general, we
will describe only the more important attributes that we need to get started. The Npgsql docu-
mentation is very detailed and contains the full list of classes, properties, and methods available.

Connecting to the Database
The first thing we need to do is connect to our PostgreSQL database server. The Npgsql assembly
(the Npgsql.dll file) provides an NpgsqlConnection class. This class provides the means of
connecting to a PostgreSQL database, and then retains the connection information required to
interact with the database.

Creating an NpgsqlConnection Object

Most of the information required to connect to the database would normally be passed in the
constructor to the NpgsqlConnection class. The Npgsql constructor accepts a connection string,
which can pass in all the information required in a format very similar to an ODBC connection
string. The options that may be included in the connection string are listed in Table 18-1.

Each option is set as an option-name=value string. Options are separated by semicolons.
For example, to connect to our bpfinal database on the server 192.168.0.3 as user rick using
the password password, we need to construct our connection object like this:

Table 18-1. Connection String Options

Option Meaning

Server The name or IP address of the server running PostgreSQL

Port The port number to connect to; defaults to the standard port

Protocol The protocol version number to use (2 or 3); if omitted, this will be chosen
automatically

Database The name of the database; defaults to the same value as the User Id

User Id The username

Password The password

SSL Sets the connection security as true or false; defaults to false

Pooling Sets connection pooling as true or false; defaults to true

MinPoolSize Sets the lower bound of the connection pool size

MaxPoolSize Sets the upper bound of the connection pool size

Timeout Sets the time to wait for a connection before timing out

MatthewStones_4789C18.fm Page 521 Friday, March 4, 2005 6:47 PM

522 C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C #

NpgsqlConnection(
 "Server=192.168.0.3;User Id=rick;Password=password;Database=bpfinal;"
);

The NpgsqlConnection class has a number of properties, as shown in Table 18-2. The State
property can be retrieved at any time, to check if the object has a database connection. Connection
options can be set using the ConnectionString property, but only before the object connects to
the database. Once connected, you can get all of the properties listed in the table.

Once the object is connected to a database, there are many methods you can call. Table 18-3
lists a few of the more important ones.

To show how all this works, the following Connect.cs program makes a connection to the
bpfinal database. We will stick to passing connection information in to the NpgsqlConnection
object as it is created. To show that the connection actually works, we will get the database
version string back from the connection object and display it.

Table 18-2. NpgsqlConnection Properties

Property Meaning

ConnectionString Gets or sets the connection string

Database Gets the name of the current database

ServerVersion Gets the version of the server currently connected to

State Gets the current state of the connection

Table 18-3. Common NpgsqlConnection Methods

Method Meaning

BeginTransaction Starts a transaction and optionally passes an isolation level to use

ChangeDatabase Closes the connection and reconnects to a different database

Close Closes the connection, or, if using connection pooling, releases the
connection back to the pool

Open Opens the connection

MatthewStones_4789C18.fm Page 522 Friday, March 4, 2005 6:47 PM

C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C # 523

// Connect.cs
// Connect to the bpfinal PostgreSQL database on the server 192.168.0.3 as
// the user rick, with a password of 'password'.

using System;
using Npgsql;

public class connect
{
 public static void Main(String[] args) {
 NpgsqlConnection conn = new NpgsqlConnection(
"Server=192.168.0.3;User Id=rick;Password=password;Database=bpfinal;");
 try {
 conn.Open();
 Console.Write(
"State: {0}, Server Version: {1}", conn.State, conn.ServerVersion);
 Console.WriteLine();
 }
 finally {
 conn.Close();
 }
 }
}

The two using statements give us access to the standard system features and the Npgsql
assembly. We then create a new NpgsqlConnection object using a connection string constructor
to define our database connection. Once the NpgsqlConnection object is instantiated, we use
the Open method to connect to our database, and then retrieve the state and version information.
Finally, we close the connection, which disconnects the program from the database. Although
we wrap the connection attempt in a try block, we use the finally option only to ensure our
connection is closed; we don't catch any exceptions thrown ourselves. In our trivial program,
the finally block doesn’t really have any benefit, but in more complex programs, it’s necessary
to keep careful track of resources and ensure they are properly released.

Now that we have our source code, we need to compile it. As we are using Npgsql, we
are probably Linux users (although Mono and Npgsql are also available for Windows systems),
so we can use either the command-line mcs compiler or the graphical MonoDevelop
(http://www.monodevelop.com/) tool. Let’s look at the command line first.

Compiling with the Command-Line Compiler

We could copy the Npgsql.dll file to the Mono system library directory (probably something
like /usr/lib/mono/1.0), but it would be somewhat untidy to copy additional libraries into the
system library directory, so we will add an additional library path for the local additions. We
will assume the Npgsql.dll file is stored in a directory ~/mono-local.

MatthewStones_4789C18.fm Page 523 Friday, March 4, 2005 6:47 PM

524 C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C #

To compile the program, we need to set both the location for the additional assembly,
using the -L option, and also tell the compiler the resources we need, using the -r flag:

mcs -L ~/mono-local -r:Npgsql.dll Connect.cs

This should result in a Connect.exe file, which can be executed using the mono command to
interpret the intermediate language code generated.

■Note It's possible, depending on the way Npgsql and Mono are packaged at the time you are reading this,
that you will also need to use Mono.Security.dll and possibly Mono.Security.Protocol.Tls.dll
in addition to the main Npgsql.dll file.

Here it is in action:

$ mcs -L ~/mono-local -r:Npgsql.dll Connect.cs
Compilation succeeded
$ mono Connect.exe
State: Open, Server Version: 8.0.0
$

Compiling with MonoDevelop

Next, we will look at compiling the program with MonoDevelop. If you’re not presently using
MonoDevelop and would like to follow along with this section, you will need to download it
from the web site: http://www.monodevelop.com/.

In order to build the project, you’ll first need to add the Npgsql.dll resource to your
project. To do this, start by creating a new solution containing a new empty Console project,
then go to the References subsection of the solution, right-click it, and select Edit. This brings
up a dialog box that allows you to add resources to the project. Click the .Net Assembly tab,
browse to find the Npgsql.dll file, and then select Add. You can then go to the Global Assembly
Cache tab and add Npgsql as a reference, as shown in Figure 18-1.

You will also need to add the System.Data resource, which should already be in the list of
available references.

Once you have entered the code, you should be able to click the gear cog icon on the right
side of the toolbar to compile and execute this simple C# program for attaching to a
PostgreSQL database.

MatthewStones_4789C18.fm Page 524 Friday, March 4, 2005 6:47 PM

C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C # 525

Figure 18-1. Adding Npgsql to the project references in MonoDevelop

Retrieving Data from the Database
To retrieve data from the database, we need to use two additional Npgsql classes:
the NpgsqlCommand class and the NpgsqlDataReader class. We will start by looking at the
NpgsqlCommand class, which allows us to send commands, such as a SELECT statement, to
the database.

Sending Commands with NpgsqlCommand

The NpgsqlCommand class has a number of constructors. The most commonly used form is to
pass the text of the command required and a connection object, as follows:

NpgsqlCommand(string SQLCommand, NpgsqlConnection connectionobject);

MatthewStones_4789C18.fm Page 525 Friday, March 4, 2005 6:47 PM

526 C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C #

Here, the string parameter is a valid SQL statement, such as "SELECT fname, lname FROM
customer", and the NpgsqlConnection is a connection object as before, which provides information
about the connection to the PostgreSQL database.

Once instantiated, there are several properties that we can retrieve or update for our
NpgsqlCommand object. The most commonly used properties are listed in Table 18-4.

Here is how we might create our command object to retrieve information from the
customer table:

NpgsqlCommand cmd =
 new NpgsqlCommand("SELECT * FROM customer", conn);

If we subsequently wanted to change the SQL statement, we just update the CommandText
property, like this:

cmd.CommandText = "SELECT * from orderinfo";

Once we have a command object, we can use its methods to perform actions against the
database. The main methods are shown in Table 18-5.

Table 18-4. Common NpgsqlCommand Properties

Method Meaning

CommandText Allows the command text to be retrieved or set

CommandTimeout Sets how long the system will wait for the command to execute before
terminating it

CommandType Sets or gets the type of command; by default, this is Text for executing
SQL statements, but can also be Stored Procedure when the command is
to execute a stored procedure

Connection Sets or gets the connection object to be used

Parameters Allows access to parameters for prepared statements

Transaction Sets or gets the transaction in which the command is to execute

Table 18-5. Common NpgsqlCommand Methods

Method Meaning

Dispose Releases all the resources in use

ExecuteNonQuery Executes a SQL statement that doesn’t retrieve data

ExecuteReader Executes a SQL statement that will return data; returns an
NpgsqlDataReader object

Prepare Makes a prepared statement ready for execution

MatthewStones_4789C18.fm Page 526 Friday, March 4, 2005 6:47 PM

C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C # 527

The method we are most interested in is ExecuteReader, which returns an
NpgsqlDataReader object. Here is an example:

NpgsqlDataReader datard = cmd.ExecuteReader();

The NpgsqlDataReader object is the next class we need to look at in the Npgsql assembly.

Getting Data with the NpgsqlDataReader Class

The NpgsqlDataReader class is the one that actually allows us to get at the data (and meta data)
when we retrieve data from the database. It’s normally created by the execution of an
ExecuteReader method on the NpgsqlCommand object. Since it has quite a bit of work to do, it’s
the most complex object we have yet encountered in the Npgsql assembly, but it’s not hard to
use. This class’s most commonly used properties are listed in Table 18-6.

The Item property is quite clever. You simply use the name of the data reader object with
an array accessor [], using either an index of the column offset or passing a string containing
the name of the column. In either case, the data contents of the column are returned in its
native format. We will see both of these types of array access in the next two code examples.
This means that if we create an NpgsqlDataReader object datard, then once it is populated, we
can access the value of the third column by writing datard[3], which leads to client code that
is much easier to read. If we prefer, we can also access the data using the column name, by
passing in a string as the array index: datard["lname"].

The data reader object also has quite a long list of methods. Table 18-7 lists the most
commonly used methods.

Table 18-6. Common NpgsqlDataReader Properties

Property Meaning

FieldCount Provides the number of columns in the data row

HasRows Set to true if there is one or more rows of data ready to be read

IsClosed Set to true if the data reader has been closed

Item Retrieves the column in its native format

RecordsAffected Provides the number of rows affected by the SQL statement

Table 18-7. Common NpgsqlDataReader Methods

Method Meaning

Close Closes the data reader object

Dispose Releases all the resources in use

GetBoolean Gets a column value as a Boolean value

GetDateTime Gets a column value as a datetime value

MatthewStones_4789C18.fm Page 527 Friday, March 4, 2005 6:47 PM

528 C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C #

Remember that the easiest way to access the data value is via an array reference, using the
Item property.

Retrieving data from the database is not difficult. In practice, you will often need only a
small subset of the properties and methods available. Our next program, getdata1.cs, shows
the basic properties and methods we need to retrieve some data. The key changes from our
earlier program are highlighted.

// Getdata1.cs - a simple retrieve of data from the customer table

using System;
using Npgsql;

public class connect
{
 public static void Main(String[] args) {
 NpgsqlConnection conn = new
NpgsqlConnection("Server=192.168.0.3;Port=5432;
User Id=rick;Password=password;Database=bpfinal;");
 try {
 conn.Open();
 NpgsqlCommand cmd = new NpgsqlCommand("SELECT * FROM customer", conn);
 NpgsqlDataReader datard = cmd.ExecuteReader();
 while (datard.Read()) {
 for (int i=0; i<datard.FieldCount; i++) {
 Console.Write("{0}, ", datard[i]);
 }

GetDecimal Gets a column value as a decimal number

GetDouble Gets a column value as a double

GetFieldType Returns the data type of the column at an index position

GetFloat Gets a column value as a floating-point number

GetInt16 Gets a column value as a 16-bit integer

GetInt32 Gets a column value as a 32-bit integer

GetInt64 Gets a column value as a 64-bit integer

GetName Gets the column name of a column by index

GetString Gets a column value as a string

IsDBNull True if the value in a column is NULL

Read Advances the data reader to the next row

Table 18-7. Common NpgsqlDataReader Methods (Continued)

Method Meaning

MatthewStones_4789C18.fm Page 528 Friday, March 4, 2005 6:47 PM

C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C # 529

 Console.WriteLine();
 }
 }
 finally {
 conn.Close();
 }
 }
}

When we run this in MonoDevelop, a console window opens and displays the retrieved
data, as shown in the example in Figure 18-2.

Figure 18-2. C# code in MonoDevelop retrieving data

The key changes are that we created a new NpgsqlCommand object, passing it a SQL statement to
retrieve all the data from the customer table, as well as the NpgsqlConnection object we previ-
ously opened. We then call the ExecuteReader method, which returns a new NpgsqlDataReader
object. By repeatedly calling the Read method, we iterate through the retrieved rows. We use
the FieldCount property to determine how many columns there are in the row. Notice we
access the data by using an index of the column number directly into the data reader object:
datard[i]. This retrieves the actual data value, which we print to the console.

MatthewStones_4789C18.fm Page 529 Friday, March 4, 2005 6:47 PM

530 C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C #

Retrieving Meta Data

It’s often very useful to be able to retrieve meta data, or data about the data, from a database.
We can do this quite easily using the methods we have already seen. The following program,
Getdata2.cs, builds on Getdata1.cs, adding code to retrieve the names and types of the columns
being retrieved. The changed lines are highlighted.

// getdata2.cs - a simple retrieve of meta data from the customer table

using System;
using Npgsql;

public class connect
{
 public static void Main(String[] args) {
 NpgsqlConnection conn = new NpgsqlConnection(
"Server=192.168.0.3;User Id=rick;Password=password;Database=bpfinal;");

 try {
 conn.Open();
 NpgsqlCommand cmd =
new NpgsqlCommand("SELECT * FROM customer", conn);
 NpgsqlDataReader datard = cmd.ExecuteReader();
 datard.Read();
 Console.Write("There are {0} columns\n", datard.FieldCount);
 for (int i = 0; i < datard.FieldCount; i++) {
 Console.Write("Name: {0}, NpgsqlType: {1}",
datard.GetName(i), datard.GetFieldType(i));
 Console.WriteLine();
 }
 Console.Write("First row by named column: {0}, {1}",
datard["fname"], datard["lname"]);
 }
 finally {
 conn.Close();
 }
 }
}

We use the GetName and GetFieldType methods of the data reader to retrieve the name and
column types. We also use a field name, rather than the column index as in the previous
example, to retrieve data.

Using Npgsql Event Logging

Before we move on, we will take a brief look at the event logging capabilities of Npgsql. We
can debug programs using Npgsql in the same way that we debug any C# program: by adding

MatthewStones_4789C18.fm Page 530 Friday, March 4, 2005 6:47 PM

C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C # 531

statements to print out data or by stepping through the program in a debugger. However, for
some types of error tracking, what we would like is an easy-to-use method of tracing what Npgsql
is doing. The Npgsql assembly has a special event log for doing just that. It is very simple to use,
with only the three properties listed in Table 18-8.

We can see this in action in a simple demonstration program, Debug.cs.

// Debug.cs

using System;
using Npgsql;

public class connect
{
 public static void Main(String[] args) {
 NpgsqlEventLog.Level = LogLevel.Debug;
 NpgsqlEventLog.LogName = "/tmp/Npgsqldebug.txt";
 NpgsqlEventLog.EchoMessages = true;

 NpgsqlConnection conn = new NpgsqlConnection(
"Server=192.168.0.3;User Id=rick;Password=password;Database=bpfinal;");

 try {
 conn.Open();
 NpgsqlCommand cmd = new NpgsqlCommand("SELECT * FROM customer", conn);
 NpgsqlDataReader datard = cmd.ExecuteReader();
 datard.Read();
 Console.Write("{0}, {1}, {2}",
datard[0], datard[1], datard[2]);
 Console.WriteLine();
 }
 finally {
 conn.Close();
 }
}
}

Table 18-8. NpgsqlEventLog Properties

Property Meaning

EchoMessages Sets if message should be printed to the console: true or false

Level Sets the level of messages required: None, Normal, or Debug

Logname Sets the name of the file to write to, if required

MatthewStones_4789C18.fm Page 531 Friday, March 4, 2005 6:47 PM

532 C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C #

When we run this program, a console window immediately opens, showing the logging
text, as in the example in Figure 18-3.

Figure 18-3. Log tracing in progress

The textual log file written is very similar, with the addition of timestamp information.

Using Parameters and Prepared Statements with Npgsql
When PostgreSQL executes a SQL statement, a fair amount of work must be done to determine
how the statement should be executed. When executing many very similar statements that
differ only in the values used, such as in search criteria for SELECT statements, this can be very
inefficient. This is because of the overhead PostgreSQL incurs each time it must parse and
determine an execution plan from the SQL. Just as we can with host variables in embedded C
(discussed in Chapter 14) and with prepared statements in Java (discussed in Chapter 17), we
can also generate SQL statements with parameters using Npgsql.

First, we need to look at the NpgsqlParameter class, which lets us create parameters.

Creating Parameters with the NpgsqlParameter Class

The NpgsqlParameter class is used to create parameter variables, which can be associated with
a SQL statement in an NpgsqlCommand object. It’s a relatively simple class; we really need to
concern ourselves only with the parameter name and type, which are generally just passed in
when the object is constructed. Table 18-9 lists the NpgsqlParameter properties.

MatthewStones_4789C18.fm Page 532 Friday, March 4, 2005 6:47 PM

C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C # 533

Generally, you will only need to use the constructor, which has many signatures, permit-
ting most of the properties to be set as the object is constructed. The constructor format you
are mostly likely to need is as follows:

NpgsqlParameter(string parametername, NpgsqlDbType ptype)

The NpgsqlDbType is simply an enumeration of the possible data types. The principal
elements are Boolean, Date, Double, Integer, Numeric, Real, Smallint, Text, Time, and Timestamp.

Creating Statements with Parameters

Parameters are sometimes useful even for statements that aren’t executed many times, as they
can simplify construction of the SQL statement. They are also an important step on the way to
prepared statements. To create a SQL statement that has parameters, we replace the actual
value in the SQL string with a variable name, which must start with a colon. Here is an example:

SELECT * FROM customer WHERE customer_id = :cid

We can then bind the variable name to an NpgsqlParameter object, which has the name of
the variable and the data type. For example, where cmd is an NpgsqlCommand object, we could
replace a parameter :cid with a 32-bit integer parameter like this:

cmd.Parameters.Add(new NpgsqlParameter("cid", DbType.Int32));

These steps need to be performed only once for each SQL string.

Table 18-9. NpgsqlParameter Properties

Property Meaning

DbType Gets or sets the parameter type

Direction Indicates if the parameter is input-only, output-only, or bidirectional

IsNullable Indicates if NULL values are allowed

NpgsqlDbType Gets or sets the type of the parameter

ParameterName Gets or sets the name of the parameter variable

Precision Gets or sets the maximum number of digits

Scale Gets or sets the number of decimal places

Size Gets or sets the maximum in bytes of the column

Value The actual data value to be used

MatthewStones_4789C18.fm Page 533 Friday, March 4, 2005 6:47 PM

534 C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C #

Last, but not least, we replace the parameter with an actual value, which can be done
many times in a program:

cmd.Parameters[0].Value = 2;

We can see this in practice in the following program, Getdata3.cs. The key lines are
highlighted.

// getdata3.cs - a retrieve of data from the customer table using parameters

using System;
using System.Data;
using Npgsql;

public class connect
{
 public static void Main(String[] args) {
 NpgsqlConnection conn = new NpgsqlConnection(
"Server=192.168.0.3;User Id=rick;Password=password;Database=bpfinal;");
 try {
 conn.Open();
 NpgsqlCommand cmd = new NpgsqlCommand(
"SELECT * FROM customer WHERE customer_id = :cid OR fname = :fn", conn);
 cmd.Parameters.Add(new NpgsqlParameter("cid", DbType.Int32));
 cmd.Parameters.Add(new NpgsqlParameter("fn", DbType.String));
 cmd.Parameters[0].Value = 2;
 cmd.Parameters[1].Value = "Jenny";
 NpgsqlDataReader datard = cmd.ExecuteReader();
 while (datard.Read()) {
 for (int i = 0; i < datard.FieldCount; i++) {
 Console.Write("{0}, ", datard[i]);
 }
 Console.WriteLine();

 }
 }
 finally {
 conn.Close();
 }
}
}

Notice that we must be careful to get our parameters in the correct order as we move from
replacing the variable names with parameter objects and then actual values.

MatthewStones_4789C18.fm Page 534 Friday, March 4, 2005 6:47 PM

C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C # 535

Creating Prepared Statements

Now that we understand how to replace variables in SQL statements with actual values, it’s
only a small step to see how we can then prepare the statement once, change the values, and
reexecute it, without the database needing to reprocess the statement.

The Getdata4.cs script adds to the previous code, reusing a previously prepared statement
with different values. Key lines are highlighted.

// getdata4.cs - a retrieve of data from the customer table using
// parameters and prepared statements

using System;
using System.Data;
using Npgsql;

public class connect
{
 public static void Main(String[] args) {
 NpgsqlConnection conn = new NpgsqlConnection(
"Server=192.168.0.3;User Id=rick;Password=password;Database=bpfinal;");
 try {
 conn.Open();
 NpgsqlCommand cmd = new NpgsqlCommand(
"SELECT * FROM customer WHERE customer_id = :cid OR fname = :fn", conn);
 cmd.Parameters.Add(new NpgsqlParameter("cid", DbType.Int32));
 cmd.Parameters.Add(new NpgsqlParameter("fn", DbType.String));
 cmd.Prepare();
 cmd.Parameters[0].Value = 2;
 cmd.Parameters[1].Value = "Jenny";
 NpgsqlDataReader datard = cmd.ExecuteReader();
 while (datard.Read()) {
 for (int i = 0; i < datard.FieldCount; i++) {
 Console.Write("{0}, ", datard[i]);
 }
 Console.WriteLine();
 }
 datard.Close();
 cmd.Parameters[0].Value = 3;
 cmd.Parameters[1].Value = "Adrian";
 datard = cmd.ExecuteReader();
 while (datard.Read()) {
 for (int i = 0; i < datard.FieldCount; i++) {
 Console.Write("{0}, ", datard[i]);
 }
 Console.WriteLine();
 }
 }

MatthewStones_4789C18.fm Page 535 Friday, March 4, 2005 6:47 PM

536 C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C #

 finally {
 conn.Close();
 }
}
}

We prepare the statement before executing it the first time, and we can then simply change the
values of parameters, without needing to rebind them to NpgsqlParameter objects, and reexecute
the statement.

Changing Data in the Database
So far, all we have done is retrieve data from the database, which although very important, is
really just covering the SQL SELECT statement. In this section, we will look at two ways we might
make other changes to the database. First, we will look at executing statements that do not
return data, such as INSERT, UPDATE, and DELETE statements. We will then look at a different way
data might be inserted into the database, which involves using an ADO.NET data adapter.

Using the NpgsqlCommand ExecuteNonQuery Method

We can very easily execute statements that don’t return data by directly using the
ExecuteNonQuery method of the NpgsqlCommand object. The Insert.cs script demonstrates how
to add a new customer.

// insert.cs - insert data directly

using System;
using System.Data;
using Npgsql;

public class connect
{
 public static void Main(String[] args) {
 NpgsqlConnection conn = new NpgsqlConnection(
"Server=192.168.0.3;User Id=rick;Password=password;Database=bpfinal;");
 try {
 conn.Open();
 NpgsqlCommand cmd = new NpgsqlCommand("INSERT INTO customer(title, fname,
lname, addressline, town, zipcode, phone) VALUES('Mr.', 'Simon', 'Bennett',
'1 Victoria Street', 'Nicetown', 'NT4 2WS', '342 6352')", conn);
 int rowsaffected = cmd.ExecuteNonQuery();
 Console.Write("Rows affected {0}", rowsaffected);
 }
 finally {
 conn.Close();
 }
 }
}

MatthewStones_4789C18.fm Page 536 Friday, March 4, 2005 6:47 PM

C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C # 537

In this example, we simply create a command object, as before, then execute it using the
ExecuteNonQuery method. We can then use the return value to check that the correct numbers
of rows were affected. The UPDATE and DELETE statements are carried out in the same fashion.

Using a DataAdapter

Another way we might choose to alter data in the database is to use a DataAdapter object. This
object logically sits on top of the connection object, and provides data to DataSet objects that
manage the actual data. Figure 18-4 shows a very simplified representation.

Figure 18-4. Relationship of some of the ADO.NET objects

The DataSet object contains many internals, but most important to us is the DataTable
object (it actually can contain many table objects, but we will keep it simple here), which is
itself composed of the DataRow and DataColumn objects that contain the actual data.

The insert-ds.cs script demonstrates how we can use DataAdapter and DataSet objects to
insert rows into the bpfinal database. As a change, we add a new product to our catalog. Since
it is quite long, and a somewhat different approach, we present the program in segments, with
a brief comment preceding each section.

// insert-ds.cs - insert data via a database

This first part is the same code we have seen before.

using System;
using System.Data;
using Npgsql;

public class connect
{
 public static void Main(String[] args) {

MatthewStones_4789C18.fm Page 537 Friday, March 4, 2005 6:47 PM

538 C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C #

 NpgsqlConnection conn = new NpgsqlConnection(
"Server=192.168.0.3;User Id=rick;Password=password;Database=bpfinal;");
 try {
 conn.Open();

Next, we create a DataSet object ready for later use.

 DataSet ds = new DataSet();

Now we create a DataAdapter object using a SQL command to retrieve data from the item
table, and the connection object we created earlier.

 NpgsqlDataAdapter da = new NpgsqlDataAdapter
("SELECT description, cost_price, sell_price FROM item", conn);

Next, we add an INSERT command in the DataAdapter, which we are going to use to add our
new row. Notice we use a parameterized query for this example.

 da.InsertCommand = new NpgsqlCommand("INSERT INTO item(description,
cost_price, sell_price) VALUES(:de, :cp, :sp)", conn);

Set the data type of the parameters.

 da.InsertCommand.Parameters.Add(new NpgsqlParameter(":de", DbType.String));
 da.InsertCommand.Parameters.Add(new NpgsqlParameter(":cp", DbType.Double));
 da.InsertCommand.Parameters.Add(new NpgsqlParameter(":sp", DbType.Double));

Bind the parameters to the column names in the item table.

 da.InsertCommand.Parameters[0].SourceColumn = "description";
 da.InsertCommand.Parameters[1].SourceColumn = "cost_price";
 da.InsertCommand.Parameters[2].SourceColumn = "sell_price";

Use our DataAdapter to populate the DataSet we created earlier.

 da.Fill(ds);

Create a DataTable, as the first (and only) table in the DataSet.

 DataTable dt = ds.Tables[0];

Create a new row and populate its columns.

 DataRow dr = dt.NewRow();
 dr["description"] = "Large Penguin";
 dr["cost_price"] = 7.23;
 dr["sell_price"] = 9.99;

MatthewStones_4789C18.fm Page 538 Friday, March 4, 2005 6:47 PM

C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C # 539

Add the new row to our DataTable, and tell the DataAdapter to update, based on our
DataSet with the new row.

 dt.Rows.Add(dr);
 da.Update(ds);

Last, we have the standard trailing elements of our program.

 }
 finally {
 conn.Close();
 }
 }
}

That is quite a lot more code than the previous example, but the use of DataAdapter and
DataSet objects does give us a higher-level interface to the database, with access to more
advanced features.

Using Npgsql in Visual Studio
As Npgsql is implemented in pure C# code and accesses the PostgreSQL network protocol
directly, we might reasonably hope that it will work unchanged on Windows inside Visual
Studio, and indeed it does, once we set up our project to use it. This means that all of the tech-
niques covered in the previous section also work when we are using Npgsql in Visual Studio.

First, we need to create a new location on our Windows system to store the Npgsql.dll file.
At the time of writing, two other DLLs are also needed: Mono.Security.dll and
Mono.Security.Protocol.Tls.dll. However, the packaging of Npgsql is currently under devel-
opment, and they may no longer be required in the future. They can be found on the Npgsql
site (http://gborg.postgresql.org/project/npgsql), along with the Npgsql.dll file.

Once we have a directory with the appropriate DLLs and we have created our project, we
need to add the additional resources. Select the Add Reference option from the Project menu,
browse to the directory containing the DLLs, and select Open.

We needed to make one very minor change to the source code. Namely, we added a final
Console.ReadLine(); near the end, because, by default, Visual Studio closes the console
window when the program completes, but MonoDevelop (the graphical tool we used for the
previous examples) does not. Apart from that minor tweak, the code is identical. Figure 18-5
shows our getdata1.cs project in Visual Studio.

Notice the References in the Solution Explorer window on the right side of Figure 18-5,
showing the references we added to the project.

There is really nothing more involved in using Npgsql under Windows. Once the environ-
ment is set up correctly, it works identically on both platforms.

MatthewStones_4789C18.fm Page 539 Friday, March 4, 2005 6:47 PM

540 C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C #

Figure 18-5. Npgsql used in a Visual Studio project

Summary
This chapter has been a quick tour of three of the ways you might choose to access your PostgreSQL
database from C#.

If your code is limited to Windows, and you have Microsoft’s Visual Studio, you are most
likely to use the PostgreSQL ODBC driver (although as we mentioned early in the chapter, it’s
not the only choice). We showed the two methods of using this driver to connect to your data-
base: by specifying a driver string or a DSN. Finally, we demonstrated how, once you are connected
to PostgreSQL, it behaves like any other ODBC data source, allowing you the full power of the
Microsoft ADO.NET database technology.

If you are using Mono, you will probably choose to use the Npgsql data adapter, which
(currently) ships with Mono. Npgsql provides a good range of data-access functions in a stan-
dard form. You could choose to use Npgsql on Windows systems, but this choice is more likely
if you need code compatibility between Windows and other operating systems.

This chapter ends our journey from PostgreSQL novice to PostgreSQL professional.
PostgreSQL has progressed enormously from its early research days, and matured into a very
capable and stable product suitable for use in many production systems. Its support for stan-
dard SQL, already strong, continues to improve with each release, as does its impressive
scalability. The new features in version 8, such as the native Windows port and tablespaces,
make PostgreSQL an even more attractive choice as a database system. The Open Source
license means that you can deploy PostgreSQL with no client or server license costs.

MatthewStones_4789C18.fm Page 540 Friday, March 4, 2005 6:47 PM

C H A P T E R 1 8 ■ A C C E S S I N G P O S T G R E S Q L F R O M C # 541

Coupled with the knowledge you have gained from this book, you should now be in a posi-
tion to deploy a true database server in situations where license costs may have otherwise
driven a less elegant solution. PostgreSQL already has a distinguished past, and as it continues
to progress, we are sure it will be an ever more potent challenger to the commercial vendors
with their huge development budgets, dedicated development teams, and expensive license
fees.

We wish you, and the PostgreSQL developers, all the best with this outstanding open-
source database.

MatthewStones_4789C18.fm Page 541 Friday, March 4, 2005 6:47 PM

MatthewStones_4789C18.fm Page 542 Friday, March 4, 2005 6:47 PM

543

■ ■ ■

A P P E N D I X A

PostgreSQL Database Limits

When we use a database to store information, we are tempted to ignore the fact that on no
platform do we have the luxury of infinite storage. All database systems are limited in some
way, and PostgreSQL is no exception. The amount of data that can be stored in a single column,
the maximum number of columns allowed in a table, and the total size of any table all have
limits, albeit quite large ones.

As a limit is approached, the performance of the database will degrade. If we are, for example,
manipulating very large fields consuming a large fraction of available (virtual) memory, it is
likely that performance will begin to be unacceptable. Finally, PostgreSQL will be physically
unable to perform an update.

Recent releases of PostgreSQL have seen most database limits relaxed, and in many cases,
effectively removed. In this appendix, we will mention some of the restrictions that remain as
of PostgreSQL version 8.0. For updates on limits for later versions, check out the PostgreSQL
web site at http://www.postgresql.org.

■Note The information here is derived from the PostgreSQL FAQ and mailing list contributions made by
PostgreSQL developers.

Where a size is given as “No Limit,” this means that PostgreSQL alone imposes no limit.
The maximum size will be determined by other factors, such as operating system limits and the
amount of available disk space or virtual memory. The network transport may also impose
limits. For example, there are typically limits on the size of a query that can be made via ODBC,
depending on the driver. Memory limits may prevent very large columns, rows, or result sets
from being created, transferred across a network (which in itself will be slow), or received by
the client.

Database Size: No Limit

PostgreSQL does not impose a limit on the total size of a database. Databases of 4 terabytes
(TB) are reported to exist. A database of this size is more than sufficient for all but the most
demanding applications.

MatthewStones_4789AppA.fm Page 543 Tuesday, March 1, 2005 2:01 PM

544 A P P E N D I X A ■ P O S T G R E S Q L D A T A B A S E L I M I T S

Due to the way that PostgreSQL arranges its data storage, you may see some performance
degradation associated with databases containing many tables. PostgreSQL may use a large
number of files for storing the table data, and performance may suffer if the operating system
does not cope well with many files in a single directory. The introduction of tablespaces in
PostgreSQL 8.0 helps the database administrator to minimize these effects. Tablespaces are
covered in Chapter 11.

Table Size: 16TB–64TB

PostgreSQL normally stores its table data in chunks of 8KB. The number of these blocks is
limited to a 32-bit signed integer (just over two billion), giving a maximum table size of 16TB.
The basic block size can be increased when PostgreSQL is built, up to a maximum of 32KB,
thereby giving a theoretical table size limit of 64TB.

Some operating systems impose a file size limit that prevent files of this size from being
created, so PostgreSQL stores table data in multiple files, each 1GB in size. For large tables, this
will result in many files and potential operating system performance degradation, as noted
earlier.

Rows in a Table: No Limit

PostgreSQL does not impose a limit on the number of rows in any table.

Table Indexes: No Limit

There is no PostgreSQL-imposed limit on the number of indexes you can create on a table.
Of course, performance may degrade if you choose to create more and more indexes on a table
with more and more columns.

Field Size: 1GB

PostgreSQL has a limit of 1GB for the size of any one field in a table. In practice, the limit comes
from the amount of memory available for the server to manipulate the data and transfer it to
the client.

Columns in a Table: 250+

The maximum number of columns that can be accommodated in a PostgreSQL table depends
on the configured block size and the type of the column. For the default block size of 8KB, at
least 250 columns can be stored. This can rise to 1,600 columns if all of the columns are very
simple fields, such as integer values. Increasing the block size increases these limits accordingly.

Row Size: No Limit

There is no explicit maximum size of a row. But, of course, the size of columns and their
number are limited as described in the preceding text.

MatthewStones_4789AppA.fm Page 544 Tuesday, March 1, 2005 2:01 PM

545

■ ■ ■

A P P E N D I X B

PostgreSQL Data Types

PostgreSQL has a particularly rich set of data types, which are described in Chapter 11 of this
book, as well as in Chapter 8 of the PostgreSQL documentation.

In this appendix, we list the more useful types, ignoring some of the very specialized types
and those types used only internally by PostgreSQL. Use \dT (or \dT+ for even more detail) from
psql for a definitive list of types.

In the tables in this appendix, the standard SQL name appears first, which PostgreSQL
generally accepts, followed by any PostgreSQL-specific alternative names. Some types are
specific to PostgreSQL and in such cases, no SQL standard name is given in the tables.

As long as it’s practical, we suggest that you stick to the standard SQL types and names.
Some of the official SQL names are almost invariably shortened in real use; for example int for
integer, bool for boolean, and varchar for character varying. We have adhered to the common
convention of using the shorter name in this book.

Logical Types
Table B-1 shows the PostgreSQL logical data type: boolean. Note that boolean was not officially
added to the SQL language until the SQL99 standard, although it was in common use long
before that.

Table B-1. PostgreSQL Logical Data Type

SQL Name PostgreSQL Alternative Name Notes

boolean bool Holds a truth value. Will accept values such as
TRUE, 't', 'true', 'y', 'yes', and '1' as true.
Uses 1 byte of storage, and can store NULL,
unlike a few proprietary databases.

MatthewStones_4789AppB.fm Page 545 Friday, March 4, 2005 6:33 PM

546 A P P E N D I X B ■ P O S T G R E S Q L D A T A T Y P E S

Exact Number Types
Table B-2 shows the PostgreSQL exact number data types.

Approximate Number Types
Table B-3 shows the PostgreSQL approximate number data types. Note that the decimal type is
just an alias for numeric, which is the term used by the SQL standard and generally preferred.
Similarly, rather than float, use real or double precision.

Table B-2. postgresql Exact Number Types

SQL Name PostgreSQL
Alternative Name

Notes

smallint int2 A signed 2-byte integer that can store
–32768 to +32767.

integer, int int4 A signed 4-byte integer that can store
–2147483648 to +2147483647.

bigint int8 A signed 8-byte integer, giving
approximately 18 digits of precision.

bit bit Stores a single bit, 0 or 1. To insert
into a table, use syntax such as
INSERT INTO … VALUES(B'1');.

bit varying varbit(n) Stores a string of bits. To insert into a
table, use syntax such as INSERT INTO
… VALUES(B'011101'); .

Table B-3. PostgreSQL Approximate Number Types

SQL Name PostgreSQL
Alternative Name

Notes

numeric (precision, scale) Stores an exact number to the
precision specified. The user guide
states there is no limit to the precision
that may be specified.

real float4 A 4-byte, single-precision,
floating-point number.

double precision float8 An 8-byte, double-precision,
floating-point number.

money Equivalent to numeric(9,2), storing 4
bytes of data. Its use is discouraged,
as it is deprecated and support may
be dropped in the future.

MatthewStones_4789AppB.fm Page 546 Friday, March 4, 2005 6:33 PM

A P P E N D I X B ■ P O S T G R E S Q L D A T A T Y P E S 547

Temporal Types
Table B-4 shows the PostgreSQL data types for date and time.

Character Types
Table B-5 shows the PostgreSQL character data types.

Table B-4. PostgreSQL Types for Date and Time

SQL Name PostgreSQL
Alternative Name

Notes

timestamp datetime Stores dates and times from 4713 BC to 1465001 AD, with a reso-
lution of 1 microsecond. You may also see timestamptz used
sometimes in PostgreSQL, which is a shorthand for timestamp
with time zone.

interval interval Stores an interval of approximately +/– 178,000,000 years,
with a resolution of 1 microsecond.

date date Stores dates from 4713 BC to 32767 AD, with a resolution
of 1 day.

time time Stores a time of day, from 0 to 23:59:59.99, with a resolution
of 1 microsecond.

Table B-5. PostgreSQL Character Types

SQL Name PostgreSQL
Alternative Name

Notes

char, character bpchar Stores a single character.

char(n) bpchar(n) Stores exactly n characters, which will be padded with
blanks if fewer characters are actually stored.

character varying(n) varchar(n) Stores a variable number of characters, up to a
maximum of n characters, which are not padded
with blanks. This is the standard choice for character
strings.

text A PostgreSQL-specific variant of varchar, which does
not require you to specify an upper limit on the number
of characters.

MatthewStones_4789AppB.fm Page 547 Friday, March 4, 2005 6:33 PM

548 A P P E N D I X B ■ P O S T G R E S Q L D A T A T Y P E S

Geometric Types
Table B-6 shows the PostgreSQL geometric data types. These are specific to PostgreSQL, so
there are no SQL names listed.

Miscellaneous PostgreSQL Types
As shown in Table B-7, PostgreSQL has some other data types, which do not fit into the previous
categories. SQL names are not applicable to these types.

Note that PostgreSQL does not implement the serial type as a separate type, although it
accepts the conventional SQL syntax. Internally PostgreSQL uses an integer to store the value
and a sequence to manage the automatic incrementing of the value. When a table is created
with a serial type, an implicit sequence (named using an underscore separated combination
of the table name, the column name, and seq) is created to manage the serial data column.
This implicit sequence will be dropped automatically if the table is dropped.

The cidr type refers to Classless Inter-Domain Routing (CIDR). This is a newer standard
for IP addressing. This is in contrast to the original form of IP address assignment, which uses
three classes—A, B, and C—that have a network part of 8, 16, and 24 bits, respectively, allowing
16.7 million, 65 thousand, and 254 hosts per network, respectively. CIDR allows network masks
of any size, so you can better allocate IP addresses and route between them in a hierarchical
fashion.

Table B-6. PostgreSQL Geometric Types

PostgreSQL Name Notes

point An x,y value

line A line (pt1, pt2)

lseg A line segment (pt1, pt2)

box A box specified by a pair of points

path A sequence of points, which may be closed or open

polygon A sequence of points, effectively a closed path

circle A point and a length, which specify a circle

MatthewStones_4789AppB.fm Page 548 Friday, March 4, 2005 6:33 PM

A P P E N D I X B ■ P O S T G R E S Q L D A T A T Y P E S 549

Table B-7. Other PostgreSQL Types

PostgreSQL Name Notes

serial In conventional SQL usage, a serial (or auto-incrementing integer) is
a numeric column in a table that increases each time a row is added.

oid An object identifier. Internally, PostgreSQL adds, by default, a hidden
oid to each row, and stores a 4-byte integer, giving a maximum value of
approximately 4 billion. This type is also used as a reference when
storing binary large objects. We recommend you do not use this type
or rely on its existence.

cidr Stores a network address of the form x.x.x.x/y where y is the netmask.

inet Similar to cidr, except the host part can be 0.

macaddr A MAC address of the form XX:XX:XX:XX:XX:XX.

MatthewStones_4789AppB.fm Page 549 Friday, March 4, 2005 6:33 PM

MatthewStones_4789AppB.fm Page 550 Friday, March 4, 2005 6:33 PM

551

■ ■ ■

A P P E N D I X C

PostgreSQL SQL Syntax
Reference

This appendix presents a list of the PostgreSQL commands, followed by the syntax for each of
these commands. This set of commands is taken from the psql command-line tool. Using psql,
you can generate the complete list of commands by using the \help command. For the syntax
of a specific command, use \help <command>.

More detailed explanations are available in Part VI (Reference), Section I (SQL Commands)
of the PostgreSQL manual.

PostgreSQL SQL Commands

ABORT CREATE INDEX DROP TYPE

ALTER AGGREGATE CREATE LANGUAGE DROP USER

ALTER CONVERSION CREATE OPERATOR CLASS DROP VIEW

ALTER DATABASE CREATE OPERATOR END

ALTER DOMAIN CREATE RULE EXECUTE

ALTER FUNCTION CREATE SCHEMA EXPLAIN

ALTER GROUP CREATE SEQUENCE FETCH

ALTER INDEX CREATE TABLE GRANT

ALTER LANGUAGE CREATE TABLE AS INSERT

ALTER OPERATOR CLASS CREATE TABLESPACE LISTEN

ALTER OPERATOR CREATE TRIGGER LOAD

ALTER SCHEMA CREATE TYPE LOCK

ALTER SEQUENCE CREATE USER MOVE

ALTER TABLE CREATE VIEW NOTIFY

ALTER TABLESPACE DEALLOCATE PREPARE

ALTER TRIGGER DECLARE REINDEX

MatthewStones_4789AppC.fm Page 551 Tuesday, March 1, 2005 3:44 PM

552 A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E

PostgreSQL SQL Syntax

ABORT

Abort the current transaction.

ABORT [WORK | TRANSACTION]

ALTER AGGREGATE

Change the definition of an aggregate function.

ALTER AGGREGATE name (type) RENAME TO new_name
ALTER AGGREGATE name (type) OWNER TO new_owner

ALTER CONVERSION

Change the definition of a conversion.

ALTER CONVERSION name RENAME TO new_name
ALTER CONVERSION name OWNER TO new_owner

ALTER TYPE DELETE RELEASE SAVEPOINT

ALTER USER DROP AGGREGATE RESET

ANALYZE DROP CAST REVOKE

BEGIN DROP CONVERSION ROLLBACK

CHECKPOINT DROP DATABASE ROLLBACK TO SAVEPOINT

CLOSE DROP DOMAIN SAVEPOINT

CLUSTER DROP FUNCTION SELECT

COMMENT DROP GROUP SELECT INTO

COMMIT DROP INDEX SET

COPY DROP LANGUAGE SET CONSTRAINTS

CREATE AGGREGATE DROP OPERATOR SET SESSION AUTHORIZATION

CREATE CAST DROP OPERATOR CLASS SET TRANSACTION

CREATE CONSTRAINT TRIGGER DROP RULE SHOW

CREATE CONVERSION DROP SCHEMA START TRANSACTION

CREATE DATABASE DROP SEQUENCE TRUNCATE

CREATE DOMAIN DROP TABLE UNLISTEN

CREATE FUNCTION DROP TABLESPACE UPDATE

CREATE GROUP DROP TRIGGER VACUUM

MatthewStones_4789AppC.fm Page 552 Tuesday, March 1, 2005 3:44 PM

A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E 553

ALTER DATABASE

Change a database.

ALTER DATABASE name SET parameter { TO | = } { value | DEFAULT }
ALTER DATABASE name RESET parameter
ALTER DATABASE name RENAME TO new_name
ALTER DATABASE name OWNER TO new_owner

ALTER DOMAIN

Change the definition of a domain.

ALTER DOMAIN name
 { SET DEFAULT expression | DROP DEFAULT }
ALTER DOMAIN name
 { SET | DROP } NOT NULL
ALTER DOMAIN name
 ADD domain_constraint
ALTER DOMAIN name
 DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]
ALTER DOMAIN name
 OWNER TO new_owner

ALTER FUNCTION

Change the definition of a function.

ALTER FUNCTION name ([type [, ...]]) RENAME TO new_name
ALTER FUNCTION name ([type [, ...]]) OWNER TO new_owner

ALTER GROUP

Change a user group.

ALTER GROUP groupname ADD USER username [, ...]
ALTER GROUP groupname DROP USER username [, ...]
ALTER GROUP groupname RENAME TO new_name

ALTER INDEX

Change the definition of an index.

ALTER INDEX name
 action [, ...]
ALTER INDEX name
 RENAME TO new_name

Where action is one of:

 OWNER TO new_owner
 SET TABLESPACE indexspace_name

MatthewStones_4789AppC.fm Page 553 Tuesday, March 1, 2005 3:44 PM

554 A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E

ALTER LANGUAGE

Change the definition of a procedural language.

ALTER LANGUAGE name RENAME TO new_name

ALTER OPERATOR

Change the definition of an operator.

ALTER OPERATOR name ({ lefttype | NONE } , { righttype | NONE })
 OWNER TO new_owner

ALTER OPERATOR CLASS

Change the definition of an operator class.

ALTER OPERATOR CLASS name USING index_method RENAME TO new_name
ALTER OPERATOR CLASS name USING index_method OWNER TO new_owner

ALTER SCHEMA

Change the definition of a schema.

ALTER SCHEMA name RENAME TO new_name
ALTER SCHEMA name OWNER TO new_owner

ALTER SEQUENCE

Change the definition of a sequence generator.

ALTER SEQUENCE name [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [RESTART [WITH] start] [CACHE cache] [[NO] CYCLE]

ALTER TABLE

Change the definition of a table.

ALTER TABLE [ONLY] name [*]
 action [, ...]
ALTER TABLE [ONLY] name [*]
 RENAME [COLUMN] column TO new_column
ALTER TABLE name
 RENAME TO new_name

MatthewStones_4789AppC.fm Page 554 Tuesday, March 1, 2005 3:44 PM

A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E 555

Where action is one of:

 ADD [COLUMN] column_type [column_constraint [...]]
 DROP [COLUMN] column [RESTRICT | CASCADE]
 ALTER [COLUMN] column TYPE type [USING expression]
 ALTER [COLUMN] column SET DEFAULT expression
 ALTER [COLUMN] column DROP DEFAULT
 ALTER [COLUMN] column { SET | DROP } NOT NULL
 ALTER [COLUMN] column SET STATISTICS integer
 ALTER [COLUMN] column SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN }
 ADD table_constraint
 DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET WITHOUT OIDS
 OWNER TO new_owner
 SET TABLESPACE tablespace_name

ALTER TABLESPACE

Change the definition of a tablespace.

ALTER TABLESPACE name RENAME TO new_name
ALTER TABLESPACE name OWNER TO new_owner

ALTER TRIGGER

Change the definition of a trigger.

ALTER TRIGGER name ON table RENAME TO new_name

ALTER TYPE

Change the definition of a type.

ALTER TYPE name OWNER TO new_owner

ALTER USER

Change a database user account.

ALTER USER name [[WITH] option [...]]
ALTER USER name RENAME TO new_name
ALTER USER name SET parameter { TO | = } { value | DEFAULT }
ALTER USER name RESET parameter

Where option can be:

 [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | CREATEDB | NOCREATEDB
 | CREATEUSER | NOCREATEUSER
 | VALID UNTIL 'abstime'

MatthewStones_4789AppC.fm Page 555 Tuesday, March 1, 2005 3:44 PM

556 A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E

ANALYZE

Collect statistics about a database.

ANALYZE [VERBOSE] [table [(column [, ...])]]

BEGIN

Start a transaction block.

BEGIN [WORK | TRANSACTION] [transaction_mode [, ...]]

Where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED
 | READ UNCOMMITTED }
 READ WRITE | READ ONLY

CHECKPOINT

Force a transaction log checkpoint.

CHECKPOINT

CLOSE

Close a cursor.

CLOSE name

CLUSTER

Cluster a table according to an index.

CLUSTER index_name ON table_name
CLUSTER table_name
CLUSTER

COMMENT

Define or change the comment of an object.

COMMENT ON
{
 TABLE object_name |
 COLUMN table_name.column_name |
 AGGREGATE agg_name (agg_type) |
 CAST (source_type AS target_type) |
 CONSTRAINT constraint_name ON table_name |
 CONVERSION object_name |
 DATABASE object_name |
 DOMAIN object_name |
 FUNCTION func_name (arg1_type, arg2_type, ...) |

MatthewStones_4789AppC.fm Page 556 Tuesday, March 1, 2005 3:44 PM

A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E 557

 INDEX object_name |
 LARGE OBJECT large_object_oid |
 OPERATOR op (left_operand_type, right_operand_type) |
 OPERATOR CLASS object_name USING index_method |
 [PROCEDURAL] LANGUAGE object_name |
 RULE rule_name ON table_name |
 SCHEMA object_name |
 SEQUENCE object_name |
 TRIGGER trigger_name ON table_name |
 TYPE object_name |
 VIEW object_name
} IS 'text'

COMMIT

Commit the current transaction.

COMMIT [WORK | TRANSACTION]

COPY

Copy data between a file and a table.

COPY table_name [(column [, ...])]
 FROM { 'filename' | STDIN }
 [[WITH]
 [BINARY]
 [OIDS]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [CSV [QUOTE [AS] 'quote']
 [ESCAPE [AS] 'escape']
 [FORCE NOT NULL column [, ...]]

COPY table_name [(column [, ...])]
 TO { 'filename' | STDOUT }
 [[WITH]
 [BINARY]
 [OIDS]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [CSV [QUOTE [AS] 'quote']
 [ESCAPE [AS] 'escape']
 [FORCE QUOTE column [, ...]]

MatthewStones_4789AppC.fm Page 557 Tuesday, March 1, 2005 3:44 PM

558 A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E

CREATE AGGREGATE

Define a new aggregate function.

CREATE AGGREGATE name (
 BASETYPE = input_data_type,
 SFUNC = sfunc,
 STYPE = state_data_type
 [, FINALFUNC = ffunc]
 [, INITCOND = initial_condition]
)

CREATE CAST

Define a new cast.

CREATE CAST (source_type AS target_type)
 WITH FUNCTION func_name (arg_types)
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
 WITHOUT FUNCTION
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CONSTRAINT TRIGGER

Define a new constraint trigger.

CREATE CONSTRAINT TRIGGER name
 AFTER events ON
 table_name constraint attributes
 FOR EACH ROW EXECUTE PROCEDURE func_name (args)

CREATE CONVERSION

Define a new conversion.

CREATE [DEFAULT] CONVERSION name
 FOR source_encoding TO dest_encoding FROM func_name

CREATE DATABASE

Create a new database.

CREATE DATABASE name
 [[WITH] [OWNER [=] db_owner]
 [TEMPLATE [=] template]
 [ENCODING [=] encoding]
 [TABLESPACE [=] tablespace]]

MatthewStones_4789AppC.fm Page 558 Tuesday, March 1, 2005 3:44 PM

A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E 559

CREATE DOMAIN

Define a new domain.

CREATE DOMAIN name [AS] data_type
 [DEFAULT expression]
 [constraint [...]]

Where constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL | NULL | CHECK (expression) }

CREATE FUNCTION

Define a new function.

CREATE [OR REPLACE] FUNCTION name ([[arg_name] arg_type [, ...]])
 RETURNS ret_type
 { LANGUAGE lang_name
 | IMMUTABLE | STABLE | VOLATILE
 | CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
 | [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 | AS 'definition'
 | AS 'obj_file', 'link_symbol'
 } ...
 [WITH (attribute [, ...])]

CREATE GROUP

Define a new user group.

CREATE GROUP name [[WITH] option [...]]

Where option can be:

 SYSID gid
 | USER username [, ...]

CREATE INDEX

Define a new index.

CREATE [UNIQUE] INDEX name ON table [USING method]
 ({ column | (expression) } [opclass] [, ...])
 [TABLESPACE tablespace]
 [WHERE predicate]

MatthewStones_4789AppC.fm Page 559 Tuesday, March 1, 2005 3:44 PM

560 A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E

CREATE LANGUAGE

Define a new procedural language.

CREATE [TRUSTED] [PROCEDURAL] LANGUAGE name
 HANDLER call_handler [VALIDATOR val_function]

CREATE OPERATOR

Define a new operator.

CREATE OPERATOR name (
 PROCEDURE = func_name
 [, LEFTARG = left_type] [, RIGHTARG = right_type]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, MERGES]
 [, SORT1 = left_sort_op] [, SORT2 = right_sort_op]
 [, LTCMP = less_than_op] [, GTCMP = greater_than_op]
)

CREATE OPERATOR CLASS

Define a new operator class.

CREATE OPERATOR CLASS name [DEFAULT] FOR TYPE data_type
 USING index_method AS
 { OPERATOR strategy_number operator_name [(op_type, op_type)] [RECHECK]
 | FUNCTION support_number func_name (argument_type [, ...])
 | STORAGE storage_type
 } [, ...]

CREATE RULE

Define a new rewrite rule.

CREATE [OR REPLACE] RULE name AS ON event
 TO table [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command ; command ...) }

CREATE SCHEMA

Define a new schema.

CREATE SCHEMA schema_name
 [AUTHORIZATION username] [schema_element [...]]
CREATE SCHEMA AUTHORIZATION username
 [schema_element [...]]

MatthewStones_4789AppC.fm Page 560 Tuesday, March 1, 2005 3:44 PM

A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E 561

CREATE SEQUENCE

Define a new sequence generator.

CREATE [TEMPORARY | TEMP] SEQUENCE name
 [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start] [CACHE cache] [[NO] CYCLE]

CREATE TABLE

Define a new table.

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP }] TABLE table_name (
 { column_name data_type [DEFAULT default_expr] [column_constraint [...]]
 | table_constraint
 | LIKE parent_table [{ INCLUDING | EXCLUDING } DEFAULTS] } [, ...]
)
[INHERITS (parent_table [, ...])]
[WITH OIDS | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace]

Where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 UNIQUE [USING INDEX TABLESPACE tablespace] |
 PRIMARY KEY [USING INDEX TABLESPACE tablespace] |
 CHECK (expression) |
 REFERENCES ref_table [(ref_column)]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE action] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

And table_constraint is:

[CONSTRAINT constraint_name]
{ UNIQUE (column_name [, ...]) [USING INDEX TABLESPACE tablespace] |
 PRIMARY KEY (column_name [, ...]) [USING INDEX TABLESPACE tablespace] |
 CHECK (expression) |
 FOREIGN KEY (column_name [, ...])
 REFERENCES ref_table [(ref_column [, ...])]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE action] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

MatthewStones_4789AppC.fm Page 561 Tuesday, March 1, 2005 3:44 PM

562 A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E

CREATE TABLE AS

Define a new table from the results of a query.

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP }] TABLE table_name
 [(column_name [, ...])] [[WITH | WITHOUT] OIDS]
 AS query

CREATE TABLESPACE

Define a new tablespace.

CREATE TABLESPACE tablespace_name [OWNER username] LOCATION 'directory'

CREATE TRIGGER

Define a new trigger.

CREATE TRIGGER name { BEFORE | AFTER } { event [OR ...] }
 ON table [FOR [EACH] { ROW | STATEMENT }]
 EXECUTE PROCEDURE func_name (arguments)

CREATE TYPE

Define a new data type.

CREATE TYPE name AS
 (attribute_name data_type [, ...])

CREATE TYPE name (
 INPUT = input_function,
 OUTPUT = output_function
 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, ANALYZE = analyze_function]
 [, INTERNALLENGTH = { internal_length | VARIABLE }]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
 [, DEFAULT = default]
 [, ELEMENT = element]
 [, DELIMITER = delimiter]
)

CREATE USER

Define a new database user account.

CREATE USER name [[WITH] option [...]]

MatthewStones_4789AppC.fm Page 562 Tuesday, March 1, 2005 3:44 PM

A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E 563

Where option can be:

 SYSID uid
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | CREATEDB | NOCREATEDB
 | CREATEUSER | NOCREATEUSER
 | IN GROUP group_name [, ...]
 | VALID UNTIL 'abs_time'

CREATE VIEW

Define a new view.

CREATE [OR REPLACE] VIEW name [(column_name [, ...])] AS query

DEALLOCATE

Deallocate a prepared statement.

DEALLOCATE [PREPARE] plan_name

DECLARE

Define a cursor.

DECLARE name [BINARY] [INSENSITIVE] [[NO] SCROLL]
 CURSOR [{ WITH | WITHOUT } HOLD] FOR query
 [FOR { READ ONLY | UPDATE [OF column [, ...]] }]

DELETE

Delete rows of a table.

DELETE FROM [ONLY] table [WHERE condition]

DROP AGGREGATE

Remove an aggregate function.

DROP AGGREGATE name (type) [CASCADE | RESTRICT]

DROP CAST

Remove a cast.

DROP CAST (source_type AS target_type) [CASCADE | RESTRICT]

DROP CONVERSION

Remove a conversion.

DROP CONVERSION name [CASCADE | RESTRICT]

MatthewStones_4789AppC.fm Page 563 Tuesday, March 1, 2005 3:44 PM

564 A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E

DROP DATABASE

Remove a database.

DROP DATABASE name

DROP DOMAIN

Remove a domain.

DROP DOMAIN name [, ...] [CASCADE | RESTRICT]

DROP FUNCTION

Remove a function.

DROP FUNCTION name ([type [, ...]]) [CASCADE | RESTRICT]

DROP GROUP

Remove a user group.

DROP GROUP name

DROP INDEX

Remove an index.

DROP INDEX name [, ...] [CASCADE | RESTRICT]

DROP LANGUAGE

Remove a procedural language.

DROP [PROCEDURAL] LANGUAGE name [CASCADE | RESTRICT]

DROP OPERATOR

Remove an operator.

DROP OPERATOR name ({ left_type | NONE } , { right_type | NONE })
 [CASCADE | RESTRICT]

DROP OPERATOR CLASS

Remove an operator class.

DROP OPERATOR CLASS name USING index_method [CASCADE | RESTRICT]

DROP RULE

Remove a rewrite rule.

DROP RULE name ON relation [CASCADE | RESTRICT]

MatthewStones_4789AppC.fm Page 564 Tuesday, March 1, 2005 3:44 PM

A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E 565

DROP SCHEMA

Remove a schema.

DROP SCHEMA name [, ...] [CASCADE | RESTRICT]

DROP SEQUENCE

Remove a sequence.

DROP SEQUENCE name [, ...] [CASCADE | RESTRICT]

DROP TABLE

Remove a table.

DROP TABLE name [, ...] [CASCADE | RESTRICT]

DROP TABLESPACE

Remove a tablespace.

DROP TABLESPACE tablespace_name

DROP TRIGGER

Remove a trigger.

DROP TRIGGER name ON table [CASCADE | RESTRICT]

DROP TYPE

Remove a data type.

DROP TYPE name [, ...] [CASCADE | RESTRICT]

DROP USER

Remove a database user account.

DROP USER name

DROP VIEW

Remove a view.

DROP VIEW name [, ...] [CASCADE | RESTRICT]

END

Commit the current transaction.

END [WORK | TRANSACTION]

MatthewStones_4789AppC.fm Page 565 Tuesday, March 1, 2005 3:44 PM

566 A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E

EXECUTE

Execute a prepared statement.

EXECUTE plan_name [(parameter [, ...])]

EXPLAIN

Show the execution plan of a statement.

EXPLAIN [ANALYZE] [VERBOSE] statement

FETCH

Retrieve rows from a query using a cursor.

FETCH [direction { FROM | IN }] cursor_name

Where direction can be empty or one of:

 NEXT
 PRIOR
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL
 BACKWARD
 BACKWARD count
 BACKWARD ALL

GRANT

Define access privileges.

GRANT { { SELECT | INSERT | UPDATE | DELETE | RULE | REFERENCES | TRIGGER }
 [,...] | ALL [PRIVILEGES] }
 ON [TABLE] table_name [, ...]
 TO { username | GROUP group_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | TEMPORARY | TEMP } [,...] | ALL [PRIVILEGES] }
 ON DATABASE db_name [, ...]
 TO { username | GROUP group_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespace_name [, ...]
 TO { username | GROUP group_name | PUBLIC } [, ...] [WITH GRANT OPTION]

MatthewStones_4789AppC.fm Page 566 Tuesday, March 1, 2005 3:44 PM

A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E 567

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTION func_name ([type, ...]) [, ...]
 TO { username | GROUP group_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE lang_name [, ...]
 TO { username | GROUP group_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | USAGE } [,...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 TO { username | GROUP group_name | PUBLIC } [, ...] [WITH GRANT OPTION]

INSERT

Create new rows in a table.

INSERT INTO table [(column [, ...])]
 { DEFAULT VALUES | VALUES ({ expression | DEFAULT } [, ...]) | query }

LISTEN

Listen for a notification.

LISTEN name

LOAD

Load or reload a shared library file.

LOAD 'filename'

LOCK

Lock a table.

LOCK [TABLE] name [, ...] [IN lock_mode MODE] [NOWAIT]

Where lock_mode is one of:

 ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE
 | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE

MOVE

Position a cursor.

MOVE [direction { FROM | IN }] cursor_name

NOTIFY

Generate a notification.

NOTIFY name

MatthewStones_4789AppC.fm Page 567 Tuesday, March 1, 2005 3:44 PM

568 A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E

PREPARE

Prepare a statement for execution.

PREPARE plan_name [(data_type [, ...])] AS statement

REINDEX

Rebuild indexes.

REINDEX { DATABASE | TABLE | INDEX } name [FORCE]

RELEASE SAVEPOINT

Destroy a previously defined savepoint.

RELEASE [SAVEPOINT] savepoint_name

RESET

Restore the value of a runtime parameter to the default value.

RESET name
RESET ALL

REVOKE

Remove access privileges.

REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | DELETE | RULE | REFERENCES | TRIGGER }
 [,...] | ALL [PRIVILEGES] }
 ON [TABLE] table_name [, ...]
 FROM { username | GROUP group_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { CREATE | TEMPORARY | TEMP } [,...] | ALL [PRIVILEGES] }
 ON DATABASE db_name [, ...]
 FROM { username | GROUP group_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

MatthewStones_4789AppC.fm Page 568 Tuesday, March 1, 2005 3:44 PM

A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E 569

REVOKE [GRANT OPTION FOR]
 { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespace_name [, ...]
 FROM { username | GROUP group_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTION func_name ([type, ...]) [, ...]
 FROM { username | GROUP group_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE lang_name [, ...]
 FROM { username | GROUP group_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { CREATE | USAGE } [,...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 FROM { username | GROUP group_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

ROLLBACK

Abort the current transaction.

ROLLBACK [WORK | TRANSACTION]

ROLLBACK TO SAVEPOINT

Roll back to a savepoint.

ROLLBACK [WORK | TRANSACTION] TO [SAVEPOINT] savepoint_name

SAVEPOINT

Define a new savepoint within the current transaction.

SAVEPOINT savepoint_name

MatthewStones_4789AppC.fm Page 569 Tuesday, March 1, 2005 3:44 PM

570 A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E

SELECT

Retrieve rows from a table or view.

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [AS output_name] [, ...]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition [, ...]]
 [{ UNION | INTERSECT | EXCEPT } [ALL] select]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start]
 [FOR UPDATE [OF table_name [, ...]]]

Where from_item can be one of:

 [ONLY] table_name [*] [[AS] alias [(column_alias [, ...])]]
 (select) [AS] alias [(column_alias [, ...])]
 function_name ([argument [, ...]])
 [AS] alias [(column_alias [, ...] | column_definition [, ...])]
 function_name ([argument [, ...]]) AS (column_definition [, ...])
 from_item [NATURAL] join_type from_item
 [ON join_condition | USING (join_column [, ...])]

SELECT INTO

Define a new table from the results of a query.

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [AS output_name] [, ...]
 INTO [TEMPORARY | TEMP] [TABLE] new_table
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition [, ...]]
 [{ UNION | INTERSECT | EXCEPT } [ALL] select]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start]
 [FOR UPDATE [OF table_name [, ...]]]

SET

Change a runtime parameter.

SET [SESSION | LOCAL] name { TO | = } { value | 'value' | DEFAULT }
SET [SESSION | LOCAL] TIME ZONE { time_zone | LOCAL | DEFAULT }

MatthewStones_4789AppC.fm Page 570 Tuesday, March 1, 2005 3:44 PM

A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E 571

SET CONSTRAINTS

Set constraint checking modes for the current transaction.

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

SET SESSION AUTHORIZATION

Set the session user identifier and the current user identifier of the current session.

SET [SESSION | LOCAL] SESSION AUTHORIZATION username
SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT
RESET SESSION AUTHORIZATION

SET TRANSACTION

Set the characteristics of the current transaction.

SET TRANSACTION transaction_mode [, ...]
SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [, ...]

Where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED
 | READ UNCOMMITTED }
 READ WRITE | READ ONLY

SHOW

Show the value of a runtime parameter.

SHOW name
SHOW ALL

START TRANSACTION

Start a transaction block.

START TRANSACTION [transaction_mode [, ...]]

Where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED
 | READ UNCOMMITTED }
 READ WRITE | READ ONLY

TRUNCATE

Empty a table.

TRUNCATE [TABLE] name

MatthewStones_4789AppC.fm Page 571 Tuesday, March 1, 2005 3:44 PM

572 A P P E N D I X C ■ P O S T G R E S Q L S Q L S Y N T A X R E F E R E N C E

UNLISTEN

Stop listening for a notification.

UNLISTEN { name | * }

UPDATE

Update rows of a table.

UPDATE [ONLY] table SET column = { expression | DEFAULT } [, ...]
 [FROM from_list]
 [WHERE condition]

VACUUM

Garbage-collect and optionally analyze a database.

VACUUM [FULL] [FREEZE] [VERBOSE] [table]
VACUUM [FULL] [FREEZE] [VERBOSE] ANALYZE [table [(column [, ...])]]

MatthewStones_4789AppC.fm Page 572 Tuesday, March 1, 2005 3:44 PM

573

■ ■ ■

A P P E N D I X D

psql Reference

This appendix defines the psql command-line options and internal commands. This informa-
tion is taken from the psql command-line tool’s internal help.

Command-Line Options
psql has the following command-line usage:

 psql [options] [dbname [username]]

Table D-1 shows the command-line options.

Table D-1. psql Command-Line Options

Option Meaning

-?, --help Show help, then exit

-a, --echo_all Echo all input from script

-A, --no-align Unaligned table output mode (-P format=unaligned)

-c, --command <command> Run only single command (SQL or internal) and exit

-d, --dbname <dbname> Specify database name to connect to (default: current username)

-e, --echo-queries Echo commands sent to server

-E, --echo-hidden Display queries that internal commands generate

-f, --file <filename> Execute commands from file, then exit

-F, --field-separator <string> Set field separator (default: "|") (-P fieldsep=)

-h, --host <hostname> Database server host or socket directory (default: "local socket")

-H, --html HTML table output mode (-P format=html)

-l, --list List available databases, then exit

-n Disable enhanced command-line editing (readline)

-o, --output <filename> Send query results to file (use -o |program for a pipe)

-p, --port <port> Database server port (default: 5432)

MatthewStones_4789AppD.fm Page 573 Monday, March 7, 2005 7:50 AM

574 A P P E N D I X D ■ P S Q L R E F E R E N C E

Internal Commands
Table D-2 lists the psql internal commands.

-P, --pset var[=arg] Set printing option var to arg (see \pset command)

-q, --quiet Run quietly (no messages, only query output)

-R, --record-separator <string> Set record separator (default: newline) (-P recordsep=)

-s, --single-step Single-step mode (confirm each query)

-S, --single-line Single-line mode (end of line terminates SQL command)

-t, --tuples-only Print rows only (-P tuples_only)

-T, --table-attr <text> Set HTML table tag attributes (width, border) (-P tableattr=)

-U, --username <name> Database username (default: current username)

-v, --set, --variable name=value Set psql variable name to value

-V, --version Output version information, then exit

-W, --password Prompt for password (should happen automatically)

-x, --expanded Turn on expanded table output (-P expanded)

-X, --no-psqlrc Do not read startup file (~/.psqlrc)

Table D-2. psql Internal Commands

Command Meaning

\! <command> Execute command in shell or start interactive shell

\a Toggle between unaligned and aligned output mode

\c[onnect] [<dbname>|- [<user>]] Connect to new database

\C <string> Set table title, or unset if none

\cd <dir> Change the current working directory

\copy Perform SQL COPY with data stream to the client host

\copyright Show PostgreSQL usage and distribution terms

\d, \d+ <name> Describe table, index, sequence, or view (with + gives expanded output)

\d{t|i|s|v|S} <pattern> List tables/indexes/sequences/views/system tables

\da <pattern> List aggregate functions

\db, \db+ <pattern> List tablespaces (with + gives expanded output)

Table D-1. psql Command-Line Options (Continued)

Option Meaning

MatthewStones_4789AppD.fm Page 574 Monday, March 7, 2005 7:50 AM

A P P E N D I X D ■ P S Q L R E F E R E N C E 575

\dc <pattern> List conversions

\dC List casts

\dd <pattern> Show comment for object

\dD <pattern> List domains

\df, \df+ <pattern> List functions (with + gives expanded output)

\dg <pattern> List groups

\dn, \dn+ <pattern> List schemas (with + gives expanded output)

\do <name> List operators

\dl List large objects, same as \lo_list

\dp <pattern> List table, view, and sequence access privileges

\dT, \dT+ <pattern> List data types (with + gives expanded output)

\du <pattern> List users

\e[dit] [<file>] Edit the query buffer (or file) with external editor

\echo <string> Write string to standard output

\encoding [<encoding>] Show or set client encoding

\f [<string>] Show or set field separator for unaligned query output

\g <file> Send query buffer to server (and results to file or |program for a pipe)

\h[elp] [<name>] Help on syntax of SQL commands; * for all commands

\H Toggle HTML output mode

\i <file> Execute commands from file

\l[ist], \l[ist]+ List all databases (with + gives expanded output)

\lo_export <loboid> <file> Export large objects

\lo_import <file> [<comment>] Import large objects

\lo_list List large objects

\lo_unlink <loboid> Delete large objects

\o <file> Send all query results to file or |program for a pipe

\p Show the contents of the query buffer

\pset name [value] Set table output option
(name := {format|border|expanded|fieldsep|footer|
null|recordsep|tuples_only|title|tableattr|pager})

\q Quit psql

\qecho <string> Write string to query output stream (see \o)

Table D-2. psql Internal Commands (Continued)

Command Meaning

MatthewStones_4789AppD.fm Page 575 Monday, March 7, 2005 7:50 AM

576 A P P E N D I X D ■ P S Q L R E F E R E N C E

\r Reset (clear) the query buffer

\s [<file>] Display history or save it to file

\set [<name> [<value>]] Set internal variable, or list all if no parameters

\t Show only rows

\T [<string>] Set HTML <table> tag attributes, or unset if none

\timing Toggle timing of commands

\unset <name> Unset (delete) internal variable

\w <file> Write query buffer to file

\x Toggle expanded output

\z <pattern> List table, view, and sequence access privileges (same as \dp)

Table D-2. psql Internal Commands (Continued)

Command Meaning

MatthewStones_4789AppD.fm Page 576 Monday, March 7, 2005 7:50 AM

577

■ ■ ■

A P P E N D I X E

Database Schema and Tables

The database schema used in the examples in this book is a simplified customer/orders/items
database, as shown in Figure E-1.

Figure E-1. Final schema design

The tables need to be created in an appropriate order so that dependent tables are created
first, because of the foreign key constraints (see Chapter 8). This is the same order to be followed
as data is inserted into the tables. The appropriate order is as follows:

• customer

• orderinfo

• item

• orderline

• stock

• barcode

MatthewStones_4789AppE.fm Page 577 Friday, March 4, 2005 6:34 PM

578 A P P E N D I X E ■ D A T A B A S E S C H E M A A N D T A B L E S

The SQL to create the final version of this sample database, bpfinal, including the foreign key
constraints follows. This code can be found in the download bundle available from the Downloads
section of the Apress web site (http://www.apress.com) as create_tables-bpfinal.sql. The simpli-
fied version, bpsimple (see Chapter 3), excluding the foreign key constraints, can be found in
create_tables-bpsimple.sql.

The download code bundle has the table-population commands, pop-all-tables.sql, in
an appropriate order ready for populating either schema.

Customer table

create table customer
(
 customer_id serial,
 title char(4),
 fname varchar(32),
 lname varchar(32) not null,
 addressline varchar(64),
 town varchar(32),
 zipcode char(10) not null,
 phone varchar(16),
 CONSTRAINT customer_pk PRIMARY KEY(customer_id)
);

Orderinfo table

create table orderinfo
(
 orderinfo_id serial,
 customer_id integer not null,
 date_placed date not null,
 date_shipped date,
 shipping numeric(7,2) ,
 CONSTRAINT orderinfo_pk PRIMARY KEY(orderinfo_id),
 CONSTRAINT orderinfo_customer_id_fk FOREIGN KEY(customer_id) REFERENCES
customer(customer_id)
);

Item table

create table item
(
 item_id serial,
 description varchar(64) not null,
 cost_price numeric(7,2),
 sell_price numeric(7,2),
 CONSTRAINT item_pk PRIMARY KEY(item_id)
);

MatthewStones_4789AppE.fm Page 578 Friday, March 4, 2005 6:34 PM

A P P E N D I X E ■ D A T A B A S E S C H E M A A N D T A B L E S 579

Orderline table

create table orderline
(
 orderinfo_id integer not null,
 item_id integer not null,
 quantity integer not null,
 CONSTRAINT orderline_pk PRIMARY KEY(orderinfo_id,
item_id),
 CONSTRAINT orderline_orderinfo_id_fk FOREIGN KEY(orderinfo_id) REFERENCES
orderinfo(orderinfo_id),
 CONSTRAINT orderline_item_id_fk FOREIGN KEY(item_id) REFERENCES item(item_id)
);

Stock table

create table stock
(
 item_id integer not null,
 quantity integer not null,
 CONSTRAINT stock_pk PRIMARY KEY(item_id),
 CONSTRAINT stock_item_id_fk FOREIGN KEY(item_id) REFERENCES item(item_id)
);

Barcode table

create table barcode
(
 barcode_ean char(13) not null,
 item_id integer not null,
 CONSTRAINT barcode_pk PRIMARY KEY(barcode_ean),
 CONSTRAINT barcode_item_id_fk FOREIGN KEY(item_id) REFERENCES item(item_id)
);

MatthewStones_4789AppE.fm Page 579 Friday, March 4, 2005 6:34 PM

MatthewStones_4789AppE.fm Page 580 Friday, March 4, 2005 6:34 PM

581

■ ■ ■

A P P E N D I X F

Large Objects Support in
PostgreSQL

Traditionally, databases have been able to store data in a limited number of forms, usually as
numeric values (integers, floating point, and fixed point) and text strings. Often, the size of the
text data is limited. In the past, even PostgreSQL enforced a limit of a few thousand characters
as the maximum length of a field.

It might be useful to be able to create a database application that can handle arbitrary
unstructured data formats, such as images. As an example of how to handle large data items,
we will consider how we might add photographs to a database. There are several ways we could
do this:

• Use links into a file system or the Web

• Use encoded long text strings

• Use BLOBs

We will look at each of these approaches in this appendix, using the sample database we
built in this book, bpfinal (see Chapter 8 and Appendix E for details on the bpfinal schema).
We will see how we might add images of products, so that our web-based interface could
provide an online catalog.

Using Links
Our first option is to avoid storing images in the physical database at all. The idea is to place all
of the images in the normal filing system of a server, which may be the database server, a file
sharing server, or a web server. The database itself then only needs to contain a text link to the
file. Any client application would follow the link to retrieve the image.

We need to create an additional table in the database to store the image links. It is very
similar to the stock table in that we are providing additional information for each item we carry:

MatthewStones_4789AppF.fm Page 581 Tuesday, March 1, 2005 3:53 PM

582 A P P E N D I X F ■ L A R G E O B J E C T S S U P P O R T I N P O S T G R E S Q L

CREATE TABLE image
(
 item_id integer NOT NULL,
 picture varchar(512),
 CONSTRAINT image_pk PRIMARY KEY(item_id),
 CONSTRAINT image_item_id_fk FOREIGN KEY(item_id)
 REFERENCES item(item_id)
);

Here, we have added constraints to ensure that we can add images only for items that exist.
Now we can update the image table with links to product photographs:

INSERT INTO image VALUES (3, 'http://server/images/rubik.jpg');
INSERT INTO image VALUES (9, '//server/images/coin.bmp');
INSERT INTO image VALUES (5, '/mnt/server/images/frame.png');

This solution has both advantages and disadvantages. Storing links rather than pictures
means that the database size is kept to a minimum and applications will be portable to other
database systems, as we have not used any esoteric features to handle images. Furthermore,
retrieving the actual images will also be very fast, as reading a file from the file system will typi-
cally be many times faster than querying a database. Also we have a wide choice of locations for
storing the images. In this example, we have used the following:

• A URL to provide a link into a web server

• A UNC file reference for a Windows file server

• A reference to an NFS-mounted UNIX server

However, by using links we are unable to enforce referential integrity in the database. If the
images that are stored elsewhere are changed or deleted, the database is not automatically
updated. To back up our system, we will need to attend to image files on the file system (and
elsewhere), as well as the database itself. We must also ensure that the links we use are in a
form that all possible clients can use. For example, the NFS form requires that all clients
access the shared files in the same way and have access rights on the server.

Using Encoded Text Strings
In PostgreSQL 7.1, the limit on the size of a field was raised to 1GB. For all practical purposes,
this is effectively unlimited. We could consider using the text type to store the images in the
database directly. This is possible, if a little tricky.

Images are in general binary data, not well suited to a character type. So, we need to encode
the image in some way, perhaps by using hexadecimal or MIME encoding. Handling the very
long strings that result may also cause a problem with limits imposed by client applications,
network transport mechanisms, or ODBC drivers. The storage space needed for encoded
strings will also be up to double the size of the binary image file.

MatthewStones_4789AppF.fm Page 582 Tuesday, March 1, 2005 3:53 PM

A P P E N D I X F ■ L A R G E O B J E C T S S U P P O R T I N P O S T G R E S Q L 583

Using BLOBs
One of the wide variety of data types PostgreSQL currently supports is the binary large object,
or BLOB, which is suitable for storing large data items. This allows us to create a database
application that can handle arbitrary unstructured data formats, such as images. Thus, we can
store our image data, or any large or binary data object, in a PostgreSQL database by using BLOBs.

PostgreSQL supports a column type of oid, which is an object identifier, a reference to
arbitrary data. These are used to manage the BLOBs and can be used to transfer the contents of
any file into the database, and to extract an object from the database into a file. They can there-
fore be used to handle our product images, or any other data that we might wish to store.

We can modify the sample image table definition from earlier in this appendix to use BLOBs
by specifying oid as the image data type:

CREATE TABLE image
(
 item_id integer NOT NULL,
 picture oid,
 CONSTRAINT image_pk PRIMARY KEY(item_id),
 CONSTRAINT image_item_id_fk FOREIGN KEY(item_id) REFERENCES item(item_id)
);

Importing and Exporting Images
PostgreSQL provides a number of functions that can be used in SQL queries for inserting into,
retrieving from, and deleting BLOB data in a table.

To add an image to the table, we can use the SQL function lo_import, like this:

INSERT INTO image VALUES (3, lo_import('/tmp/image.jpg'));

The contents of the specified file are read into a BLOB object and stored in the database.
The image table will now have a non-NULL oid that references the BLOB:

bpfinal=# SELECT * FROM image;
 item_id | picture
---------+---------
 3 | 163055
(1 row)

bpfinal=#

We can see all of the large objects stored in the database by using a psql internal command,
\lo_list, or \dl, to list them:

bpfinal=# \dl
 Large objects
 ID | Description
--------+-------------
 163055 |
(1 row)

bpfinal=#

MatthewStones_4789AppF.fm Page 583 Tuesday, March 1, 2005 3:53 PM

584 A P P E N D I X F ■ L A R G E O B J E C T S S U P P O R T I N P O S T G R E S Q L

Large objects are retrieved from the database using lo_export, which writes a file containing
the contents of the BLOB:

bpfinal=# SELECT lo_export(picture, '/tmp/image2.jpg')
bpfinal-# FROM image WHERE item_id = 3;
 lo_export

 1
(1 row)

bpfinal=#

We can delete a large object from the database with lo_unlink:

bpfinal=# SELECT lo_unlink(picture) FROM image WHERE item_id = 3;
 lo_unlink

 1
(1 row)

bpfinal=# \dl
 Large objects
 ID | Description
----+-------------
(0 rows)

bpfinal=#

We must be careful when we delete large objects, as any references to the BLOB will remain:

bpfinal=# SELECT * FROM image;
 item_id | picture
---------+---------
 3 | 163055
(1 row)

bpfinal=#

As operations on a large object and its object identifier are essentially decoupled, we must
make sure to take care of both when manipulating BLOBs. So, when deleting a BLOB, we should
set the object reference to NULL to prevent errors in our client applications:

bpfinal=# UPDATE image SET picture=NULL WHERE item_id = 3;

In the examples here, we have used psql to manipulate binary objects. It is important to
understand that the import and export functions lo_import and lo_export are executed by the
back-end database server, not by psql. Any client application using SQL statements can use
these SQL functions to add and update BLOBs.

There are three caveats when importing and exporting BLOBs:

MatthewStones_4789AppF.fm Page 584 Tuesday, March 1, 2005 3:53 PM

A P P E N D I X F ■ L A R G E O B J E C T S S U P P O R T I N P O S T G R E S Q L 585

• As the import is performed by the server, the files read and written by the import and
export must be specified using a path and filename that are accessible to the server,
rather than the client. If in psql we had simply said this:

INSERT INTO image VALUES (3, lo_import('image.jpg'));

and expected PostgreSQL to insert the contents of a file in the current directory, we would
have received an error message. This is because the import fails to find the file. We need
to arrange that files for import are (temporarily) placed in a location that the server can
access. Similarly, we need to use full filenames for exporting binary objects.

• Exported files must be placed in a directory that the server user can write; that is, a location
where the operating system user postgres has permission to create files.

• All large object manipulation must take place within a SQL transaction—between BEGIN
and COMMIT or END statements. By default, psql executes each SQL statement in its own
transaction, so this is not a problem, but client applications that perform imports and
exports must be written with transactions.

Remote Importing and Exporting
Because the SQL functions lo_import and lo_export use the server file system, using them can
be inconvenient when creating BLOBs. However, psql contains internal commands that can
be used to import and export binary objects from a remote client machine.

We can add a BLOB to the database by using \lo_import and passing it a local filename. In
this case, files in the current directory will work just fine, and we can see the object listed with
\lo_list:

bpfinal=# \lo_import image.jpg
lo_import 163059
bpfinal=# \lo_list
 Large objects
 ID | Description
--------+-------------
 163059 |
(1 row)

bpfinal=#

Now we need to associate the BLOB with the image table by updating the appropriate row:

bpfinal=# UPDATE image SET picture=163059 WHERE item_id = 3;
UPDATE 1
bpfinal=# SELECT * FROM image;
 item_id | picture
---------+---------
 3 | 163059
(1 row)

bpfinal=#

MatthewStones_4789AppF.fm Page 585 Tuesday, March 1, 2005 3:53 PM

586 A P P E N D I X F ■ L A R G E O B J E C T S S U P P O R T I N P O S T G R E S Q L

We can extract a BLOB with \lo_export, specifying the required object identifier and a file
to write. Again, a local filename is fine:

bpfinal=# \lo_export 163059 image2.jpg
lo_export

bpfinal=#

Finally, we can delete a large object with \lo_unlink:

bpfinal=# \lo_unlink 163059
lo_unlink 163059

bpfinal=#

Programming BLOBs
As you might expect, it is possible to use BLOB import and export functions from the programming
languages supported by PostgreSQL.

From C, using the libpq library (see Chapter 13), we can use the functions lo_import,
lo_export, and lo_unlink in much the same way as described in the preceding sections:

Oid lo_import(PGconn *conn, const char *filename);
int lo_export(PGconn *conn, Oid lobjId, const char *filename);
int lo_unlink(PGconn *conn, Oid lobjId);

Here is a sample program that imports an image file into the database. Note that the large
object functions must be called within a transaction:

#include <stdlib.h>
#include <libpq-fe.h>

int main()
{
 PGconn *myconnection = PQconnectdb("");
 PGresult *res;
 Oid blob;

 if(PQstatus(myconnection) == CONNECTION_OK)
 printf("connection made\n");
 else
 printf("connection failed\n");

 res = PQexec(myconnection, "begin");
 PQclear(res);

 blob = lo_import(myconnection, "image.jpg");
 printf("import returned oid %d\n", blob);

MatthewStones_4789AppF.fm Page 586 Tuesday, March 1, 2005 3:53 PM

A P P E N D I X F ■ L A R G E O B J E C T S S U P P O R T I N P O S T G R E S Q L 587

 res = PQexec(myconnection, "end");
 PQclear(res);

 PQfinish(myconnection);
 return EXIT_SUCCESS;
}

When we compile and run the program, we can see the new binary object identifier reported.
(This program is included in the sample programs for Chapter 13.)

$ make import
cc -I/usr/local/pgsql/include -L/usr/local/pgsql/lib -lpq import.c -o import
$ PGDATABASE=bpfinal ./import
connection made
import returned oid 163066
$

BLOBs can be imported and exported from other languages in similar ways.
For finer control over large object access, PostgreSQL provides a suite of low-level functions

akin to open, read, write, and others for ordinary files:

int lo_open(PGconn *conn, Oid lobjId, int mode);
int lo_close(PGconn *conn, int fd);
int lo_read(PGconn *conn, int fd, char *buf, size_t len);
int lo_write(PGconn *conn, int fd, char *buf, size_t len);
int lo_lseek(PGconn *conn, int fd, int offset, int whence);
Oid lo_creat(PGconn *conn, int mode);
int lo_tell(PGconn *conn, int fd);

Refer to the online documentation for more details on these functions.

MatthewStones_4789AppF.fm Page 587 Tuesday, March 1, 2005 3:53 PM

MatthewStones_4789AppF.fm Page 588 Tuesday, March 1, 2005 3:53 PM

589

INDEX

■Symbols
! command (\!), psql, 121, 574
% (percentage) character

pattern matching in SELECT, 91
* (asterisk) character

SELECT statement, 79
.NET Framework

open source implementation of, 520
? command (\?), psql, 78, 115, 119
? option (-?), psql, 573
\ (backslash) character

see under escape characters
@ symbol

PHP error suppression, 458
_ (underscore) character

pattern matching in SELECT, 91

■A
a command (\a), psql, 119, 574
a option (-a)

createuser utility, 323
pg_dump utility, 341
pg_restore utility, 342
vacuumdb utility, 351

A option (-A), psql, 118, 573
a option (-a), psql, 118, 573
ABORT command, 552
abs function, 214, 274
absolute method

ResultSet interface, java.sql, 503
absolute value operator, 271
acceptsURL method

Driver interface, java.sql, 498
Access

see Microsoft Access
access permissions

listing, 121
accessing data

see data access
accessing PostgreSQL

see under PostgreSQL
ACID rules, transactions, 246–247

acos function, 275
add_one function, 279
addBatch method

Statement interface, java.sql, 510
adding data to database

see INSERT statement
see also data handling; inserting data

into database
addition operator, 271

operator precedence, 270
addresses

database design, 364
administration, 309–356

database backup and recovery, 338–346
database initialization, 317–318
database performance, 347–356
PostgreSQL internal configuration, 320–338
server control, 318–320
system configuration, 309–316

ADO.NET objects
relationships between, 537

AFTER triggers, 300
afterLast method

ResultSet interface, java.sql, 504
aggregate functions, SELECT, 173–185

avg function, 184–185
count function, 174–182
GROUP BY clause, 174, 176–178

using with HAVING clause, 179
HAVING clause, 174, 178–181
max function, 183–184
median function, 185
min function, 182–183
mode function, 185
NULL values, 183
optional clauses, 174
standard deviation functions, 174
sum function, 184
table listing of, 174
variance functions, 174
WHERE clause and, 178

MatthewStones_4789Index.fm Page 589 Wednesday, March 9, 2005 1:01 PM

590 ■I N D E X

aggregates
ALTER AGGREGATE, 552
CREATE AGGREGATE, 558
DROP AGGREGATE, 563
listing, 119

aliases
column aliases in SELECT, 81
correlated subqueries, 189
table name aliases, 105
used in subquery, 187

ALIAS declaration, 285
aligned table output mode, psql

toggling between unaligned and, 119
ALL privilege

grantable privileges, 337
allow rules

pg_hba.conf file, 312
ALTER AGGREGATE command, 552
ALTER CONVERSION command, 552
ALTER DATABASE command, 329, 553
ALTER DOMAIN command, 553
ALTER FUNCTION command, 553
ALTER GROUP command, 325, 553
ALTER INDEX command, 553
ALTER LANGUAGE command, 554
ALTER OPERATOR CLASS command, 554
ALTER OPERATOR command, 554
ALTER SCHEMA command, 554
ALTER SEQUENCE command, 554
ALTER TABLE command, 224–227, 554

foreign key constraint, 235
ALTER TABLESPACE command, 327, 555
ALTER TRIGGER command, 555
ALTER TYPE command, 555
ALTER USER command, 323, 555
ANALYZE command, 556
ANALYZE option

EXPLAIN statement, 350
VACUUM command, 349

AND (Binary AND) operator, 271
AND conditional operator

choosing rows in SELECT, 88, 89
operator precedence, 270
relating tables, 102, 108

ANSI isolation levels, transactions, 260–261
anti-logarithm operator, 270
APIs, data access with, 15

applications directory
adding to execution path, 58
installing on Windows, 59

approximate number data types, 546
architecture, 13, 14
arguments

see also parameters
ecpg, 424
PL/pgSQL functions, 283

arithmetic operators, 270–271
precedence, 269
unary arithmetic operators, 271

array operator
operator precedence, 270

arrays, 210–212
PostgreSQL style, 210
SQL99 style, 211

AS keyword
changing data type, 86
column aliases, 81, 82

ASC keyword
ORDER BY clause in SELECT, 81, 82, 83

default sort order, 82
asin function, 275
assignments

stored procedures, 288
PERFORM statement, 289
SELECT INTO statement, 288

associativity of operators, 269
asterisk (*)

SELECT statement using, 79
asynchronous working

using libpq, 411–417
canceling queries, 415
executing queries, 412
making asynchronous database

connection, 415
atan functions, 275
atomicity

ACID transaction rules, 246
RDBMS, 7

audit trails, 11
authentication

pg_hba.conf file, 311, 312
name mapping, 311
prompting for superuser password, 317
trust mechanism, 55

authentication_timeout option
PostgreSQL.conf file, 314

MatthewStones_4789Index.fm Page 590 Wednesday, March 9, 2005 1:01 PM

591■I N D E X

AUTHORIZATION syntax
CREATE SCHEMA command, 332
SET SESSION AUTHORIZATION, 571

available_drivers function, Perl DBI, 483
avg function, 184–185

description, 174
DISTINCT keyword, 185
NULL values, 184
used in subquery, 186

■B
B option (-B)

postmaster.opts file, 316
background processes

running processes on Linux and UNIX, 318
backslash (\)

see under escape characters
backups

creating backup, 339–341
database backup and recovery, 338–346
pgAdmin III tool, 128, 343–346
restoring from backup, 341–343
utility to back up database, 311

barcode table
creating table, 68, 579
identifying primary keys, 372
populating sample database tables, 70

base directory
Linux and Windows, 309, 310
subdirectories, 310

batches, SQL
java.sql.Statement interface, 509

BatchUpdateException class
JDBC API, 494

BEFORE triggers, 300
beforeFirst method

ResultSet interface, java.sql, 504
BEGIN ... COMMIT blocks

ecpg programs, 424
transactions, 244

BEGIN ... END blocks, 556
loops, 293

BeginTransaction method
NpgsqlConnection class, 522

Berkeley Software Distribution (BSD)
open-source software, 15

BETWEEN keyword
choosing rows in SELECT, 89, 90
letter range comparison behavior, 90
operator precedence, 270

bigint data type, 546
bin directory

executable files, 310
PostgreSQL installation, 47
system configuration, 310, 311

binary packages
installing PostgreSQL on Linux, 44

binary values
libpq using, 411

binding parameters
using Perl DBI, 481–483

bindir option
configure script, 51
pg_config command, 52

bit data type, 546
BLOBs (binary large objects)

deleting, 584
importing and exporting images, 583–585
programming BLOBs, 586, 587
remote importing and exporting, 585–586
support for large objects, 583–587

block comments, 284
block-structured languages, 282
boolean data type, 202–204, 545
box data type, 209, 548
bpchar data type, 547
bpfinal

design, 238
schema, 577–579

bpsimple database
creating sample database, 64

buffers
psql command resetting, 78
setting number used, 314

shared memory buffers, 316
built-in functions, 273–275

listing, 273
mathematical functions, 274
operator equivalents, 274

bundles, 469
business rules

implementing, 377

■C
C command (\C), psql, 119, 574
c command (\c), psql, 119, 574

creating first database, 114
C option (-C)

pg_dump utility, 341
pg_restore utility, 342

MatthewStones_4789Index.fm Page 591 Wednesday, March 9, 2005 1:01 PM

592 ■I N D E X

c option (-c)
pg_dump utility, 341
pg_restore utility, 342
psql, 118, 573

C programming language
accessing PostgreSQL from C using libpq,

385–417
creating executable program, 422
ecpg creating C file, 421
ecpg translated source code, 421
functions specific to PostgreSQL

see libpq functions
see also libpq library

writing esqlc program, 420–422
C#

accessing PostgreSQL from, 517–541
most practical way to use, 520
Npgsql in Mono, 520–539
Npgsql in Visual Studio, 539
ODBC .NET data provider on Windows,

517–520
calculations

performing in SELECT, 86
with dates and times, 100

callable statements
JDBC sending SQL statements to

database, 507
CallableStatement interface, java.sql, 507
callbacks

asynchronous working, libpq, 412
cancelRowUpdates method

ResultSet interface, java.sql, 506
candidate keys

database design, 372
cardinality

cardinality symbols, 367
relating data entities, 366

CASCADE keyword, 241, 242
DROP SCHEMA command, 333

CASE function
execution control structures, 292

case sensitivity
Boolean data type values, 202
data in SQL databases, 79
embedded SQL keywords, 421
SQL command keywords, 10, 79

cast function, 213
date and time data types, 96, 97, 98
performing calculations in SELECT, 86
used in subquery, 185, 187

CAST operator
operator precedence, 270

casts
CREATE CAST command, 558
DROP CAST command, 563
listing, 120

cbrt function, 274
cd command (\cd), psql, 119, 574
ceil function, 274
Celko, Joe

normalization, 33
cells, spreadsheets, 18
chained mode

implicit transactions, 261
ChangeDatabase method

NpgsqlConnection class, 522
changing isolation level

transaction isolation, 261
char data type, 40, 204, 547
char_length function, 275
character data types, 204–206, 547

binary data, 582
choosing between, 204
inserting into database, 151

character encoding
PHP support for, 459

charting
using Microsoft Excel, 142

CHECK keyword
column constraints, 218, 220
table constraints, 222

CHECKPOINT command, 556
chmod command

making file executable, 58
chown command

creating tablespaces, 327
cidr data type, 209, 549
CIDR-ADDRESS column

pg_hba.conf file, 312
circle data type, 548
Classless Inter-Domain Routing data type, 548
ClassNotFoundException

implementing Driver interface, 496

MatthewStones_4789Index.fm Page 592 Wednesday, March 9, 2005 1:01 PM

593■I N D E X

CLASSPATH
implementing Driver interface, 496
installing PostgreSQL JDBC driver, 493

clearBatch method
Statement interface, java.sql, 510

clearParameters method
PreparedStatement interface, java.sql, 514

client applications
using libpq library, 386

client encoding
setting client encoding, 120

client programs
connecting to PostgreSQL, 14

client/server architecture, 14
client processing large amounts of data, 404

CLOSE command, 556
Close/close methods

NpgsqlConnection class, 522
NpgsqlDataReader class, 527
ResultSet interface, java.sql, 507

closing database connections, PHP, 449
CLUSTER command, 556
Codd, E.F., 378

normalization, 33
RDBMS, 6, 8

code independence
PEAR database abstraction interface, 460

column aliases
SELECT statement, 81

column constraints, 218
CHECK, 218
DEFAULT, 218
NOT NULL, 218
PRIMARY KEY, 218
REFERENCES, 218
UNIQUE, 218

columns
see database columns

command keywords, SQL
case sensitivity, 10

command types, SQL, 9
command-line applications

data access with PostgreSQL, 15
command-line compilers

Npgsql in Mono, 523–524
command-line versions

database management, 330
PostgreSQL configuration methods, 321

command-lines
default command-line options, 311
ecpg arguments, 424
psql command line options, 118–119

table of, 573–574
vacuuming from, 351

commands
execute shell command, 121
PostgreSQL commands, 551

syntax for SQL commands, 552–572
psql commands, 78, 118

command history, 115
internal commands, 119–121
issuing commands in psql, 114–115
reading from file, 115

showing commands sent to server, 330
toggling timing of commands, 121

CommandText/~Timeout/~Type properties
NpgsqlCommand class, 526

comma-separated values (CSV) file
using psql copy command, 159

COMMENT command, 556
CREATE SCHEMA command, 332

comments
block comments, 284
CREATE FUNCTION statement, 283
listing, 120
single-line comments, 284
stored procedures, 284

commercial support, 13
COMMIT command, 557

ecpg programs, 424
single user transactions, 248
transactions, 244

commit method
Connection interface, java.sql, 499

comparison operators (<,=,>), 272
choosing rows in SELECT, 87
dates and times, 99

Comprehensive Perl Archive Network
see CPAN

compression level, specifying, 340
concatenation

string operators, 272
CONCUR_READ_ONLY concurrency

type, 502
CONCUR_UPDATEABLE concurrency

type, 502
updateable result sets, 505

MatthewStones_4789Index.fm Page 593 Wednesday, March 9, 2005 1:01 PM

594 ■I N D E X

concurrency types
JDBC result sets, 502

conditional operators (AND/OR/NOT)
choosing rows in SELECT, 87, 88

conditional statements
execution control structures, 291

Conectiva Linux
packages for download available at, 44

configuration
allowing remote connections, 313
authentication name mapping, 311
automatic postmaster startup, 57
client authentication options, 311
internal configuration, 320–338
main configuration file, 311
PostgreSQL.conf file options, 314
sample files, 316
system configuration, 309–316
utility to report PostgreSQL

configuration, 311
version information, 311

configuration methods
PostgreSQL internal configuration, 320–321

configure script
adding PostgreSQL support to PHP

installations, 446
installing PostgreSQL, 50

configure script options, 51
pg_config command, 52

conformance
SQL levels of conformance, 8

connect function, Perl DBI
connecting to PostgreSQL, 476
DBI environment variables, 475
Perl DBI features, 473

connect method
Driver interface, java.sql, 498

CONNECT statement
embedded SQL, 425

connection parameters, 426
connecting to database

see database connections
connection attributes

Perl DBI database connections, 475
connection handles

PHP making database connections, 447
connection parameters, 448
retrieving connection handle

information, 449

Connection interface, java.sql
commit method, 499
createStatement method, 498, 499
creating database statements, 498
database connections, 498
getAutoCommit method, 499
getMetaData method, 500
getTransactionIsolation method, 500
handling database transactions, 499
prepareCall method, 499
prepareStatement method, 499
retrieving database metadata, 500
rollback method, 499
setAutoCommit method, 499
setTransactionIsolation method, 500

connection parameters, 448
connection pooling

Npgsql in Mono, 521
Connection property

NpgsqlCommand class, 526
connections to PostgreSQL

adding server connection in pgAdmin, 127
allowing remote connections, 313
allowing remote TCP/IP connections, 316
allowing secure database connections, 316
granting connection permissions, 54
logging connections to database, 315
logging disconnections from database, 315
max_connections, 314
PHP making database connections, 447
setting address for, 314
setting maximum number of, 314, 316
setting maximum number of

superusers, 314
setting port for, 314
specifying database name, 118
superuser_reserved_connections

option, 314
ConnectionString property

NpgsqlConnection class, 522
ConnStatusType

checking state of connection using
libpq, 389

consistency
ACID transaction rules, 246

CONSTANT modifier
variable declarations, 286

constants
constant data, 2

MatthewStones_4789Index.fm Page 594 Wednesday, March 9, 2005 1:01 PM

595■I N D E X

constraints
column constraints, 218
CREATE CONSTRAINT TRIGGER, 558
foreign key constraints, 232–242
primary key constraints, 219
SET CONSTRAINTS, 571
table constraints, 222

continuation lines
prompt changes, 193

continue action
whenever statement, EXEC SQL, 431

contrib (PostgreSQL-contrib) binary
package, 44

conversions
ALTER CONVERSION, 552
CREATE CONVERSION, 558
DROP CONVERSION, 563
listing, 120

copy command (\copy), psql, 119,
159–162, 574

loading data using, 161
NULL values, 160
sequence numbers, 161
syntax, 160
USING DELIMITERS option, 160

COPY command, SQL, 160, 557
with data stream to client, 119

copyright, PostgreSQL, 15
copyright command (\copyright), psql,

119, 574
correlated subqueries, 188–191

execution of, 189
table aliases, 189

cos function, 275
cot function, 275
count function, 174–182

count(*) function, 174–181
GROUP BY clause and, 176–178
HAVING clause and, 178–181

count(column name) function, 181–182
DISTINCT keyword, 182

updating data in database, 167
COUNT statement

selecting data, 31
CPAN (Comprehensive Perl Archive Network)

installing CPAN module, 466
installing DBI and DBD from source, 471
installing Perl modules, 466–467

CREATE AGGREGATE command, 558

CREATE CAST command, 558
CREATE CONSTRAINT TRIGGER

command, 558
CREATE CONVERSION command, 558
CREATE DATABASE command, 558

database management, 329
CREATE DOMAIN command, 559
CREATE FUNCTION command, 559

add_one function, 279
comments, 283
defining functions, 276
PL/pgSQL function, 282
SQL functions, 298
using quotes in creation string, 281

CREATE GROUP command, 559
PostgreSQL group configuration, 325

CREATE INDEX command, 559
database performance, 352

CREATE LANGUAGE command, 560
CREATE OPERATOR CLASS command, 560
CREATE OPERATOR command, 560
CREATE RULE command, 560
CREATE SCHEMA command, 560

schema management, 332
CREATE SEQUENCE command, 561
CREATE TABLE AS command, 562
CREATE TABLE command, 217–218, 561

creating sample database tables, 67
foreign key constraint, 236–239
schema management, 333

order of table creation, 577
SQL introduction, 9

CREATE TABLESPACE command, 327, 562
CREATE TRIGGER command, 300, 562
CREATE TYPE command, 562
CREATE USER command, 562

PostgreSQL user configuration, 322
CREATE VIEW command, 228–231, 563
create_tables.sql file, 67
createdb command, Linux/UNIX

creating sample database, 65
CREATEDB option

CREATE USER command, 322
psql command-line tool, 75

createdb utility
bin directory, 310
options, 330

createdb.exe command, Windows
creating sample database, 66

MatthewStones_4789Index.fm Page 595 Wednesday, March 9, 2005 1:01 PM

596 ■I N D E X

createlang utility, 277
bin directory, 311
installing procedural languages, 278
script options, 277

createStatement method
Connection interface, java.sql, 498, 499

createuser utility
bin directory, 310
creating user records, 65
options, 322
PostgreSQL user configuration, 322

creating database
see database creation

crypt authentication methods
pg_hba.conf file, 312

CSV driver
DBD::CSV driver, 469

cube root operator, 271
currency

choosing data type, 376
CURRENT_XYZ (“magic”) variables

data manipulation, 215–216
currval function, psql

sequence numbers, 156, 161
cursors

CLOSE command, 556
DECLARE command, 563
FETCH command, 566
implementing in embedded SQL, 441–443
inserting data methods, ResultSet, 506
libpq using, 404–411

fetching all results at once, 406
fetching results in batches, 408
general structure of coding, 405
retrieving binary values, 411

MOVE command, 567
ResultSet interface querying cursor

position, 503
customer table

creating table, 67, 578
identifying primary keys, 372
populating sample database tables, 69
psql creating, 115

■D
d command (\d), psql, 119, 150, 574

examining database structure, 117
starting psql, 114

D option (-D)
createdb/dropdb utilities, 330
initdb utility, 54, 317
pg_ctl utility, 319
postmaster, 55
postmaster.opts file, 316

d option (-d)
createlang utility, 278
createuser utility, 323
database connections, 56
pg_dump utility, 341
pg_restore utility, 342
postmaster.opts file, 316
psql, 118, 573
vacuumdb utility, 351

da command (\da), psql, 174
da/db...du commands, 119, 574, 575
data

see also transactions
Microsoft Excel importing, 143–145
phpPgAdmin tool importing, 132
programming with data, 1
retrieving data with ecpg, 436–440

data access, 23–28
accessing data across a network, 24
multiuser access, 25
ODBC .NET database connections, 519
postgres user, 53
PostgreSQL, 15
postmaster application, 53
projection (column selection), 27
pseudo users, 53
SELECT statement, 73–112

advanced features, 173–200
selection (row selection), 26
using Npgsql in Mono, 525–532

Npgsql event logging, 530
NpgsqlCommand class, 525
NpgsqlDataReader class, 527
retrieving metadata, 530

data columns
accessing data with projection, 27
choosing data types for, 21
database design, 33
spreadsheets, 18
storing data in databases, 21

Data Control Language (DCL)
SQL command types, 9

MatthewStones_4789Index.fm Page 596 Wednesday, March 9, 2005 1:01 PM

597■I N D E X

Data Definition Language (DDL)
SQL command types, 9

data directory
pg_hba.conf file, 311
pg_ident.conf file, 313
PostgreSQL installation, Linux/UNIX, 47
PostgreSQL.conf file, 313
postmaster.opts file, 315
secure PostgreSQL installations, 317
specifying location of, 317
system configuration, 311–316
user-accessible files in subdirectory, 311

data entities
relationships between, 359

data entry
Microsoft Access, 141

data files
ownership of, 53
PostgreSQL files, 47

data handling, 149–171
see also deleting data from database;

inserting data into database;
transactions; updating data in
database

handling empty results, host variables, 439
logical unit of work, 244
support for large objects, 581–587

data integrity
database design imposing, 359
RDBMS, 6

data manipulation, 212–217
converting between data types, 212–214
CURRENT_XYZ (“magic”) variables,

215–216
functions for, 214–215
OID (object ID) column, 216–217

Data Manipulation Language (DML)
SQL command types, 9

data models
physical data model, 374

data retrieval
see data access

data rows
accessing data with selection, 26
database design, 33
identifying rows uniquely, 22
primary keys, 22
spreadsheets, 18

Data Source Names
see DSNs

data sources, PostgreSQL
configuring data source, 124
creating data source, 123, 124

data storage
database management system, 4
databases, 21–23

adding information, 28–32
choosing data types for columns, 21
data types, 40
designing tables, 32–39
identifying columns required, 21
identifying rows uniquely, 22
NULLs, 41
relating tables using joins, 29
using multiple tables, 28

different file categories, 48
flat files, 2

file size problem, 4
repeating groups problem, 3

spreadsheets, 17–20
data types, 201–212

ALTER TYPE, 555
arrays, 210–212
boolean data type, 202–204
changing data type in SELECT, 86
char data type, 40
character data types, 204–206
columns, choosing for, 21
converting between, 212–214
CREATE TYPE, 562
currency, choosing for, 376
data storage in databases, 40
date data type, 40, 94
DROP TYPE, 565
establishing during design, 375–376
geometric data types, 209–210
integer, 40
listing, 120
mapping Java to PostgreSQL, 505
money data type, 376
network data types, 209–210
number data types, 206–209
numeric data types, 40

MatthewStones_4789Index.fm Page 597 Wednesday, March 9, 2005 1:01 PM

598 ■I N D E X

PostgreSQL data types, 545–549
approximate number, 546
character, 547
Classless Inter-Domain Routing, 548
date and time, 547
exact number, 546
geometric, 548
logical, 545
MAC address, 549
object identifier, 549
serial, 548

psql command listing, 78
serial, 40
temporal data type, 209
timestamp data type, 94
varchar data type, 40

data_sources function, Perl DBI, 483
DataAdapter object

altering data, Npgsql in Mono, 537
ODBC .NET, 520
populating DataSet using, 538
relationships between ADO.NET

objects, 537
database abstraction interface, PEAR, 460
database access

see database connections
database backup and recovery, 338–346

creating backup, 339–341
pgAdmin III, 343–346
restoring from backup, 341–343
utility to back up database, 311

DATABASE column
pg_hba.conf file, 312

database columns
average of values in column

see avg function
changing data type in SELECT, 86
counting non NULL rows

see count function
database limits, PostgreSQL, 544
maximum value in column

see max function
minimum value in column

see min function
OID (object ID) column, 216
selecting all columns, 79
selecting named columns, 80, 81
specifying when inserting data, 152–154
total sum of values in column

see sum function

database connections
accessing PostgreSQL from C#, 517–541

Npgsql in Mono, 520–539
Npgsql in Visual Studio, 539
ODBC .NET data provider on Windows,

517–520
accessing PostgreSQL from Java, 491–516
checking database functioning, 56
Connection interface, java.sql, 498
connection parameters, 448
ECPGstatus function, 427
embedded SQL, 425–427

connection parameters, 426
disconnecting, 427

example PHP script, 447
EXEC SQL specifying connection, 426
granting connection permissions, 54
JDBC API managing, 495
JDBC client connecting, 496
JDBC making database connections,

498–502
libpq, 387–391

creating new connection, 387–391
making asynchronous database

connection, 415
log files, 47
Npgsql in Mono, 521–524
ODBC .NET data provider on Windows, 518
PEAR DB::connect function, 461
Perl DBI, 468, 473–477
PHP making, 447–450

connection information functions, 449
psql internal command, 119
Rekall, 134
sample database, 66
specifying database name, 118

database creation
allowing user to create databases, 323
creating sample database, 64–72

creating tables, 67
creating database, 65
creating user records, 65
populating tables, 69
removing tables, 68

responsibilities of DBMS, 10
utilities to create/delete database, 310

database design, 357–384
see also database schema
additional resources, 384
business rules, 377

MatthewStones_4789Index.fm Page 598 Wednesday, March 9, 2005 1:01 PM

599■I N D E X

checking design, 378
creating simple database design, 34

completing initial design, 37
data columns, 33
data rows, 33
data types, 375–376
foreign keys, 373–375
good database design, 357–360

accommodating future amendments, 360
data integrity, 359
holding required data, 358
identifying core tables, 359
performance, 360
planning with users, 357
satisfying requirements, 359
supporting data entity relationships, 359

hierarchies, 381
many-to-many relationships, 380–381
naming conventions, 34
normal forms, 378–380
normalization, 33
patterns in, 380–383
physical model representation of, 371–378
primary keys, 372–373
recursive relationship pattern, 382–383
repeating groups, 34
stages in database design, 360–371

cardinality symbols, 367
converting entities to tables, 363
determining entities, 361
drawing relationship diagrams, 367
information gathering, 361
logical design development, 361
relating data entities, 366
validating conceptual design, 371

table definitions, 377
database directory

creating, 53
setting, 316

database files
initdb locating, 54
installing on Windows, 59
postmaster locating, 55

database front-end
Rekall, 133

database initialization, 317–318
default database installation, 317
installing PostgreSQL on Windows, 62
utility to initialize, 310

Database Interface
see Perl DBI

database limits, PostgreSQL, 543–544
columns in a table, 544
database size, 543
field size, 544
row size, 544
rows in a table, 544
table indexes, 544
table size, 544

database management
internal configuration, 328–331
using command-line, 330

database management system, 4
database models

full conceptual data model, 371
hierarchical model, 5
network model, 5
relational database model, 6

Database option
Npgsql in Mono, 521

database owner
setting user as new owner, 330

database performance, 347–356
creating indexes, 352–356
monitoring operating system activity, 347
VACUUM command, 348–352
viewing PostgreSQL statistics, 348
utility to optimize database, 311

Database property
NpgsqlConnection class, 522

database rows
choosing rows in SELECT, 87–93

BETWEEN keyword, 89
IN keyword, 89
LIKE keyword, 91
LIMIT keyword, 92
operators restricting rows selected, 87, 89

counting rows
see count function

database limits, PostgreSQL, 544
duplicated rows returned from SELECT, 83

suppressing duplicates, 84, 85
using DISTINCT keyword, 84

grantable privileges, 337
INSERT command, 567
ORDER BY clause in SELECT, 81, 82
printing rows only, 119

MatthewStones_4789Index.fm Page 599 Wednesday, March 9, 2005 1:01 PM

600 ■I N D E X

SELECT command, 570
showing, 121
SQL functions returning multiple rows, 298
UPDATE command, 572

database schema
see also database design
ALTER SCHEMA, 554
CREATE SCHEMA, 560
creating schemas, 332
creating tables in schemas, 333
designing database tables, 32
DROP SCHEMA, 565
dropping schemas, 333
final schema design, 577
listing, 120, 332
listing tables in schema, 336
order in which schema are searched, 315
public schema, 331
relating three or more tables, 106
schema management, 331–337
schemaname.tablename syntax, 336
setting schema search path, 334

Database Server option
installing PostgreSQL on Windows, 60

database servers
see also servers
object layout inside, 328
server control, 318–320
server control, Linux and UNIX

running processes, 318
starting and stopping server, 319

specifying server host, 322, 330
waiting for server to come up, 319

not waiting, 319
database tables

ALTER TABLE, 554
altering table structures, 223–227
column constraints, 218–221
converting entities to tables, 363
CREATE TABLE AS, 562
CREATE TABLE, 561
creating database design, 35
creating sample database tables, 67

psql creating, 115
creating tables, 217–218
creating tables in schemas, 333
database limits, 544
DELETE command, 563
deleting all data from, 170

deleting tables, 170, 227
describing, 119
designing, 32–39
DROP TABLE, 565
dropping sample database tables, 68
examining table properties with

pgAdmin, 128
listing, 119
LOCK command, 567
lookup tables, 377
multiple tables for data storage, 28
populating sample database tables, 69
psql command listing, 78
psql creating and populating, 115
psql describing, 150
relating tables

see relating tables
schemaname.tablename syntax, 336
SELECT INTO command, 570
selecting from one table, 79
selecting from multiple tables, 100–110
selecting named columns, 80, 81
set table output option, 120
setting HTML table output mode, 118
setting HTML table tag options, 119
setting table output option, 120
setting table title for output, 119
table constraints, 222–223
table definitions, 377
table name aliases, 105
temporary tables, 227–228
TRUNCATE command, 571
turning on expanded table output, 119

database views, 228–232
CREATE VIEW, 563
creating views, 228–231
DROP VIEW, 565
dropping views, 231
listing, 119
stored procedures/triggers, 306

DatabaseMetaData interface, java.sql, 500
databases

adding data to, 149–165
ALTER DATABASE, 553
CREATE DATABASE, 558
creating additional databases, 317
creating database, psql, 75
deleting data from, 169–171
deleting database, psql, 75

MatthewStones_4789Index.fm Page 600 Wednesday, March 9, 2005 1:01 PM

601■I N D E X

deleting database, utility for, 310
DROP DATABASE, 564
examining database structure, 117
initializing, 53
listener process, 310
listing, 120
listing available databases, 118
restoring database, utility for, 311
specifying database location, 319
specifying database server host, 118
specifying database username, 119
terminology, 21
updating data in, 165–168
VACUUM command, 572

DataSet object
altering data, Npgsql in Mono, 537
ODBC .NET, 520
populating using DataAdapter, 538
relationships between ADO.NET

objects, 537
datasets

ODBC .NET database connections, 519
DataTruncation class

JDBC API, 494
date data type, 209, 547

component parts, 99
data types, 40, 94

date_part function
using date and time functions, 99

dates and times
changing default date handling, 96
comparison operators (<,=,>), 99
data types, 94

cast function, 96, 97, 98
date styles m/d/y or d/m/y, 94

default, 95
ISO, 8601 style, 94
setting datestyle, 95, 97
setting the style, 94

date_part function, 99
now function, 99
performing calculations with, 100
PGDATESTYLE environment variable, 95
SELECT statement, 94–100
using functions, 98–100

datestyle option/variable
PGDATESTYLE environment variable, 95
PostgreSQL.conf file, 315
setting, 95, 97
SHOW command, psql, 97

DB interface, PEAR, 460
DBD (Database Driver) modules

DBD::ODBC, 469
DBD::PgPP, 469
Perl DBI, 468, 469

DBD::CSV driver
Perl DBI, 469

DBD::ODBC module, 469
installing, 470
installing DBI and DBD from source, 471

DBD::Pg database driver
installing DBI and DBD from source, 471
module Pg, 465

DBD::PgPP database driver/module, 469
connecting using, 474
connection options, 474
errors connecting, 476
installing, 470
installing DBI and DBD from source, 471

DBI
see Perl DBI

DBMS (database management system)
see RDBMS

dbname connection option
PgPP driver, 474
PQconnectdb function, 388

dbname connection parameter
pg_connect function, 448

DbType property
NpgsqlParameter class, 533

DB::connect function
error handling with PEAR, 461

DB::isError function
error handling with PEAR, 461

DCL (Data Control Language), 9
DDL (Data Definition Language), 9
deadlock_timeout option

PostgreSQL.conf file, 315
deadlocks, 262–264

avoiding deadlocks, 264
example, 263

DEALLOCATE command, 563
Debian Linux

installing PostgreSQL, 44
DEBUG exception level, 290
debugging

ecpg preprocessor code, 443–444
logging embedded SQL execution, 425
setting level of debug information, 316

MatthewStones_4789Index.fm Page 601 Wednesday, March 9, 2005 1:01 PM

602 ■I N D E X

declarations
ALIAS declaration, 285
PL/pgSQL functions, 284
RENAME declaration, 286
variable declarations, 286, 287

declarative languages
programming languages, 28

DECLARE command, 563
DECLARE section

PL/pgSQL function declarations, 284
DEFAULT keyword

column constraints, 218
host variables, embedded SQL, 432
inserting data into serial columns, 157

default parameter values
RESET command, 568

default_transaction_isolation option
PostgreSQL.conf file, 315

default_with_oids option
PostgreSQL.conf file, 315

deferrable constraints
foreign key constraint, 240

DEFERRED keyword
foreign key constraint, 241

degrees function, 274
DELETE command, 563
DELETE privilege

grantable privileges, 337
DELETE statement, 169–170

see also deleting data from database;
TRUNCATE statement

deleting all rows from table, 171
executing SQL with libpq, 396
importance of WHERE clause, 169
ON DELETE keyword, 241–242
reporting rows affected, 429
triggers, 300

deleteRow method
ResultSet interface, java.sql, 505

deleting data from database, 169–171
see also DELETE statement;

TRUNCATE statement
deleting all data from table, 170
JDBC updateable result sets, 505
reasons for using stored

procedures/triggers, 306
using Npgsql in Mono, 536

deleting functions, 281

DELIMITERS option
copy command, psql, 160

deny rules
pg_hba.conf file, 312

deregisterDriver method
DriverManager class, java.sql, 494

DESC keyword
ORDER BY clause in SELECT, 81, 82, 83

default sort order, 82
designing databases

see database design
devel (PostgreSQL-devel) binary package, 45
Development option

installing PostgreSQL on Windows, 60
die function, Perl DBI

connecting to PostgreSQL, 476
Direction property

NpgsqlParameter class, 533
directories

base directory, 309, 310
changing working directory, 119

dirty reads
PostgreSQL, 257
transaction isolation, 256–257

disable option (-disable)
pg_dump utility, 341

disconnect function, Perl DBI, 477
DISCONNECT statement

EXEC SQL syntax, 427
displaying queries, psql, 118
Dispose method

NpgsqlCommand class, 526
NpgsqlDataReader class, 527

DISTINCT keyword
avg function, 185
count(column name) function, 182
SELECT statement, 84, 85

disadvantages using, 85
relating three or more tables, 110

sum function, 184
division operator, 271
dl command (\dl), psql

importing and exporting images, 583
dn command (\dn), psql

listing schemas, 332
do action

whenever statement, EXEC SQL, 431
do command (\do), psql, 78

MatthewStones_4789Index.fm Page 602 Wednesday, March 9, 2005 1:01 PM

603■I N D E X

do function
executing SQL using Perl DBI, 477

doc directory
PostgreSQL installation, 47
system configuration, 316

docdir (with-docdir) option, 51
docs (PostgreSQL-docs) binary package, 45
Documentation option

installing PostgreSQL on Windows, 60
dollar quoting

creating stored procedures, 282
variable declarations, 287

domains
ALTER DOMAIN, 553
CREATE DOMAIN, 559
DROP DOMAIN, 564
listing, 120

dosql function
executing SQL using Perl DBI, 477
XML_RDB module, Perl, 486

doSQLquery function
binding parameters, Perl DBI, 482
statement handle attributes, Perl DBI, 480

dot operator
string concatenation, 450

double data type, 546
Driver interface, java.sql

acceptsURL method, 498
connect method, 498
forName method, 496
getMajorVersion method, 498
getMinorVersion method, 498
implementing, 496
jdbcCompliant method, 498

driver option (-driver)
sql2xml.pl script, 487
xml2sql.pl script, 488

DriverManager class, java.sql
deregisterDriver method, 494
getConnection method, 495
getDriver method, 495
getDrivers method, 494
getLoginTimeout method, 496
JDBC URLs, 495
managing connections, 495
managing JDBC logging, 496
managing login timeouts, 496
methods for managing drivers, 494
primary function, 493

println method, 496
PrintWriter method, 496
registerDriver method, 494
setLoginTimeout method, 496
setLogWriter method, 496
specifying server and database, 495

drivers
available_drivers function, Perl DBI, 483

DROP AGGREGATE command, 563
DROP CAST command, 563
DROP CONVERSION command, 563
DROP DATABASE command, 564

database management, 329
DROP DOMAIN command, 564
DROP FUNCTION command, 564

deleting functions, 281
DROP GROUP command, 564

PostgreSQL group configuration, 326
DROP INDEX command, 564
DROP LANGUAGE command, 279, 564
DROP OPERATOR CLASS command, 564
DROP OPERATOR command, 564
DROP RULE command, 564
DROP SCHEMA command, 565

schema management, 333
DROP SEQUENCE command, 565
DROP TABLE command, 68, 170, 227, 565
DROP TABLESPACE command, 328, 565
DROP TRIGGER command, 300, 565
DROP TYPE command, 565
DROP USER command, 565

PostgreSQL user configuration, 324
DROP VIEW command, 231, 565
drop_tables.sql file, 68, 69
dropdb options

command-line database management, 330
dropdb utility, 310
droplang utility, 311
dropuser utility, 310
DSNs (Data Source Names)

ODBC .NET database connections, 518
Perl DBI database connections, 474

dT command (\dT), psql, 78
dt command (\dt), psql, 76, 78

examining table structure, 117
duplicated rows returned from SELECT

using DISTINCT keyword, 84
durability

ACID transaction rules, 247

MatthewStones_4789Index.fm Page 603 Wednesday, March 9, 2005 1:01 PM

604 ■I N D E X

dynamic queries, 297
creating general-purpose update, 297
FOR loops, 298

■E
e command (\e), psql, 120, 575

query history, 115
E option (-E)

createdb/dropdb utilities, 330
psql, 118, 573

e option (-e)
createdb/dropdb utilities, 330
createlang utility, 278
createuser utility, 323
pg_restore utility, 342
psql, 118, 573

Easy module
DBIx::Easy, 484–485

echo command (\echo), psql, 120, 575
echoing input, psql, 118
echoing queries, psql, 118
EchoMessages property

NpgsqlEventLog, 531
ecpg preprocessor

adding to directories searched, 424
arguments, 424
auto-commit mode, 424
automatically committing statements, 424
BEGIN ... COMMIT blocks, 424
C translated source code, 421
creating C file, 421
creating executable program, 422
debugging code, 443–444
embedded SQL, 419–424

calling libpq library, 419
debugging, 425
host variables, 432
makefile for ecpg programs, 423–424
reporting errors, 428–430
retrieving data with ecpg, 436–440
trapping errors, 431
using cursors with ecpg, 441–443

help, 424
include files, 421
naming output file, 424
not specifying -t option, 424
version and search path information, 424
writing esqlc program, 420–422

transactions, 420

ECPGdebug function
logging embedded SQL execution, 425

ECPGFLAGS variable
makefile for ecpg programs, 423

ECPGstatus function
database connections, 427

ECPGxyz functions
C translated source code, 421, 422
logging embedded SQL execution, 425

editing
preventing line editing, 118

embedded SQL
accessing PostgreSQL from C using, 419–444
compiler, 311
creating executable program, 422
data access with PostgreSQL, 15
debugging ecpg code, 443–444
ecpg preprocessor, 419–424

using cursors with, 441–443
ECPGxyz functions, 422
error handling, 427–431
esqlc program, writing, 420–422
host variables, 432–435

declaring fixed-length variable types, 432
retrieving data with ecpg, 436
variable-length data, 434, 435

implementing cursors, 441–443
keywords, case sensitivity, 421
logging SQL execution, 425
making database connections, 425–427
retrieving data with ecpg, 436–440

handling empty results, 439
NULL database values, 438
null-terminated strings, 437

transactions, 420
empty results

retrieving data with ecpg, 439
encoding

character encoding, PHP, 459
setting client encoding, 120
setting encoding for new database, 330
text string support for large objects, 582

encoding command (\encoding), psql,
120, 575

ENCODING option
CREATE DATABASE command, 329

END command, 565
enhancements

database design allowing, 360

MatthewStones_4789Index.fm Page 604 Wednesday, March 9, 2005 1:01 PM

605■I N D E X

entities
converting entities to tables, 363
determining entities, 361

entity relationship diagram
creating simple database design, 35
customers, orders and items, 370
full conceptual data model, 371

environment variables
connecting to database using libpq, 388

equal to operator, 87
equality operator

operator precedence, 270
error handling

DBI::Easy module, 485
embedded SQL, 427–431

describing error, 428
error codes, 429
reporting errors, 428–430
result codes, 428
trapping errors, 431

PHP and, 458–459
with PEAR, 461

error-handling behaviors, 462
trigger_error function, 462

errors
setting logging level of detail, 314
use of DISTINCT keyword masking, 85

escape characters
backslash (\), 151, 152
inserting a single quote, 152
internal commands, psql, 114

esqlc program
writing, 420–422

eval block
data_sources function, 483
errors connecting, 476
RaiseError attribute, 475

events
asynchronous working, libpq, 412
event logging, Npgsql, 530

exact number data types, 546
Excel

see Microsoft Excel
exception classes

JDBC API, 494
EXCEPTION exception level, 290

exceptions
BatchUpdateException class, 494
execution control structures, 290
JDBC API SQL exceptions, 494
SQLException class, 494

exclusive locks, 262
EXEC SQL syntax

CONNECT statement, 425
DISCONNECT statement, 427
FETCH INTO statement, 441
making database connections, 425–427
SET statement, 427
specifying particular database

connection, 426
whenever statement, 431
writing esqlc program, 421

ExecStatusType enumeration
common values, 393
executing SQL with libpq, 392

executable files
bin directory, 310

EXECUTE command, 297, 566
execute function

result sets, Perl DBI, 479
execute method

PEAR, 462
PreparedStatement interface, java.sql, 513
Statement interface, java.sql, 509

EXECUTE privilege
grantable privileges, 337

executeBatch method
Statement interface, java.sql, 510

ExecuteNonQuery method
NpgsqlCommand class, 526, 536

executeQuery method
PreparedStatement interface, java.sql, 513
Statement interface, java.sql, 508

ExecuteReader method
NpgsqlCommand class, 526, 527, 529

executeUpdate method
PreparedStatement interface, java.sql, 513
Statement interface, java.sql, 509

executing files
f command line option, psql, 116
sql extension to files, 116

executing queries, psql, 118

MatthewStones_4789Index.fm Page 605 Wednesday, March 9, 2005 1:01 PM

606 ■I N D E X

execution control structures
conditional statements, 291

CASE function, 292
IF-THEN-ELSE block, 291
NULLIF function, 292

PL/pgSQL, 289
exception levels, 290
exceptions and messages, 290
RAISE statement, 290
RETURN statement, 290

execution path, adding resources to, 58
execution plans

EXPLAIN command, 566
existence subqueries, 191–192
EXISTS keyword

existence subqueries, 191
exp function, 274
expanded table output

turning on, 119
EXPLAIN command, 89, 566

ANALYZE option, 350
query plan, 349, 350

explicit locking, 264–266
desirability of, 264
locking rows, 265–266
locking tables, 266

explicit transactions, 261
exponentiation operator, 271

operator precedence, 270

■F
f command (\f), psql, 120, 575
F option (-F)

pg_dump utility, 340
pg_restore utility, 342
psql, 118, 573

f option (-f)
pg_dump utility, 340
pg_restore utility, 342
psql, 118, 573

executing file, 116
vacuumdb utility, 351

factorial operator, 271
features, PostgreSQL, 11
Fedora

packages for download, 44
FETCH command, 566
fetch direction and size

ResultSet interface manipulating, 504

FETCH INTO statement
EXEC SQL syntax, 441

FETCH statement
fetching results using cursors, libpq, 405

fetching all results at once, 406
fetching results in batches, 408
NEXT option, 411

fetchall_arrayref function, Perl DBI, 479
fetchrow_array function, Perl DBI, 479
fetchrow_arrayref function, Perl DBI, 479
fetchrow_hashref function

DBIx::Easy module, 485
Perl DBI, 479

field information
PHP functions and result sets, 456

field separators
changing, 120
setting, 118

FieldCount property
NpgsqlDataReader class, 527, 529

fields
database limits, PostgreSQL, 544

files
COPY command, 557
executing file, psql, 116
not reading startup file, 119
PostgreSQL, 47

data storage for different categories, 48
psql command executing commands

from, 78
sql extension to files, 116
structured text files, 3

first method
ResultSet interface, java.sql, 503

first normal form
database design, 378

flat files
data storage using, 2
repeating groups problem, 3
structured text files compared, 3

float data type, 207
float functions, 274
float8 data type, 207
floor function, 274
FOR loops

dynamic queries, 298
execution control structures, 293

REVERSE option, 294

MatthewStones_4789Index.fm Page 606 Wednesday, March 9, 2005 1:01 PM

607■I N D E X

foreign keys
deleting all rows from table, 171
establishing in design, 373–375
foreign key constraint, 232–242

adding constraint to existing table, 233
ALTER TABLE command, 235
as column constraint, 233–234
as table constraint, 234–239
constraint options, 240–242
CREATE TABLE command, 236–239
deferrable constraints, 240

grantable privileges, 337
order of table creation, 577

forms
Rekall creating forms, 135

forName method
Driver interface, java.sql, 496

Forward-only result sets, 502
FREEZE option

VACUUM command, 349
FROM clause

SELECT statement, 78
UPDATE statement, 168

front-end programs
using libpq library, 386

FULL option
VACUUM command, 349

function calls
data access with PostgreSQL, 15

functions
see also stored procedures
aggregate functions

see aggregate functions, SELECT
ALTER FUNCTION, 553
built-in functions, 273–275
CREATE AGGREGATE command, 558
CREATE CAST command, 558
CREATE FUNCTION, 559
creating functions

add_one function, 279
editing script files, 280
using quotes, 281

data manipulation, 214–215
DECLARE statement, 284
defining functions, 276
deleting functions, 281
DROP AGGREGATE command, 563
DROP FUNCTION, 564

function overloading, 279
listing, 120
listing functions, 281
PL/pgSQL

function arguments, 283
SQL functions, 298–299
string functions, 275
trigonometric functions, 274
using in SELECT statements, 273
variable declarations, 285

■G
g command (\g), psql, 79, 120, 575

query history, 115
g option (-g), psql, 118
garbage collection

VACUUM command, 572
GBorg (gborg.PostgreSQL.org)

resources for PostgreSQL tools, 146
geometric data types, 548, 209–210
getAutoCommit method

Connection interface, java.sql, 499
GetBoolean method

NpgsqlDataReader class, 527
getBoolean method

ResultSet interface, java.sql, 504
getConcurrency method

ResultSet interface, java.sql, 502
getConnection method

DriverManager class, java.sql, 495
GetData function

XML_RDB module, Perl, 486
GetDateTime method

NpgsqlDataReader class, 527
GetDecimal method

NpgsqlDataReader class, 528
GetDouble method

NpgsqlDataReader class, 528
getDriver method

DriverManager class, java.sql, 495
getDrivers method

DriverManager class, java.sql, 494
getFetchDirection method

ResultSet interface, java.sql, 504
getFetchSize method

ResultSet interface, java.sql, 504
GetFieldType method

NpgsqlDataReader class, 528
retrieving metadata, 530

MatthewStones_4789Index.fm Page 607 Wednesday, March 9, 2005 1:01 PM

608 ■I N D E X

GetFloat method
NpgsqlDataReader class, 528

getInt method
ResultSet interface, java.sql, 504

GetInt16/32/64 methods
NpgsqlDataReader class, 528

getLoginTimeout method
DriverManager class, java.sql, 496

getMajorVersion method
Driver interface, java.sql, 498

getMessage method
PEAR_Error object, 461

getMetaData method
Connection interface, java.sql, 500
ResultSet interface, java.sql, 507

getMinorVersion method
Driver interface, java.sql, 498

getMoreResults method
Statement interface, java.sql, 509

GetName method
NpgsqlDataReader class, 528

retrieving metadata, 530
getResultSet method

Statement interface, java.sql, 509
GetString method

NpgsqlDataReader class, 528
getString method

ResultSet interface, java.sql, 504
getTransactionIsolation method

Connection interface, java.sql, 500
getType method

ResultSet interface, java.sql, 502
getUpdateCount method

Statement interface, java.sql, 509
gmake command, GNU

installing PostgreSQL, 52
GNU tools

installing PostgreSQL, 50
using make command, 52

goto action
whenever statement, EXEC SQL, 431

GRANT command, 566
privilege management, 337

graphical tools
PostgreSQL configuration methods, 321
resources for PostgreSQL tools, 147
using Microsoft Excel, 142

greater than operator, 87
comparison operators, 272

GROUP BY clause, 176–178
SELECT statements, 174
using with HAVING clause, 179

group configuration
PostgreSQL internal configuration, 325–326

GROUP keyword
GRANT command, 337

groups
ALTER GROUP, 553
CREATE GROUP, 559
DROP GROUP, 564
listing, 120, 326
removing, 326

■H
H command (\H), psql, 575

internal commands, 120
h command (\h), psql, 78, 120, 575

supported SQL commands, 115
h option (-h)

createdb/dropdb utilities, 330
createlang utility, 278
createuser utility, 322
pg_dump utility, 341
pg_restore utility, 342
psql, 118, 573

specifying host, 56
starting psql, 114

vacuumdb utility, 351
H option (-H), psql, 118, 573
handlers

installing for procedural languages, 277
handling data

see data handling
HasRows property

NpgsqlDataReader class, 527
HAVING clause, 178–181

SELECT statements, 174
WHERE clause compared, 178

header files
include directory, 316
using libpq library, 386

help
man directory, 316
psql command getting, 78, 120

MatthewStones_4789Index.fm Page 608 Wednesday, March 9, 2005 1:01 PM

609■I N D E X

help option (-help)
createdb/dropdb utilities, 330
createuser utility, 323
ecpg arguments, 424
pg_dump utility, 340
pg_restore utility, 342
postmaster.opts file, 316
psql, 118
vacuumdb utility, 351

hierarchies
database design, 381
database models, 5

history
command history in psql, 115
printing, 120

host based authentication (hba) file
see pg_hba.conf file

host connection option
PgPP driver, 474
PQconnectdb function, 388

host connection parameter
pg_connect function, 448

host variables
embedded SQL, 432–435

declaration sections, 432
declaring fixed-length variable

types, 432
using DEFAULT keyword, 432
variable-length data, 434

handling empty results, 439
implementing cursors in embedded

SQL, 441
indicator variable, 438
naming conventions, 438
NULL database values, 438
null-terminated strings, 437
retrieving data with ecpg, 436

hostaddr connection option/parameter
pg_connect function, 448
PQconnectdb function, 388

hosts
specifying database server host, 118

HTML
setting HTML table output mode, 118
setting HTML table tag options, 119, 121
toggling HTML mode, 120

■I
i command (\i), psql, 78, 120, 575

creating sample database tables, 67
executing files, 116
reading psql commands from file, 115

I option (-I)
ecpg arguments, 421, 424
ecpg include file location, 422
using libpq library, 386

i option (-i)
createuser utility, 323
postmaster, 55
postmaster.opts file, 316
rpm install, 45

ident authentication methods
pg_hba.conf file, 312

IF-THEN-ELSE block
execution control structures, 291

images
importing and exporting using BLOBs,

583–585
programming BLOBs, 586–587
remote importing and exporting using

BLOBs, 585–586
support for large objects, 581–587

using BLOBs, 583
using encoded text strings, 582
using links, 581–582

implementation classes
JDBC API, 492

Driver interface, 496
implicit transactions, 261
IN GROUP option

CREATE USER command, 322
IN keyword

choosing rows in SELECT, 89
used in subquery, 187

IN operator
operator precedence, 270

include directive
SQL control area (sqlca), 430

include directory
PostgreSQL installation, 47
system configuration, 316

include files
ecpg preprocessor, 421

MatthewStones_4789Index.fm Page 609 Wednesday, March 9, 2005 1:01 PM

610 ■I N D E X

includedir option
pg_config command, 52

indexes
ALTER INDEX, 553
CLUSTER command, 556
CREATE INDEX, 559
database limits, PostgreSQL, 544
database performance, 352–356
DROP INDEX, 564
PHP functions and result sets, 453–455, 457
REINDEX command, 568
using index on large table, 353

indicator variables, 438
indices

listing, 119
inequality operator

operator precedence, 270
inet data type, 209, 549
INFO exception level, 290
information gathering

database design stages, 361
Ingres

PostgreSQL history, 12
INHERITS keyword

CREATE TABLE command, 217
initdb utility/file

bin directory, 310
initializing database, 54
location of database files, 54
options, table of, 317
postgres user running, 54
PostgreSQL installations, 317

INITIALLY DEFERRED keywords
foreign key constraint, 240

input option (-input)
xml2sql.pl script, 488

INSERT command, 567
adding to DataAdapter object, 538

insert function
DBI::Easy module, 485

INSERT privilege
grantable privileges, 337

INSERT statement, 149–159
see also inserting data into database
inserting data into serial columns,

154–157
DEFAULT keyword, 157
sequence numbers, 155–157

inserting NULLs into database, 151,
158–159

INTO option, 153
loading data from another application,

162–165
OID (Object IDentification) number, 151
reporting rows affected, 429
transaction example, 250, 251
triggers, 300, 302
using safer syntax, 152–154
using simple syntax, 149–152

caution when using, 150
inserting data into database

see also INSERT statement
character data, 151
copy command, psql, 159–162
COPY command, SQL, 160
identifying number of rows inserted, 164
inserting NULL values, 158–159
loading data from another application,

162–165
JDBC updateable result sets, 506
using Npgsql in Mono, 536

insertRow method
ResultSet interface, java.sql, 507

installations, Perl
Perl DBI, 468–472
Perl modules, 466–468

installations, PostgreSQL
see also PostgreSQL installation on

Linux/UNIX; PostgreSQL installation
on Windows

JDBC driver, 493
ODBC drivers, 121
pgAdmin III tool, 125
phpPgAdmin tool, 130

int4 functions, 274
integer data type, 40, 207, 546
internal commands, psql

listing all, 119
psql command types, 114
psql command-line tool, 119–121
table of, 574–576

internal configuration
see under PostgreSQL

internal variable
setting, 121
unsetting/deleting, 121

interval data type, 209, 547

MatthewStones_4789Index.fm Page 610 Wednesday, March 9, 2005 1:01 PM

611■I N D E X

INTO clause
INSERT statement, 153
retrieving data with ecpg, 436

ipcclean utility, 311
IS keyword

NULLs, 93
IS operator

operator precedence, 270
isAfterLast method

ResultSet interface, java.sql, 503
isBeforeFirst method

ResultSet interface, java.sql, 503
IsClosed property

NpgsqlDataReader class, 527
IsDBNull method

NpgsqlDataReader class, 528
isFirst method

ResultSet interface, java.sql, 503
isLast method

ResultSet interface, java.sql, 503
ISNULL operator

operator precedence, 270
IsNullable property

NpgsqlParameter class, 533
ISO, 8601 date style, 94
isolation

ACID transaction rules, 246
handling multi-user access, 26
transaction isolation levels

changing, 261
PostgreSQL default, 261
undesirable phenomena, 256

transactions, 255–261
ANSI isolation levels, 260–261
changing isolation level, 261
dirty reads, 256–257
lost updates, 258–260
performance, 255
phantom reads, 258
unrepeatable reads, 257

Item property
NpgsqlDataReader class, 527, 528

item table
creating table, 67, 578
identifying primary keys, 373
populating sample database tables, 70
psql creating, 116
schema for item and stock tables, 196

■J
Java

accessing PostgreSQL from, 491–516
java class, PostgreSQLMetaData, 500
Java Database Connectivity (JDBC)

accessing PostgreSQL from Java, 491–516
API described, 491

implementation classes, 492
connecting to PostgreSQL, 14
core API, 491
data access with PostgreSQL, 15
extension API, 491
installing PostgreSQL JDBC driver, 493
JDBC clients using statements, 498
JDBC result sets, 502–507
JDBC statements, 507–516
making database connections, 498–502
mapping Java data types to PostgreSQL, 505
using PostgreSQL JDBC driver, 491–498

Driver interface, 496
DriverManager class, 493

java.sql.CallableStatement interface, 507
java.sql.Connection interface

see Connection interface, java.sql
java.sql.Driver

see Driver interface, java.sql
java.sql.DriverManager

see DriverManager class, java.sql
java.sql.PreparedStatement interface

see PreparedStatement interface, java.sql
java.sql.ResultSet interface

see ResultSet interface, java.sql
java.sql.Statement interface

see Statement interface, java.sql
java.sql.Types class, 505
jdbc (PostgreSQL-jdbc) binary package, 45
JDBC API

creating database statements, 498
creating JDBC statements, 507
definition and implementation layers, 492
exception classes, 494
future development, 516
handling database transactions, 499
implementing Driver interface, 496
managing connections, 495
managing JDBC logging, 496
managing login timeouts, 496
methods for managing drivers, 494
retrieving database metadata, 500
SQL exceptions and warnings, 494

MatthewStones_4789Index.fm Page 611 Wednesday, March 9, 2005 1:01 PM

612 ■I N D E X

jdbc directory, 310
JDBC driver option

installing PostgreSQL on Windows, 60
JDBC drivers

classifications, 492
type 1/type 2/type 3/type 4, 492, 493
using, 491–498

JDBC statements, 507–516
executing statements, 508–509
handling SQL batches, 509–510
querying results and result sets, 509
using prepared statements, 512–516
using statements, 508–512

JDBC URLs, 495
jdbcCompliant method

Driver interface, java.sql, 498
JOIN ... ON clause

relating tables, 111
join function, Perl DBI, 479
joining tables

see relating tables
joins

outer joins, 196–200
relating tables using joins, 29
self joins, 194–196
UNION join, 192–194

■K
keys

see also foreign keys; primary keys
network database models, 5
surrogate keys, 23

keywords
case sensitivity, embedded SQL, 421
PL/pgSQL, 285

KPackage
PostgreSQL installation, Linux, 48, 49

■L
l command (\l), psql, 120, 575
L option (-L)

createlang utility, 278
creating executable program, 422
libpq library installation, 386

l option (-l)
createlang utility, 278
pg_ctl utility, 319
pg_restore utility, 342
postmaster.opts file, 316

psql, 118, 573
rpm list, 48

LANGUAGE clause
specifying procedural language, 276

language extensions
utility to add/delete support for, 311

languages
ALTER LANGUAGE, 554
block-structured languages, 282
CREATE LANGUAGE, 560
DROP LANGUAGE, 564
procedural languages, 276–282
programming languages, 28

large objects
deleting, 584
listing, 119, 120
performing large object operations, 120
PostgreSQL support for, 581–587

using BLOBs, 583–587
using encoded text strings, 582
using links, 581–582

last method
ResultSet interface, java.sql, 503

LD_LIBRARY_PATH
ecpg shared library files, 422

LDLIBS variable
makefile for ecpg programs, 423

LEFT OUTER JOIN keywords, 198, 200
length function, 214

character data types, 206
less than operator, 87

comparison operators, 272
Level property

NpgsqlEventLog, 531
lib directory

PostgreSQL installation, 47
system configuration, 316

libdir option
pg_config command, 52

libpq functions
creating new function, 394
PQclear, 392
PQcmdTuples, 397
PQconnectdb, 387
PQconnectPoll, 415
PQconnectStart, 415
PQconsumeInput, 414
PQerrorMessage, 391
PQexec, 392, 394

MatthewStones_4789Index.fm Page 612 Wednesday, March 9, 2005 1:01 PM

613■I N D E X

PQfinish, 389, 391
PQflush, 414
PQfname, 397
PQfnumber, 398
PQfsize, 398
PQgetisnull, 401
PQgetlength, 399
PQgetResult, 412
PQgetvalue, 399
PQisBusy, 414
PQisnonblocking, 413
PQnfields, 397
PQntuples, 397
PQprint, 401
PQrequestCancel, 415
PQreset, 389
PQresStatus, 394
PQresultErrorMessage, 394
PQresultStatus, 392
PQsendQuery, 412
PQsetnonblocking, 412
PQstatus, 391

libpq library
accessing PostgreSQL from C using,

385–417
asynchronous working, 411–417

canceling queries, 415
executing queries, 412
making asynchronous database

connection, 415
nonblocking mode, 411

creating executable program, 422
database connections using, 387–391

checking state of connection, 389
closing connection, 389
connecting using environment

variables, 388
connection parameters, 391
creating new connection, 387–391
resetting connection, 389
retrieving information about

connection errors, 391
using a makefile, 390–391
writing connection program, 389

drawback to using, 419
executing SQL with libpq, 392–401

binary values, 411
determining query status, 392–394

executing queries with PQexec, 394–396
extracting data from query results,

397–400
handling NULL results, 400
updating or deleting rows, 396
user specified data in query, 396
using cursors, 404–411

importing and exporting images, 586
installation, 386
managing transactions, 404
printing query results, 401–403
program compilation, 387
program structure, 386
using, 386–387

library files
lib directory, 316
LOAD command, 567

libs (PostgreSQL-libs) binary package, 44
LIKE keyword

choosing rows in SELECT, 91
LIKE operator

operator precedence, 270
string operators, 272

LIMIT keyword
choosing rows in SELECT, 92
OFFSET clause, 92

limits
see database limits, PostgreSQL

line data type, 209, 548
line editing

preventing line editing, 118
linking tables

Microsoft Access, 137
relating tables, 101

links
support for large objects, 581–582

Linux
installing PostgreSQL on, 43–58

from Linux binaries, 44
running processes on, 318
starting and stopping server on, 319
starting up psql, 74

LISTEN command, 567
listen_addresses option

PostgreSQL.conf file, 314
listener process

databases, 310
UNLISTEN command, 572

MatthewStones_4789Index.fm Page 613 Wednesday, March 9, 2005 1:01 PM

614 ■I N D E X

listing
database objects, 119–120
databases, 120
functions, 281

ln function, 274
lo_export (\lo_export) command, psql, 120,

575, 586
lo_export function, 584, 586
lo_import (\lo_import) command, psql, 120,

575, 585
lo_import function, 583, 584, 586
lo_list (\lo_list) command, psql, 120, 575,

583, 585
lo_unlink (\lo_unlink) command, psql, 120,

575, 586
lo_unlink function, 584, 586
LOAD command, 567
lobjects

see large objects
LOCK command, 567
locking, 262–266

deadlocks, 262–264
exclusive locks, 262
explicit locking, 264–266

locking rows, 265–266
locking tables, 266

shared locks, 262
LOG exception level, 290
log files

appending server log messages, 319
PostgreSQL files, 47
transactions, 247

log functions, 274
log_connections option

PostgreSQL.conf file, 315
log_destination option

PostgreSQL.conf file, 314
log_disconnections option

PostgreSQL.conf file, 315
log_error_verbosity option

PostgreSQL.conf file, 314
log_min_messages option

PostgreSQL.conf file, 314
logarithm operator, 270
logging

event logging, Npgsql, 530
log tracing in progress, 532

managing JDBC logging, 496

logging embedded SQL execution
ECPGdebug function, 425
logging parameter, 425

logical data types, 545
logical design development

database design stages, 361
logical unit of work

transactions, 244
Logname property

NpgsqlEventLog, 531
lookup tables, 377
loops

execution control structures, 292
BEGIN ... END blocks, 293
FOR loops, 293
indefinite loop, 293
WHILE loops, 293

lost updates
transaction isolation, 258–260

lower function, 275
lseg data type, 209, 548

■M
m option (-m)

pg_ctl utility, 319
macaddr data type, 209, 549
magic variables

data manipulation, 215–216
make clean command

makefile for ecpg programs, 423
make command

compiling programs using makefile, 391
make command, GNU

installing PostgreSQL, 52
makefile

compiling programs, 390–391
ecpg programs, 423–424

makemap function
DBI::Easy module, 485

man directory
PostgreSQL installation, 47
system configuration, 316

Mandrake
packages for download available at, 44

MANPATH
adding resources to execution path, 58
viewing manual pages, 316

manual pages
adding to execution path, 58

MatthewStones_4789Index.fm Page 614 Wednesday, March 9, 2005 1:01 PM

615■I N D E X

many-to-many relationships
database design, 380–381

mathematical functions, 274
max function, 183–184

description, 174
NULL values, 184
sequence numbers, 156
varchar type columns, 183

max_connections
PostgreSQL.conf file, 314

maximum value in column
see max function

MaxPoolSize option
Npgsql in Mono, 521

md5 authentication methods
pg_hba.conf file, 312, 313

median function, 185
memory

setting working memory, 314
messages

appending server log messages, 319
execution control structures, 290
logging level for messages, 314
logging server messages, 314
running quietly, 118, 330

metadata
getMetaData method, ResultSet, 507
JDBC retrieving database metadata, 500

METHOD column
pg_hba.conf file, 312

Microsoft Access
adding link table, 138
browsing link table, 140
creating blank Access database, 138
creating reports, 141
data entry, 141
selecting ODBC data source, 139
selecting tables to link, 139
using with PostgreSQL, 137–142

reasons for using Access, 137
using linked tables, 137

Microsoft Excel
choosing an import location, 145
choosing columns to import into, 143
defining sort criteria for imported data, 144
importing data into, 143
restricting rows to import, 144

using with PostgreSQL, 142–146
charting, 142
Excel chart using PostgreSQL data, 146
graphical tools, 142

viewing imported data in, 145
min function, 182–183

description, 174
NULL values, 183
varchar type columns, 183

minimum value in column
see min function

MinPoolSize option
Npgsql in Mono, 521

mod function, 274
mode function, 185
models

database models, 4
modes

setting single-line mode, 119
setting single-step mode, 118
shutdown mode, 319
silent mode, 319

module Pg
DBD::Pg database driver, 465

modules
bundles, 469

modulo operator, 271
money data type, 207, 376, 546
Mono

see Npgsql in Mono
mono command

compiling with command-line
compiler, 524

MonoDevelop
C# code retrieving data in, 529
compiling with, Npgsql in Mono, 524

MOVE command, 567
moveToCurrentRow method

ResultSet interface, java.sql, 506
moveToInsertRow method

ResultSet interface, java.sql, 506
multiple tables

selecting from, 100–110
multiplication operator, 271

operator precedence, 270
multiplying SQL results

performing calculations in SELECT, 86

MatthewStones_4789Index.fm Page 615 Wednesday, March 9, 2005 1:01 PM

616 ■I N D E X

multitasking
responsibilities of DBMS, 11

multiuser access
transactions, 244, 246

double booking error, 244
using databases for data access, 25

■N
N option (-N)

postmaster.opts file, 316
n option (-n), psql, 118, 573
name

reserved keywords, 362
Name attribute, Perl DBI, 475

statement handles, 480
names

choosing data type, 376
database design, 363
column aliases, 81

naming conventions
database design, 34
embedded SQL keywords, 421
indicator variables, 438
sequence numbers, 155
variable names, 285

Natural language support option
installing PostgreSQL on Windows, 60

nesting transactions, 254
.NET Framework

open source implementation of, 520
network data types, 209–210
network model

database models, 5
networks

accessing data across a network, 24
granting PostgreSQL connection

permissions, 55
NEW trigger procedure variable, 303
next method

ResultSet interface, java.sql, 503
NEXT option, FETCH statement

fetching results using cursors, libpq, 411
nextval function

sequence numbers, 155, 156
nonblocking mode

asynchronous working, libpq, 411
normalization

database design, 33, 378–380
first normal form, 378

second normal form, 379
third normal form, 379

not equal to operator, 87
not found condition

whenever statement, EXEC SQL, 431
NOT LIKE operator

string operators, 272
NOT NULL clause

column constraints, 218
variable declarations, 286

NOT operator
Binary NOT operator, 271
operator precedence, 270

NOTICE exception level, 290
notifications

LISTEN command, 567
NOTIFY command, 567
UNLISTEN command, 572

NOTIFY command, 567
NOTNULL operator

operator precedence, 270
now function

using date and time functions, 99
Npgsql driver option

installing PostgreSQL on Windows, 60
Npgsql in Mono

accessing PostgreSQL from C#, 520–539
changing data

ExecuteNonQuery method, 536
using DataAdapter object, 537
using NpgsqlCommand object, 536

compiling with command-line compiler,
523–524

compiling with MonoDevelop, 524
connecting to database, 521–524

creating NpgsqlConnection object,
521–523

event logging, 530
NpgsqlEventLog properties, 531

retrieving data from database, 525–532
NpgsqlCommand class, 525
NpgsqlDataReader class, 527
retrieving metadata, 530

using parameters, 532
using prepared statements, 535
using statements, 533

Npgsql in Visual Studio
accessing PostgreSQL from C#, 539

MatthewStones_4789Index.fm Page 616 Wednesday, March 9, 2005 1:01 PM

617■I N D E X

NpgsqlCommand class
methods, 526
properties, 526
retrieving data from database, 525

NpgsqlCommand object
ExecuteNonQuery method, 536

NpgsqlConnection class
connecting to database, 521–523
connection string options, 521
methods, 522
properties, 522

NpgsqlDataReader class
methods, 527
properties, 527
retrieving data from database, 527

NpgsqlDbType enumeration, 533
NpgsqlDbType property

NpgsqlParameter class, 533
NpgsqlEventLog

properties, 531
NpgsqlParameter class

properties, 533
using Npgsql in Mono, 532

creating prepared statements, 535
creating statements with parameters, 533

NULL database values
retrieving data with ecpg, 438

NULL pointers
PQfinish/PQstatus functions, libpq, 391

NULLABLE attribute
statement handles, Perl DBI, 480

NULLIF function
execution control structures, 292

NULLs
aggregate functions, SELECT, 183
choosing data type, 375
comparing NULL values, 41
copy command, psql, 160
data storage in databases, 41
inserting into database, 151, 158–159, 435
IS keyword, 93
libpq handling NULL results, 400
logic behind use of, 93
outer joins, 197, 198
PHP definition of, 456
SELECT statement

checking for, 93–94
UNIQUE option, 219

null-terminated strings
retrieving data with ecpg, 437

NUM_OF_FIELDS attributes
statement handles, Perl DBI, 480

NUM_OF_PARAMS attributes
statement handles, Perl DBI, 480

number data types, 206–209
approximate number, 546
exact number, 546

numeric data type, 207, 546
data types, 40

■O
o command (\o), psql, 120, 575

redirecting query output, 117
O option (-O)

createdb/dropdb utilities, 330
o option (-o)

ecpg arguments, 424
pg_ctl utility, 319
psql, 118, 573

object identifier (oid) data type, 549
object operator

operator precedence, 270
objects

COMMENT command, 556
octet_length function, 275
ODBC (Open Database Connectivity)

accessing data across a network, 24
accessing PostgreSQL from C#, 517–520
connecting to PostgreSQL, 14
creating data source, 123
data access with PostgreSQL, 15
Microsoft Access selecting data source, 139
ODBC Data Sources applet, 122
ODBC drivers, 121

installed ODBC drivers, 122, 123
installing, 121
standard Windows installation, 121

setting up, 121–125
odbc (PostgreSQL-odbc) binary package, 45
ODBC .NET Data Provider on Windows

accessing PostgreSQL from C#, 517–520
connecting to database, 518
retrieving data into dataset, 519
setting up ODBC provider, 517

odbc directory, 310

MatthewStones_4789Index.fm Page 617 Wednesday, March 9, 2005 1:01 PM

618 ■I N D E X

ODBC driver
see also DBD::ODBC database driver
installing PostgreSQL on Windows, 60

OFFSET clause
choosing rows in SELECT

using alone in SELECT, 92
using with LIMIT keyword, 92

OID (object ID) column
BLOBs, 583
data manipulation, 216–217

OID (Object IDentification) number, 151
creating tables with OIDs, 315
data type, 549

OLD trigger procedure variable, 303
OLEDB provider option

installing PostgreSQL on Windows, 60
ON clause

outer joins, 198, 199
ON DELETE keyword

foreign key constraint, 241–242
ON UPDATE keyword

foreign key constraint, 241–242
online documentation

doc directory, 316
opaque return type, 300
Open Database Connectivity

see ODBC
Open method

NpgsqlConnection class, 522
open-source software, 15

copyright, 15
main feature, 13

operators, 268–273
additional operators, 273
ALTER OPERATOR CLASS, 554
ALTER OPERATOR, 554
arithmetic operators, 270–271

precedence, 269
associativity, 269
built-in function equivalents, 274
comparison operators, 272
CREATE OPERATOR CLASS, 560
CREATE OPERATOR, 560
DROP OPERATOR CLASS, 564
DROP OPERATOR, 564
greater than (>) operator, 268
listing, 120
multiplication (*) operator, 268

order of precedence, 269, 270
performing regular expression matches, 268
psql command listing, 78
string operators, 272

options
psql command line options, 118–119
setting options to pass to postmaster, 319

OR operator
Binary OR operator, 271
conditional operator, 89
operator precedence, 270

ORDER BY clause
SELECT statement, 81, 82

ASC keyword, 81
default sort order, 82
DESC keyword, 81
example using ASC and DESC, 82, 83
sorting on unselected columns, 83

orderinfo table
creating table, 68, 578
identifying primary keys, 373

orderline table
creating table, 68, 579
identifying primary keys, 373
populating sample database tables, 71

outer joins, 196–200
NULL values, 197, 198
Oracle and DB2, 198
SQL92 standard, 198

output
running quietly, 118
toggling expanded output, 121

output modes
setting HTML table output mode, 118

output option (-output)
sql2xml.pl script, 487

overloading
function overloading, 279

owner
database owner, 330

■P
p command (\p), psql, 120, 575

query history, 115
P option (-P)

createuser utility, 323
creating user records, 65
psql, 118, 574

MatthewStones_4789Index.fm Page 618 Wednesday, March 9, 2005 1:01 PM

619■I N D E X

p option (-p)
createdb/dropdb utilities, 330
createlang utility, 278
createuser utility, 322
pg_dump utility, 341
pg_restore utility, 342
psql, 114, 118, 573
vacuumdb utility, 351

p port option (-p port)
postmaster.opts file, 316

packages
see also RPM (RPM Package Manager)
binary packages, 44
examining contents with KPackage, 49
selecting with YaST2, 45

ParameterName property
NpgsqlParameter class, 533

parameters
see also arguments
binding to column names, 538
RESET command, 568
SET command, 570
setting data type, 538
SHOW command, 571
SQL functions, 298
using with Npgsql in Mono, 532–533

Parameters property
NpgsqlCommand class, 526

password authentication methods
pg_hba.conf file, 312

password connection parameter/option
pg_connect function, 448
PQconnectdb function, 388

Password option
Npgsql in Mono, 521

passwords
prompting for, 330

passwords, psql
password required, 117
prompting for password, 119

PATH
adding resources to execution path, 58

path data type, 548
paths

setting schema search path, 334
pattern matching

choosing rows in SELECT, 91

PEAR (PHP Extension and Application
Repository)

error handling with, 461
preparing and executing queries, 462
using, 459–463
using database abstraction interface, 460
wildcard characters, 462

PEAR_Error object, 461
class information, 462
getMessage method, 461
setErrorHandling method, 462

PEAR_ERROR_XYZ
error-handling behaviors, 462

PERFORM statement
assignments, 289

performance
database design imposing, 360
database performance, 347–356

creating indexes, 352–356
monitoring behavior, 347–348
using VACUUM command, 348–352

locking tables, 266
PEAR database abstraction interface, 460
PHP building SQL queries, 451
PostgreSQL, 11
transaction isolation, 255

deadlocks, 262
using DISTINCT keyword, 85
using subqueries, 188

Perl
accessing PostgreSQL from, 465–489
code beginning with symbols ($, @, %), 473
installing Perl DBI, 468–472
installing Perl modules, 466–468
resources for learning, 466
ways to access PostgreSQL from, 465

perl (with-perl) option, 51
Perl DBI

architecture, 468
available_drivers function, 483
binding parameters, 481–483
creating XML from DBI queries, 485–489

creating SQL from XML, 488–489
creating XML from SQL, 487–488

data access with PostgreSQL, 15
data_sources function, 483

MatthewStones_4789Index.fm Page 619 Wednesday, March 9, 2005 1:01 PM

620 ■I N D E X

database connections
connecting to PostgreSQL, 476
connection attributes, 475
DBI environment variables, 475
specifying Data Source Names

(DSNs), 474
database connections, 473
DBD (Database Driver) modules, 468, 469
DBD::CSV driver, 469
DBI environment variables, 475
DBI features, 483
DBI module, 469
DBIx modules, 484
DBIx::Easy, 484–485
DBIx::XML_RDB module, 485
executing SQL, 477–478
installing DBI, 468–472

and PostgreSQL DBD from source, 471
and PostgreSQL DBD on Windows, 469
installing DBD::ODBC, 470
installing DBD::PgPP, 470
installing DBI bundle, 470

result sets, 478–481
using, 472–483

database connections, 477
permissions

Data Control Language (DCL), 9
granting PostgreSQL connection

permissions, 54
listing, 119
listing access permissions, 121
psql complaining about pg_shadow, 75

persistent database connections
overuse of, 449
PHP making, 448

Pg module
see DBD::Pg database driver

pg_affected_rows function, 453
pg_client_encoding function, 459
pg_close function, 449
pg_config command, 52
pg_config utility, 311
pg_connect function, 447
pg_ctl file, 310
pg_ctl utility

options, 319
PostgreSQL files, 48
PostgreSQL installation, 47
postmaster process control, 56

starting and stopping server on Linux and
UNIX, 319

stopping PostgreSQL, 58
pg_dbname function, 449
pg_dump utility

bin directory, 311
creating backup, 339
options, 340
pgAdmin III tool interfacing, 128

pg_dumpall utility, 311
pg_fetch_array function, 455
pg_fetch_object function, 456
pg_fetch_result function, 453
pg_fetch_row function, 455
pg_field_xyz functions, 457
pg_free_result function, 457
pg_hba.conf file

authentication methods, 312
data directory, 311
default configuration line, 312
Linux/UNIX installation, 54
Windows installation, 64

pg_host function, 449
pg_ident.conf file, 311, 313
pg_last_error function, 458, 452
pg_last_notice function, 458
pg_locks view, 348
pg_num_fields function, 453
pg_num_rows function, 453
pg_options function, 449
pg_pconnect function, 448
pg_port function, 449
pg_proc table, 273
pg_query function, 452
pg_restore utility

bin directory, 311
recovering database, 342

pg_stat_activity function, 348
pg_tty function, 449
PG_VERSION file, 311
pg_xyz tables, 77
pgAdmin III tool, 125–129

adding server connection in, 127
Backup dialog box, 129
backups, 128
database backup and recovery, 343–346
examining table properties with, 128
features, 125
installing, 125

MatthewStones_4789Index.fm Page 620 Wednesday, March 9, 2005 1:01 PM

621■I N D E X

installing PostgreSQL on Windows, 60
listing schemas, 332
managing users with, 324
order information viewed in, 29
PostgreSQL configuration methods, 321
restores, 128
semicolon, using, 26
using, 126
vacuuming from pgAdmin III, 352
viewing customer data, 23

PGconn
database connections using libpq, 387
libpq connection parameters, 391

PGDATA environment variable, 319
PGDATABASE environment variable, 114
PGDATESTYLE environment variable, 95
pgFoundry (pgfoundry.org), 146
PGHOST environment variable, psql

specifying database server host, 118
starting psql, 114

pgmonitor, 147
pgport (with-pgport) option, 51
PGPORT environment variable, psql

specifying database server port, 118
starting psql, 114

PgPP DBD database driver
see DBD::Pg database driver

PGRES_BAD_RESPONSE status, 393
PGRES_COMMAND_OK status, 393
PGRES_EMPTY_QUERY status, 393
PGRES_FATAL_ERROR status, 393
PGRES_NONFATAL_ERROR status, 393
PGRES_POLLING_FAILED status, 415
PGRES_POLLING_OK status, 415
PGRES_TUPLES_OK status, 393
PGSQL_XYZ argument values, 455
PGUSER environment variable, psql

specifying database username, 119
starting psql, 114

phantom reads
transaction isolation, 258

phone numbers
choosing data type, 376

PHP
accessing PostgreSQL from, 445–463
adding PostgreSQL support, 445–446
building queries, 450–452

creating complex queries, 451
executing queries, 452

checking for PostgreSQL support in, 445, 446

described, 445
error handling, 458–459
functions and result sets, 452–458

extracting values from result sets, 453
freeing result sets, 457
getting field information, 456
type conversion of result values, 458

making database connections, 447–450
closing connection, 449
connection information functions, 449
creating new connection, 447–448
creating persistent connection, 448–449
example script, 447
PostgreSQL connection parameters, 448
quotation mark usage, 447
retrieving connection handle

information, 449
using PHP variables, 447

object-orientation extensions for, 459
resources for information, 446
resources for learning, 445
support for character encoding, 459
using PEAR, 459–463

database abstraction interface, 460
using PHP API for PostgreSQL, 446–447

php.ini file
levels of error reporting, 458

phpPgAdmin tool, 129–133
browsing table data, 132
data import functionality, 132, 133
functionality, 129
installing, 130
phpPgAdmin login, 131
phpPgAdmin main page, 131
using, 130

pipes
sending query output to filename, 118

pl (PostgreSQL-pl) binary package, 45
PL/pgSQL, 277–298

case sensitivity, 282
dynamic queries, 297
execution control structures, 289

conditional statements, 291
loops, 292

function arguments, 283
function declarations, 284
keywords, 285
requirements to use, 277
stored procedures, 282–298

MatthewStones_4789Index.fm Page 621 Wednesday, March 9, 2005 1:01 PM

622 ■I N D E X

placeholders
binding parameters, Perl DBI, 481

platforms, 11
point data type, 209, 548
point-in-time recovery, 346
polygon data type, 209, 548
Pooling option

Npgsql in Mono, 521
pop_tablename.sql file, 69
port connection parameter/option

pg_connect function, 448
PgPP driver, 474
PQconnectdb function, 388

Port/port options
Npgsql in Mono, 521
PostgreSQL.conf file, 314

portability
JDBC drivers, 492

ports
setting TCP port number, 316
specifying database server port, 118, 330
specifying port, 322

position function, 275
postgres file, 310
postgres user

creating, 53
creating first database, 114
data access, 53
default database installation, 317
initializing database, 54

security caution, 54
limiting use of user id, 74
running initdb utility, 54
secure PostgreSQL installations, 317

PostgreSQL
accessing from C using embedded SQL,

419–444
accessing from C using libpq, 385–417
accessing from C#, 517–541

Npgsql in Mono, 520–539
Npgsql in Visual Studio, 539
ODBC .NET data provider on Windows,

517–520
accessing from Java, 491–516
accessing from Perl, 465–489
accessing from PHP, 445–463

building queries, 450–452
error handling, 458–459
functions and result sets, 452–458

making database connections, 447–450
support for character encoding, 459
using PEAR, 459–463
using PHP API for PostgreSQL, 446–447

adding resources to execution path, 58
architecture, 13, 14
checking if PostgreSQL running, 64
client programs connecting, 14
commands, 551–572
commercial support, 13
copyright, 15
described, 11
exiting back to shell, 66
features, 11
history of, 12
internal configuration, 320–338

configuration methods, 320–321
database management, 328–331
group configuration, 325–326
privilege management, 337–338
schema management, 331–337
tablespace management, 326–328
user configuration, 321–324

official PostgreSQL site, 16
official releases, 13
platforms, 11
programming language, 1
releases, 13
reliability, 12
resources, 16

for PostgreSQL tools, 146
scalability, 13
showing usage and distribution terms, 119
source code for, 49
upgrading, 46
Windows versions supported, 59

PostgreSQL database server
see databases servers
see also servers

PostgreSQL installation on Linux/UNIX,
43–58

building from source code, 43
data directory, 47
data storage for different file categories, 48
Debian Linux users installing, 44
drawback of single directory, 47, 48
from Linux binaries

binary packages, 44
downloading binaries, 44

MatthewStones_4789Index.fm Page 622 Wednesday, March 9, 2005 1:01 PM

623■I N D E X

from Linux binaries, 44
from SuSE packages with YaST2, 46
installing RPM Package Manager, 45

installing from source code, 49–52
compiling from source code, 50
configure script, 50
GNU tools, 50
make command, GNU, 52
querying configuration, 52

setting up PostgreSQL, 53–58
configuring automatic postmaster

startup, 57
connecting to database, 56
creating database directory, 53
creating postgres user, 53
granting connection permissions, 54
initializing database, 53
starting postmaster process, 55
stopping PostgreSQL, 58

using KPackage, 48, 49
PostgreSQL installation on Windows, 59–64

configuring client access, 64
using Windows installer, 59

database initialization, 62
installation options, 60
procedural languages, 63
processes, 63
program menu, 64
service configuration, 61
setup recommendations, 61

Windows versions supported, 59
PostgreSQL.conf file, 311, 313, 314
PostgreSQL/PostgreSQL-xyz binary

packages, 44
YaST2 installation tool, 45

PostgreSQLMetaData.java class, 500
postmaster application, 53

checking if PostgreSQL running, 64
checking if running, 56
ensuring automatically run at startup, 57
location of database files, 55
pg_ctl utility controlling, 56
PostgreSQL files, 48
PostgreSQL installation, 47
process ID, 311
running processes on Linux and UNIX, 318
starting, 55, 56, 318
starting and stopping server on Linux and

UNIX, 319
stopping, and restarting, 56

postmaster file, 310
postmaster.opts file, 311, 315, 316
postmaster.pid file, 311
pow function, 274
PPM (Perl Package Manager) utility

installing Perl modules, 467–468
PQbinaryTuples function, libpq, 411
PQcancelRequest function, libpq, 415
PQclear function, libpq, 392
PQcmdTuples function, libpq, 397, 399
PQconnectdb function, libpq, 387, 388
PQconnectPoll function, libpq, 415
PQconnectStart function, libpq, 415
PQconsumeInput function, libpq, 414
PQerrorMessage function, libpq

asynchronous working, 412
connection errors, 391
executing SQL with libpq, 394

PQexec function, libpq
executing SQL queries with, 394
executing SQL with libpq, 392, 397
fetching results using cursors, 405, 408
including user-specified data in, 396
managing transactions, 404

PQfinish function, libpq
closing connection using, 389
NULL pointers, 391

PQflush function, libpq, 414
PQfname function, libpq, 397
PQfnumber function, libpq, 398
PQfsize function, libpq, 398
PQgetisnull function, libpq, 401, 438
PQgetlength function, libpq, 399
PQgetResult function, libpq, 412
PQgetvalue function, libpq, 399, 400
PQisBusy function, libpq, 414
PQisnonblocking function, libpq, 413
PQnfields function, libpq, 397
PQntuples function, libpq

executing SQL with libpq, 397
fetching results using cursors, 408

PQprint function, libpq, 401
PQprintOpt structure, libpq, 401
PQreset function, libpq, 389
PQresStatus function, libpq, 394
PQresultErrorMessage function, libpq,

394, 399
PQresultStatus function, libpq, 392, 393
PQsendQuery function, libpq, 412
PQsetnonblocking function, libpq, 412

MatthewStones_4789Index.fm Page 623 Wednesday, March 9, 2005 1:01 PM

624 ■I N D E X

PQsocket function, libpq, 414
PQstatus function, libpq

checking state of connection, 389
NULL pointers, 391

precedence
operator precedence, 269, 270

Precision property
NpgsqlParameter class, 533

predicate calculus, 8
prefix option

configure script, 51
PREPARE command, 568
Prepare method

NpgsqlCommand class, 526
prepare method, PEAR, 462
prepareCall method

Connection interface, java.sql, 499
prepared statements

JDBC statements, 507, 512
using prepared statements, 516
using with parameters, Npgsql in Mono,

535–536
PreparedStatement interface, java.sql, 507

clearParameters method, 514
execute method, 513
executeQuery method, 513
executeUpdate method, 513
executing prepared SQL statements, 513
setBoolean method, 514
setInt method, 514
setString method, 514
updating data, 513
using prepared statements, 512
writing JDBC client using, 514,–516

PreparedStatementClient class, 514
prepareStatement method

Connection interface, java.sql, 499
preprocessors

ecpg preprocessor, 419
Oracle and Informix, 420

previous method
ResultSet interface, java.sql, 503

primary keys
establishing in design, 372–373
identifying rows uniquely, 22
PRIMARY KEY constraint, 219

column constraints, 218
table constraints, 222

RDBMS, 7

PrintError attribute, Perl DBI, 475
printing

printing rows only, 119
setting printing option, 118

println method
DriverManager class, java.sql, 496

PrintWriter method
DriverManager class, java.sql, 496

privileges
GRANT command, 566
privilege management, 337–338

grantable privileges, 337
granting privileges, 337
revoking privileges, 338

REVOKE command, 568
procedural languages, 276–282

ALTER LANGUAGE, 554
CREATE LANGUAGE, 560
DROP LANGUAGE, 564
installing handler, 277
installing PostgreSQL on Windows, 63
LANGUAGE clause, 276
PL/pgSQL, 277–282
programming languages, 28
requirements for handling, 277

procedures
defining trigger procedure, 300
trigger procedure variables, 303

process function
DBI::Easy module, 485

process ID (PID)
postmaster application, 311

processes
installing PostgreSQL on Windows, 63
running processes on Linux and UNIX, 318

program menu
installing PostgreSQL on Windows, 64

programming languages, 1
declarative languages, 28
procedural languages, 28

projection
accessing data, 27

prompt changes
continuation lines, 193
starting up psql on Windows, 75

prompts, createuser utility
prompting for password, 323

MatthewStones_4789Index.fm Page 624 Wednesday, March 9, 2005 1:01 PM

625■I N D E X

prompts, psql
continuation prompt, 108
indicating input expected, 115
indicating permissions, 114
prompting for password, 119
single-line mode, 115

Protocol option
Npgsql in Mono, 521

pset command (\pset), psql, 120, 575
setting printing option, 118

pseudo users
data access, 53

psql command-line tool, 113–121
basic commands, 78
bin directory, 310
command history, 115
command line options, 118–119, 573–574
command syntax, 118
command types, 114
commands

describing table, 150
executing commands from a file, 78
getting a help message, 78
getting help on specified command, 78
listing data types, 78
listing operators, 78
listing tables, 78
never splitting over lines, 115
quitting psql, 78
resetting buffer, 78

continuation prompt, 108
copy command, 159–162
CREATEDB option, 75
creating database, 75
creating user, 75
currval function, 156
deleting database, 75
deleting user, 75
examining database structure, 117
exiting psql, 75
internal commands, 114, 119–121,

574–576
issuing commands in psql, 114–115
max function, 156
nextval function, 155
prompts, 114, 115
psql complaining about pg_shadow, 75
resolving startup problems, 75–77

scripting psql, 115–117
creating and populating tables, 115
executing file, 116
reading psql commands from file, 115
redirecting query output, 117
simple reports, 116

semicolon, 26, 79, 161
sequence numbers, 161
setting psql variable, 119
setval function, 156
SHOW command, 97
simple administrative tasks, 56
SQL commands, 114
sql extension to files, 116
starting psql, 114
starting up on Linux, 74
starting up on Windows, 74–75

choosing database for connection, 75
connecting to remote server, 75
identifying user, 75
switching user, 74

terminating SQL statements in, 79
using, 74–78
viewing customer data, 23

psql option
installing PostgreSQL on Windows, 60

psqlodbc
ODBC drivers, 121

PUBLIC keyword
GRANT command, 337

public schema, 331
pwd option (-pwd)

sql2xml.pl script, 487
xml2sql.pl script, 488

python (PostgreSQL-python) binary
package, 45

python (with-python) option, 51

■Q
q command (\q), psql, 78, 120, 575

internal commands, psql
q option (-q)

createdb/dropdb utilities, 330
createuser utility, 322
psql, 574
rpm query, 48

qecho command (\qecho), psql, 120, 575

MatthewStones_4789Index.fm Page 625 Wednesday, March 9, 2005 1:01 PM

626 ■I N D E X

queries
see also SQL queries
clearing query buffer, 115
dynamic queries, 297
editing query buffer, 115
examining query buffer, 115
executing SQL with libpq, 397, 392–401

asynchronous working, 412, 415
PHP building, 450–452
preparing and executing with PEAR, 462
query language, 8
RDBMS, 8
reading and executing from file, 120
redirecting query output, psql, 117
Rekall building queries, 136
repeating a query, 115
responsibilities of DBMS, 10
running single query, psql, 118
sending query output to filename, 118
sending to back-end, 120
subqueries

see subqueries
viewing query history, 115
writing query buffer to file, 121

query buffer
editing, 120
examining, 115
resetting, 120
showing content of, 120

query optimizer, 349
query output

printing with libpq, 401–403
running quietly, 118
sending to file or pipe, 120
writing text to query output stream, 120

query plan, 349
quiet option (-quiet)

createuser utility, 322
quitting psql, 78, 120
quotes

dollar quoting, 282
using in stored procedure creation, 281

■R
r command (\r), psql, 78, 120, 576

query history, 115
R option (-R), psql, 118, 574
radians function, 274

RAISE statement
execution control structures, 290

RaiseError attribute, Perl DBI, 475
random function, 274
RDBMS (relational database management

system)
atomicity, 7
Codd, E.F., 6
data integrity, 6
database models, 6
PostgreSQL, 11
predicate calculus, 8
primary keys, 7
queries, 8
records, 6
responsibilities of DBMS, 10
SQL, 8
tuples, 6

Read Committed isolation level, 260, 261
Read method

NpgsqlDataReader class, 528
Read Uncommitted isolation level, 260, 261
readability of SQL

using subqueries, 188
reading data

dirty reads, 256
phantom reads, 258
unrepeatable reads, 257

readline
preventing line editing, 118

real data type, 546
records

flat files for data storage, 2
setting record separator, 118
tuples, 6

RecordsAffected property
NpgsqlDataReader class, 527

recovery
database backup and recovery, 338–346
point-in-time recovery, 346

recursive relationship pattern
database design, 382–383

Red Hat
packages for download available at, 44

Red Hat Database, 16
Red Hat Package Manager

see RPM

MatthewStones_4789Index.fm Page 626 Wednesday, March 9, 2005 1:01 PM

627■I N D E X

REFERENCES keyword
column constraints, 218
foreign key constraint, 233, 234
table constraints, 222

REFERENCES privilege
grantable privileges, 337

referential integrity
responsibilities of DBMS, 11

refreshRow method
ResultSet interface, java.sql, 506

registerDriver method
DriverManager class, java.sql, 494

regular expression matches
operators performing, 268
string operators, 272

REINDEX command, 568
reject authentication methods

pg_hba.conf file, 312
Rekall, 133–137

browsing a table with, 135
building queries, 136
connecting to database, 134
creating forms, 135

relating data entities
cardinality symbols, 367
database design, 359, 366

relating tables
additional WHERE clause conditions, 102

SQL92 SELECT syntax, 110
creating simple database design, 36, 37
identifying foreign keys, 373–375
linking tables, 101
relating three or more tables, 106–110

database schema, 106
joining multiple tables, 108
using DISTINCT keyword, 110

relating two tables, 100–105
specifying column and table, 102
using joins, 29

relational database management system
see RDBMS

relative method
ResultSet interface, java.sql, 503

RELEASE SAVEPOINT command, 568
releases, PostgreSQL, 13
reload option, pg_ctl utility, 319
remote access

granting connection permissions, 54
RENAME declaration, 286

RENAME TO option
ALTER USER command, 323

reorders function
creating stored procedures, 295

Repeatable Read isolation level, 260, 261
repeating groups

database design, 34
flat files problem, 3

reports
Microsoft Access creating, 141
scripting psql, 116

requirements
database design supporting, 359

reserved keywords
name, 362

RESET command, 568
resolving problems, 75–77
resources, 16

for PostgreSQL tools, 146
responses

quiet option (-quiet), 322
restart option, pg_ctl utility, 319, 320
restores

pgAdmin III tool, 128
utility to restore database, 311

result sets
JDBC result sets, 502–507

accessing result set data, 504
concurrency types, 502
methods for traversing, 503
result set types, 502
Statement interface querying, 509
updateable result sets, 505

Perl DBI and, 478–481
fetching results, 479
statement handle attributes, 479

PHP functions and, 452–458
extracting values from, 453
freeing result sets, 457
getting field information, 456
type conversion of result values, 458

ResultSet interface, java.sql
absolute method, 503
accessing result set data, 504
afterLast method, 504
beforeFirst method, 504
cancelRowUpdates method, 506
close method, 507
deleteRow method, 505

MatthewStones_4789Index.fm Page 627 Wednesday, March 9, 2005 1:01 PM

628 ■I N D E X

first method, 503
getBoolean method, 504
getConcurrency method, 502
getFetchDirection method, 504
getFetchSize method, 504
getInt method, 504
getMetaData method, 507
getString method, 504
getting concurrency type, 502
getting result set type, 502
getType method, 502
insertRow method, 507
isAfterLast method, 503
isBeforeFirst method, 503
isFirst method, 503
isLast method, 503
last method, 503
moveToCurrentRow method, 506
moveToInsertRow method, 506
next method, 503
previous method, 503
refreshRow method, 506
relative method, 503
rowDeleted method, 505
rowUpdated method, 506
setFetchDirection method, 504
traversing result sets

manipulating fetch direction and
size, 504

querying cursor position, 503
scrolling result sets, 503

updateable result sets
deleting data, 505
inserting data, 506
updating data, 506

updateBoolean method, 506
updateInt method, 506
updateRow method, 506
updateString method, 506

retrieving data
see data access

RETURN statement
execution control structures, 290

REVERSE option
FOR loops, 294

REVOKE command, 568
privilege management, 338

RIGHT OUTER JOIN keywords, 199

ROLLBACK command, 569
single user transactions, 248
transaction examples, 248, 249, 251
transactions, 244

rollback method
Connection interface, java.sql, 499

ROLLBACK TO SAVEPOINT command,
251, 569

round function, 214, 274
rowDeleted method

ResultSet interface, java.sql, 505
rows

see database rows
rowtype declaration syntax, 287

SELECT INTO statement, 289
rowUpdated method

ResultSet interface, java.sql, 506
RPM (RPM Package Manager)

installing on Linux, 45
list option (-l), 48
listing installed files, 48
packages for download available at, 44
query option (-q), 48
upgrading PostgreSQL, 46

RULE privilege
grantable privileges, 337

rules
CREATE RULE, 560
DROP RULE, 564

runtime parameters
SET command, 570

■S
s command (\s), psql, 120, 576

query history, 115
S option (-S)

pg_dump utility, 341
s option (-s)

pg_ctl utility, 319
pg_dump utility, 341
pg_restore utility, 342
psql, 118, 574

S option (-S), psql, 119, 574
splitting commands over lines, 115

sample database, creating
see under database creation

SAVEPOINT command, 569
RELEASE SAVEPOINT, 568
ROLLBACK TO, 251, 569
transactions, 244, 252

MatthewStones_4789Index.fm Page 628 Wednesday, March 9, 2005 1:01 PM

629■I N D E X

scalability, PostgreSQL, 13
Scale property

NpgsqlParameter class, 533
schema

see database schema
scripts, psql

i command (\i) running, 67
scripting database schema, 67
scripting psql, 115–117

scrollable result sets, 502
ResultSet interface, java.sql, 503

search_path option
PostgreSQL.conf file, 315

second normal form
database design, 379

security
installing PostgreSQL on Windows, 62
limiting use of postgres user, 74
Npgsql in Mono, 521
PostgreSQL installations, 317
reasons for using stored

procedures/triggers, 306
responsibilities of DBMS, 11

SELECT privilege
grantable privileges, 337

SELECT statement, 570
accessing data, 73–112

advanced features, 173–200
aggregate functions

see aggregate functions, SELECT
AND conditional operator, 88
BETWEEN keyword, 89, 90
cast function, 86
column aliases, 81
counting number of rows selected, 31
dates and times, 94–100
DISTINCT keyword, 84, 85
duplicated rows returned, 83

suppressing duplicates, 84, 85
executing SQL with libpq, 397
FROM clause, 78
functions useable in, 273
IN keyword, 89
joins, 192–200
LIKE keyword, 91
LIMIT keyword, 92
listing tables in schema, 336
multiple tables, selecting from, 100–110
multiplying results, 86

no data returned, error handling, 428
NULLs, checking for, 93–94
OFFSET clause, 92
operators outside WHERE clause, 269
OR conditional operator, 89
ORDER BY clause, 81, 82

default sort order, 82
using ASC and DESC, 82, 83

pattern matching, 91
performing calculations in, 86
PostgreSQL group configuration, 326
PostgreSQL user configuration, 323
relating tables

JOIN ... ON clause, 111
joining multiple tables, 108
relating three or more tables, 106–110
relating two tables, 100–105
using DISTINCT keyword, 110

retrieving data with ecpg, 436
SELECT INTO, 288, 570
selecting all columns, 79
selecting named columns, 80, 81
simple SELECT, 78–85
SQL92 SELECT syntax, 110–112
subqueries

see subqueries
table name aliases, 105
using asterisk (*), 79
WHERE clause, 87–93

selectall_arrayref function, Perl DBI, 479
selection

accessing data, 26
selectrow_array function, Perl DBI, 479
self joins, 194–196

database design, 383
semicolon

pgAdmin III tool using, 26
psql command-line tool, 26, 79, 115, 161

sentinel value, 41
separators

setting record separator, 118
sequence diagrams

JDBC client connecting, 496
sequence numbers

see also serial data type
accessing, 155–157

currval function, 156
nextval function, 155
setval function, 156

MatthewStones_4789Index.fm Page 629 Wednesday, March 9, 2005 1:01 PM

630 ■I N D E X

copy command, psql, 161
currval function, psql, 161
naming conventions, 155
out-of-step sequence problem, 155

sequences
ALTER SEQUENCE, 554
CREATE SEQUENCE, 561
DROP SEQUENCE, 565
dropping sample database tables, 69
listing, 119

serial data type, 207, 548, 549
see also sequence numbers
currval function, psql, 162
data types, 40
identifying rows uniquely, 23
incrementing, 40
inserting data into serial columns, 154–157

providing values for serial data, 155
loading data from another application, 163
psql table description, 150

Serializable isolation level, 260, 261
server (PostgreSQL-server) binary package, 44
server control, 318–320
Server option

Npgsql in Mono, 521
servers

see also database servers
adding server connection in pgAdmin, 127
specifying database server host/port, 118
utility to start, stop, and restart, 310

ServerVersion property
NpgsqlConnection class, 522

service configuration
installing PostgreSQL on Windows, 61

sessions
SET SESSION AUTHORIZATION, 571

SET clause/command
datestyle, 95, 97
syntax, 570
UPDATE statement, 168

set command (\set), psql, 121, 576
SET CONSTRAINTS command, 571
SET SESSION AUTHORIZATION

command, 571
SET statement

EXEC SQL syntax, 427
SET TRANSACTION command, 571
setAutoCommit method

Connection interface, java.sql, 499

setBoolean method
PreparedStatement interface, java.sql, 514

setErrorHandling() method
PEAR_Error object, 462

setFetchDirection method
ResultSet interface, java.sql, 504

setInt method
PreparedStatement interface, java.sql, 514

setLoginTimeout method
DriverManager class, java.sql, 496

setLogWriter method
DriverManager class, java.sql, 496

setString method
PreparedStatement interface, java.sql, 514

setTransactionIsolation method
Connection interface, java.sql, 500

setval function, psql
sequence numbers, 156, 157, 161

share directory
PostgreSQL installation, 47
system configuration, 316

shared locks, 262
shared memory segments

utility to delete, 311
shared_buffers option

PostgreSQL.conf file, 314
shell

escape to or execute command, 121
shift left operator, 271
shift right operator, 271
SHOW command, psql, 571

datestyle variable, 97
shutdown mode, 319
silent mode, setting, 319
sin function, 275
single user transactions

see under transactions
single-line comments, 284
single-line mode, setting, 119
single-step mode, setting, 118
Size property

NpgsqlParameter class, 533
smallint data type, 207, 546
sn option (-sn)

sql2xml.pl script, 487
xml2sql.pl script, 488

source code
installing PostgreSQL on Linux/UNIX

from, 49–52

MatthewStones_4789Index.fm Page 630 Wednesday, March 9, 2005 1:01 PM

631■I N D E X

spreadsheets
data storage limitations, 17–20

sprintf function
PHP building SQL queries, 450

SQL
see also embedded SQL
client processing large amounts of data, 404
command keywords

case sensitivity, 10
command types, 9
creating SQL from XML, 488–489
creating XML from SQL, 487–488
definition, 8
executing SQL

using Perl DBI, 477–478
executing SQL with libpq, 392–401

binary values, 411
determining query status, 392–394
executing queries with PQexec, 394–396
extracting data from query results,

397–400
handling NULL results, 400
managing transactions, 404
updating or deleting rows, 396
user specified data in query, 396
using cursors, 404–411

introduction, 9–10
JDBC API SQL exceptions and warnings, 494
levels of conformance, 8
PostgreSQL configuration methods, 320
variations, 8

SQL batches
java.sql.Statement interface, 509

SQL commands
PostgreSQL commands, 551
PostgreSQL syntax for, 552–572
psql command types, 114

SQL control area
see sqlca

sql extension to files (.sql)
executing files, 116

SQL functions, 298–299
CREATE FUNCTION, 298
parameters, 298
returning multiple rows, 298

SQL queries
PHP building queries, 450

building complex queries, 451
executing queries, 452

SQL transactions
see transactions

sql2xml.pl script, 487
SQL92 SELECT syntax, 110–112

JOIN ... ON clause, 111
outer joins, 198

sqlca (SQL control area)
error codes, 429
include directive, 430
reporting embedded SQL errors, 428–430
reporting rows affected, 429
resetting sqlca structure, 428
trapping embedded SQL errors, 431

sqlcode field, sqlca, 428
sqlerrd field, sqlca

fetching rows into cursor, 441
handling empty results, 440
reporting SQL errors, 429

sqlerrm field, sqlca, 428
sqlerror condition

whenever statement, EXEC SQL, 431
SQLException class

JDBC API, 494
sqlprint action

whenever statement, EXEC SQL, 431
sqlwarn array, sqlca, 429
SQLWarning class

JDBC API, 494
sqlwarning condition

whenever statement, EXEC SQL, 431
sqrt function, 274

function arguments, 283
square root operator, 271
SSL option

Npgsql in Mono, 521
standard deviation functions, 174
start option, pg_ctl utility, 319
START TRANSACTION command, 244, 571
startup

configuring automatic startup, 57
not reading startup file, 119
reading startup file, psql, 114

state
libpq checking state of connection, 389

State property
NpgsqlConnection class, 522

statement handle attributes
Perl DBI and result sets, 479

MatthewStones_4789Index.fm Page 631 Wednesday, March 9, 2005 1:01 PM

632 ■I N D E X

Statement interface, java.sql, 507
addBatch method, 510
clearBatch method, 510
execute method, 509
executeBatch method, 510
executeQuery method, 508
executeUpdate method, 509
executing statements, 508
getMoreResults method, 509
getResultSet method, 509
getUpdateCount method, 509
handling SQL batches, 509
querying result sets, 509
using statements, 508
writing JDBC client using, 510

statement_timeout option
PostgreSQL.conf file, 315

StatementClient class
writing JDBC client using, 510

statements
DEALLOCATE command, 563
EXECUTE command, 566
EXPLAIN command, 566
JDBC clients using, 498
JDBC statements, 507–516
PREPARE command, 568
using with parameters, Npgsql in Mono,

533–534
statistics

ANALYZE command, 556
commands being executed, 315
setting to collect, 315
updating optimizer statistics, 349
viewing PostgreSQL statistics, 348

stats_command_string option
PostgreSQL.conf file, 315

stats_start_collector option
PostgreSQL.conf file, 315

status option, pg_ctl utility, 319, 320
stock table

creating table, 68, 579
populating sample database tables, 71
schema for item and stock tables, 196

stop option, pg_ctl utility, 319, 320
stopping PostgreSQL, 58
stored procedures, 282–298

see also functions
ALIAS declaration, 285
assignments, 288

automated re-ordering example, 295
comments, 284
creating, 281
declarations, 284
dynamic queries, 297
execution control structures, 289
function arguments, 283
grantable privileges, 337
PL/pgSQL, 282–298
PostgreSQL programming language

support, 62
reasons for using, 306
RENAME declaration, 286
SQL functions, 298–299
triggers, 299–306
variable declarations, 286, 287

storing data
see data storage

string concatenation, 450
string functions, 275
string operators, 272
strings

null-terminated strings
retrieving data with ecpg, 437

padding with spaces problem, 400
strpos function, 214
strtolower function, 450
structure

database structure, 117
structured text files

flat files compared, 3
subdirectories

base directory, 310
data directory, 311

subqueries, 185–192
correlated subqueries, 188–191
existence subqueries, 191–192
returning multiple rows, 187–188

subsets of data
data columns, 27
data rows, 26, 27

subsidiary table, 374
substr function, 214
substring function, 275
subtraction operator, 271
sum function, 184

description, 174
DISTINCT keyword, 184
NULL values, 184

MatthewStones_4789Index.fm Page 632 Wednesday, March 9, 2005 1:01 PM

633■I N D E X

superuser_reserved_connections option
PostgreSQL.conf file, 314

superusers
prompting for superuser password, 317

support, PostgreSQL, 13
surrogate keys

identifying rows uniquely, 23
SuSE Linux

data storage for different file categories, 48
packages for download available at, 44

system configuration, 309–316
base directory, 309
bin directory, 310–311
data directory, 311–316
doc directory, 316
include directory, 316
lib directory, 316
man directory, 316
share directory, 316

system tables, listing, 119

■T
T command (\T), psql, 121, 576
t command (\t), psql, 121, 576
T option (-T)

createdb/dropdb utilities, 330
psql, 119, 574

t option (-t)
ecpg arguments, 424
not specifying -t option, 424
pg_dump utility, 341
pg_restore utility, 342
psql, 119, 574
vacuumdb utility, 351

table option (-table)
sql2xml.pl script, 487
xml2sql.pl script, 488

table tag options
setting HTML table tag options, 119

tables
see database tables

TABLESPACE option
CREATE DATABASE command, 329

tablespaces
ALTER TABLESPACE, 555
altering, 327
CREATE TABLESPACE, 562
creating, 327
DROP TABLESPACE, 565

dropping, 328
listing, 120
setting default for new database, 330
tablespace management, 326–328

tan function, 275
tcl (PostgreSQL-tcl) binary package, 45
tcl (with-tcl) option, 51
techdocs.PostgreSQL.org

resources for PostgreSQL tools, 147
TEMPLATE option

CREATE DATABASE command, 329
templates

creating first database, 114
specifying template database to copy, 330

temporal data type, 209, 547
temporary tables, 227–228

CREATE TABLE command, 217
test (PostgreSQL-test) binary package, 45
text

choosing data type, 376
writing to standard output, 120

text data type, 204, 547
support for large objects, 582

TG_XYZ trigger procedure variables, 303
third normal form

database design, 379
threads

scrollable result sets, 502
time

see dates and times
time data type, 209, 547
time zone information, 209
Timeout option

Npgsql in Mono, 521
timeouts

JDBC API managing login timeouts, 496
setting deadlock timeout, 315
setting statement timeout, 315
setting time to complete authentication, 314

timestamp data type, 209, 547
component parts, 99
data types, 94

timestamptz data type, 209
timezone files, 316
timezone option

PostgreSQL.conf file, 315
timing command (\timing), 121, psql, 576

turning on timing option, 354
to_char function, 275

MatthewStones_4789Index.fm Page 633 Wednesday, March 9, 2005 1:01 PM

634 ■I N D E X

tools
resources for PostgreSQL tools, 146

total sum of values in column
see sum function

tracking changes, 306
transaction isolation levels

setting default, 315
undesirable phenomena, 256

Transaction property
NpgsqlCommand class, 526

transactions, 243–261
ABORT command, 552
ACID rules, 246–247
BEGIN ... COMMIT blocks, 244
BEGIN command, 556
CHECKPOINT command, 556
COMMIT command, 557
concurrent multiuser access to data,

244–246
double booking error, 244

definition, 244
END command, 565
esqlc program, writing, 420
explicit and implicit transactions, 261
isolation, 255–261

ANSI isolation levels, 260–261
changing isolation level, 261
dirty reads, 256–257
lost updates, 258–260
phantom reads, 258
unrepeatable reads, 257

JDBC handling database transactions, 499
locking, 262–266

deadlocks, 262–264
exclusive locks, 262
explicit locking, 264–266
shared locks, 262

log files, 247
logical unit of work, 244
managing with libpq, 404
multiple users, 255–261
nesting transactions, 254
ROLLBACK command, 244, 569
ROLLBACK TO SAVEPOINT command, 569
SAVEPOINT command, 244, 569
SET CONSTRAINTS command, 571
SET TRANSACTION, 571

single users, 247–255
multiple tables example, 250–251
savepoint example, 251–254
simple transaction example, 248–250

START TRANSACTION, 571
time to complete, 255
transaction size, 255

TRIGGER privilege
grantable privileges, 337

trigger_error function
error handling with PEAR, 462

triggers, 299–306
AFTER triggers, 300
ALTER TRIGGER, 555
BEFORE triggers, 300
CREATE CONSTRAINT TRIGGER, 558
CREATE TRIGGER, 562
creating triggers, 300

deletion example, 303
updating example, 301

defining trigger procedure, 300
DROP TRIGGER, 565
dropping triggers, 300
procedure variables, 303
reasons for using, 306

trigonometric functions, 274
trim function, 214, 275
troubleshooting

problems starting up psql, 75–77
psql complaining about pg_shadow, 75

trunc functions, 274
TRUNCATE command, 170–171, 571

see also data handling; DELETE statement
truncate operator, 271
truncation

DataTruncation class, 494
trust authentication mechanism

configuring client access, 64
granting PostgreSQL connection

permissions, 55
trust authentication methods

pg_hba.conf file, 312
tuples, RDBMS, 6
type 1/type 2/type 3/type 4 JDBC drivers,

492, 493
TYPE attribute

statement handles, Perl DBI, 480

MatthewStones_4789Index.fm Page 634 Wednesday, March 9, 2005 1:01 PM

635■I N D E X

TYPE column
pg_hba.conf file, 312

type conversion
PHP result values, 458

TYPE_FORWARD_ONLY result set type, 502
TYPE_SCROLL_INSENSITIVE result set

type, 502
TYPE_SCROLL_SENSITIVE result set type, 502
Types class, java.sql, 505
types of data

see data types

■U
U option (-U)

createdb/dropdb utilities, 330
createlang utility, 278
createuser utility, 322
creating user records, 65
pg_dump utility, 341
pg_restore utility, 342
psql, 119, 574

changing user, 117
starting psql, 114

rpm upgrade, 46
vacuumdb utility, 351

uid option (-uid)
sql2xml.pl script, 487
xml2sql.pl script, 488

unaligned table output mode, psql, 118
toggling between aligned and, 119

unary arithmetic operators, 271
operator precedence, 270

uncorrelated subqueries, 188
UNION join, 192–194

including duplicates, 194
UNION ALL join, 194

UNIQUE option
column constraints, 218, 219, 220
CREATE INDEX command, 353
NULLs, 219
table constraints, 222

uniqueness
database design, rows, 33

UNIX
flat files for data storage, 2
installing PostgreSQL on, 43–58
running processes on, 318
starting and stopping server on, 319

UNLISTEN command, 572
unrepeatable reads

transaction isolation, 257
unset command (\unset), psql, 121, 576
UPDATE command, 572
update function

DBI::Easy module, 485
UPDATE privilege

grantable privileges, 337
UPDATE statement, 165–168

see also updating data in database
executing SQL with libpq, 396
FROM option, 168
importance of WHERE clause, 166, 167
lost updates, 259
ON UPDATE keyword, 241–242
reporting rows affected, 429
SET clause, 168
transaction example, 250, 251
triggers, 300, 302
updating from another table, 168

updateBoolean/~Int/~Row/~String methods
ResultSet interface, java.sql, 506

updating data in database
see also UPDATE statement
BatchUpdateException class, 494
JDBC updateable result sets, 506
lost updates, transaction isolation, 258
PreparedStatement interface, java.sql, 513
updating from another table, 168
using count(*) syntax, 167
using Npgsql in Mono, 536

upgrading PostgreSQL, 46
upper function, 275
USER column

pg_hba.conf file, 312
user configuration

PostgreSQL internal configuration,
321–324

user connection parameter/option
pg_connect function, 448
PQconnectdb function, 388

User Id option
Npgsql in Mono, 521

user records, creating, 65
useradd command, 53

MatthewStones_4789Index.fm Page 635 Wednesday, March 9, 2005 1:01 PM

636 ■I N D E X

users
adding, Linux, 53
allowing user to create new users, 323
ALTER USER, 555
authentication methods, 312
changing user, psql, 117
CREATE USER, 562
creating user, 322

psql, 75
deleting user, psql, 75
DROP USER, 565
handling multiuser database access, 25
limiting use of postgres user, 74
listing, 120, 323
managing with pgAdmin III, 324
modifying, 323
removing, 324
specifying user, 322
specifying user ID number, 323
specifying username to connect, 330
utility to create database user, 310

USING DELIMITERS option
copy command, psql, 160

■V
v option (-v)

ecpg arguments, 424
pg_dump utility, 340
pg_restore utility, 342
vacuumdb utility, 351
psql, 119, 574

V option (-V), psql, 574
VACUUM command

database performance, 348–352
reclaiming space, 348
updating optimizer statistics, 349
vacuuming from command line, 351
vacuuming from pgAdmin III, 352

syntax, 572
VACUUM ANALYZE, 351, 353

vacuumdb utility
bin directory, 311
options, 351
vacuuming from command-line, 351

VALID UNTIL option
CREATE USER command, 322

validation, 306

Value property
NpgsqlParameter class, 533

values
NULL, 41
sentinel value, 41

varchar data type, 204, 547
data types, 40
using host variables, 434

variable declarations, 285, 286
composite variables, 287

record type, 288
CONSTANT modifier, 286
examples, 287
NOT NULL clause, 286
rowtype declaration syntax, 287

variable names
naming conventions, 285
setting psql variable, 119

variance functions, 174
VERBOSE option

VACUUM command, 349
version information

configuration, 311
showing version information, 119

version option
pg_config command, 52

version option (-version)
createdb/dropdb utilities, 330
psql, 119

views
see database views

Visual Studio
using Npgsql in Visual Studio, 539

■W
w command (\w), psql, 121, 576
W option (-W)

createdb/dropdb, 330
createlang utility, 278
initdb utility, 317
pg_ctl utility, 319
psql, 119, 574

w option (-w)
pg_ctl utility, 319

WARNING exception level, 290
warnings

JDBC API SQL warnings, 494
SQLWarning class, 494

MatthewStones_4789Index.fm Page 636 Wednesday, March 9, 2005 1:01 PM

637■I N D E X

whenever statement
database specific, 431
overuse of, 432
trapping errors, 431
using host variables, 433

WHERE clause, 87–93
aggregate functions and, 178
comparison operators (<,=,>), 87
conditional operators (AND/OR/NOT),

87, 88
DELETE statement, importance in, 169
HAVING clause compared, 178
joining table conditions, 102
SQL92 SELECT syntax, 110
UPDATE statement, importance in, 166, 167
used in subquery, 186, 187

WHILE loops
execution control structures, 293

wildcard characters
PEAR, 462
using % in pattern matching, 91
using _ in pattern matching, 91

Windows
installing PostgreSQL on, 59–64
starting up psql, 74–75
using Windows installer, 59

WITH GRANT OPTION
GRANT command, 337

with-xyz options
configure script, 51

work_mem option
PostgreSQL.conf file, 314

working asynchronously
see asynchronous working

working directory, changing, 119
Write Ahead Logging (WAL), 247

■X
x command (\x), psql, 121, 576
x option (-x)

psql, 119, 574
xml2sql.pl script, 488

X option (-X), psql, 114, 119, 574
XA resources

JDBC extension API, 491
XML

creating from SQL, 487–488
creating SQL from XML, 488–489
creating XML from DBI queries, 485–489

XML_RDB module, Perl, 485
xml2sql.pl script, 487

options, 488
XOR operator

Binary XOR operator, 271

■Y
YaST2 installation tool

installing PostgreSQL packages, 45
from SuSE packages, 46

Yellow Dog PPC
packages for download available at, 44

■Z
z command (\z), psql, 121, 576
Z option (-Z)

pg_dump utility, 340
z option (-z)

vacuumdb utility, 351
ZIP code

database design, 365

MatthewStones_4789Index.fm Page 637 Wednesday, March 9, 2005 1:01 PM

MatthewStones_4789Index.fm Page 638 Wednesday, March 9, 2005 1:01 PM

MatthewStones_4789Index.fm Page 639 Wednesday, March 9, 2005 1:01 PM

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

BOB_Forums_7x9.25.qxd 8/18/03

MatthewStones_4789Index.fm Page 640 Wednesday, March 9, 2005 1:01 PM

	Beginning Databases with PostgreSQL: From Novice to Professional, Second Edition
	Table of Content
	Chapter 1 Introduction to PostgreSQL
	Chapter 2 Relational Database Principles
	Chapter 3 Getting Started with PostgreSQL
	Chapter 4 Accessing Your Data
	Chapter 5 PostgreSQL Command-Line and Graphical Tools
	Chapter 6 Data Interfacing
	Chapter 7 Advanced Data Selection
	Chapter 8 Data Definition and Manipulation
	Chapter 9 Transactions and Locking
	Chapter 10 Functions, Stored Procedures, and Triggers
	Chapter 11 PostgreSQL Administration
	Chapter 12 Database Design
	Chapter 13 Accessing PostgreSQL from C Using libpq
	Chapter 14 Accessing PostgreSQL from C Using Embedded SQL
	Chapter 15 Accessing PostgreSQL from PHP
	Chapter 16 Accessing PostgreSQL from Perl
	Chapter 17 Accessing PostgreSQL from Java
	Chapter 18 Accessing PostgreSQL from C#
	Appendix A PostgreSQL Database Limits
	Appendix B PostgreSQL Data Types
	Appendix C PostgreSQL SQL Syntax Reference
	Appendix D psql Reference
	Appendix E Database Schema and Tables
	Appendix F Large Objects Support in PostgreSQL
	Index

