
this print for content only—size & color not accurate spine = 0.979" 512 page count

Books for professionals by professionals®

Beginning Java™ EE 6 Platform with GlassFish™ 3:
From Novice to Professional
Dear Reader,

This book tells you all you need to know about Java™ EE 6, the latest version of the
Java Enterprise platform. Java EE 6 is richer in features yet more lightweight than
its predecessors because it introduces profiles (subsets of the full platform).
Java EE 6 has become more portable by standardizing more components. And
Java EE 6 is easier to use, because development has been streamlined across
the entire stack.

I wrote this book to share my experience of Java EE—I’ve been working with
it since its creation. Like many others, I tried other programming models when
it put on too much weight. With the arrival of Java EE 5, I recognized a major
improvement. So I decided to participate in the creative process and joined the
JCPSM expert group for Java EE 6. Now I want to share the benefits of this new
and exciting release with you.

Beginning Java™ EE 6 Platform with GlassFish™ 3: From Novice to Professional
takes you through all the most important innovations in Java EE’s many constituent
specifications. You will learn how to map objects to relational databases with JPA
2.0, write a transactional business layer with EJB™ 3.1, add a presentation layer with
JSF™ 2.0, and interoperate with other diverse systems through JMS™, SOAP, and
RESTful web services. And all the code examples are specifically written to work
with GlassFish™ 3, the very latest version of the Reference Implementation for
the Java EE platform.

Antonio Goncalves
Expert member of the JSR-316 (Java EE 6), JSR-317 (JPA 2.0), and
JSR-318 (EJB 3.1) groups

US $44.99

Shelve in
Java Programming

User level:
Beginner–Intermediate

Goncalves

The EXPERT’s VOIce® in Java™ Technology

Beginning

Java™ EE 6 Platform

with GlassFish™ 3
From Novice to Professional

 CYAN
  MAGENTA

 YELLO W
  BLACK
 PAN TONE 123 C

Antonio Goncalves
Expert member of the JSR-316 (Java™ EE 6),
JSR-317 (JPA 2.0), and JSR-318 (EJB™ 3.1) groups

Companion
eBook Available

THE APRESS ROADMAP

Beginning JSF™ 2
APIs and JBoss® SeamBeginning

Java™ EE 6 Platform
with GlassFish™ 3

Pro JPA 2

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

Learn the new Java™ EE 6 platform from an expert
enterprise developer and participant in the Java
Community Process SM Java™ EE 6 expert group.

ISBN 978-1-4302-1954-5

9 781430 219545

54499

Goncalves

BeginningJava
™ EE 6

Platform

w
ith GlassFish

™ 3

Beginning
Java™ EE 6 Platform
with GlassFish™ 3
From Novice to Professional

Antonio Goncalves

Beginning Java™ EE 6 Platform with GlassFish™ 3: From Novice to Professional

Copyright © 2009 by Antonio Goncalves

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1954-5

ISBN-13 (electronic): 978-1-4302-1955-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in
the US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was
written without endorsement from Sun Microsystems, Inc.

Lead Editor: Tom Welsh
Technical Reviewer: Jim Farley
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Candace English
Copy Editor: Ami Knox
Associate Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Regina Rexrode
Proofreader: April Eddy
Indexer: Brenda Miller
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

To Eloïse, who fills my heart with love

v

Contents at a Glance

Foreword. . xvii

About the Author. . xix

About the Technical Reviewer. . xxi

Acknowledgments. . xxiii

Introduction. . xxv

Chapter 1	 Java EE 6 at a Glance . . 1

Chapter 2	 Java Persistence. . 41

Chapter 3	 Object-Relational Mapping. 59

Chapter 4	 Managing Persistent Objects . . 119

Chapter 5	 Callbacks and Listeners . . 157

Chapter 6	 Enterprise Java Beans. . 167

Chapter 7	 Session Beans and the Timer Service . . 189

Chapter 8	 Callbacks and Interceptors . . 223

Chapter 9	 Transactions and Security. . 239

Chapter 10	 JavaServer Faces. . 261

Chapter 11	 Pages and Components . . 281

Chapter 12	 Processing and Navigation . . 327

Chapter 13	 Sending Messages. . 357

Chapter 14	 SOAP Web Services . . 393

Chapter 15	 RESTful Web Services. . 429

Index . . 463

vii

Contents

Foreword. . xvii

About the Author. . xix

About the Technical Reviewer. . xxi

Acknowledgments. . xxiii

Introduction. . xxv

Chapter 1	 Java EE 6 at a Glance. . 1

Understanding Java EE. . 1

A Bit of History. . 2

Standards . . 4

Architecture. . 4

Java EE 6 Specifications. . 9

What’s New in Java EE 6?. . 11

Lighter. . 11

Easier to Use. . 13

Richer. . 14

More Portable. . 15

The CD-BookStore Application . . 16

Setting Up Your Environment. . 17

JDK 1.6 . . 17

Maven 2. . 18

JUnit 4. . 24

Derby 10.4. 29

GlassFish v3. . 31

Summary. . 39

Chapter 2	 Java Persistence. . 41

JPA Specification Overview. . 42

A Brief History of the Specification. . 42

What’s New in JPA 2.0?. . 43

Reference Implementation. . 43

■CONTENTSviii

Understanding Entities. . 44

Object-Relational Mapping. . 44

Querying Entities . . 45

Callbacks and Listeners. . 47

Putting It All Together. . 48

Writing the Book Entity. . 48

Writing the Main Class . . 49

Persistence Unit for the Main Class . . 50

Compiling with Maven. . 51

Running the Main Class with Derby. . 53

Writing the BookTest Class . . 54

Persistence Unit for the BookTest Class . . 56

Running the BookTest Class with Embedded Derby. 56

Summary. . 57

Chapter 3	 Object-Relational Mapping. . 59

How to Map an Entity . . 59

Configuration by Exception. . 61

Elementary Mapping. . 62

Tables. . 63

Primary Keys. . 65

Attributes. . 69

Access Type. . 75

Collection of Basic Types. . 79

Map of Basic Types. . 80

Mapping with XML. . 81

Embeddables. . 84

Access Type of an Embeddable Class. . 86

Relationship Mapping. . 88

Relationships in Relational Databases. . 89

Entity Relationships. . 90

Fetching Relationships . . 101

Ordering Relationships. . 102

Inheritance Mapping. . 105

Inheritance Strategies. . 106

Type of Classes in the Inheritance Hierarchy 114

Summary. . 117

■CONTENTS ix

Chapter 4	 Managing Persistent Objects. . 119

How to Query an Entity. . 119

Entity Manager. . 122

Obtaining an Entity Manager. . 124

Persistence Context. . 125

Manipulating Entities. . 126

Cache API . . 136

JPQL. . 137

Select. . 138

From. . 140

Where. . 140

Order By. . 142

Group By and Having. . 142

Bulk Delete. . 142

Bulk Update. . 143

Queries . . 143

Dynamic Queries. . 146

Named Queries. . 147

Native Queries . . 149

Concurrency. . 150

Versioning. . 152

Optimistic Locking. . 153

Pessimistic Locking. . 154

Summary. . 155

Chapter 5	 Callbacks and Listeners. . 157

Entity Life Cycle. . 157

Callbacks. . 159

Listeners. . 162

Summary. . 166

Chapter 6	 Enterprise Java Beans. . 167

Understanding EJBs . . 167

Types of EJBs. . 168

Anatomy of an EJB. . 169

EJB Container. . 171

Embedded Container. . 172

■CONTENTSx

Dependency Injection and JNDI. . 172

Callback Methods and Interceptors . . 173

Packaging. . 173

EJB Specification Overview. . 174

History of the Specification. . 174

What’s New in EJB 3.1. . 175

EJB Lite. . 176

Reference Implementation. . 177

Putting It All Together. . 177

Writing the Book Entity. . 178

Writing the BookEJB Stateless Session Bean. 179

Persistence Unit for the BookEJB. . 180

Writing the Main Class . . 181

Compiling and Packaging with Maven. . 182

Deploying on GlassFish. . 184

Running the Main Class with Derby. . 185

Writing the BookEJBTest Class. . 185

Summary. . 187

Chapter 7	 Session Beans and the Timer Service 189

Session Beans. . 189

Stateless Beans. . 190

Stateful Beans . . 193

Singletons. . 195

Session Bean Model . . 202

Asynchronous Calls. . 213

Embeddable Usage . . 215

The Timer Service. . 217

Calendar-Based Expression. . 217

Automatic Timer Creation. . 219

Programmatic Timer Creation. . 220

Summary. . 222

Chapter 8	 Callbacks and Interceptors. . 223

Session Beans Life Cycle. . 223

Stateless and Singleton . . 223

Stateful. . 225

Callbacks. . 226

■CONTENTS xi

Interceptors. . 229

Around-Invoke Interceptors. . 230

Method Interceptors . . 232

Life-Cycle Interceptor. . 234

Chaining and Excluding Interceptors . . 235

Summary. . 237

Chapter 9	T ransactions and Security. . 239

Transactions. . 239

ACID. . 240

Local Transactions. . 240

XA and Distributed Transactions. . 242

Transaction Support in EJB. . 243

Container-Managed Transactions. . 244

Bean-Managed Transactions. . 250

Security. . 252

Principals and Roles . . 252

Authentication and Authorization . . 253

Security Support in EJB. . 254

Declarative Security. . 254

Programmatic Security. . 258

Summary. . 259

Chapter 10	 JavaServer Faces . . 261

Understanding JSF . . 261

FacesServlet and faces-config.xml. . 263

Pages and Components . . 263

Renderer . . 264

Converters and Validators. . 264

Managed Beans and Navigation. . 265

Ajax Support. . 266

Web Interface Specifications Overview. . 266

A Brief History of Web Interfaces. . 266

JSP 2.2, EL 2.2, and JSTL 1.2. . 267

JSF 2.0. . 267

What’s New in JSF 2.0. . 268

Reference Implementation. . 268

■CONTENTSxii

Putting It All Together. . 268

Writing the Book Entity. . 269

Writing the BookEJB. . 270

Writing the BookController Managed Bean. 270

Writing the newBook.xhtml Page . . 271

Writing the listBooks.xhtml Page. . 274

Configuration with web.xml. . 276

Compiling and Packaging with Maven. . 277

Deploying on GlassFish. . 278

Running the Example . . 278

Summary. . 279

Chapter 11	 Pages and Components. . 281

Web Pages . . 281

HTML. . 282

XHTML. . 283

CSS. . 285

DOM. . 287

JavaScript. . 288

Java Server Pages. . 290

Directive Elements. . 291

Scripting Elements. . 292

Action Elements. . 293

Putting It All Together. . 294

Expression Language. . 296

JSP Standard Tag Library. . 297

Core Actions. . 298

Formatting Actions. . 299

SQL Actions. . 301

XML Actions . . 302

Functions. . 304

Facelets. . 306

JavaServer Faces . . 307

Life Cycle. . 308

Standard HTML Components. . 309

Resource Management. . 319

Composite Components. . 320

Implicit Objects. . 325

Summary. . 326

■CONTENTS xiii

Chapter 12	 Processing and Navigation. . 327

The MVC Pattern . . 327

FacesServlet. . 328

FacesContext . . 330

Faces Config. . 331

Managed Beans. . 332

How to Write a Managed Bean . . 332

Managed Bean Model. . 333

Navigation. . 337

Message Handling. . 341

Conversion and Validation. . 342

Converters. . 343

Custom Converters . . 344

Validators. . 346

Custom Validators . . 347

Ajax . . 348

General Concepts. . 348

Support in JSF . . 349

Putting It All Together. . 350

Summary. . 355

Chapter 13	 Sending Messages. . 357

Understanding Messages. . 357

JMS . . 358

MDB. . 358

Messaging Specification Overview. . 359

A Brief History of Messaging. . 359

JMS 1.1. . 359

EJB 3.1. 359

Reference Implementation. . 360

How to Send and Receive a Message. . 360

Java Messaging Service. . 362

Point-to-Point. . 363

Publish-Subscribe. . 364

JMS API. . 364

Selectors. . 375

Reliability Mechanisms. . 376

■CONTENTSxiv

Message-Driven Beans. . 379

How to Write an MDB . . 379

MDB Model. . 380

MDB As a Consumer. . 384

MDB As a Producer. . 384

Transaction. . 386

Handling Exceptions . . 386

Putting It All Together. . 387

Writing the OrderDTO . . 387

Writing the OrderSender. . 388

Writing the OrderMDB. . 389

Compiling and Packaging with Maven. . 389

Creating the Administered Objects. . 391

Deploying the MDB on GlassFish . . 391

Running the Example . . 392

Summary. . 392

Chapter 14	 SOAP Web Services. . 393

Understanding Web Services. . 393

UDDI. . 394

WSDL. . 395

SOAP . . 395

Transport Protocol. . 395

XML . . 395

Web Services Specification Overview . . 396

A Brief History of Web Services. . 396

Java EE Specifications . . 396

Reference Implementation. . 397

How to Invoke a Web Service . . 398

Java Architecture for XML Binding. . 399

Binding. . 401

Annotations. . 403

The Invisible Part of the Iceberg. . 406

WSDL. . 406

SOAP . . 408

Java API for XML-Based Web Services. . 409

JAX-WS Model. . 410

Invoking a Web Service. . 417

■CONTENTS xv

Putting It All Together. . 419

Writing the CreditCard Class . . 419

Writing the CardValidator Web Service. . 419

Compiling and Packaging with Maven. . 420

Deploying on GlassFish. . 421

Writing the Web Service Consumer . . 423

Generating Consumer’s Artifacts and Packaging with Maven. . . . 424

Running the Main Class . . 426

Summary. . 427

Chapter 15	 RESTful Web Services . . 429

Understanding RESTful Web Services. . 429

Resources. . 429

URI . . 430

Representations. . 430

WADL. . 431

HTTP. . 431

RESTful Web Services Specification. . 436

A Brief History of REST. . 436

JAX-RS 1.1. . 437

What’s New in JAX-RS 1.1?. . 437

Reference Implementation. . 437

The REST Approach. . 437

From the Web to Web Services. . 438

A Web-Browsing Experience. . 438

Uniform Interface. . 439

Addressability. . 439

Connectedness. . 439

Statelessness. . 440

Java API for RESTful Web Services . . 441

The JAX-RS Model. . 441

How to Write a REST Service. . 442

URI Definition . . 443

Extracting Parameters. . 444

Consuming and Producing Content Types. . 445

Entity Provider. 448

Methods or the Uniform Interface. . 449

Contextual Information. . 450

Exception Handling . . 452

Life Cycle. . 453

■CONTENTSxvi

Putting It All Together. . 454

Writing the Book Entity. . 454

Writing the BookResource . . 455

Configuration with web.xml. . 458

Compiling and Packaging with Maven. . 459

Deploying on GlassFish. . 460

Running the Example . . 461

Summary. . 461

Index . . 463

xvii

Foreword

While Java EE 5 is considered by everyone to be the most important enterprise release, Java
EE 6 has a lot in store for you and every server-side Java developer. The most widely spread
technology to write enterprise-class applications just got better with enhanced EJB 3.1, Java
Persistence API (JPA) 2.0, the new, yet already very successful, Java API for RESTful web ser-
vices (JAX-RS), and the made-over JavaServer Faces (JSF) 2.0 specification. The enterprise Java
platform has now matured to a degree where it can be both complete and lightweight.

Now you could spend quality time with your favorite search engine and blog reader to
navigate through the numerous blogs, wikis, and documentation covering all or parts of Java
EE 6, but I’d like to suggest that you’d be better off starting with this book. It is concise, prag-
matic, and offers an all-in-one experience.

Having the open source GlassFish application server as the underlying platform for this
book makes a lot of sense for two reasons: first, GlassFish v3 is the Reference Implementation
(RI) and thus is aligned with Java EE 6, and second, using an RI does not mean you can’t please
developers and scale to production deployments. The skills acquired with GlassFish in con-
junction with those of the most recent technologies are portable in the enterprise.

Antonio Goncalves is a rare combination of friendly Java enthusiast and precise yet
no-nonsense Java EE expert. His role as a consultant combined with his involvement chair-
ing the successful Java User Group in Paris and, of course, his role as a member of several
key Java EE 6 expert groups makes him the ideal author for Beginning Java™ EE 6 Platform
with GlassFish™ 3.

When you are done reading this book, I’d like to suggest that the greatest value of Java
EE is not the sum of its features but rather the community that created it, as well as the very
nature of it being a standard that lets you choose or change your implementation as you wish.
Freedom is not simply about open source but also about open standards.

Alexis Moussine-Pouchkine
GlassFish Team, Sun Microsystems

xix

About the Author

■Antonio Goncalves is a senior software architect living in Paris. Initially
focused on Java development since the late 1990s, his career has taken
him to different countries and companies where he works now as a Java
EE consultant in software architecture. As a former BEA consultant, he
has great expertise in application servers such as WebLogic, JBoss, and, of
course, GlassFish. He is particularly fond of open source and is a member
of the OOSGTP (Open Source Get Together Paris). He is also the cocreator
and coleader of the Paris Java User Group.

Antonio wrote his first book on Java EE 5, in French, back in 2007.
Since then he has joined the JCP and is an Expert Member of various JSRs (Java EE 6, JPA 2.0,
and EJB 3.1). For the last few years, Antonio has given talks at international conferences mainly
about Java EE, including JavaOne, The Server Side Symposium, Devoxx, and Jazoon. He has
also written numerous technical papers and articles for IT web sites (DevX) and IT magazines
(Programmez, Linux Magazine).

Antonio is a graduate of the Conservatoire National des Arts et Métiers in Paris (with an
engineering degree in IT) and the Brighton University (with an MSc in object-oriented design).

xxi

About the Technical Reviewer

■Jim Farley is a technology architect, strategist, writer, and manager. His
career has touched a wide array of domains, from commercial to non-
profit, finance to higher education. In addition to his day job, Jim teaches
enterprise development at Harvard University. Jim is the author of several
books on technology, and contributes articles and commentary to various
online and print publications.

xxiii

Acknowledgments

Writing a book about a new specification such as Java EE 6 is an enormous task that requires
the talent of different people. First of all, I really want to thank Steve Anglin from Apress for
giving me the opportunity to contribute to the Apress Beginning series, which I greatly appre-
ciated as a reader. Throughout the writing process, I was constantly in contact with Candace
English and Tom Welsh, who reviewed the book as well as reassured me when I had doubt
about finishing on time. Thanks to technical reviewers Jim Farley and Sumit Pal, who did an
excellent job of giving me good technical advice to improve the book. Last but not least,
I admired the truly amazing work of Ami Knox, who did the final edit.

I also need to thank Alexis Midon and Sebastien Auvray, who coauthored the RESTful web
services chapter (Chapter 15). Alexis is a passionate software engineer and a REST enthusiast,
and Sebastien is a talented developer and a pragmatic adopter of REST. Thanks, guys, for your
precious help.

A special thanks to Alexis Moussine-Pouchkine, who kindly agreed to write the foreword
of this book as well as the section on GlassFish. He was also a big help in contacting the right
person to give me a hand on a particular topic. I’m thinking of Ryan Lubke for JSF 2.0, Paul
Sandoz for JAX-RS 1.1, and François Orsini for Derby.

Thanks to Damien Gouyette for his help on JSF 2.0. Damien has great experience in web
development as a whole and JSF in particular (oh, and thanks to the Subversion repository
guy). Thanks to Arnaud Heritier, who wrote the section on Maven and helped me in debugging
some Maven issues, as well as Nicolas de Loof, who did a last proofreading on the topic.

Sebastien Moreno helped me on JUnit as well as reviewing the entire manuscript with
David Dewalle and Pascal Graffion. They had to put up with a tight schedule. Thank you very
much for the hard work.

Thanks to the proofreaders, Denise Green and Stefano Costa, who tried to add a Shake-
spearean touch to the book.

The diagrams of this book were made using the Visual Paradigm plug-in for IntelliJ IDEA.
I would like to thank both Visual Paradigm and JetBrains for providing me with a free license
for their excellent products.

I could not have written this book without the help and support of the Java community:
people who gave a bit of their time to help me through e-mails, mailing lists, or forums. Of
course, the mailing lists of the JCP expert groups are the first that come to mind; thanks to
the expert members and the spec leads (Roberto Chinnici, Bill Shannon, Kenneth Saks, Linda
DeMichiel, Michael Keith, Reza Rahman, Adam Bien, etc.).

And a big kiss to my daughter Eloïse, who gave me some playful interruptions that helped
me while I was writing on the weekends.

A book is conceived with the help of a never-ending list of people you want to thank for
having contributed, in one way or another: technical advice, a beer at the bar, an idea, or a
piece of code (Jean-Louis Dewez, Frédéric Drouet, the Paris JUG geeks, T. Express, the
OSSGTP guys, les Cast Codeurs, FIP, Marion, Les Connards, Vitalizen, La Fontaine, Ago, Laure,
La Grille, les Eeckman, Yaya, Rita, os Navalhas, La Commune Libre d’Aligre, etc.).

Thank you all!

xxv

Introduction

In today’s business world, applications need to access data, apply business logic, add presen-
tation layers, and communicate with external systems. That’s what companies are trying to
achieve while minimizing costs, using standard and robust technologies that can handle heavy
loads. If that’s your case, you have the right book in your hands.

Java Enterprise Edition appeared at the end of the 1990s and brought to the Java language
a robust software platform for enterprise development. Challenged at each new version, badly
understood or misused, overengineered, and competing with open source frameworks, J2EE
was seen as a heavyweight technology. Java EE benefited from these criticisms to improve and
is today focused on simplicity.

If you are part of the group of people who still think that “EJBs are bad, EJBs are evil,”
read this book, and you’ll change your mind. EJBs (Enterprise Java Beans) are great, as is the
entire Java EE 6 technology stack. If, on the contrary, you are a Java EE adopter, you will see
in this book how the platform has found equilibrium, through its ease of development in all
the stacks, new specifications, lighter EJB component model, profiles, and pruning. If you are
a beginner in Java EE, this is also the right book: it covers the most important specifications
in a very understandable manner and is illustrated with a lot of code and diagrams to make it
easier to follow.

Open standards are collectively one of the main strengths of Java EE. More than ever, an
application written with JPA, EJB, JSF, JMS, JSF, SOAP web services, or RESTful web services
is portable across application servers. Open source is another of Java EE’s strengths. As you’ll
see in this book, most of the Java EE 6 Reference Implementations use open source licensing
(GlassFish, EclipseLink, Mojarra, OpenMQ, Metro, and Jersey).

This book explores the innovations of this new version, and examines the various speci-
fications and how to assemble them to develop applications. Java EE 6 consists of nearly 30
specifications and is an important milestone for the enterprise layer (EJB 3.1, JPA 2.0), for
the web tier (Servlet 3.0, JSF 2.0), and for interoperability (SOAP web services and RESTful
services). This book covers a broad part of the Java EE 6 specifications and uses the JDK 1.6
and some well-known design patterns, as well as the GlassFish application server, the Derby
database, JUnit, and Maven. It is abundantly illustrated with UML diagrams, Java code, and
screenshots.

How Is This Book Structured?
This book is not meant to be an exhaustive reference on Java EE 6. It concentrates on the most
important specifications and highlights the new features of this release. The structure of the
book follows the architecture layering of an application:

■INTRODUCTIONxxvi

Chapter 1 briefly presents Java EE 6 essentials and the tools used throughout the book
(JDK, Maven, JUnit, Derby, and GlassFish).

The persistent tier is described from Chapter 2 to Chapter 5 and focuses on JPA 2.0. After
a general overview with some hands-on examples in Chapter 2, Chapter 3 dives into object-
relational mapping (mapping attributes, relationships, and inheritance). Chapter 4 shows you
how to manage and query entities, while Chapter 5 presents their life cycle, callback methods,
and listeners.

To develop a transaction business logic layer with Java EE 6, you can naturally use EJBs.
This will be described from Chapter 6 to Chapter 9. After an overview of the specification, its
history, and a hands-on example in Chapter 6, Chapter 7 will concentrate on session beans
and their programming model, as well as the new timer service. Chapter 8 focuses on the life
cycle of EJBs and interceptors, while Chapter 9 explains transactions and security.

From Chapter 10 to Chapter 12, you will learn how to develop a presentation layer with
JSF 2.0. After an overview of the specification in Chapter 10, Chapter 11 will focus on how to
build a web page with JSF and Facelets components. Chapter 12 will show you how to interact
with an EJB back end and navigate through pages.

Finally, the last chapters will present different ways to interoperate with other systems.
Chapter 13 will show you how to exchange asynchronous messages with Java Message Service
(JMS) and Message-Driven Beans (MDBs). Chapter 14 focuses on SOAP web services, while
Chapter 15 covers RESTful web services.

Downloading and Running the Code
The examples used in this book are designed to be compiled with the JDK 1.6, deployed to
the GlassFish V3 application server, and stored in Derby. Chapter 1 shows you how to install
all these software programs, and each chapter explains how to build, deploy, run, and test
components depending on the technology used. The code has been tested on the Windows
platform, but not on Linux nor on OS X. The source code of the examples in the book is avail-
able from the Source Code page of the Apress web site at http://www.apress.com.

http://www.apress.com

■INTRODUCTION xxvii

Contacting the Author
If you have any questions about the content of this book, the code, or any other topic, please
contact me at antonio.goncalves@gmail.com. You can also visit my web site at http://www.
antoniogoncalves.org.

mailto:antonio.goncalves@gmail.com
http://www

C h a p t e r 1

Java EE 6 at a Glance

Enterprises today live in a global competitive world. They need applications to fulfill their
business needs, which are getting more and more complex. In this age of globalization, com-
panies are distributed over continents, they do business 24/7 over the Internet and across
different countries, and their systems have to be internationalized and ready to deal with dif-
ferent currencies and time zones. All that while reducing their costs, lowering the response
times of their services, storing business data on reliable and safe storage, and offering several
graphical user interfaces to their customers, employees, and suppliers.

Most companies have to combine these innovative challenges with their existing Enter-
prise Information Systems (EIS) while at the same time developing business-to-business
applications to communicate with partners. It is also not rare that a company has to coor-
dinate in-house data stored in different locations, processed by multiple programming
languages, and routed through different protocols. And of course, it has to do this without
losing money, which means preventing system crashes and being highly available, scalable,
and secure. Enterprise applications have to face change and complexity, and be robust. That’s
precisely why Java Enterprise Edition (Java EE) was created.

The first version of Java EE (originally known as J2EE) focused on the concerns that com-
panies were facing back in 1999: distributed components. Since then, software applications
have had to adapt to new technical solutions like SOAP or RESTful web services. The platform
has evolved to respond to these technical needs by providing various standard ways of work-
ing through specifications. Throughout the years, Java EE has changed and become richer,
simpler, easier to use, and more portable.

In this chapter I’ll give you an overview of Java EE. After an introduction of its internal
architecture, I’ll cover what’s new in Java EE 6. The second part of this chapter focuses on
setting up your development environment so you can do some hands-on work by following
the code snippets listed in these pages.

Understanding Java EE
When you want to handle collections of objects, you don’t start by developing your own
hashtable; you use the collection API. Similarly, if you need a transactional, secure, interoper-
able, and distributed application, you don’t want to develop all the low-level APIs: you use the
Enterprise Edition of Java. Just as Java Standard Edition (Java SE) provides an API to handle
collections, Java EE provides a standard way to handle transactions with Java Transaction API
(JTA), messaging with Java Message Service (JMS), or persistence with Java Persistence API

1

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE2

(JPA). Java EE is a set of specifications intended for enterprise applications. It can be seen as an
extension of Java SE to facilitate the development of distributed, robust, powerful, and highly
available applications.

Java EE 6 is an important milestone. Not only does it follow the steps of Java EE 5 by focus-
ing on an easier development model, it also adds new specifications and brings profiles and
pruning to make it lighter. The release of Java EE 6 coincides closely with the tenth anniversary
of the enterprise platform. It combines the advantages of the Java language with experience
gained over the last ten years. Moreover, it profits from the dynamism of open source com-
munities as well as the rigor of the JCP. Today Java EE is a well-documented platform with
experienced developers, a large community, and many deployed applications running on
companies’ servers. Java EE is a suite of APIs to build standard component-based multitier
applications. These components are deployed in different containers offering a series of
services.

A Bit of History
Ten years is a good time to look back at the evolution of Java EE (see Figure 1-1), which was
formerly called J2EE. J2EE 1.2, first developed by Sun, was released in 1999 as an umbrella
specification containing ten Java Specification Requests (JSRs). At that time people were talk-
ing about CORBA, so J2EE 1.2 was created with distributed systems in mind. Enterprise Java
Beans (EJBs) were introduced with support for remote stateful and stateless service objects,
and optional support for persistent objects (entity beans). They were built on a transactional
and distributed component model using RMI-IIOP (Remote Method Invocation–Internet
Inter-ORB Protocol) as the underlying protocol. The web tier had servlets and JavaServer Pages
(JSPs), and JMS was used for sending messages.

Figure 1-1. History of J2EE/Java EE

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 3

nNote  CORBA originated about 1988 precisely because enterprise systems were beginning to be distrib-
uted (e.g., Tuxedo, CICS). EJBs and then J2EE followed on with the same assumptions, but ten years after.
By the time J2EE was begun, CORBA was fully baked and industrial strength, but companies started having
all-Java solutions. CORBA’s language-neutral approach became redundant.

Starting with J2EE 1.3, the specification was developed by the Java Community Process
(JCP) under JSR 58. Support for entity beans was made mandatory, and EJBs introduced XML
deployment descriptors to store metadata (which was serialized in a file in EJB 1.0). This
version addressed the overhead of passing arguments by value with remote interfaces, by
introducing local interfaces and passing arguments by reference. J2EE Connector Architecture
(JCA) was introduced to connect Java EE to EIS.

nNote  The JCP is an open organization, created in 1998, that is involved in the definition of future ver-
sions and features of the Java platform. When the need for a new component or API is identified, the initiator
(a.k.a. specification lead) creates a JSR and forms a group of experts. This group, made of companies’
representatives, organizations, or private individuals, is responsible for the development of the JSR and has
to deliver 1) a specification that explains the details and defines the fundamentals of the JSR, 2) a Refer-
ence Implementation (RI), which is an actual implementation of the specification, and 3) a Compatibility Test
Kit (a.k.a. Technology Compatibility Kit, or TCK), which is a set of tests every implementation needs to pass
before claiming to conform to the specification. Once approved by the Executive Committee (EC), the speci-
fication is released to the community for implementation. Java EE is called an Umbrella JSR, or a Platform
Edition Specification (such as Profiles), because it ties together other JSRs.

J2EE 1.4 (JSR 151) included 20 specifications in 2003 and added support for web services.
EJB 2.1 allowed session beans to be invoked over SOAP/HTTP. A timer service was created to
allow EJBs to be invoked at designated times or intervals. This version provided better support
for application assembly and deployment.

Although its supporters predicted a great future for it, not all of J2EE’s promise material-
ized. The systems created with it were too complicated, and development time was frequently
out of all proportion to the complexity of the user’s requirements. J2EE was seen as a heavy-
weight component model: difficult to test, difficult to deploy, difficult to run. That’s when
frameworks such as Struts, Spring, or Hibernate emerged and showed a new way of develop-
ing enterprise application. Fortunately, in the second quarter of 2006, Java EE 5 (JSR 244)
was released and turned out to be a remarkable improvement. It took some inspiration from
open source frameworks by bringing back a plain old java object (POJO) programming model.
Metadata could be defined with annotations, and XML descriptors became optional. From a
developer’s point of view, EJB 3 and the new JPA were more of a quantum leap than an evolu-
tion of the platform. JavaServer Faces (JSF) was introduced as the standard presentation tier
framework, and JAX-WS 2.0 replaced JAX-RPC as the SOAP web services API.

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE4

Today, Java EE 6 (JSR 316) follows the path of ease of development by embracing the con-
cepts of annotations, POJO programming, and the configuration-by-exception mechanism
throughout the platform, including the web tier. It comes with a rich set of innovations such
as the brand-new JAX-RS 1.1, it simplifies mature APIs like EJB 3.1, and enriches others such
as JPA 2.0 or the timer service. But the major themes for Java EE 6 are portability (through
standardizing global JNDI naming, for example), deprecation of some specifications (via
pruning), and creating subsets of the platform through profiles. In this book, I want to show
you these improvements and how much easier and richer Java Enterprise Edition has become.

Standards
As you can see, Java EE is based on standards. It is an umbrella specification that bundles
together a number of other JSRs. You might ask why standards are so important, as some of
the most successful Java frameworks are not standardized (Struts, Spring, etc.). Throughout
history humans have created standards to ease communication and exchange. Some notable
examples are language, currency, time, navigation, measurements, tools, railways, electricity,
telegraphs, telephones, protocols, and programming languages.

In the early days of Java, if you were doing any kind of web or enterprise development,
you were living in a proprietary world by creating your own frameworks or locking yourself to
a proprietary commercial framework. Then came the days of open source frameworks, which
are not always based on open standards. You can use open source and be locked to a single
implementation, or use open source that implements standards and be portable. Java EE
provides open standards that are implemented by several commercial (WebLogic, Websphere,
MQSeries, etc.) or open source (GlassFish, JBoss, Hibernate, Open JPA, Jersey, etc.) frame-
works for handling transactions, security, stateful components, object persistence, and so on.
Today, more than ever in the history of Java EE, your application is deployable to any compli-
ant application server with very few changes.

Architecture
Java EE is a set of specifications implemented by different containers. Containers are Java EE
runtime environments that provide certain services to the components they host such as life-
cycle management, dependency injection, and so on. These components use well-defined
contracts to communicate with the Java EE infrastructure and with the other components.
They need to be packaged in a standard way (via archive files) before being deployed. Java EE
is a superset of the Java SE platform, which means Java SE APIs can be used by any Java EE
components.

Figure 1-2 shows the logical relationships between containers. The arrows represent the
protocols used by one container to access another. For example, the web container hosts serv-
lets, which can access EJBs through RMI-IIOP.

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 5

Figure 1-2. Standard Java EE containers

Components
The Java EE runtime environment defines four types of components that an implementation
must support:

	 •	 Applets are GUI applications that are executed in a web browser. They use the rich
Swing API to provide powerful user interfaces.

	 •	 Applications are programs that are executed on a client. They are typically GUIs
or batch-processing programs that have access to all the facilities of the Java EE
middle tier.

	 •	 Web applications (made of servlets, servlet filters, web event listeners, JSP pages, and
JSF) are executed in a web container and respond to HTTP requests from web clients.
Servlets also support SOAP and RESTtul web service endpoints.

	 •	 Enterprise Java Beans are container-managed components for processing transactional
business logic. They can be accessed locally and remotely through RMI (or HTTP for
SOAP and RESTful web services).

Containers
The Java EE infrastructure is partitioned into logical domains called containers (see Figure
1-2). Each container has a specific role, supports a set of APIs, and offers services to compo-
nents (security, database access, transaction handling, naming directory, resource injection).
Containers hide technical complexity and enhance portability. Depending on the kind of
application you want to build, you will have to understand the capabilities and constraints of
each container in order to use one or more. For example, if you need to develop a web presen-
tation layer, you will develop a JSF application and deploy it into a web container, not an EJB
container. But if you want a web application to invoke a business tier, you might need both the
web and EJB containers.

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE6

Applet containers are provided by most web browsers to execute applet components.
When you develop applets, you can concentrate on the visual aspect of the application while
the container gives you a secure environment. The applet container uses a sandbox security
model where code executed in the “sandbox” is not allowed to “play outside the sandbox.”
This means that the container prevents any code downloaded to your local computer from
accessing local system resources, such as processes or files.

The application client container (ACC) includes a set of Java classes, libraries, and other
files required to bring injection, security management, and naming service to Java SE applica-
tions (Swing, batch processing, or just a class with a main() method). ACC communicates with
the EJB container using RMI-IIOP and the web container with HTTP (e.g., for web services).

The web container (a.k.a. servlet container) provides the underlying services for managing
and executing web components (servlets, JSPs, filters, listeners, JSF pages, and web services).
It is responsible for instantiating, initializing, and invoking servlets and supporting the HTTP
and HTTPS protocols. It is the container used to feed web pages to client browsers.

The EJB container is responsible for managing the execution of the enterprise beans con-
taining the business logic tier of your Java EE application. It creates new instances of EJBs,
manages their life cycle, and provides services such as transaction, security, concurrency,
distribution, naming service, or the possibility to be invoked asynchronously.

Services
Containers provide underlying services to their deployed components. As a developer, you
can concentrate on implementing business logic rather than solving technical problems faced
in enterprise applications. Figure 1-3 shows you the services provided by each container. For
example, web and EJB containers provide connectors to access EIS, but not the applet con-
tainer or the ACCs. Java EE offers the following services:

	 •	 JTA: This service offers a transaction demarcation API used by the container and the
application. It also provides an interface between the transaction manager and a
resource manager at the Service Provider Interface (SPI) level.

	 •	 JPA: Standard API for object-relational mapping (ORM). With its Java Persistence
Query Language (JPQL), you can query objects stored in the underlying database.

	 •	 JMS: JMS allows components to communicate asynchronously through messages.
It supports reliable point-to-point (P2P) messaging as well as the publish-subscribe
(pub-sub) model.

	 •	 Java Naming and Directory Interface (JNDI): This API, included in Java SE, is used
to access naming and directory systems. Your application uses it to associate (bind)
names to objects and then to find these objects (lookup) in a directory. You can look
up datasources, JMS factories, EJBs, and other resources. Omnipresent in your code
until J2EE 1.4, JNDI is used in a more transparent way through injection.

	 •	 JavaMail: Many applications require the ability to send e-mails, which can be imple-
mented through use of the JavaMail API.

	 •	 JavaBeans Activation Framework (JAF): The JAF API, included in Java SE, provides a
framework for handling data in different MIME types. It is used by JavaMail.

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 7

	 •	 XML processing: Most Java EE components can be deployed with optional XML deploy-
ment descriptors, and applications often have to manipulate XML documents. The
Java API for XML Processing (JAXP) provides support for parsing documents with SAX
and DOM APIs, as well as for XSLT. The Streaming API for XML (StAX) provides a pull-
parsing API for XML.

	 •	 JCA: Connectors allow you to access EIS from a Java EE component. These could be
databases, mainframes, or Enterprise Resource Planning (ERP) programs.

	 •	 Security services: Java Authentication and Authorization Service (JAAS) enables services
to authenticate and enforce access controls upon users. The Java Authorization Service
Provider Contract for Containers (JACC) defines a contract between a Java EE appli-
cation server and an authorization service provider, allowing custom authorization
service providers to be plugged into any Java EE product.

	 •	 Web services: Java EE provides support for SOAP and RESTful web services. The Java
API for XML Web Services (JAX-WS), replacing the Java API for XML-based RPC (JAX-
RPC), provides support for web services using the SOAP/HTTP protocol. The Java API
for RESTful Web Services (JAX-RS) provides support for web services using the REST
style.

	 •	 Management: Java EE defines APIs for managing containers and servers using a special
management enterprise bean. The Java Management Extensions (JMX) API is also used
to provide some management support.

	 •	 Deployment: The Java EE Deployment Specification defines a contract between deploy-
ment tools and Java EE products to standardize application deployment.

Figure 1-3. Services provided by containers

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE8

Network Protocols
As shown in Figure 1-3 (see the “Platform Overview” section of the Java EE 6 specification),
components deployed in containers can be invoked through different protocols. For example,
a servlet deployed in a web container can be called with HTTP as well as a web service with an
EJB endpoint deployed in an EJB container. Here is the list of protocols supported by Java EE:

	 •	 HTTP: HTTP is the Web protocol and is ubiquitous in modern applications. The client-
side API is defined by the java.net package in Java SE. The HTTP server-side API is
defined by servlets, JSPs, and JSF interfaces, as well as SOAP and RESTful web services.
HTTPS is a combination of HTTP and the Secure Sockets Layer (SSL) protocol.

	 •	 RMI-IIOP: Remote Method Invocation (RMI) allows you to invoke remote objects inde-
pendently of the underlying protocol. The Java SE native RMI protocol is Java Remote
Method Protocol (JRMP). RMI-IIOP is an extension of RMI used to integrate with
CORBA. Java interface description language (IDL) allows Java EE application compo-
nents to invoke external CORBA objects using the IIOP protocol. CORBA objects can be
written in many languages (Ada, C, C++, Cobol, etc.) as well as Java.

Packaging
To be deployed in a container, components have first to be packaged in a standard format-
ted archive. Java SE defines Java Archive (jar) files, which are used to aggregate many files
(Java classes, deployment descriptors, resources, or external libraries) into one compressed
file (based on the ZIP format). Java EE defines different types of modules that have their own
packaging format based on this common jar format.

An application client module contains Java classes and other resource files packaged
in a jar file. This jar file can be executed in a Java SE environment or in an application client
container. Like any other archive format, the jar file contains an optional META-INF directory
for meta information describing the archive. The META-INF/MANIFEST.MF file is used to define
extension- and package-related data. If deployed in an ACC, the deployment descriptor can
optionally be located at META-INF/application-client.xml.

An EJB module contains one or more session and/or message-driven beans (MDBs)
packaged in a jar file (often called an EJB jar file). It contains an optional META-INF/ejb-jar.xml
deployment descriptor and can be deployed only in an EJB container.

A web application module contains servlets, JSPs, JSF pages, and web services, as well
as any other web-related files (HTML and XHTML pages, Cascading Style Sheets (CSS), Java-
Scripts, images, videos, and so on). Since Java EE 6, a web application module can also contain
EJB Lite beans (a subset of the EJB API described in Chapter 6). All these artifacts are packaged
in a jar file with a .war extension (commonly referred to as a war file, or a Web Archive). The
optional web deployment descriptor is defined in the WEB-INF/web.xml file. If the war contains
EJB Lite beans, an optional deployment descriptor can be set at WEB-INF/ejb-jar.xml. Java
.class files are placed under the WEB-INF/classes directory and dependent jar files in the
WEB-INF/lib directory.

An enterprise module can contain zero or more web application modules, zero or more
EJB modules, and other common or external libraries. All this is packaged into an enterprise
archive (a jar file with an .ear extension) so that the deployment of these various modules
happens simultaneously and coherently. The optional enterprise module deployment

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 9

descriptor is defined in the META-INF/application.xml file. The special lib directory is used to
share common libraries between the modules.

Java Standard Edition
It’s important to stress that Java EE is a superset of Java SE (Java Standard Edition). This means
that all the features of the Java language are available in Java EE as well as the APIs.

Java SE 6 was officially released on December 11, 2006. It was developed under JSR 270
and brought many new features as well as continuing the ease of development introduced by
Java SE 5 (autoboxing, annotations, generics, enumeration, etc.). Java SE 6 provides new tools
for diagnosing, managing, and monitoring applications. It improves the existing JMX API and
simplifies execution of scripting languages in the Java Virtual Machine (JVM). This book does
not explicitly cover Java SE 6, so you should refer to the extensive Java literature available if
you are not comfortable with it. A good starting point would be Beginning Java™ SE 6 Plat-
form: From Novice to Professional by Jeff Friesen (Apress, 2007).

Java EE 6 Specifications
Java EE 6 is an umbrella specification defined by JSR 316 that contains 28 other specifications.
An application server that aims to be Java EE 6 compliant has to implement all these specifica-
tions. Tables 1-1 to 1-5 list them all with their version and JSR numbers. Some specifications
have been pruned, which means that they will possibly be removed from Java EE 7.

Table 1-1. Java Enterprise Edition Specification

Specification	 Version	 JSR	 URL	

Java EE	 6.0	 316	 http://jcp.org/en/jsr/detail?id=316	

Table 1-2. Web Services Specifications

Specification	 Version	 JSR	 URL	 Pruned

JAX-RPC	 1.1	 101	 http://jcp.org/en/jsr/detail?id=101	 X

JAX-WS	 2.2	 224	 http://jcp.org/en/jsr/detail?id=224	

JAXB	 2.2	 222	 http://jcp.org/en/jsr/detail?id=222	

JAXM	 1.0	 67	 http://jcp.org/en/jsr/detail?id=67	

StAX	 1.0	 173	 http://jcp.org/en/jsr/detail?id=173	

Web Services	 1.2	 109	 http://jcp.org/en/jsr/detail?id=109	

Web Services Metadata 	 1.1	 181	 http://jcp.org/en/jsr/detail?id=181	

JAX-RS	 1.0	 311	 http://jcp.org/en/jsr/detail?id=311	

JAXR	 1.1	 93	 http://jcp.org/en/jsr/detail?id=93	 X

http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=101
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=67
http://jcp.org/en/jsr/detail?id=173
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=311
http://jcp.org/en/jsr/detail?id=93

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE10

Table 1-3. Web Specifications

Specification	 Version	 JSR	 URL	 Pruned

JSF	 2.0	 314	 http://jcp.org/en/jsr/detail?id=314	

JSP	 2.2	 245	 http://jcp.org/en/jsr/detail?id=245	

JSTL (JavaServer 	 1.2	 52	 http://jcp.org/en/jsr/detail?id=52	
Pages Standard
Tag Library)	

Servlet	 3.0	 315	 http://jcp.org/en/jsr/detail?id=315	

Expression 	 1.2	 245	 http://jcp.org/en/jsr/detail?id=245
Language		

Table 1-4. Enterprise Specifications

Specification	 Version	 JSR	 URL	 Pruned

EJB	 3.1	 318	 http://jcp.org/en/jsr/detail?id=318	

JAF	 1.1	 925	 http://jcp.org/en/jsr/detail?id=925	

JavaMail	 1.4	 919	 http://jcp.org/en/jsr/detail?id=919	

JCA	 1.6	 322	 http://jcp.org/en/jsr/detail?id=322	

JMS	 1.1	 914	 http://jcp.org/en/jsr/detail?id=914	

JPA	 2.0	 317	 http://jcp.org/en/jsr/detail?id=317	

JTA	 1.1	 907	 http://jcp.org/en/jsr/detail?id=907	

Table 1-5. Management, Security, and Other Specifications

Specification	 Version	 JSR	 URL	 Pruned

JACC	 1.1	 115	 http://jcp.org/en/jsr/detail?id=115	

Bean Validation	 1.0	 303	 http://jcp.org/en/jsr/detail?id=303	

Common 	 1.0	 250	 http://jcp.org/en/jsr/detail?id=250	
Annotations	

Java EE 	 1.2	 88	 http://jcp.org/en/jsr/detail?id=88	 X
Application
Deployment	

Java EE 	 1.1	 77	 http://jcp.org/en/jsr/detail?id=77	 X
Management	

Java 	 1.0	 196	 http://jcp.org/en/jsr/detail?id=196	
Authentication
Service Provider
Interface for
Containers	

Debugging 	 1.0	 45	 http://jcp.org/en/jsr/detail?id=45
Support for
Other Languages		

http://jcp.org/en/jsr/detail?id=314
http://jcp.org/en/jsr/detail?id=245
http://jcp.org/en/jsr/detail?id=52
http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=245
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=925
http://jcp.org/en/jsr/detail?id=919
http://jcp.org/en/jsr/detail?id=322
http://jcp.org/en/jsr/detail?id=914
http://jcp.org/en/jsr/detail?id=317
http://jcp.org/en/jsr/detail?id=907
http://jcp.org/en/jsr/detail?id=115
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=250
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=77
http://jcp.org/en/jsr/detail?id=196
http://jcp.org/en/jsr/detail?id=45

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 11

What’s New in Java EE 6?
Now that you’ve seen the internal architecture of Java EE, you might be wondering what the
novelties are in Java EE 6. The main goal of this release is to continue the improved ease of
development introduced with Java EE 5. In Java EE 5, EJBs, persistent entities, and web ser-
vices were remodeled to follow a more object-oriented approach (Java classes implementing
Java interfaces) and to use annotations as a new way of defining metadata (XML deployment
descriptors becoming optional). Java EE 6 follows this path and applies the same paradigms
to the web tier. Today, a JSF managed bean is an annotated Java class with an optional XML
descriptor.

Java EE 6 focuses also on bringing simplicity to the platform by introducing profiles, and
pruning some outdated technologies. It adds more features to the existing specification (e.g.,
standardizing singleton session beans) while adding new ones (such as JAX-RS). More than
before, Java EE 6 applications are portable across containers with standard JNDI names and
a specified embedded EJB container.

Lighter
The Java EE 6 expert group had to face an interesting challenge: how to make the platform
lighter while adding more specifications? Today an application server has to implement 28
specifications in order to be compliant with Java EE 6. A developer has to know thousands of
APIs, some not even relevant anymore because they are being pruned. To make the platform
more lightweight, the group introduced profiles, pruning, and EJB Lite (a subset of the full EJB
features focusing on local interfaces, interceptors, transactions, and security only). EJB Lite is
explained in greater detail in Chapter 6.

Pruning
Java EE was first released in 1999, and ever since new specifications have been added at each
release (as shown previously in Figure 1-1). This became a problem in terms of size, imple-
mentation, and adoption. Some features were not well supported or not widely deployed
because they were technologically outdated or other alternatives were made available in the
meantime. So the expert group decided to propose the removal of some features through
pruning.

Java EE 6 has adopted the pruning process (also known as marked for deletion) already
adopted by the Java SE group. It consists of proposing a list of features for possible removal in
Java EE 7. Note that none of the proposed removal items will actually be removed during this
release. Some features will be replaced by newer specifications (such as entity beans being
replaced by JPA), and others will just leave the Java EE 7 umbrella and keep on evolving as
individual JSRs (e.g., JSRs 88 and 77). But Java EE 6 still includes the following list of pruned
features:

	 •	 EJB 2.x Entity Beans CMP (part of JSR 318): The complex and heavyweight persistent
component model of EJB 2.x entity beans has been replaced by JPA.

	 •	 JAX-RPC (JSR 101): This was the first attempt to model SOAP web services as RPC calls.
It has now been replaced by the much easier to use and robust JAX-WS.

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE12

	 •	 JAXR (JSR 93): JAXR is the API dedicated to communicating with UDDI registries.
Because UDDI is not widely used, JAXR would leave Java EE and evolve as a separate
JSR.

	 •	 Java EE Application Deployment (JSR 88): JSR 88 is a specification that tool developers
can use for deployment across application servers. This API hasn’t gained much
vendor support, so it would leave Java EE and evolve as a separate JSR.

	 •	 Java EE Management (JSR 77): Similar to JSR 88, JSR 77 was an attempt at creating
application server management tools that work across servers.

Profiles
Profiles are a major new feature in the Java EE 6 environment. Their main goal is to reduce the
size of the platform to suit the developer’s needs more efficiently. No matter the size or complex-
ity of the application you develop today, you will deploy it in an application server that offers you
APIs and services for 28 specifications. A major criticism urged against Java EE was that it was
too large. Profiles are designed precisely to address this issue. As shown in Figure 1-4, profiles
are subsets of the platform or supersets of it, and may overlap with the platform
or with other profiles.

Figure 1-4. Profiles in the Java EE platform

Java EE 6 defines a single profile called the Web Profile. Its aim is to allow developers to
create web applications with the appropriate set of technologies. Web Profile 1.0 is specified
in a separate JSR and is the first profile of the Java EE 6 platform. Others might be created in
the future (you could think of a minimal profile or a portal profile). The Web Profile will evolve
at its own pace, and we might end up with a Web Profile 1.1 or 1.2 before Java EE 7 is released.
Also, we will see application servers being Web Profile 1.0 compliant as opposed to fully Java
EE 6 compliant. Table 1-6 lists the specifications that are included in the Web Profile.

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 13

Table 1-6. Web Profile 1.0 Specifications

Specification	 Version	 JSR	 URL		

JSF	 2.0	 314	 http://jcp.org/en/jsr/detail?id=314	

JSP	 2.2	 245	 http://jcp.org/en/jsr/detail?id=245	

JSTL	 1.2	 52	 http://jcp.org/en/jsr/detail?id=52	

Servlet	 3.0	 315	 http://jcp.org/en/jsr/detail?id=315	

Expression Language	 1.2		

EJB Lite	 3.1	 318	 http://jcp.org/en/jsr/detail?id=318	

JPA	 2.0	 317	 http://jcp.org/en/jsr/detail?id=317	

JTA	 1.1	 907	 http://jcp.org/en/jsr/detail?id=907	

Common Annotations	 1.0	 250	 http://jcp.org/en/jsr/detail?id=250	

Easier to Use
Besides making the platform lighter, one aim of Java EE 6 was also to make it easier to use. A
direction taken by this version was to apply the ease-of-use paradigm to the web tier. Java EE
components need metadata to instruct the container about components’ behavior. Before
Java EE 5, the only format you could use was the XML deployment descriptor file, but annota-
tions appeared in EJBs, entities, and web services. With less XML to write, components would
be easier to package and deploy. In Java EE 5, the enterprise tier was rearchitected, and the
components moved toward POJOs and interfaces. But the web tier didn’t benefit from these
improvements.

Today in Java EE 6, servlets, JSF managed beans, JSF converters, validators, and render-
ers are also annotated classes with optional XML deployment descriptors. Listing 1-1 shows a
JSF managed bean that turns out to be a Java class with a single annotation. If you are already
familiar with JSF, you will be pleased to know that in most cases, the faces-config.xml file
becomes optional (if you don’t know JSF, you will learn about it in Chapters 10 through 12).

Listing 1-1. A JSF Managed Bean

@ManagedBean
public class BookController {

 @EJB
 private BookEJB bookEJB;

 private Book book = new Book();
 private List<Book> bookList = new ArrayList<Book>();

 public String doCreateBook() {
 book = bookEJB.createBook(book);
 bookList = bookEJB.findBooks();
 return "listBooks.xhtml";
 }

http://jcp.org/en/jsr/detail?id=314
http://jcp.org/en/jsr/detail?id=245
http://jcp.org/en/jsr/detail?id=52
http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=317
http://jcp.org/en/jsr/detail?id=907
http://jcp.org/en/jsr/detail?id=250

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE14

 // Getters, setters
}

EJBs also become easier to develop in Java EE 6. As shown in Listing 1-2, if you need to
access an EJB locally, a simple annotated class with no interface is enough. EJBs can also be
deployed directly in a war file without being previously packaged in a jar file. This makes EJBs
the simplest transactional component that can be used from simple web applications to
complex enterprise ones.

Listing 1-2. A Stateless EJB

@Stateless
public class BookEJB {

 @PersistenceContext(unitName = "chapter01PU")
 private EntityManager em;

 public Book findBookById(Long id) {
 return em.find(Book.class, id);
 }

 public Book createBook(Book book) {
 em.persist(book);
 return book;
 }
}

Richer
On one hand, Java EE 6 is becoming lighter by introducing profiles, and on the other it’s also
becoming richer by adding new specifications and improving existing ones. RESTful web
services have been making their way into modern applications. Java EE 6 follows the needs
of enterprises by adding the new JAX-RS specification. As shown in Listing 1-3, a RESTful web
service is an annotated Java class that responds to HTTP actions. You will learn more about
JAX-RS in Chapter 15.

Listing 1-3. A RESTful Web Service

@Path("books")
public class BookResource {

 @PersistenceContext(unitName = "chapter01PU")
 private EntityManager em;

 @GET
 @Produces({"application/xml", "application/json"})
 public List<Book> getAllBooks() {

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 15

 Query query = em.createNamedQuery("findAllBooks");
 List<Book> books = query.getResultList();
 return books;
 }
}

The new version of the persistence API (JPA 2.0) is improved by adding collections of sim-
ple data types (String, Integer, etc.), pessimistic locking, a richer JPQL syntax, a brand-new
Query Definition API, and support for a caching API. JPA is discussed in Chapter 2 through
Chapter 5.

EJBs are easier to develop (with optional interfaces) and to package (in a war file), but they
also have new features, such as the possibility to use asynchronous calls or a richer timer ser-
vice for scheduling tasks. There is also a new singleton session bean component. As shown in
Listing 1-4, a single annotation can turn a Java class into a container-managed singleton (one
instance of the component per application). You will learn more about these new features in
Chapter 6 through Chapter 9.

Listing 1-4. A Singleton Session Bean

@Singleton
public class CacheEJB {

 private Map<Long, Object> cache = new HashMap<Long, Object>();

 public void addToCache(Long id, Object object) {
 if (!cache.containsKey(id))
 cache.put(id, object);
 }

 public Object getFromCache(Long id) {
 if (cache.containsKey(id))
 return cache.get(id);
 else
 return null;
 }
}

The presentation tier also gets richer. JSF 2.0 adds support for Ajax and for Facelets (see
Chapter 10 through Chapter 12).

More Portable
From its creation, the aim of Java EE was to enable the development of an application and its
deployment to any application server without changing the code or the configuration files.
This was never as easy as it seemed. Specifications don’t cover all the details, and implemen-
tations end up providing nonportable solutions. That’s what happened with JNDI names, for
example. If you deployed an EJB to GlassFish, JBoss, or WebLogic, the JNDI name was different
because it wasn’t part of the specification, so you had to change your code depending on the

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE16

application server you used. That particular problem has now been fixed, because Java EE 6
specifies a syntax for JNDI names that is the same across application servers (see Chapter 7).

Another difficult point with EJBs was the ability to test them, or use them in a Java SE
environment. Some application servers (such as JBoss) had specific implementations to do it.
EJB 3.1 specifies an embedded container that is a standard API for executing EJBs within a Java
SE environment (see Chapter 7).

The CD-BookStore Application
Throughout the book, you will see snippets of code dealing with entities, EJBs, JSF pages, JMS
listeners, and SOAP or RESTful web services. They all belong to the CD-BookStore application.
This application is an e-commerce web site that allows customers to browse a catalog of books
and CDs on sale. The application has external interactions with a bank system to validate
credit card numbers. The use case diagram in Figure 1-5 describes the system’s actors and
functionalities.

Figure 1-5. Use case diagram of the CD-BookStore application

The actors interacting with the system described in Figure 1-5 are

	 •	 Employees of the company who need to manage both the catalog of items and the
customers’ details. They can also browse the purchase orders.

	 •	 Users who are anonymous persons visiting the web site and consulting the catalog of
books and CDs. If they want to buy an item, they need to create an account to become
customers.

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 17

	 •	 Customers who can browse the catalog, update their account details, and buy items
online.

	 •	 The external bank to which the system delegates credit card validations.

nNote  You can download the code examples of this book from the Apress web site
(http://www.apress.com).

Setting Up Your Environment
This book shows you lots of code, and most of the chapters have a “Putting It All Together”
section. These sections provide step-by-step examples showing you how to develop, compile,
deploy, execute, and unit test a component. To run these examples, you need to install the
required software:

	 •	 JDK 1.6

	 •	 Maven 2

	 •	 JUnit 4

	 •	 Derby 10.4 database (a.k.a. Java DB)

	 •	 GlassFish v3 application server

JDK 1.6
Essential for the development and the execution of the examples in the book is the Java Devel-
opment Kit (JDK). It includes several tools such as a compiler (javac), a virtual machine, a
documentation generator (javadoc), monitoring tools (Visual VM), and so on. To install the
JDK 1.6, go to the official Sun web site (http://java.sun.com/javase/downloads), select the
appropriate platform and language, and download the distribution.

If you are running on Windows (Linux and OS X are not supported in this book), double-
click the jdk-6u12-windows-i586-p.exe file. The first screen invites you to accept the license
of the software, and then the second screen, shown in Figure 1-6, lists the modules of the JDK
you can choose to install (JDK, JRE, Derby database, sources).

http://www.apress.com
http://java.sun.com/javase/downloads

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE18

Figure 1-6. Setting up the JDK installation

Once the installation is complete, it is necessary to set the JAVA_HOME variable and the
%JAVA_HOME%\bin directory to the PATH variable. Check that Java is recognized by your system
by entering java –version (see Figure 1-7).

Figure 1-7. Displaying the JDK version

Maven 2
To reflect what you’ll find in the real development world, I’ve decided to use Apache Maven
(http://maven.apache.org) to build the examples of this book. The purpose of this book is not
to explain Maven. You will find plenty of resources for Maven on the Internet or in bookstores.
But I will introduce some elements so that you can easily understand and use the examples.

http://maven.apache.org

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 19

A Bit of History
Building a Java EE application requires different operations:

	 •	 Generating code and resources

	 •	 Compiling Java classes and test classes

	 •	 Packaging the code in an archive (jar, ear, war, etc.) with potentially external
jar libraries

Doing these tasks manually can be time consuming and can generate errors. Thus, devel-
opment teams have looked for ways of automating these tasks.

In 2000, Java developers started to use Apache Ant (http://ant.apache.org), allowing
them to create scripts for building applications. Ant itself is written in Java and offers a range
of commands that, unlike a Unix Make tool, are portable across platforms. Development
teams started to create their own scripts to fulfill their needs. Yet Ant was quickly pushed to its
limits when projects had to start encompassing complex heterogeneous systems. Companies
faced difficulties to industrialize their build system. There was no real tool to easily reuse a
build script between different projects (copy/paste was the only way).

In 2002, Apache Maven was born, and this project not only addressed these issues, but
also went beyond being a simple building tool. Maven offers projects a building solution,
shared libraries, and a plug-in platform, allowing you to do quality of control, documenta-
tion, teamwork, and so forth. Based on the “convention over configuration” principle, Maven
brings a standard project description and a number of conventions such as a standard direc-
tory structure (as shown in Figure 1-8). With an extensible architecture based on plug-ins
(a.k.a. mojos), Maven can offer many different services.

Figure 1-8. Standard Maven directory structure

Project Descriptor
Maven is based on the fact that a majority of Java and Java EE projects face similar needs when
building applications. A Maven project needs to follow standards as well as define specific
features in a project descriptor, or Project Object Model (POM). The POM is an XML file
(pom.xml) placed at the root of the project. As shown in Listing 1-5, the minimum required
information to describe the identity of the project is the groupId, the artifactId, the version,
and the packaging type.

http://ant.apache.org

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE20

Listing 1-5. Minimal pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" ➥

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"➥

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 ➥

 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.apress.javaee6</groupId>
 <artifactId>chapter01</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
</project>

A project is often divided into different artifacts. These artifacts are then grouped under
the same groupId (similar to packages in Java) and uniquely identified by the artifactId.
Packaging allows Maven to produce the artifact following a standard format (jar, war, ear, etc.).
Finally, the version allows identifying an artifact during its lifetime (version 1.1, 1.2, 1.2.1, etc.).
Maven imposes versioning so a team can manage the life of its project development. Maven
also introduces the concept of SNAPSHOT versions (the version number ends with the string
-SNAPSHOT) to identify an artifact when it’s being developed.

The POM defines much more information about your project. Some is purely descriptive
(name, description, etc.), other concerns the application execution such as the list of external
libraries used, and so on. Finally, the pom.xml defines environmental information to build the
project (versioning tool, continuous integration server, artifacts repositories) and any other
specific process to build your project.

Managing Artifacts
Maven goes beyond building artifacts; it also offers a genuine approach to archive and share
these artifacts. Maven uses a local repository on your hard drive (by default in %USER_HOME%/
.m2/repository) where it stores all the artifacts that the project’s descriptor manipulates.
The local repository (see Figure 1-9) is filled either by the local developer’s artifacts (e.g.,
myProject-1.1.jar) or by external ones (e.g., glassfish-3.0.jar) that Maven downloads from
remote repositories. By default, Maven uses a main repository at http://repo1.maven.org/
maven2 to download the missing artifacts.

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0%E2%9E%A5
http://maven.apache.org/POM/4.0.0%E2%9E%A5
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://repo1.maven.org/

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 21

Figure 1-9. Example of a local repository

A Maven project defines in a declarative way its dependencies in the POM (groupId,
artifactId, version, type) as shown in Listing 1-6. If necessary, Maven will download them to
the local repository from remote repositories. Moreover, using the POM descriptors of these
external artifacts, Maven will also download the artifacts they need and so on. Therefore, the
development team doesn’t have to manually deal with project dependencies. The necessary
libraries are added automatically by Maven.

Listing 1-6. Dependencies in the pom.xml

...
<dependencies>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>javax.persistence</artifactId>
 <version>1.1.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.glassfish</groupId>
 <artifactId>javax.ejb</artifactId>
 <version>3.0</version>
 <scope>provided</scope>
 </dependency>
</dependencies>
...

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE22

Dependencies may have limited visibility (called scope):

	 •	 test: The library is used to compile and run test classes but is not packaged in the
produced artifact.

	 •	 provided: The library is provided by the environment (persistence provider, application
server, etc.) and is only used to compile the code.

	 •	 compile: The library is necessary for compilation and execution.

	 •	 runtime: The library is only required for execution but is excluded from the compilation
(e.g., JSF components, JSTL tag libraries).

Project Modularity
To address project modularity, Maven provides a mechanism based on modules. Each module
is a Maven project in its own right. Maven is able to build a project with different modules by
calculating the dependencies they have between them (see Figure 1-10). To facilitate reusing
common parameters, POM descriptors can inherit from parent POM projects.

Figure 1-10. A project and its modules

Plug-ins and Life Cycle
Maven uses a life cycle made of several phases (see Figure 1-11): it cleans the resources,
validates the project, generates any needed sources, compiles Java classes, runs test classes,
packages the project, and installs it to the local repository. This life cycle is the vertebral col-
umn on which Maven plug-ins (a.k.a. mojos) hang. Depending on the type of project you
build, the associated mojos can be different (a mojo to compile, another to test, another to
build, etc.). In the project description, you can link new plug-ins to a life-cycle phase, change
the configuration of a plug-in, and so on. For example, when you build a web service client,
you might add a mojo that generates web service artifacts during the generate-sources phase.

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 23

Figure 1-11. Project life cycle

Installation
The examples of this book have been developed with Apache Maven 2.0.10. Once you have
installed JDK 1.6, make sure the JAVA_HOME environment variable is set. Then download Maven
from http://maven.apache.org/, unzip the file on your hard drive, and add the apache-maven/
bin directory to your PATH variable.

Once you’ve done this, open a DOS command line and enter mvn -version to validate
your installation. Maven should print its version and the JDK version as shown in Figure 1-12.

Figure 1-12. Maven displaying its version

Be aware that Maven needs Internet access so it can download plug-ins and project
dependencies from the main repository. If you are behind a proxy, see the documentation to
configure your settings.

http://maven.apache.org/

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE24

Usage
Here are some commands that you will be using to run the examples in the book. They all
invoke a different phase of the project life cycle (clean, compile, install, etc.) and use the
pom.xml to add libraries, customize the compilation, or extend some behaviors with plug-ins:

	 •	 mvn clean: Deletes all generated files (compiled classes, generated code, artifacts, etc.)

	 •	 mvn compile: Compiles the main Java classes

	 •	 mvn test-compile: Compiles the test classes

	 •	 mvn test: Compiles the test classes and executes the tests

	 •	 mvn package: Compiles and executes the tests and packages in an archive

	 •	 mvn install: Builds and installs the artifacts in your local repository

	 •	 mvn clean install: Cleans and installs (Note that you can add several commands
separated by a space.)

nNote  Maven allows you to compile, run, and package the examples of this book. But to develop the code,
you need an integrated development environment (IDE). I use IntelliJ IDEA from JetBrains, and you will see
some screenshots of it throughout these pages. But you can use any IDE you want because this book only
relies on Maven, not on specific IntelliJ IDEA features.

JUnit 4
JUnit is an open source framework to write and run repeatable tests. JUnit features include

	 •	 Assertions for testing expected results

	 •	 Fixtures for sharing common test data

	 •	 Runners for running tests

JUnit is the de facto standard unit testing library for the Java language, and it stands in a
single jar file that you can download from http://www.junit.org/ (or use Maven dependency
management to do it). The library contains a complete API to help you write your unit tests
and a tool to execute them. Unit tests help your code to be more robust, bug free, and reliable.

A Bit of History
JUnit was originally written by Erich Gamma and Kent Beck in 1998. It was inspired by Small-
talk’s SUnit test framework, also written by Kent Beck. It quickly became one of the most
popular frameworks in the Java world.

Bringing the benefits of unit testing to a wide range of languages, JUnit has inspired a
family of xUnit tools like nUnit (.NET), pyUnit (Python), CppUnit (C++), dUnit (Delphi), and
others. JUnit took an important place in achieving test-driven development (TDD).

http://www.junit.org/

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 25

How Does It Work?
Since JUnit 4, writing unit tests is simplified by using annotations, static import, and other Java
features. Compared to the previous versions of JUnit, it provides a simpler, richer, and easier
testing model, as well as introducing more flexible initialization, cleanup, timeouts, and
parameterized test cases.

Let’s see some of the JUnit features through a simple example. Listing 1-7 represents a
Customer POJO. It has some attributes, including a date of birth, constructors, getters,
and setters.

Listing 1-7. A Customer Class

public class Customer {
 private Long id;
 private String firstName;
 private String lastName;
 private String email;
 private String phoneNumber;
 private Date dateOfBirth;
 private Date creationDate;

 // Constructors, getters, setters
}

The CustomerHelper class, shown in Listing 1-8, provides a utility method to calculate the
age of a given customer (calculateAge()).

Listing 1-8. The CustomerHelper Class

public class CustomerHelper {
 private int ageCalcResult;
 private Customer customer;

 public void calculateAge() {
 Date dateOfBirth = customer.getDateOfBirth();
 Calendar birth = new GregorianCalendar();
 birth.setTime(dateOfBirth);
 Calendar now = new GregorianCalendar(2001, 1, 1);
 ageCalcResult = now.get(Calendar.YEAR) - birth.get(Calendar.YEAR);
 }

 // Not implemented yet
 public Date getNextBirthDay() {
 return null;
 }

 public void clear() {
 ageCalcResult=0;
 customer=null;

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE26

 }

 // Getters, setters
}

The calculateAge() method uses the dateOfBirth attribute to return the customer’s age.
The clear() method resets the CustomerHelper state, and the getNextBirthDay() method is not
implemented yet. This helper class has some flaws: it looks like there is a bug in the age calcu-
lation. To test the calculateAge() method, we could use the JUnit class CustomerHelperTest
described in Listing 1-9.

Listing 1-9. A Test Class for CustomerHelper

import org.junit.Before;
import org.junit.Ignore;
import org.junit.Test;

import static org.junit.Assert.*;

public class CustomerHelperTest {

 private static CustomerHelper customerHelper = new CustomerHelper();

 @Before
 public void clearCustomerHelper() {
 customerHelper.clear();
 }

 @Test
 public void notNegative() {
 Customer customer = new Customer();
 customer.setDateOfBirth(new GregorianCalendar(1975, 5, 27).getTime());

 customerHelper.setCustomer(customer);
 customerHelper.calculateAge();

 int calculatedAge = customerHelper.getAgeCalcResult();

 assert calculatedAge >= 0;
 }

 @Test
 public void expectedValue() {
 int expectedAge = 33;

 Calendar birth = new GregorianCalendar();
 birth.roll(Calendar.YEAR, expectedAge * (-1));
 birth.roll(Calendar.DAY_OF_YEAR, -1);

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 27

 Customer customer = new Customer();
 customer.setDateOfBirth(birth.getTime());

 customerHelper.setCustomer(customer);
 customerHelper.calculateAge();

 assertTrue(customerHelper.getAgeCalcResult() == expectedAge);
 }

 @Test(expected = NullPointerException.class)
 public void emptyCustomer() {
 Customer customer = new Customer();

 customerHelper.setCustomer(customer);
 customerHelper.calculateAge();

 assertEquals(customerHelper.getAgeCalcResult(), -1);
 }

 @Ignore("not ready yet")
 @Test
 public void nextBirthDay() {
 // some work to do
 }
}

The test class in Listing 1-9 contains four test methods. The expectedValue() method
will fail because there is a bug in the CustomerHelper age calculation. The nextBirthDay()
method is ignored because it is not yet implemented. The two others test methods will
succeed. emptyCustomer() expects the method to throw a NullPointerException.

Test Methods
In JUnit 4, test classes do not have to extend anything. To be executed as a test case, a JUnit
class needs at least one method annotated with @Test. If you write a class without at least
one @Test method, you will get an error when trying to execute it (java.lang.Exception:
No runnable methods).

A test method must use the @Test annotation, return void, and take no parameters. This
is controlled at runtime and throws an exception if not respected. The @Test annotation sup-
ports the optional expected parameter, which declares that a test method should throw an
exception. If it doesn’t or if it throws a different exception than the one declared, the test
fails. In this example, trying to calculate the age of an empty customer object should throw a
NullPointerException.

In Listing 1-9, the nextBirthDay() method is not implemented. However, you don’t want
the test to fail; you just want to ignore it. You can add the @Ignore annotation in front or after
@Test. Test runners will report the number of ignored tests, along with the number of tests that

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE28

succeeded and failed. Note that @Ignore takes an optional parameter (a String) in case you
want to record why a test is being ignored.

Assert Methods
Test cases must assert that objects conform to an expected result. For that, JUnit has an Assert
class that contains several methods. In order to use it, you can either use the prefixed syntax
(e.g., Assert.assertEquals()) or import statically the Assert class (shown in Listing 1-9). As
you can see in the notNegative() method, you can also use the Java assert keyword.

Fixtures
Fixtures are methods to initialize and release any common object during tests. JUnit uses
@Before and @After annotations to execute code before or after each test. These methods
can be given any name (clearCustomerHelper() in this example), and you can have multiple
methods in one test class. JUnit uses @BeforeClass and @AfterClass annotations to execute
specific code only once per class. These methods must be unique and static. @BeforeClass
and @AfterClass can be very useful if you need to allocate and release expensive resources.

Launching JUnit
To run the JUnit launcher, you must add the JUnit jar file to your CLASSPATH variable (or add a
Maven dependency). After that, you can run your tests through the Java launcher as shown in
the following code. Note that when using assert, you must specify the –ea parameter; if you
don’t, assertions are ignored.

java –ea org.junit.runner.JUnitCore com.apress.javaee6.CustomerHelperTest

The preceding command will provide the following result:

JUnit version 4.5
..E.I
Time: 0.016
There was 1 failure:
1) expectedValue(com.apress.javaee6.CustomerHelperTest)
java.lang.AssertionError: at ➥

CustomerHelperTest.expectedValue(CustomerHelperTest.java:52)

FAILURES!!!
Tests run: 3, Failures: 1

The first displayed information is the JUnit version number (4.5 in this case). Then JUnit
gives the number of executed tests (here, three) and the number of failures (one in this exam-
ple). The letter I indicates that a test has been ignored.

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 29

JUnit Integration
JUnit is currently very well integrated with most IDEs (IntelliJ IDEA, Eclipse, NetBeans, etc.).
When working with these IDEs, in most cases JUnit highlights in green to indicate successful
tests and in red to indicate failures. Most IDEs also provide facilities to create test classes.

JUnit is also integrated to Maven through the Surefire plug-in used during the test phase
of the build life cycle. It executes the JUnit test classes of an application and generates reports
in XML and text file formats. The following Maven command runs the JUnit tests through the
plug-in:

mvn test

Derby 10.4
Initially called Cloudscape, the Derby database developed in Java was given to the Apache
foundation by IBM and became open source. Sun Microsystems has released its own distribu-
tion called JavaDB. Of small footprint (2MB), Derby is a fully functional relational database,
supporting transactions, that can easily be embedded in any Java-based solution.

Derby provides two different modes: embedded and network server. The embedded mode
refers to Derby being started by a simple single-user Java application. With this option, Derby
runs in the same JVM as the application. In this book, I will use this mode during unit testing.
The network server mode refers to Derby being started as a separate process and providing
multiuser connectivity. I will use this mode throughout the book when running applications.

Installation
Installing Derby is very easy; in fact, you may find it is already installed because it is bundled
with the JDK 1.6. During the installation of JDK 1.6 (refer back to Figure 1-6), the wizard
proposed you install Java DB. And by default it does. If you don’t have it installed, you can
download the binaries from http://db.apache.org.

Once installed, set the DERBY_HOME variable to the path where you’ve installed it, and
add %DERBY_HOME%\bin to your PATH variable. Start the Derby network server by launching the
%DERBY_HOME%\bin\startNetworkServer.bat script. Derby displays some information to the
console such as the port number it listens to (1527 by default).

Derby comes with several utilities, one of them being sysinfo. Open a DOS command
line, enter sysinfo, and you should see information about your Java and Derby environment,
as shown in Figure 1-13.

http://db.apache.org

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE30

Figure 1-13. sysinfo output after installing Derby

Usage
Derby provides several tools (located under the bin subdirectory) to interact with the data-
base. The simplest are probably ij, which allows you to enter SQL commands at a command
prompt, and dblook, which lets you view all or part of a database’s data definition language
(DDL).

Make sure you’ve started the Derby network server, and type the command ij to enter the
command prompt and run interactive queries against a Derby database. Then, enter the fol-
lowing commands to create a database and a table, insert data into the table, and query it:

ij> connect 'jdbc:derby://localhost:1527/Chapter01DB;create=true';

This connects to the Chapter01DB database. Because it doesn’t exist already, the
create=true parameter forces its creation.

ij> create table customer (custId int primary key, firstname varchar(20),
 lastname varchar(20));

This creates a customer table with a primary key column and two varchar(20) columns
for the first name and last name. You can display the description of the table by entering the
following command:

ij> describe customer;
COLUMN_NAME |TYPE_NAME|DEC&|NUM&|COLUM&|COLUMN_DEF|CHAR_OCTE&|IS_NULL&

CUSTID |INTEGER |0 |10 |10 |NULL |NULL |NO
FIRSTNAME |VARCHAR |NULL|NULL|20 |NULL |40 |YES
LASTNAME |VARCHAR |NULL|NULL|20 |NULL |40 |YES

Now that the table is created, you can add data using the insert SQL statement as follows:

derby://localhost:1527/Chapter01DB

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 31

ij> insert into customer values (1, 'Fred', 'Chene');
ij> insert into customer values (2, 'Sylvain', 'Verin');
ij> insert into customer values (3, 'Robin', 'Riou');

You can then use all the power of the SQL select statement to retrieve, order, or aggregate
data.

ij> select count(*) from customer;
1

3

ij> select * from customer where custid=3;
CUSTID |FIRSTNAME |LASTNAME

3 |Robin |Riou
ij> exit;

To get the DDL of the created table, you can exit ij and run dblook against the
Chapter01DB database.

C:\> dblook -d 'jdbc:derby://localhost:1527/Chapter01DB'
-- Source database is: Chapter01DB
-- Connection URL is: jdbc:derby://localhost:1527/Chapter01DB
-- appendLogs: false
-- --
-- DDL Statements for tables
-- --
CREATE TABLE "APP"."CUSTOMER" ("CUSTID" INTEGER NOT NULL, "FIRSTNAME" ➥

VARCHAR(20), "LASTNAME" VARCHAR(20));
-- --
-- DDL Statements for keys
-- --
-- primary
ALTER TABLE "APP"."CUSTOMER" ADD CONSTRAINT "SQL0903154616250" ➥

PRIMARY KEY ("CUSTID");

GlassFish v3
While a fairly new application server, GlassFish is already used by a large number of develop-
ers and corporations. Not only is it the RI for the Java EE technology, it is also what you get
when downloading Sun’s Java EE SDK. You can also deploy critical production applications on
the GlassFish application server. Besides being a product, GlassFish is also a community that
has gathered around the open source code and lives on http://glassfish.org. The commu-
nity is quite responsive on mailing lists and forums.

derby://localhost:1527/Chapter01DB
derby://localhost:1527/Chapter01DB
http://glassfish.org

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE32

A Bit of History
The origins of GlassFish take us back to the early Tomcat days when Sun and the JServ group
donated this technology to Apache. Ever since, Sun has been reusing Tomcat in its various
products. In 2005, Sun created the GlassFish project. This had as its goal the development of a
fully certified Java EE application server whose version 1.0 shipped in May 2006. At its core, the
web container part of GlassFish has a lot of Tomcat heritage (in fact, an application running on
Tomcat should run unmodified on GlassFish).

GlassFish v2 was released in September 2007 and has since had several updates. This is
the most widely deployed version to date. GlassFish tends to be pretty good at maintaining
the same user experience across major releases, not breaking code nor changing developers’
habits. Also, there is no quality difference between the “community” and “supported” versions
of GlassFish. While paying customers have access to patches and additional monitoring tools
(GlassFish Enterprise Manager), the open source version available from http://glassfish.
org and the supported version available from http://www.sun.com/appserver have undergone
the same amount of testing, making it easy to switch to a supported version at any time in the
project cycle.

For the purpose of this book, I’ll be using GlassFish v3, which at the time of writing has not
yet shipped as a final Java EE-certified product but is available as a “Prelude” version (mainly
a web container); being open source, daily promoted and milestone builds are made available.
The main goals of this new major version of GlassFish are modularization of the core features
with the introduction of an OSGi-based kernel and full support for Java EE 6.

nNote  The GlassFish team has put a tremendous effort toward having rich and up-to-date documentation,
making available many different guides: Quick Start Guide, Installation Guide, Administration Guide, Adminis-
tration Reference, Application Deployment Guide, Developer’s Guide, and more. Check them out at http://
wiki.glassfish.java.net/Wiki.jsp?page=GlassFishDocs. Also check the FAQs, how-tos, and the
GlassFish forum for more information.

GlassFish v3 Architecture
As an application programmer (and not one of the GlassFish developers), you do not need to
understand the internal architecture of GlassFish v3, but you might be interested in the main
architectural choices and guiding principles. Starting with GlassFish v3 Prelude, the applica-
tion server is built on a modular kernel powered by OSGi. GlassFish ships and runs straight on
top of the Apache Felix implementation, but it should also run with Equinox or Knopflerfish
OSGi runtimes. HK2 (the Hundred-Kilobyte Kernel) abstracts the OSGi module system to pro-
vide components, which can also be viewed as services. Such services can be discovered and
injected at runtime. OSGi is not exposed to Java EE developers for the time being.

http://glassfish
http://www.sun.com/appserver
http://wiki.glassfish.java.net/Wiki.jsp?page=GlassFishDocs
http://wiki.glassfish.java.net/Wiki.jsp?page=GlassFishDocs

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 33

nNote  OSGi is a standard for dynamic component management and discovery. Applications or components
can be remotely installed, started, stopped, updated, and uninstalled without requiring a reboot. Components
can also detect the addition or removal of new services dynamically and adapt accordingly. Apache Felix,
Equinox, and Knopflerfish are OSGi implementations.

This modularity and extensibility is how GlassFish v3 can grow from a simple web server
listening to administrative commands to a more capable runtime by simply deploying artifacts
such as war files (a web container is loaded and started, and the application deployed) or EJB
jar files (which will dynamically load and start the EJB container). Additionally, the bare-bones
server starts in just a few seconds (less than 5 seconds on reasonably modern hardware), and
you only pay for what you use in terms of startup time and memory consumption. Starting the
web container on the fly takes about 3 more seconds, and deployments are often less than 1
second. This all makes GlassFish v3 a very developer-friendly environment.

No matter how many modules GlassFish v3 dynamically loads, the administration con-
sole, the command-line interface, and the centralized configuration file are all extensible, and
each remains unique. Also worth mentioning is the Grizzly framework, which started out as a
nonblocking, I/O-based HTTP server to become one of the key elements in GlassFish as shown
in Figure 1-14.

Figure 1-14. GlassFish v3 architecture

Update Center
Once you’re given a modular application server, you can start to mix and match various mod-
ules to build your own environment just like you would with IDEs and Linux distributions, or
similar to the way Firefox lets you manage your extensions. The GlassFish Update Center is a
set of graphical and command-line tools to manage your runtime. The technology behind this
is the Image Packaging System (IPS, also known as pkg), which is what the OpenSolaris project

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE34

uses for package management. Beyond the default set of modules GlassFish is shipped with,
a user can connect to various repositories to update the existing features, add new features
(Grails support, a portlet container, etc.) or even new third-party applications. In a corporate
environment, you can set up your own repository and use the update center pkg command-
line tool to bootstrap the installation of GlassFish-based software.

In practice, with GlassFish v3, the update center can be accessed via the admin console,
the graphical client available at %GLASSFISH_HOME%\bin\updatetool, or the pkg command line.
All three allow you to list, add, and remove components available from a set of multiple
repositories. In the case of pkg (also located in %GLASSFISH_HOME%\bin), the most common
commands are pkg list, pkg install, pkg uninstall, and pkg image-update.

GlassFish Subprojects
There are many different parts to the GlassFish application server, so the project was broken
up into subprojects. This helps you to further understand not only the different pieces, but
also the adoption of individual features outside of the GlassFish environment, in stand-alone
mode or within another container. Figure 1-15 shows a high-level architecture of the func-
tional parts of the application server.

Figure 1-15. Functional parts of GlassFish

OpenMQ, for instance, is a production-quality open source implementation of JMS.
Although it is often used stand-alone for message-oriented architectures, OpenMQ can also
be integrated in various ways with GlassFish (in-process, out-of-process, or remote). The
administration of OpenMQ can be done via the GlassFish admin console or the asadmin com-
mand-line interface (see the upcoming “The asadmin CLI” section). The community web site
is at http://openmq.dev.java.net.

http://openmq.dev.java.net

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 35

Metro is the one-stop shop for web services. This complete stack builds on the JAX-WS
development paradigm and augments it with advanced features such as trusted, end-to-end
security; optimized transport (MTOM, FastInfoset); reliable messaging; and transactional
behavior for SOAP web services. Such quality of service (QoS) for web services is based on
standards (OASIS, W3C), is expressed in the form of policies, and does not require the use of
a new API in addition to JAX-WS. Metro is also regularly tested with Microsoft against .NET
implementations to ensure interoperability between the two technologies. The community
web site is at http://metro.dev.java.net.

Mojarra is the name of the JSF implementation in GlassFish and is available at http://
mojarra.dev.java.net. Jersey is the production-quality RI for the new JAX-RS specification.
Both the specification and the implementation were the early comers to Java EE 6 and Glass-
Fish. In fact, Jersey 1.0 has been available in the update center for GlassFish v2 and v3 since it
was released in 2008.

Administration
Obviously, being a complete application server means that GlassFish implements 100 percent
of the Java EE 6 specifications, but it also has additional features that make it a polished prod-
uct such as its administrative capabilities, be it through the admin console or via a powerful
asadmin command-line interface. Almost all the configuration is stored in a file called
domain.xml (located in domains\domain1\config), which can be useful for troubleshooting, but
this file should not be edited by hand; instead one of these two administration tools should be
used. Both of them rely on the extensive JMX instrumentation provided by GlassFish.

Admin Console

The admin console is a browser-based administration user interface (see Figure 1-16) for the
application server. This tool is for both administrators and developers. It provides graphical
representation of the objects under management, enhanced log file viewing, system status,
and monitoring data. At a minimum, the console manages the creation and modification
of configurations (JVM tuning, log level, pool and cache tuning, etc.), JDBC, JNDI, JavaMail,
JMS, and connector resources, as well as applications (deployment). In the cluster profile of
GlassFish, the admin console is enhanced to let the user manage clusters, instances, node
agents, and load-balancing configurations. At any time in the navigation of the tool, contextual
help is available via the top-right Help button. With a default installation, the admin console
is available upon GlassFish startup at http://localhost:4848. Starting with GlassFish v3, an
anonymous user can be set up, removing the need to log in. If this is not the case, a typical
installation will have admin as the user name and adminadmin as the default password.

http://metro.dev.java.net
http://mojarra.dev.java.net
http://mojarra.dev.java.net
http://localhost:4848

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE36

Figure 1-16. Web administration console

The asadmin CLI

The asadmin command-line interface (CLI) is quite powerful and often what people use in
production, as it can be scripted to create instances and resources, deploy applications, and
provide monitoring data on a running system. The command is located under the bin sub-
directory of GlassFish and can manage multiple local or remote application server domains.
asadmin offers several hundred commands, but you should get away with using only a small
subset of these. If you are curious about the commands, try asadmin help. Useful commands
in a simple developer profile include asadmin start-domain, asadmin stop-domain, asadmin
deploy, asadmin deploydir, and asadmin undeploy. In case of a typo, asadmin will give you a
choice of the closest matching command. Try asadmin resource, for instance, and asadmin will
give you the related commands as shown on Figure 1-17. With GlassFish v3, asadmin is set to
implement command history and completion.

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 37

Figure 1-17. asadmin CLI

Installing GlassFish
GlassFish v2 can be installed in various profiles (each profile is a set of features and configura-
tions). The most common for you will be the developer profile. If you want to start using the
clustering capabilities of GlassFish, you can either install using the cluster profile or update an
existing installation using the Add Cluster Support choice in the admin console. In the case of
GlassFish v3 (required for running Java EE 6 applications), there is only the developer profile
for the moment.

GlassFish can be downloaded via multiple distribution mechanisms. The most obvious
choices are to get it from http://glassfish.org, or with the Java EE SDK or the NetBeans IDE.
I’ll document here how to download and install GlassFish from the community web site.

Go to the main download page, https://glassfish.dev.java.net/public/downloadsindex.
html, and select GlassFish Server v3 (not v3 Prelude). At the time of writing, only milestone and
promoted builds were available. Once GlassFish v3 is released in final form, it will certainly be
highlighted appropriately on the main http://glassfish.org home page. Note that GlassFish
v3 offers a web and a regular download. Select the appropriate archive for your platform and
application requirements (the Unix distribution will work on Linux, Solaris, and Mac OS X).
Executing the shell will start the graphical installer, which will

	 •	 Ask you to agree to the license.

	 •	 Request an install location.

	 •	 Let you configure an admin username and password (or default to an anonymous
user).

	 •	 Let you configure HTTP and admin ports (while checking that they’re not already in
use).

	 •	 Install and enable the update tool (pkg and updatool clients).

http://glassfish.org
https://glassfish.dev.java.net/public/downloadsindex
http://glassfish.org

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE38

It will then decompress a simple preconfigured GlassFish install with default settings:
admin port is 4848, HTTP port is 8080, and no explicit admin user configured. The update tool
is not installed by default and will be installed from the network on the first run. Once properly
installed, GlassFish can be started with the asadmin command line (see Figure 1-18).

asadmin start-domain domain1

Figure 1-18. Starting GlassFish

You can then go to the admin console (shown earlier in Figure 1-16) at http://
localhost:4848 or to the default web server at http://localhost:8080.

nTip  If you only have one domain, you can omit the default domain name and start GlassFish with
only asadmin start-domain. If you’d like to have the log file appear inline rather than checking the
content of the dedicated log file (domains/domain1/logs/server.log), you can use asadmin
start-domain --verbose.

http://localhost:4848
http://localhost:4848
http://localhost:8080

Chapter 1  ■﻿   JAVA EE 6 AT A GLANCE 39

There are many more things that GlassFish has to offer; I’ll show you some of them in
this book, but I’ll leave it to you to explore its support for dynamic languages (JRuby on Rails,
Groovy and Grails, etc.), diagnostic services, management rules, system properties, monitor-
ing, call flow, and the various security configurations.

Summary
When a company develops a Java application and needs to add enterprise features such as
transaction management, security, concurrency, or messaging, Java EE is an attractive choice.
It is standard, components are deployed to different containers, which gives you many ser-
vices, and it works with various protocols. Java EE 6 follows the path of its previous version by
adding ease of use to the web tier. This version of the platform is lighter (thanks to pruning,
profiles, and EJB Lite), easier to use (no need for interfaces on EJBs or annotations on the web
tier), richer (it includes new specifications and new features), and more portable (it includes
standardized embedded EJB container and allows for JNDI names).

In the second part of this chapter, I concentrated in setting up the development environ-
ment. The book has several snippets of code and “Putting It All Together” sections. You need
several tools and frameworks to compile, deploy, run, and test the code: JDK 1.6, Maven 2,
JUnit 4, Derby 10.4, and GlassFish v3.

In this chapter, I gave you a very quick overview of Java EE 6. The remaining chapters will
be dedicated to a closer study of the Java EE 6 specifications.

C h a p t e r 2

Java Persistence

Applications are made up of business logic, interaction with other systems, user inter-
faces . . . and persistence. Most of the data that our applications manipulate has to be stored in
databases, retrieved, and analyzed. Databases are important: they store business data, act as
a central point between applications, and process data through triggers or stored procedures.
Persistent data is everywhere, and most of the time it uses relational databases as the underly-
ing persistence engine. Relational databases store data in tables made of rows and columns.
Data is identified by primary keys, which are special columns with uniqueness constraints and,
sometimes, indexes. The relationships between tables use foreign keys and join tables with
integrity constraints.

All this vocabulary is completely unknown in an object-oriented language such as Java.
In Java, we manipulate objects that are instances of classes. Objects inherit from others, have
references to collections of other objects, and sometimes point to themselves in a recursive
manner. We have concrete classes, abstract classes, interfaces, enumerations, annotations,
methods, attributes, and so on. Objects encapsulate state and behavior in a nice way, but this
state is only accessible when the Java Virtual Machine (JVM) is running: if the JVM stops or the
garbage collector cleans its memory content, objects disappear, as well as their state. Some
objects need to be persistent. By persistent data, I mean data that is deliberately stored in per-
manent form on magnetic media, flash memory, and so forth. An object that can store its state
to get reused later is said to be persistent.

There are different ways to persist state within Java. One way is through the mechanism of
serialization, which is the process of converting an object into a sequence of bits. Objects can
be serialized on a disk, or over a network connection (including Internet), in an independent
format that can be reused across different operating systems. Java provides a simple, transpar-
ent, and standard mechanism to serialize objects by implementing the java.io.Serializable
interface. This mechanism, although very simple, is poor. It has neither a query language nor
an infrastructure supporting heavy concurrent access or clustering.

Another means of persisting state is through Java Database Connectivity (JDBC), which
is the standard API to access relational databases. It can connect to a database, execute Struc-
tured Query Language (SQL) statements, and get back a result. This API has been part of the
Java platform since version 1.1. Although still widely used, it has tended to be eclipsed by the
more powerful object-relational mapping (ORM) tools.

The principle of ORM involves delegating access to relational databases to external tools
or frameworks, which in turn give an object-oriented view of relational data, and vice versa.
Mapping tools have a bidirectional correspondence between the database and objects. Several

41

Chapter 2  ■﻿   JAVA PERSISTENCE42

frameworks achieve this, such as Hibernate, TopLink, and Java Data Objects (JDO), but Java
Persistence API (JPA) is the preferred technology, as it has been included in Java EE 6.

JPA Specification Overview
JPA 1.0 was created with Java EE 5 to solve the problem of data persistence. It brings the
object-oriented and relational models together. In Java EE 6, JPA 2.0 follows the same path of
simplicity and robustness, and adds new functionalities. You can use this API to access and
manipulate relational data from Enterprise Java Beans (EJBs), web components, and Java SE
applications.

JPA is an abstraction above JDBC that makes it possible to be independent of SQL. All
classes and annotations of this API are in the javax.persistence package. The main compo-
nents of JPA are as follows:

	 •	 ORM, which is the mechanism to map objects to data stored in a relational database.

	 •	 An entity manager API to perform database-related operations, such as Create, Read,
Update, Delete (CRUD) operations. This API allows you to avoid using the JDBC API
directly.

	 •	 The Java Persistence Query Language (JPQL), which allows you to retrieve data with an
object-oriented query language.

	 •	 Transactions and locking mechanisms when accessing data concurrently provided by
Java Transaction API (JTA). Resource-local (non-JTA) transactions are also supported
by JPA.

	 •	 Callback and listeners to hook business logic into the life cycle of a persistent object.

A Brief History of the Specification
ORM solutions have been around for a long time, even before Java. Products such as TopLink
originally started with Smalltalk in 1994 before switching to Java. Commercial ORM products
like TopLink have been available since the earliest days of the Java language. They were suc-
cessful, but were never standardized for the Java platform. A similar approach to ORM was
standardized in the form of JDO, which failed to gain any significant market penetration.

In 1998, EJB 1.0 was created and later shipped with J2EE 1.2. It was a heavyweight, distrib-
uted component used for transactional business logic. Entity Container Managed Persistence
(CMP) was introduced in EJB 1.0, enhanced through versions up to EJB 2.1 (J2EE 1.4). Persis-
tence could only be done inside the container through a complex mechanism of instantiation
using home, local, or remote interfaces. The ORM capabilities were also very limited, as inheri-
tance was difficult to map.

Parallel to the J2EE world was a popular open source solution that led to some surprising
changes in the direction of persistence: Hibernate, which brought back a lightweight, object-
oriented persistent model.

After years of complaints about Entity CMP 2.x components and in acknowledgment
of the success and simplicity of open source frameworks such as Hibernate, the persistence
model of the Enterprise Edition was completely rearchitected in Java EE 5. JPA 1.0 was born

Chapter 2  ■﻿   JAVA PERSISTENCE 43

with a very lightweight approach that adopted many Hibernate design principles. The JPA 1.0
specification was bundled with EJB 3.0 (JSR 220).

Today, with Java EE 6, JPA in its second version follows the path of ease of development
and brings new features. It has evolved with its own dedicated specification, JSR 317.

What’s New in JPA 2.0?
If JPA 1.0 was a completely new persistence model from its Entity CMP 2.x ancestor, JPA 2.0 is
a continuation of JPA 1.0. It keeps the object-oriented approach with annotation and optional
XML mapping files. This second version brings new APIs, extends JPQL, and adds these new
functionalities:

	 •	 Collections of simple data types (String, Integer, etc.) and of embeddable objects
can now be mapped in separate tables. Previously, you could only map collections of
entities.

	 •	 Map support has been extended so that maps can have keys and values of basic types,
entities, or embeddables.

	 •	 Maintaining a persistent ordering is now possible with the @OrderColumn annotation.

	 •	 Orphan removal allows child objects to be removed from a relationship if the parent
object is removed.

	 •	 Optimistic locking was already supported, but now pessimistic locking has been
introduced.

	 •	 A brand-new Query Definition API has been introduced to allow queries to be con-
structed in an object-oriented manner.

	 •	 JPQL syntax is richer (e.g., it now allows case expressions).

	 •	 Embeddable objects can now be nested into other embeddable objects and have rela-
tionships to entities.

	 •	 The dot (.) navigation syntax has been extended to handle embeddables with relation-
ships and embeddables of embeddables.

	 •	 Support for a new caching API has been added.

I will discuss these functionalities in detail in Chapters 3, 4, and 5.

Reference Implementation
EclipseLink 1.1 is an open source implementation of JPA 2.0. It provides a powerful and
flexible framework for storing Java objects in a relational database. EclipseLink is a JPA imple-
mentation, but it also supports XML persistence through Java XML Binding (JAXB) and other
means such as Service Data Objects (SDO). It provides support not only for ORM, but also for
object XML mapping (OXM), object persistence to Enterprise Information Systems (EIS) using
Java EE Connector Architecture (JCA), and database web services.

EclipseLink’s origins stem from the Oracle TopLink product given to the Eclipse Founda-
tion in 2006. EclipseLink is the JPA reference implementation and is the persistence framework
used in this book. It is also referred to as the persistence provider, or simply the provider.

Chapter 2  ■﻿   JAVA PERSISTENCE44

Understanding Entities
When talking about mapping objects to a relational database, persisting objects, or query-
ing objects, the term “entity” should be used rather than “objects.” Objects are instances
that just live in memory. Entities are objects that live shortly in memory and persistently in a
database. They have the ability to be mapped to a database; they can be concrete or abstract;
and they support inheritance, relationships, and so on. These entities, once mapped, can be
managed by JPA. You can persist an entity in the database, remove it, and query it using a
query language (Java Persistence Query Language, or JQPL). ORM lets you manipulate entities
while under the covers the database is being accessed. And as you will see, an entity follows a
defined life cycle. With callback methods and listeners, JPA lets you hook some business code
to life-cycle events.

Object-Relational Mapping
The principle of ORM is to delegate to external tools or frameworks (in our case JPA) the task
of creating a correspondence between objects and tables. The world of classes, objects, and
attributes can then be mapped to relational databases made of tables containing rows and col-
umns. Mapping gives an object-oriented view to developers who can transparently use entities
instead of tables. And how does JPA map objects to a database? Through metadata.

Associated with every entity is metadata that describes the mapping. This metadata
enables the persistence provider to recognize an entity and to interpret the mapping. This
metadata can be written in two different formats:

	 •	 Annotations: The code of the entity is directly annotated with all sorts of annotations
that are described in the javax.persistence package.

	 •	 XML descriptors: Instead of (or in addition to) annotations, you can use XML descrip-
tors. The mapping is defined in an external XML file that will be deployed with the
entities. This can be very useful when database configuration changes depending on
the environment, for example.

To make the mapping easier, JPA (like many other Java EE 6 specifications) uses the
concept of configuration by exception (sometimes referred as programming by exception).
The idea is that JPA has certain default mapping rules (e.g., the table name is the same as the
entity name). If you are happy with them, you don’t need to use extra metadata (no annota-
tion or XML is needed), but if you don’t want the provider to apply the default rules, you can
customize the mapping to your own needs using metadata. In other words, having to supply a
configuration is the exception to the rule.

So let’s see how this applies to an entity. Listing 2-1 shows a Book entity with some attri-
butes. As you can see, some of them are annotated (id, title, and description), and some
are not.

Listing 2-1. A Simple Book Entity

@Entity
public class Book {

 @Id @GeneratedValue
 private Long id;

Chapter 2  ■﻿   JAVA PERSISTENCE 45

 @Column(nullable = false)
 private String title;
 private Float price;
 @Column(length = 2000)
 private String description;
 private String isbn;
 private Integer nbOfPage;
 private Boolean illustrations;

 // Constructors, getters, setters
}

To be recognized as an entity, the Book class must be annotated with @javax.persistence.
Entity (or the XML equivalent). The @javax.persistence.Id annotation is used to denote
the primary key, and the value of this identifier is automatically generated by the persistence
provider (@GeneratedValue). The @Column annotation is used in some attributes to customize
the default column mapping (title becomes not nullable, and description has a length of
2,000 characters). The persistence provider will then be able to map the Book entity to a BOOK
table (which is a default mapping rule), generate a primary key, and synchronize the values of
the attributes to the table columns. Figure 2-1 shows the mapping between the entity and the
table.

Figure 2-1. The Book entity is mapped to the BOOK table.

As you will see in Chapter 3, mapping is very rich, allowing you to map all kinds of things
from objects to relationships. The world of object-oriented programming abounds with classes
and associations between classes (and collections of classes). Databases also model relation-
ships, only differently: using foreign keys or join tables. JPA has a set of metadata to manage
the mapping of relationships. Even inheritance can be mapped. Inheritance is commonly used
by developers to reuse code, but this concept is natively unknown in relational databases (as
they have to emulate inheritance using foreign keys and constraints). Even if inheritance map-
ping throws in several twists, JPA supports it and gives you three different strategies to choose
from. These strategies will be described in Chapter 3.

Querying Entities
JPA allows you to map entities to databases and also to query them using different criteria.
JPA’s power is that it offers the ability to query entities and their relationships in an object-
oriented way without having to use the underlying database foreign keys or columns. The
central piece of the API responsible for orchestrating entities is the entity manager. Its role is to
manage entities, read from and write to a given database, and allow simple CRUD operations

mailto:@javax.persistence
mailto:@javax.persistence.Id

Chapter 2  ■﻿   JAVA PERSISTENCE46

on entities as well as complex queries using JPQL. In a technical sense, the entity manager is
just an interface whose implementation is done by the persistence provider, EclipseLink. The
following snippet of code shows you how to create an entity manager and persist a Book entity:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("chapter02PU");
EntityManager em = emf.createEntityManager();
em.persist(book);

In Figure 2-2, you can see how the EntityManager interface can be used by a class (here
Main) to manipulate entities (in this case, Book). With methods such as persist() and find(),
the entity manager hides the JDBC calls to the database and the INSERT or SELECT SQL state-
ment.

Figure 2-2. The entity manager interacts with the entity and the underlying database.

The entity manager also allows you to query entities. A query in this case is similar to a
database query, except that instead of using SQL, JPA queries over entities using JPQL. Its syn-
tax uses the familiar object dot (.) notation. To retrieve all the books that have the title H2G2,
you can write the following:

SELECT b FROM Book b WHERE b.title = 'H2G2'

A JPQL statement can be executed with dynamic queries (created dynamically at run-
time), static queries (defined statically at compile time), or even with a native SQL statement.
Static queries, also known as named queries, are defined using either annotations or XML
metadata. The previous JPQL statement can, for example, be defined as a named query on the
Book entity.

Listing 2-2 shows a Book entity defining the findBookByTitle named query using the
@NamedQuery annotation.

Listing 2-2. A findBookByTitle Named Query

@Entity
@NamedQuery(name = "findBookByTitle", ➥

 query = "SELECT b FROM Book b WHERE b.title ='H2G2'")
public class Book {

Chapter 2  ■﻿   JAVA PERSISTENCE 47

 @Id @GeneratedValue
 private Long id;
 @Column(nullable = false)
 private String title;
 private Float price;
 @Column(length = 2000)
 private String description;
 private String isbn;
 private Integer nbOfPage;
 private Boolean illustrations;

 // Constructors, getters, setters
}

As you will see in Chapter 4, the EntityManager.createNamedQuery() method is used to
execute the query and return a list of Book entities that match the search criteria.

Callbacks and Listeners
Entities are just Plain Old Java Objects (POJOs) that are managed, or not, by the entity man-
ager. When they are managed, they have a persistence identity, and their state is synchronized
with the database. When they are not managed (i.e., they are detached from the entity man-
ager), they can be used like any other Java class. This means that entities have a life cycle, as
shown in Figure 2-3. When you create an instance of the Book entity with the new operator, the
object exists in memory, and JPA knows nothing about it (it can even end up being garbage
collected). When it becomes managed by the entity manager, its state is mapped and synchro-
nized with the BOOK table. Calling the EntityManager.remove() method deletes the data from
the database, but the Java object continues living in memory until it gets garbage collected.

Figure 2-3. The life cyle of an entity

The operations made to entities fall into four categories: persisting, updating, removing,
and loading, which correspond to the database operations of inserting, updating, deleting, and
selecting, respectively. Each operation has a “Pre” and “Post” event (except for loading, which
only has a “Post” event) that can be intercepted by the entity manager to invoke a business

Chapter 2  ■﻿   JAVA PERSISTENCE48

method. As you will see in Chapter 5, you will have @PrePersist and @PostPersist annotations,
and so on. JPA allows you to hook business logic to the entity when these events occur. These
annotations can be set on entity methods (a.k.a. callback methods) or in external classes (a.k.a.
listeners). You can think of callback methods and listeners as analogous triggers in a relational
database.

Putting It All Together
Now that you know a little bit about JPA, EclipseLink, entities, the entity manager, and JPQL,
let’s put them all together and write a small application that persists an entity to a database.
The idea is to write a simple Book entity and a Main class that persists a book. You’ll then com-
pile it with Maven 2 and run it with EclipseLink and a Derby client database. To show how easy
it is to unit test an entity, I will show you how to write a test class (BookTest) with a JUnit 4 test
case and use the embedded mode of Derby for persisting data using an in-memory database.

This example follows the Maven directory structure, so classes and files have to be placed
in the following directories:

	 •	 src/main/java: For the Book entity and the Main class

	 •	 src/main/resources: For the persistence.xml file used by the Main class

	 •	 src/test/java: For the BookTest class, which is used for unit testing

	 •	 src/test/resources: For the persistence.xml file used by the test cases

	 •	 pom.xml: For the Maven Project Object Model (POM), which describes the project and
its dependencies on other external modules and components

Writing the Book Entity
The Book entity, shown in Listing 2-3, needs to be developed under the src/main/java direc-
tory. It has several attributes (a title, a price, etc.) of different data types (String, Float,
Integer, and Boolean) and some JPA annotations:

	 •	 @Entity informs the persistence provider that this class is an entity and that it should
manage it.

	 •	 @Id defines the id attribute as being the primary key.

	 •	 The @GeneratedValue annotation informs the persistence provider to autogenerate the
primary key using the underlying database id utility.

	 •	 The @Column annotation is used to specify that the title property must be nonnull
when persisted and to change the default maximum length of the column description.

	 •	 The @NamedQuery annotation defines a named query that uses JPQL to retrieve all the
books from the database.

Chapter 2  ■﻿   JAVA PERSISTENCE 49

Listing 2-3. A Book Entity with a Named Query

package com.apress.javaee6.chapter02;
@Entity
@NamedQuery(name = "findAllBooks", query = "SELECT b FROM Book b")
public class Book {

 @Id @GeneratedValue
 private Long id;
 @Column(nullable = false)
 private String title;
 private Float price;
 @Column(length = 2000)
 private String description;
 private String isbn;
 private Integer nbOfPage;
 private Boolean illustrations;

 // Constructors, getters, setters
}

Note that for better readability I’ve omitted the constructor, getters, and setters of this
class. As you can see in this code, except for a few annotations, Book is a simple POJO. Now
let’s write a Main class that persists a book to the database.

Writing the Main Class
The Main class, shown in Listing 2-4, is under the same directory as the Book entity. It com-
mences by creating a new instance of the Book entity (using the Java keyword new) and sets
some values to its attributes. There is nothing special here, just pure Java code. It then uses the
Persistence class to get an instance of an EntityManagerFactory that refers to a persistence
unit called chapter02PU, which I’ll describe later in the section “Persistence Unit for the Main
Class.” This factory creates an instance of an EntityManager (em variable). As mentioned previ-
ously, the entity manager is the central piece of the JPA in that it is able to create a transaction,
persist the Book object using the EntityManager.persist() method, and then commit the trans-
action. At the end of the main() method, both the EntityManager and EntityManagerFactory are
closed to release the provider’s resources.

Listing 2-4. A Main Class Persisting a Book Entity

package com.apress.javaee6.chapter02;
public class Main {

 public static void main(String[] args) {

 // Creates an instance of book
 Book book = new Book();
 book.setTitle("The Hitchhiker's Guide to the Galaxy");
 book.setPrice(12.5F);

Chapter 2  ■﻿   JAVA PERSISTENCE50

 book.setDescription("Science fiction comedy book");
 book.setIsbn("1-84023-742-2");
 book.setNbOfPage(354);
 book.setIllustrations(false);

 // Gets an entity manager and a transaction
 EntityManagerFactory emf = ➥

 Persistence.createEntityManagerFactory("chapter02PU");
 EntityManager em = emf.createEntityManager();

 // Persists the book to the database
 EntityTransaction tx = em.getTransaction();
 tx.begin();
 em.persist(book);
 tx.commit();

 em.close();
 emf.close();
 }
}

Again, for readability I’ve omitted exception handling. If a persistence exception occurs,
you would have to roll back the transaction and log a message.

Persistence Unit for the Main Class
As you can see in the Main class, the EntityManagerFactory needs a persistence unit called
chapter02PU. This persistence unit has to be defined in the persistence.xml file under the src/
main/resources/META-INF directory (see Listing 2-5). This file, required by the JPA specifica-
tion, is important as it links the JPA provider (EclipseLink in our case) to the database (Derby).
It contains all the necessary information to connect to the database (target, URL, JDBC driver,
user, and password) and informs the provider of the database-generation mode (create-tables
means that tables will be created if they don’t exist). The <provider> element defines the per-
sistence provider, in our case, EclipseLink.

Listing 2-5. persistence.xml File Used by the Main Class

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

 <persistence-unit name="chapter02PU" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>com.apress.javaee6.chapter02.Book</class>
 <properties>
 <property name="eclipselink.target-database" value="DERBY"/>
 <property name="eclipselink.jdbc.driver" ➥

 value="org.apache.derby.jdbc.ClientDriver"/>
 <property name="eclipselink.jdbc.url" ➥

http://java.sun.com/xml/ns/persistence

Chapter 2  ■﻿   JAVA PERSISTENCE 51

 value="jdbc:derby://localhost:1527/chapter02DB;create=true"/>
 <property name="eclipselink.jdbc.user" value="APP"/>
 <property name="eclipselink.jdbc.password" value="APP"/>
 <property name="eclipselink.ddl-generation" value="create-tables"/>
 <property name="eclipselink.logging.level" value="INFO"/>
 </properties>
 </persistence-unit>
</persistence>

This persistence unit lists all the entities that should be managed by the entity manager.
Here, the <class> tag refers to the Book entity.

Compiling with Maven
You have all the ingredients to run the application: the Book entity that you need to persist, the
Main class, which does so using an entity manager, and the persistence unit binding the entity
to the Derby database. To compile this code, instead of using the javac compiler command
directly, you will use Maven. You first must create a pom.xml file that describes the project and
its dependencies such as the JPA API. You also need to inform Maven that you are using Java
SE 6 by configuring the maven-compiler-plugin as shown in Listing 2-6.

Listing 2-6. Maven pom.xml File to Compile, Build, Execute, and Test the Application

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" ➥

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"➥

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 ➥

 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.apress.javaee6</groupId>
 <artifactId>chapter02</artifactId>
 <version>1.0</version>
 <name>chapter02</name>

 <dependencies>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>javax.persistence</artifactId>
 <version>1.1.0</version>
 </dependency>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>eclipselink</artifactId>
 <version>1.1.0</version>
 </dependency>
 <dependency>
 <groupId>org.apache.derby</groupId>

derby://localhost:1527/chapter02DB
http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0%E2%9E%A5
http://maven.apache.org/POM/4.0.0%E2%9E%A5
http://maven.apache.org/xsd/maven-4.0.0.xsd

Chapter 2  ■﻿   JAVA PERSISTENCE52

 <artifactId>derbyclient</artifactId>
 <version>10.4.2.0</version>
 </dependency>

 <dependency>
 <groupId>org.apache.derby</groupId>
 <artifactId>derby</artifactId>
 <version>10.4.2.0</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.5</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <inherited>true</inherited>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

First, to be able to compile the code, you need the JPA API that defines all the annota-
tions and classes that are in the javax.persistence package. You will get these classes in a
jar referred by the javax.persistence artifact ID and stored in the Maven repository. The
EclipseLink runtime (i.e., the persistence provider) is defined in the eclipselink artifact ID.
You then need the JDBC drivers to connect to Derby. The derbyclient artifact ID refers to
the jar that contains the JDBC driver to connect to Derby running in server mode (the data-
base runs in a separate process and listens to a port) and the derby artifact ID contains the
classes to use Derby as an embedded database. Note that this artifact ID is scoped for testing
(<scope>test</scope>) and has a dependency on JUnit 4.

To compile the classes, open a command-line interpreter in the root directory that con-
tains the pom.xml file and enter the following Maven command:

mvn compile

Chapter 2  ■﻿   JAVA PERSISTENCE 53

You should see the BUILD SUCCESSFUL message informing you that the compilation
was successful. Maven creates a target subdirectory with all the class files as well as the
persistence.xml file.

Running the Main Class with Derby
Before executing the Main class, you need to start Derby. The easiest way to do this is to go to
the %DERBY_HOME%\bin directory and execute the startNetworkServer.bat script. Derby starts
and displays the following messages in the console:

Security manager installed using the Basic server security policy.
Apache Derby Network Server - 10.4.2.0 - (689064) started and ready to accept
connections on port 1527

The Derby process is listening on port 1527 and waiting for the JDBC driver to send any
SQL statement. To execute the Main class, you can use the java interpreter command or use
Maven as follows:

mvn exec:java -Dexec.mainClass="com.apress.javaee6.chapter02.Main"

When you run the Main class, several things occur. First, Derby will automatically
create the chapter02DB database once the Book entity is initialized. That is because in the
persistence.xml file you’ve added the create=true property to the JDBC URL:

<property name="eclipselink.jdbc.url" ➥

 value="jdbc:derby://localhost:1527/chapter02DB;create=true"/>

This shortcut is very useful when you are in development mode, as you do not need any
SQL script to create the database. Then, the eclipselink.ddl-generation property informs
EclipseLink to automatically create the BOOK table. Finally, the book is inserted into the table
(with an automatically generated ID).

em.persist(book);

Let’s use Derby commands to display the table structure: enter the ij command in a con-
sole (as explained previously in Chapter 1, the %DERBY_HOME%\bin directory has to be in your
PATH variable). This runs the Derby interpreter, and you can execute commands to connect to
the database, show the tables of the chapter02DB database (show tables), check the structure
of the BOOK table (describe book), and even show its content by entering SQL statements such
as SELECT * FROM BOOK.

C:\> ij
version ij 10.4

ij> connect 'jdbc:derby://localhost:1527/chapter02DB';

ij> show tables;
TABLE_SCHEM |TABLE_NAME |REMARKS
--
APP |BOOK |
APP |SEQUENCE |

derby://localhost:1527/chapter02DB
derby://localhost:1527/chapter02DB

Chapter 2  ■﻿   JAVA PERSISTENCE54

ij> describe book;
COLUMN_NAME |TYPE_NAME|DEC&|NUM&|COLUM&|COLUMN_DEF|CHAR_OCTE&|IS_NULL&
--
ID |BIGINT |0 |10 |19 |NULL |NULL |NO
TITLE |VARCHAR |NULL|NULL|255 |NULL |510 |NO
PRICE |DOUBLE |NULL|2 |52 |NULL |NULL |YES
ILLUSTRATIONS |SMALLINT |0 |10 |5 |0 |NULL |YES
DESCRIPTION |VARCHAR |NULL|NULL|2000 |NULL |4000 |YES
ISBN |VARCHAR |NULL|NULL|255 |NULL |510 |YES
NBOFPAGE |INTEGER |0 |10 |10 |NULL |NULL |YES

Coming back to the code of the Book entity, because you’ve used the @GeneratedValue
annotation (to automatically generate an ID), EclipseLink has created a sequence table to
store the numbering (the SEQUENCE table). For the BOOK table structure, JPA has followed certain
default conventions to name the table and the columns after the entity name and attributes.
The @Column annotation has overridden some of these defaults such as the length of the
description column, which is set to 2000.

Writing the BookTest Class
One complaint made about the previous versions of Entity CMP 2.x was the difficulty of unit
testing persistent components. One of the major selling points of JPA is that you can easily
test entities without requiring a running application server or live database. But what can you
test? Entities themselves usually don’t need to be tested in isolation. Most methods on entities
are simple getters or setters with only a few business methods. Verifying that a setter assigns a
value to an attribute and that the corresponding getter retrieves the same value does not give
any extra value (unless a side effect is detected in the getters or the setters).

What about testing the database queries? Some developers would argue that this is not
unit testing, as a real database is needed to run these tests. Testing in isolation with mock
objects to simulate a database could be a lot of work. Also, testing an entity outside of any
container (EJB or servlet container) would have an impact on the code, since transaction man-
agement has to be changed. Using an in-memory database and non-JTA transactions are a
good compromise. CRUD operations and JPQL queries can be tested with a very lightweight
database that doesn’t need to run in a separated process (just by adding a jar file to the class-
path). This is how you will run our BookTest class, by using the embedded mode of Derby.

Maven uses two different directories, one to store the main application code and another
for the test classes. The BookTest class, shown in Listing 2-7, goes under the src/test/java
directory and tests that the entity manager can persist a book and retrieve it from the data-
base.

Listing 2-7. Test Class That Creates a Book and Retrieves All the Books from the Database

public class BookTest {

 private static EntityManagerFactory emf;
 private static EntityManager em;
 private static EntityTransaction tx;

 @BeforeClass

Chapter 2  ■﻿   JAVA PERSISTENCE 55

 public static void initEntityManager() throws Exception {
 emf = Persistence.createEntityManagerFactory("chapter02PU");
 em = emf.createEntityManager();
 }

 @AfterClass
 public static void closeEntityManager() throws SQLException {
 em.close();
 emf.close();
 }

 @Before
 public void initTransaction() {
 tx = em.getTransaction();
 }

 @Test
 public void createBook() throws Exception {

 // Creates an instance of book
 Book book = new Book();
 book.setTitle("The Hitchhiker's Guide to the Galaxy");
 book.setPrice(12.5F);
 book.setDescription("Science fiction comedy book");
 book.setIsbn("1-84023-742-2");
 book.setNbOfPage(354);
 book.setIllustrations(false);

 // Persists the book to the database
 tx.begin();
 em.persist(book);
 tx.commit();
 assertNotNull("ID should not be null", book.getId());

 // Retrieves all the books from the database
 List<Book> books = ➥

 em.createNamedQuery("findAllBooks").getResultList();
 assertNotNull(books);
 }
}

Like the Main class, BookTest needs to create an EntityManager instance using an
EntityManagerFactory. To initialize these components, you can use the JUnit 4 fixtures. The
@BeforeClass and @AfterClass annotations allow executions of some code only once, before
and after the class is executed. That’s the perfect place to create and close an EntityManager
instance. The @Before annotation allows you to run code before each test, which is where you
get a transaction.

Chapter 2  ■﻿   JAVA PERSISTENCE56

The createBook() method is the test case, as it is annotated with the JUnit @Test annota-
tion. This method persists a book (using the EntityManager.persist() method) and checks
whether the id has been automatically generated by EclipseLink (with assertNotNull). If so,
the findAllBooks named query is executed and checks whether the returned list is null.

Persistence Unit for the BookTest Class
Now that the test class is written, you need another persistence.xml file to use Derby embed-
ded. The previous persistence.xml file defines a JDBC driver and a URL connection for Derby
Server, which has to be started in a separate process. The src/test/resources/META-INF/
persistence.xml in Listing 2-8 uses an embedded JDBC driver.

Listing 2-8. persistence.xml File Used by the BookTest Class

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

 <persistence-unit name="chapter02PU" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>com.apress.javaee6.chapter02.Book</class>
 <properties>
 <property name="eclipselink.target-database" value="DERBY"/>
 <property name="eclipselink.jdbc.driver" ➥

 value="org.apache.derby.jdbc.EmbeddedDriver"/>
 <property name="eclipselink.jdbc.url" ➥

 value="jdbc:derby:chapter02DB;create=true"/>
 <property name="eclipselink.jdbc.user" value="APP"/>
 <property name="eclipselink.jdbc.password" value="APP"/>
 <property name="eclipselink.ddl-generation" ➥

 value="drop-and-create-tables"/>
 <property name="eclipselink.logging.level" value="FINE"/>
 </properties>
 </persistence-unit>
</persistence>

There are other changes between the persistence.xml files. For example, the DDL gen-
eration is drop-and-create-tables instead of create-tables, because before testing you need
the tables to be dropped and re-created so you have a fresh database structure. Also note that
the logging level is FINE instead of INFO. Again, this is good for testing as you can obtain more
information in case something goes wrong.

Running the BookTest Class with Embedded Derby
Nothing is easier than running the test: you rely on Maven. Open a console in the directory
where the pom.xml file is located and enter the following command:

mvn test

http://java.sun.com/xml/ns/persistence

Chapter 2  ■﻿   JAVA PERSISTENCE 57

Because the logging level has been set to FINE, you should see verbose information about
Derby creating a database and tables in memory. The BookTest class is then executed, and a
Maven report should inform you that the test is successful.

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 9.415 sec
Results :
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 19 seconds
[INFO] Finished
[INFO] Final Memory: 4M/14M
[INFO] --

Summary
This chapter contains a quick overview of JPA 2.0. Like most of the other Java EE 6 speci-
fications, JPA focuses on a simple object architecture, leaving its ancestor, a heavyweight
component model (a.k.a. EJB CMP 2.x), behind. The chapter also covered entities, which are
persistent objects that use mapping metadata through annotations or XML.

Thanks to the “Putting It All Together” section, you have seen how to run a JPA applica-
tion with EclipseLink and Derby. Unit testing is an important topic in projects, and with JPA
and in memory databases such as Derby, it is now very easy to test persistence.

In the following chapters, you will learn more about the main JPA components. Chapter 3
will show you how to map entities, relationships, and inheritance to a database. Chapter 4 will
focus on the entity manager API, the JQPL syntax, and how to use queries and locking mecha-
nisms. Chapter 5, the last chapter of this JPA section, will explain the life cycle of entities and
how to hook business logic in callback methods in entities and listeners.

C h a p t e r 3

Object-Relational Mapping

In this chapter, I will go through the basics of object-relational mapping (ORM), which is basi-
cally mapping entities to tables and attributes to columns. I will then concentrate on more
complex mappings such as relationships, composition, and inheritance. A domain model is
made of objects interacting with each other. Objects and databases have different ways to
store relationship information (through pointers or foreign keys). Inheritance is not a feature
that relational databases naturally have, and therefore the mapping is not as obvious. I will go
into some detail and show examples that will demonstrate how attributes, relationships, and
inheritance are mapped from a domain model to a database.

Previous chapters have shown how annotations have been used extensively in the Enter-
prise Edition since Java EE 5 (mostly on EJBs, JPA, and web services). JPA 2.0 follows this
path and introduces new mapping annotations as well as their XML equivalent. I will mostly
use annotations to explain the different mapping concepts, but I will also introduce XML
mapping.

How to Map an Entity
As a first example, let’s start with the simplest mapping that we can possibly have. In the JPA
persistence model, an entity is a plain old Java object (POJO). This means an entity is declared,
instantiated, and used just like any other Java class. An entity has attributes (its state) that can
be manipulated via getters and setters. Each attribute is stored in a table column. Listing 3-1
shows a simple entity.

Listing 3-1. Simple Example of a Book Entity

@Entity
public class Book {

 @Id
 private Long id;
 private String title;
 private Float price;
 private String description;
 private String isbn;
 private Integer nbOfPage;
 private Boolean illustrations;

59

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING60

 public Book() {
 }

 // Getters, setters
}

This example of code from the CD-BookStore application represents a Book entity from
which I’ve omitted the getters and the setters for clarity. As you can see, except for some anno-
tations, this entity looks exactly like any Java class: it has several attributes (id, title, price,
etc.) of different types (Long, String, Float, Integer, and Boolean), a default constructor, and
getters and setters for each attribute. So how does this map to a table? The answer is thanks to
annotations.

First of all, the class is annotated with @javax.persistence.Entity, which allows the per-
sistence provider to recognize it as a persistent class and not just as a simple POJO. Then, the
annotation @javax.persistence.Id defines the unique identifier of this object. Because JPA is
about mapping objects to relational tables, objects need an ID that will be mapped to a pri-
mary key. The other attributes (title, price, description, etc.) are not annotated, so they will
be made persistent by applying a default mapping.

This example of code has only attributes, but, as you will see in Chapter 5, an entity can
also have business methods. Note that this Book entity is a Java class that does not implement
any interface or extend any class. In fact, to be an entity, a class must follow these rules:

	 •	 The entity class must be annotated with @javax.persistence.Entity (or denoted in the
XML descriptor as an entity).

	 •	 The @javax.persistence.Id annotation must be used to denote a simple primary key.

	 •	 The entity class must have a no-arg constructor that has to be public or protected. The
entity class may have other constructors as well.

	 •	 The entity class must be a top-level class. An enum or interface cannot be designated
as an entity.

	 •	 The entity class must not be final. No methods or persistent instance variables of the
entity class may be final.

	 •	 If an entity instance has to be passed by value as a detached object (e.g., through a
remote interface), the entity class must implement the Serializable interface.

Since the Book entity (shown previously in Listing 3-1) follows these simple rules, the per-
sistence provider can synchronize the data between the attributes of the Book entity and the
columns of the BOOK table. Therefore, if the attribute isbn is modified by the application, the
ISBN column will be synchronized (if the entity is managed, if the transaction context is set,
etc.).

As Figure 3-1 shows, the Book entity is stored in a BOOK table, and each column is named
after the attribute of the class (e.g., the isbn attribute of type String is mapped to a column
named ISBN of type VARCHAR). These default mapping rules are an important part of the prin-
ciple known as configuration by exception.

mailto:@javax.persistence.Entity
mailto:@javax.persistence.Id
mailto:@javax.persistence.Entity
mailto:@javax.persistence.Id

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 61

Figure 3-1. Data synchronization between the entity and the table

Configuration by Exception
Java EE 5 introduced the idea of configuration by exception (sometimes referred to as pro-
gramming by exception). This means, unless specified differently, the container or provider
should apply the default rules. In other words, having to supply a configuration is the excep-
tion to the rule. This allows you to write the minimum amount of code to get your application
running, relying on the container and provider defaults.

Let’s return to the previous code example (see Listing 3-1). Without any annotation, the
Book entity would be treated just like a POJO and not be persisted. That is the rule: if no spe-
cial configuration is given, the default should be applied, and the default for the JVM is that
the Book class is just another class. But because you need to change this default behavior, you
annotate the class with @Entity. It is the same for the identifier. You need a way to tell the
persistence provider that the id attribute has to be mapped to a primary key, so you annotate
it with @Id. This type of decision characterizes the configuration-by-exception approach, in
which annotations are not required for the more common cases and are only used when an
override is needed. This means that for all the other attributes, the following default mapping
rules will apply:

	 •	 The entity name is mapped to a relational table name (e.g., the Book entity is mapped
to a BOOK table). If you want to map it to another table, you will need to use the @Table
annotation, as you’ll see later in the “Elementary Mapping” section.

	 •	 Attribute names are mapped to a column name (e.g., the id attribute, or the getId()
method, is mapped to an ID column). If you want to change this default mapping, you
will need to use the @Column annotation.

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING62

	 •	 JDBC rules apply for mapping Java primitives to relational data types. A String will be
mapped to VARCHAR, a Long to a BIGINT, a Boolean to a SMALLINT, and so on. The default
size of a column mapped from a String is 255 (a String is mapped to a VARCHAR(255)).
But keep in mind that the default mapping rules are different from one database to
another. For example, a String is mapped to a VARCHAR in Derby and a VARCHAR2 in
Oracle. An Integer is mapped to an INTEGER in Derby and a NUMBER in Oracle. The infor-
mation of the underlying database is provided in the persistence.xml file, which you’ll
see later in Chapter 4 in the “Persistence Context” section.

Following these rules, the Book entity will be mapped to a Derby table that has the struc-
ture described in Listing 3-2.

Listing 3-2. Structure of the BOOK Table

CREATE TABLE BOOK (
 ID BIGINT NOT NULL,
 TITLE VARCHAR(255),
 PRICE DOUBLE(52, 0),
 DESCRIPTION VARCHAR(255),
 ISBN VARCHAR(255),
 NBOFPAGE INTEGER,
 ILLUSTRATIONS SMALLINT,
 PRIMARY KEY (ID)
);

This is an example of a very simple mapping. Relationships and inheritance also have
default mapping, as you’ll see later in the “Relationship Mapping” section.

Most persistence providers, including EclipseLink, allow you to generate the database
automatically from the entities. This feature is very convenient when you are in developing
mode. By using all the defaults, you can map your data easily with only the @Entity and @Id
annotations. However, most of the time you need to connect to a legacy database or follow
strict database naming conventions. To do this, JPA gives you a rich set of annotations (or the
XML equivalent) that allows you to customize each part of the mapping (table, column names,
primary keys, column size, null or not null, and so on).

Elementary Mapping
There are significant differences in the way data is handled in Java and in a relational data-
base. In Java, we use classes to describe both attributes for holding data and methods to access
and manipulate that data. Once a class is defined, we can create as many instances as we need
with the new keyword. In a relational database, only data is stored, not behavior (except for
triggers or stored procedures), and the storage structure is completely different from one using
objects, as it uses rows and columns. Sometimes mapping Java objects to the underlying data-
base can be easy, and the default rules can be applied. At other times, these rules do not meet
your needs, and you must customize the mapping. Elementary mapping annotations focus on
customizing the table, the primary key, and the columns, and they let you modify certain nam-
ing conventions or typing (not-null column, length, etc.).

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 63

Tables
Rules for configuration-by-exception mapping state that the entity and the table name are
the same (a Book entity is mapped to a BOOK table, an AncientBook entity is mapped to an
ANCIENTBOOK table, and so on). This might suit you in most cases, but you may want to map
your data to a different table, or even map a single entity to several tables.

@Table
The @javax.persistence.Table annotation makes it possible to change the default values
related to the table. For example, you can specify the name of the table in which the data will
be stored, the catalog, and the database schema. If this annotation is omitted, the name of the
table will be the name of the entity. If you want to change the name to T_BOOK instead of BOOK,
you would do as shown in Listing 3-3.

Listing 3-3. The Book Entity Being Mapped to a T_BOOK Table

@Entity
@Table(name = "t_book")
public class Book {

 @Id
 private Long id;
 private String title;
 private Float price;
 private String description;
 private String isbn;
 private Integer nbOfPage;
 private Boolean illustrations;

 public Book() {
 }

 // Getters, setters
}

nNote  In the @Table annotation, I include a lowercase table name (t_book). By default, most databases
will map the entity to an uppercase table name (and that’s the case with Derby) except if you configure them
to honor case.

@SecondaryTable
Up to now, I have assumed that an entity gets mapped to a single table, also known as a
primary table. But sometimes when you have an existing data model, you need to spread the
data across multiple tables, or secondary tables. To do this, you need to use the annotation

mailto:@javax.persistence.Table

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING64

@SecondaryTable to associate a secondary table to an entity or @SecondaryTables (with an “s”)
for several secondary tables. You can distribute the data of an entity across columns in both
the primary table and the secondary tables simply by defining the secondary tables with anno-
tations and then specifying for each attribute which table it is in (with the @Column annotation,
which I’ll describe in the “Attributes” section in more detail). Listing 3-4 shows an Address
entity mapping its attributes in one primary table and two secondary tables.

Listing 3-4. Attributes of the Address Entity Mapped in Three Different Tables

@Entity
@SecondaryTables({
 @SecondaryTable(name = "city"),
 @SecondaryTable(name = "country")
})
public class Address {

 @Id
 private Long id;
 private String street1;
 private String street2;
 @Column(table = "city")
 private String city;
 @Column(table = "city")
 private String state;
 @Column(table = "city")
 private String zipcode;
 @Column(table = "country")
 private String country;

 // Constructors, getters, setters
}

By default, the attributes of the Address entity are mapped to the primary table
(which has the default name of the entity, so the table is called ADDRESS). The annotation
@SecondaryTables informs you that there are two secondary tables: CITY and COUNTRY. You
then need to specify which attribute is stored in which secondary table (using the annotation
@Column(table="city") or @Column(table="country")). The result, shown in Figure 3-2, is the
creation of three tables containing different attributes, but with the same primary key (to join
the tables together). Again, remember that Derby translates lowercase table names (city) into
uppercase (CITY).

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 65

Figure 3-2. The Address entity is mapped to three tables.

As you probably understand by now, you can have several annotations in the same entity.
If you want to rename the primary table, you can add the @Table annotation as demonstrated
in Listing 3-5.

Listing 3-5. The Primary Table Is Renamed to T_ADDRESS

@Entity
@Table(name = "t_address")
@SecondaryTables({
 @SecondaryTable(name = "t_city"),
 @SecondaryTable(name = "t_country")
})
public class Address {

 // Attributes, constructor, getters, setters
}

nNote  When you use secondary tables, you must consider the issue of performance. Every time you
access an entity, the persistence provider accesses several tables and has to join them. On the other hand,
secondary tables can be a good thing when you have expensive attributes such as binary large objects
(BLOBs) that you want to isolate in a different table.

Primary Keys
In relational databases, a primary key uniquely identifies each row in a table. It comprises
either a single column or set of columns. Primary keys must be unique, as they identify a
single row (a null value is not allowed). Examples of primary keys are a customer identifier, a
telephone number, an order reference, and an ISBN. JPA requires entities to have an identifier
mapped to a primary key, which will follow the same rule: uniquely identify an entity by either
a single attribute or a set of attributes (composite key). This entity’s primary key value cannot
be updated once it has been assigned.

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING66

@Id and @GeneratedValue
A simple (i.e., noncomposite) primary key must correspond to a single attribute of the entity
class. The @Id annotation that you’ve seen before is used to denote a simple primary key.
@javax.persistence.Id annotates an attribute as being a unique identifier. It can be one of
the following types:

	 •	 Primitive Java types: byte, int, short, long, char

	 •	 Wrapper classes of primitive Java types: Byte, Integer, Short, Long, Character

	 •	 Arrays of primitive or wrapper types: int[], Integer[], etc.

	 •	 Strings, numbers, and dates: java.lang.String, java.math.BigInteger, java.util.Date,
java.sql.Date

When creating an entity, the value of this identifier can be generated either manually by
the application or automatically by the persistence provider using the @GeneratedValue anno-
tation. This annotation can have four possible values:

	 •	 SEQUENCE and IDENTITY specify use of a database SQL sequence or identity column,
respectively.

	 •	 TABLE instructs the persistence provider to store the sequence name and its current
value in a table, increasing the value each time a new instance of the entity is persisted.
As an example, Derby creates a SEQUENCE table with two columns: the sequence name
(which is an arbitrary name) and the sequence value (an integer automatically incre-
mented by Derby).

	 •	 The generation of a key is done automatically (AUTO) by the underlying database, which
will pick an appropriate strategy for a particular database. AUTO is the default value of
the @GeneratedValue annotation.

If the @GeneratedValue annotation is not defined, the application has to create its own
identifier by applying any algorithm that will return a unique value. The code in Listing 3-6
shows how to have an automatically generated identifier. GenerationType.AUTO being the
default value, I could have omitted the strategy element. Note that the attribute id is anno-
tated twice with @Id and @GeneratedValue.

Listing 3-6. The Book Entity with an Automatically Generated Identifier

@Entity
public class Book {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 private String title;
 private Float price;
 private String description;
 private String isbn;
 private Integer nbOfPage;
 private Boolean illustrations;

mailto:@javax.persistence.Id

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 67

 // Constructors, getters, setters
}

Composite Primary Keys
When mapping entities, it is good practice to designate a single dedicated column as the pri-
mary key. However, there are cases where a composite primary key is required (such as having
to map to a legacy database or when the primary keys have to follow certain business rules,
for example a date and a value or a country code and a time stamp need to be included). To
do this, a primary key class must be defined to represent the composite key. Then, we have
two available annotations for defining this class, depending on how we want to structure the
entity: @EmbeddedId and @IdClass. As you’ll see, the final result is the same, and you will end up
having the same database schema, but the way to query the entity is slightly different.

For example, the CD-BookStore application needs to post news frequently on the main
page where you can see daily news about books, music, or artists. The news has content, a
title, and, because it can be written in several languages, a language code (EN for English, PT
for Portuguese, and so on). The primary key of the news could then be the title and the lan-
guage code because an article can be translated into multiple languages but keep its original
title. So the primary key class NewsId is composed of two attributes of type String: title and
language. Primary key classes must include method definitions for equals() and hashCode()
in order to manage queries and internal collections, and their attributes must be in the set of
valid types listed previously. They must also be public, implement Serializable if they need
to cross architectural layers (e.g., they will be managed in the persistent layer and used in the
presentation layer), and have a no-arg constructor.

@EmbeddedId

As you will see later in this chapter, JPA uses different sorts of embedded objects. To sum-
marize, an embedded object doesn’t have any identity (no primary key of its own), and its
attributes will end up as columns in the table of the entity that contains it.

Listing 3-7 shows the NewsId class as an embeddable class. It is just an embedded object
(annotated with @Embeddable) that happens to be composed of two attributes (title and
language). This class must have no-arg constructor, getter, setter, equals(), and hashCode()
implementations. The class itself doesn’t have an identity of its own (no @Id annotation).
That’s a characteristic of an embeddable.

Listing 3-7. The Primary Key Class Is Annotated with @Embeddable

@Embeddable
public class NewsId {

 private String title;
 private String language;

 // Constructors, getters, setters, equals, and hashcode
}

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING68

The News entity, shown in Listing 3-8, then has to embed the primary key class NewsId with
the @EmbeddedId annotation. Every @EmbeddedId must refer to an embeddable class marked
with @Embeddable.

Listing 3-8. The Entity Embeds the Primary Key Class with @EmbeddedId

@Entity
public class News {

 @EmbeddedId
 private NewsId id;
 private String content;

 // Constructors, getters, setters
}

In the next chapter, I will describe how to find entities using their primary key. Just as a
first glimpse, here is how it works: the primary key is a class with a constructor. You have to
instantiate this class with the values that form your unique key, and pass this object to the
entity manager (the em attribute) as shown in Listing 3-9.

Listing 3-9. Simplified Code to Find an Entity Through Its Composite Primary Key

NewsId pk = new NewsId("Richard Wright has died", "EN")
News news = em.find(News.class, pk);

@IdClass

The other method of declaring a composite key is through the @IdClass annotation. It’s a dif-
ferent approach whereby each attribute on the primary key class also needs to be declared on
the entity class and annotated with @Id.

The composite primary key in the example NewsId in Listing 3-10 is just a POJO that does
not require any annotation.

Listing 3-10. The Primary Key Class Is Not Annotated

public class NewsId {

 private String title;
 private String language;

 // Constructors, getters, setters, equals, and hashcode
}

Then, the entity News, shown in Listing 3-11, has to define the primary key using the
@IdClass annotation and annotate each key with @Id. To persist the News entity, you will have
to set a value to the title and the language attributes.

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 69

Listing 3-11. The Entity Defines Its Primary Class with the @IdClass Annotation

@Entity
@IdClass(NewsId.class)
public class News {

 @Id private String title;
 @Id private String language;
 private String content;

 // Constructors, getters, setters, equals, and hashcode
}

Both approaches, @EmbeddedId and @IdClass, will be mapped to the same table struc-
ture. This structure is defined in Listing 3-12 using the data definition language (DDL). The
attributes of the entity and the primary key will end up in the same table, and the primary key
will be formed with the attributes of the composite class (title and language).

Listing 3-12. DDL of the NEWS Table with a Composite Primary Key

create table NEWS (
 CONTENT VARCHAR(255),
 TITLE VARCHAR(255) not null,
 LANGUAGE VARCHAR(255) not null,
 primary key (TITLE, LANGUAGE)
);

The @IdClass approach is more prone to error, as you need to define each primary key
attribute in both the @IdClass and the entity, taking care to use the same name and Java type.
The advantage is that you don’t need to change the code of the primary key class. For example,
you could use a legacy class that, for legal reasons, you are not allowed to change but that you
can reuse.

One visible difference is in the way you reference the entity in JPQL. In the case of
@IdClass, you would do something like this:

select n.title from News n

With @EmbeddedId, you would have something like this:

select n.newsId.title from News n

Attributes
An entity must have a primary key (simple or compound) to be able to have an identity in a
relational database. It also has all sorts of different attributes make up its state that have to be
mapped to the table. This state includes almost every Java type that you could want to map:

	 •	 Java primitive types (int, double, float, etc.) and the wrapper classes (Integer, Double,
Float, etc.)

	 •	 Arrays of bytes and characters (byte[], Byte[], char[], Character[])

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING70

	 •	 String, large numeric, and temporal types (java.lang.String, java.math.BigInteger,
java.math.BigDecimal, java.util.Date, java.util.Calendar, java.sql.Date, java.sql.
Time, java.sql.Timestamp)

	 •	 Enumerated types and user-defined types that implement the Serializable interface

	 •	 Collections of basic and embeddable types

Of course, an entity can also have entity attributes, collections of entities, or embeddable
classes. This requires introducing relationships between entities (which will be covered in the
“Relationship Mapping” section).

As you’ve seen, with configuration by exception, attributes are mapped using default
mapping rules. However, sometimes you need to customize parts of this mapping. That’s
where JPA annotations (or their XML equivalent) come to play.

@Basic
The @javax.persistence.Basic annotation (see Listing 3-13) is the simplest type of mapping to
a database column, as it overrides basic persistence options.

Listing 3-13. @Basic Annotation Elements

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Basic {
 FetchType fetch() default EAGER;
 boolean optional() default true;
}

This annotation has two parameters: optional and fetch. The optional element gives a
hint as to whether the value of the attribute may be null. It is disregarded for primitive types.
The fetch element can take two values: LAZY or EAGER. It gives a hint to the persistence provider
runtime that data should be fetched lazily (only when the application asks for the property) or
eagerly (when the entity is initially loaded by the provider).

For example, take the Track entity shown in Listing 3-14. A CD album is made up of sev-
eral tracks, and each track has a title, a description, and a WAV file of a certain duration that
you can listen to. The WAV file is a BLOB that can be a few megabytes long. When you access
the Track entity, you don’t want to eagerly load the WAV file; you can annotate the attribute
with @Basic(fetch = FetchType.LAZY) so the data will be retrieved from the database lazily
(only when you access the wav attribute using its getter, for example).

Listing 3-14. The Track Entity with Lazy Loading on the wav Attribute

@Entity
public class Track {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 private String title;
 private Float duration;

mailto:@javax.persistence.Basic

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 71

 @Basic(fetch = FetchType.LAZY)
 @Lob
 private byte[] wav;
 @Basic(optional = true)
 private String description;

 // Constructors, getters, setters
}

Note that the wav attribute of type byte[] is also annotated with @Lob to store the value as a
large object (LOB). Database columns that can store these types of large objects require special
JDBC calls to be accessed from Java. To inform the provider, an additional @Lob annotation
must be added to the basic mapping.

@Column
The @javax.persistence.Column annotation, shown in Listing 3-15, defines the properties of
a column. You can change the column name (which by default is mapped to an attribute of
the same name); specify the size; and authorize (or not) the column to have a null value, to
be unique, or to allow its value to be updatable or insertable. Listing 3-15 shows the @Column
annotation API with the elements and their default values.

Listing 3-15. @Column Annotation Elements

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Column {
 String name() default "";
 boolean unique() default false;
 boolean nullable() default true;
 boolean insertable() default true;
 boolean updatable() default true;
 String columnDefinition() default "";
 String table() default "";
 int length() default 255;
 int precision() default 0; // decimal precision
 int scale() default 0; // decimal scale
}

To redefine the default mapping of the original Book entity, you can use the @Column anno-
tation in various ways (see Listing 3-16). For example, you can change the name of the title
and nbOfPage column or the length of the description, and not allow null values.

Listing 3-16. Customizing Mapping for the Book Entity

@Entity
public class Book {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)

mailto:@javax.persistence.Column

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING72

 private Long id;
 @Column(name = "book_title", nullable = false, updatable = false)
 private String title;
 private Float price;
 @Column(length = 2000)
 private String description;
 private String isbn;
 @Column(name = "nb_of_page", nullable = false)
 private Integer nbOfPage;
 private Boolean illustrations;

 // Constructors, getters, setters
}

The Book entity in Listing 3-16 will get mapped to the table definition in Listing 3-17.

Listing 3-17. BOOK Table Definition

create table BOOK (
 ID BIGINT not null,
 BOOK_TITLE VARCHAR(255) not null,
 PRICE DOUBLE(52, 0),
 DESCRIPTION VARCHAR(2000),
 ISBN VARCHAR(255),
 NB_OF_PAGE INTEGER not null,
 ILLUSTRATIONS SMALLINT,
 primary key (ID)
);

Most of the elements of the @Column annotation have an influence on the mapping. If you
change the length of the description attribute to 2000, the destination column length will
also be set at 2000. The updatable and insertable settings default to true, which means that
any attribute can be inserted or updated in the database. You can set them to false when you
want the persistence provider to ensure that it will not insert or update the data to the table in
response to changes in the entity. Note that this does not imply that the entity attribute will
not change in memory. You can still change the value in memory, but it will not be synchro-
nized with the database. That’s because the generated SQL statement (INSERT or UPDATE) will
not include the columns.

@Temporal
In Java, you can use java.util.Date and java.util.Calendar to store data and then have sev-
eral representations of it such as a date, an hour, or milliseconds. To specify this in ORM, you
can use the @javax.persistence.Temporal annotation. This has three possible values: DATE,
TIME, or TIMESTAMP. Listing 3-18 defines a Customer entity that has a date of birth and a techni-
cal attribute that stores the exact time it was created in the system (this uses the TIMESTAMP
value).

mailto:@javax.persistence.Temporal

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 73

Listing 3-18. The Customer Entity with Two @Temporal Attributes

@Entity
public class Customer {

 @Id
 @GeneratedValue
 private Long id;
 private String firstName;
 private String lastName;
 private String email;
 private String phoneNumber;
 @Temporal(TemporalType.DATE)
 private Date dateOfBirth;
 @Temporal(TemporalType.TIMESTAMP)
 private Date creationDate;

 // Constructors, getters, setters
}

The Customer entity in Listing 3-18 will get mapped to the table defined in Listing 3-19.
The dateOfBirth attribute is mapped to a column of type DATE and the creationDate attribute
to a column of type TIMESTAMP.

Listing 3-19. CUSTOMER Table Definition

create table CUSTOMER (
 ID BIGINT not null,
 FIRSTNAME VARCHAR(255),
 LASTNAME VARCHAR(255),
 EMAIL VARCHAR(255),
 PHONENUMBER VARCHAR(255),
 DATEOFBIRTH DATE,
 CREATIONDATE TIMESTAMP,
 primary key (ID)
);

@Transient
With JPA, as soon as a class is annotated with @Entity, all its attributes are automatically
mapped to a table. If you do not need to map an attribute, you can use the @javax.
persistence.Transient annotation. For example, let’s take the same Customer entity and add
an age attribute (see Listing 3-20). Because age can be automatically calculated from the date
of birth, the age attribute does not need to be mapped, and therefore can be transient.

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING74

Listing 3-20. The Customer Entity with a Transient Age

@Entity
public class Customer {

 @Id
 @GeneratedValue
 private Long id;
 private String firstName;
 private String lastName;
 private String email;
 private String phoneNumber;
 @Temporal(TemporalType.DATE)
 private Date dateOfBirth;
 @Transient
 private Integer age;
 @Temporal(TemporalType.TIMESTAMP)
 private Date creationDate;

 // Constructors, getters, setters
}

As a result, the age attribute doesn’t need any AGE column to be mapped to.

@Enumerated
Java SE 5 introduced enumeration types, which are now so frequently used that they are com-
monly part of the developer’s life. The values of an enum are constants and have an implicit
ordinal assignment that is determined by the order in which they are declared. This ordinal
cannot be modified at runtime but can be used to store the value of the enumerated type in
the database. Listing 3-21 shows a credit card type enumeration.

Listing 3-21. Credit Card Type Enumeration

public enum CreditCardType {
 VISA,
 MASTER_CARD,
 AMERICAN_EXPRESS
}

The ordinals assigned to the values of this enumerated type at compile time are 0 for VISA,
1 for MASTER_CARD, and 2 for AMERICAN_EXPRESS. By default, the persistence providers will map
this enumerated type to the database assuming that the column is of type Integer. Looking at
the code in Listing 3-22, you see a CreditCard entity that uses the previous enumeration with
the default mapping.

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 75

Listing 3-22. Mapping an Enumerated Type with Ordinals

@Entity
@Table(name = "credit_card")
public class CreditCard {

 @Id
 private String number;
 private String expiryDate;
 private Integer controlNumber;
 private CreditCardType creditCardType;

 // Constructors, getters, setters
}

Because the defaults are applied, the enumeration will get mapped to an integer column,
and it will work fine. But imagine introducing a new constant to the top of the enumeration.
Because ordinal assignment is determined by the order in which values are declared, the val-
ues already stored in the database will no longer match the enumeration. A better solution
would be to store the name of the value as a string instead of storing the ordinal. You can do
this by adding an @Enumerated annotation to the attribute and specifying a value of STRING
(ORDINAL is the default value), as shown in Listing 3-23.

Listing 3-23. Mapping an Enumerated Type with String

@Entity
@Table(name = "credit_card")
public class CreditCard {

 @Id
 private String number;
 private String expiryDate;
 private Integer controlNumber;
 @Enumerated(EnumType.STRING)
 private CreditCardType creditCardType;

 // Constructors, getters, setters
}

Now the CreditCardType database column will be of type VARCHAR and a Visa card will be
stored with the string "VISA".

Access Type
Until now I have shown you annotated classes (@Entity or @Table) and attributes (@Basic,
@Column, @Temporal, etc.), but the annotations applied on an attribute (or field access) can also
be set on the corresponding getter method (or property access). For example, the annotation
@Id can be set on the id attribute or on the getId() method. As this is largely a matter of per-
sonal preference, I tend to use property access (annotate the getters), as I find the code more

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING76

readable. This allows me to quickly read the attributes of an entity without drowning in anno-
tations. In this book, for easy readability, I’ve decided to annotate the attributes. But in some
cases, for example, with inheritance, it is not simply a matter or personal taste, as it can have
an impact upon your mapping.

nNote  Java defines a field as an instance attribute. A property is any field with accessor (getter and setter)
methods that follow the Java bean pattern (starts with getXXX, setXXX, or isXXX for a Boolean).

When choosing between field access (getters) or property access (attributes), you are
specifying access type. By default, a single access type applies to an entity: it is either field
access or property access, but not both. The specification states that the behavior of an appli-
cation that mixes the placement of annotations on fields and properties without explicitly
specifying the access type is undefined.

When field-based access is used (see Listing 3-24), the persistence provider maps the
attributes. All nontransient instance variables that are not annotated with the @Transient
annotation are persistent.

Listing 3-24. The Customer Entity with Annotated Fields

@Entity
public class Customer {

 @Id @GeneratedValue	
 private Long id;
 @Column(name = "first_name", nullable = false, length = 50)
 private String firstName;
 @Column(name = "last_name", nullable = false, length = 50)
 private String lastName;
 private String email;
 @Column(name = "phone_number", length = 15)
 private String phoneNumber;

 // Constructors, getters, setters
}

When property-based access is used, as shown in Listing 3-25, the persistence provider
accesses persistent state via the getter methods, and the mapping is based on the getters
rather than the attributes. All getters not annotated with the @Transient annotation are per-
sistent.

Listing 3-25. The Customer Entity with Annotated Properties

@Entity
public class Customer {

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 77

 private Long id;
 private String firstName;
 private String lastName;
 private String email;
 private String phoneNumber;

 // Constructors

 @Id @GeneratedValue
 public Long getId() {
 return id;
 }
 public void setId(Long id) {
 this.id = id;
 }

 @Column(name = "first_name", nullable = false, length = 50)
 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 @Column(name = "last_name", nullable = false, length = 50)
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getEmail() {
 return email;
 }
 public void setEmail(String email) {
 this.email = email;
 }

 @Column(name = "phone_number", length = 15)
 public String getPhoneNumber() {
 return phoneNumber;
 }
 public void setPhoneNumber(String phoneNumber) {
 this.phoneNumber = phoneNumber;
 }
}

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING78

In terms of mapping, the two entities in Listings 3-24 and 3-25 are completely identi-
cal because the attribute names happen to be the same as the getter names. But instead of
using the default access type, you can explicitly specify the type by means of the @javax.
persistence.Access annotation.

This annotation takes two possible values, FIELD or PROPERTY, and can be used on the
entity itself and/or on each attribute or getter. For example, when an @Access(AccessType.
FIELD) is applied to the entity, only mapping annotations placed on the attributes will be taken
into account by the persistence provider. It is then possible to selectively designate individual
getters for property access with @Access(AccessType.PROPERTY).

Explicit access types can be very useful (for example, with embeddables and inheritance)
but mixing them often results in errors. Listing 3-26 shows an example of what might happen
when you mix access types.

Listing 3-26. The Customer Entity That Explicitly Mixes Access Types

@Entity
@Access(AccessType.FIELD)
public class Customer {

 @Id @GeneratedValue
 private Long id;
 @Column(name = "first_name", nullable = false, length = 50)
 private String firstName;
 @Column(name = "last_name", nullable = false, length = 50)
 private String lastName;
 private String email;
 @Column(name = "phone_number", length = 15)
 private String phoneNumber;

 // Constructors, getters, setters

 @Access(AccessType.PROPERTY)
 @Column(name = "phone_number", length = 555)
 public String getPhoneNumber() {
 return phoneNumber;
 }
 public void setPhoneNumber(String phoneNumber) {
 this.phoneNumber = phoneNumber;
 }
}

This example explicitly defines the access type as being FIELD at the entity level. This
indicates to the persistence manager that it should only process annotations on attributes.
The phoneNumber attribute is annotated with @Column, which restricts its length to 15. Reading
this code, you expect to end up with a VARCHAR(15) in the database, but this is not what hap-
pens. The getter method shows the access type for the getPhoneNumber() method has been
explicitly changed, and so has the length of the phone number (to 555). In this case, the entity

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 79

AccessType.FIELD is overwritten by AccessType.PROPERTY. You will then get a VARCHAR(555) in
the database.

Collection of Basic Types
Collections of things are extremely common in Java. In the upcoming text, you will learn about
relationships between entities (which can be collections of entities). Basically, this means that
one entity has a collection of other entities or embeddables. In terms of mapping, each entity
is mapped to its own table, and references between primary and foreign keys are created. As
you know, an entity is a Java class with an identity and many other attributes. But what if you
need to store only a collection of Java types such as Strings or Integers? Since JPA 2.0, you can
easily do this without having to go through the trouble of creating a separate class by using the
@ElementCollection and @CollectionTable annotations.

The @ElementCollection annotation is used to indicate that an attribute of type java.
util.Collection contains Java types. The @CollectionTable annotation allows you to custom-
ize details of the collection table such as its name. If this annotation is missing, the table name
will be the concatenation of the name of the containing entity and the name of the collection
attribute, separated by an underscore.

Once again, using the example Book entity, let’s see how to add an attribute to store tags.
Today, tags and tag clouds are everywhere; these tend to be very useful for sorting data, so
imagine for this example you want to add as many tags as you can to a book to describe it and
to find it quickly. A tag is just a string, so the Book entity could have a collection of strings to
store this information, as shown in Listing 3-27.

Listing 3-27. The Book Entity with a Collection of Strings

@Entity
public class Book {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 private String title;
 private Float price;
 private String description;
 private String isbn;
 private Integer nbOfPage;
 private Boolean illustrations;
 @ElementCollection(fetch = FetchType.LAZY)
 @CollectionTable(name = "Tag")
 @Column(name = "Value")
 private ArrayList<String> tags;

 // Constructors, getters, setters
}

The @ElementCollection annotation is used to inform the persistence provider that the
tags attribute is a list of strings and should be fetched lazily. If @CollectionTable is missing,

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING80

the table name defaults to BOOK_TAGS (a concatenation of the name of the containing entity and
the name of the collection attribute, separated by an underscore) instead of TAG as specified in
the name element (name = "Tag"). Notice that I’ve added a complementary @Column annota-
tion to rename the column to VALUE. The result is shown in Figure 3-3.

Figure 3-3. Relationship between the BOOK and the TAG tables

nNote  In JPA 1.0, these annotations didn’t exist. However, you were still able to store a list of primitive
types as a BLOB in the database. Why? Because java.util.ArrayList implements Serializable,
and JPA can map Serializable objects to BLOBs automatically. However, if you used java.util.List
instead, you would have an exception as it doesn’t extend Serializable. The @ElementCollection is
a more elegant and useful way of storing lists of basic types. Storing lists in an inaccessible binary format
makes it opaque to queries.

Map of Basic Types
Like collections, maps are very useful to store data. In JPA 1.0, there was not much you could
do with maps in terms of ORM. Now, maps can contain any combination of basic types,
embeddable objects, and entities as keys or values, which brings significant flexibility to the
mapping. But let’s focus on maps of basic types.

When the map employs basic types, the @ElementCollection and @CollectionTable anno-
tations can be used in the same way as you saw previously with collections. A collection table
is then used to store the data of the map.

Let’s take an example with a CD album that contains tracks (see Listing 3-28). A track can
be seen as a title and a position (the first track of the album, the second track of the album,
etc.). You could then have a map of tracks with an integer for the position (the key of the map)
and a string for the title (the value of the map).

Listing 3-28. A CD Album with a Map of Tracks

@Entity
public class CD {

 @Id
 @GeneratedValue
 private Long id;
 private String title;
 private Float price;

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 81

 private String description;
 @Lob
 private byte[] cover;
 @ElementCollection
 @CollectionTable(name="track")
 @MapKeyColumn (name = "position")
 @Column(name = "title")
 private Map<Integer, String> tracks;

 // Constructors, getters, setters
}

As discussed previously, the @ElementCollection annotation is used to indicate the objects
in the map that are stored in a collection table. The @CollectionTable annotation changes the
default name of the collection table to TRACK.

The difference with collections is the introduction of a new annotation: @MapKeyColumn.
This annotation is used to specify the mapping for the key column of the map. If it is not speci-
fied, the column is named with the concatenation of the name of the referencing relationship
attribute and _KEY. Listing 3-28 shows the annotation renamed to POSITION from the default to
be clearer.

The @Column annotation indicates that the column containing the map value should be
renamed TITLE. The result is shown in the Figure 3-4.

Figure 3-4. Relationship between the CD and the TRACK tables

Mapping with XML
Now that you are more familiar with elementary mapping using annotations, let’s take a look
at XML mapping. If you have used an object-relational framework such as Hibernate, you will
be familiar with how to map your entities in a separate XML deployment descriptors file. Since
the beginning of this chapter, you haven’t seen a single line of XML, just annotations. JPA also
uses an XML syntax to map entities. I will not go into too much detail with the XML mapping,
as I’ve decided to focus on annotations (because they are easier to use in a book and most
developers choose them over XML mapping). Keep in mind that every single annotation you
see in this chapter has an XML equivalent, and this section would be huge if I covered them all.
I encourage you to check Chapter 11 of the JPA 2.0 specification, which covers all the XML tags
in more detail.

XML deployment descriptors are an alternative to using annotations. However, although
each annotation has an equivalent XML tag and vice versa, there is a difference in that the
XML overrides annotations. If you annotate an attribute or an entity with a certain value, and
at the same time you deploy an XML descriptor with a different value, the XML will take prec-
edence.

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING82

The question is, when to use annotations over XML and why? First of all, it’s a matter of
taste, as the behavior of both is exactly the same. When the metadata is really coupled to the
code (for example, a primary key), it does make sense to use annotations, since the metadata
is just another aspect of the program. Other kinds of metadata, such as the column length or
other schema details, can be changed depending on the deployment environment (e.g., the
database schema is different in the development, test, or production environment). This may
be better expressed in external XML deployment descriptors (one per environment) so the
code doesn’t have to be modified.

Let’s again turn to the Book entity example. This time imagine you have two environments,
and you want to map the Book entity to the BOOK table in the development environment and to
the BOOK_XML_MAPPING table in the test environment. The class will only be annotated with
@Entity (see Listing 3-29) and not include information about the table it should be mapped to
(i.e., it will have no @Table annotation). The @Id annotation defines the primary key as being
autogenerated, and a @Column annotation sets the size of the description to 500 characters
long.

Listing 3-29. The Book Entity with Only a Few Annotations

@Entity
public class Book {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 private String title;
 private Float price;
 @Column(length = 500)
 private String description;
 private String isbn;
 private Integer nbOfPage;
 private Boolean illustrations;

 // Constructors, getters, setters
}

In a separate book_mapping.xml file (see Listing 3-30), following a specified XML schema,
you can change the mapping for any data of the entity. The <table> tag allows you to change
the name of the table to which the entity will be mapped (BOOK_XML_MAPPING instead of the
default BOOK). Inside the <attributes> tag, you can customize the attributes, specifying not
only their name lengths, but also their relationships with other entities. For example, you can
change the mapping for the title column and the number of pages.

Listing 3-30. Mapping the File META-INF/book_mapping.xml

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm" ➥

 version="2.0">

http://java.sun.com/xml/ns/persistence/orm

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 83

 <entity class=" com.apress.javaee6.chapter05.Book">
 <table name="book_xml_mapping"/>
 <attributes>
 <basic name="title">
 <column name="book_title" nullable="false" updatable="false"/>
 </basic>
 <basic name="description">
 <column length="2000"/>
 </basic>
 <basic name="nbOfPage">
 <column name="nb_of_page" nullable="false"/>
 </basic>
 </attributes>
 </entity>

</entity-mappings>

An important notion to always have in mind is that the XML takes precedence on annota-
tions. Even if the description attribute is annotated by @Column(length = 500), the length of
the column used is the one in the book_mapping.xml file, which is 2000. This can be confusing
as you look at the code and see 500 and then check the DDL and see 2000; always remember to
check the XML deployment descriptor.

A result of merging the XML metadata and the annotations metadata is that the Book
entity will get mapped to the BOOK_XML_MAPPING table structure defined in Listing 3-31.

Listing 3-31. BOOK_XML_MAPPING Table Structure

create table BOOK_XML_MAPPING (
 ID BIGINT not null,
 BOOK_TITLE VARCHAR(255) not null,
 DESCRIPTION VARCHAR(2000),
 NB_OF_PAGE INTEGER not null,
 PRICE DOUBLE(52, 0),
 ISBN VARCHAR(255),
 ILLUSTRATIONS SMALLINT,
 primary key (ID)
);

There is only one piece of information missing to make this work. In your persistence.xml
file, you need to reference the book_mapping.xml file, and for this you have to use the
<mapping-file> tag. The persistence.xml defines the entity persistence context and the data-
base it should be mapped to. It is the central piece of information that the persistence provider
needs to reference external XML mapping. Deploy the Book entity with both XML files in the
META-INF directory, and you are done (see Listing 3-32).

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING84

Listing 3-32. A persistence.xml File Referring to an External Mapping File

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

 <persistence-unit name="javaee6PU" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>com.apress.javaee6.chapter05.Book</class>
 <mapping-file>META-INF/book_mapping.xml</mapping-file>
 <properties>
 <!--Persistence provider properties-->
 </properties>
 </persistence-unit>
</persistence>

Embeddables
In the section “Composite Primary Keys” earlier in the chapter, you quickly saw how a class
could be embedded and used as a primary key with the @EmbeddedId annotation. Embed-
dables are objects that don’t have a persistent identity on their own; they can be embedded
only within owning entities. The owning entity can have collections of embeddables as well
as a single embeddable attribute. They are stored as an intrinsic part of an owning entity and
share the identity of this entity. This means each attribute of the embedded object is mapped
to the table of the entity. It is a strict ownership relationship (a.k.a. composition), so that if the
entity is removed, the embedded object is also.

This composition between two classes uses annotations. The included class uses the
@Embeddable annotation, whereas the entity that includes the class uses @Embedded. Let’s take
the example of a customer that has an identifier, a name, an e-mail address, and an address.
All these attributes could be in a Customer entity (see Listing 3-34 a little later in the chapter),
but for object-modeling reasons, they are split into two classes: Customer and Address. Because
Address has no identity of its own, but is merely part of the Customer state, it is a good candi-
date to become an embeddable object instead of an entity (see Listing 3-33).

Listing 3-33. The Address Class Is an Embeddable

@Embeddable
public class Address {

 private String street1;
 private String street2;
 private String city;
 private String state;
 private String zipcode;
 private String country;

 // Constructors, getters, setters
}

http://java.sun.com/xml/ns/persistence

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 85

As you can see in Listing 3-33, the Address class is not annotated as being an entity but
as an embeddable. The @Embeddable annotation specifies that Address can be embedded
in another entity class (or another embeddable). On the other side of the composition, the
Customer entity has to use the @Embedded annotation to specify that Address is a persistent
attribute that will be stored as an intrinsic part and share its identity (see Listing 3-34).

Listing 3-34. The Customer Entity Embedding an Address

@Entity
public class Customer {

 @Id @GeneratedValue
 private Long id;
 private String firstName;
 private String lastName;
 private String email;
 private String phoneNumber;
 @Embedded
 private Address address;

 // Constructors, getters, setters
}

Each attribute of Address is mapped to the table of the owning entity Customer. There will
only be one table with the structure defined in Listing 3-35. As you’ll see later in the section
“Composite Primary Keys,” entities can override the attributes of embeddables (using the
@AttributeOverrides annotation).

Listing 3-35. Structure of the CUSTOMER Table with All the Address Attributes

create table CUSTOMER (
 ID BIGINT not null,
 LASTNAME VARCHAR(255),
 PHONENUMBER VARCHAR(255),
 EMAIL VARCHAR(255),
 FIRSTNAME VARCHAR(255),
 STREET2 VARCHAR(255),
 STREET1 VARCHAR(255),
 ZIPCODE VARCHAR(255),
 STATE VARCHAR(255),
 COUNTRY VARCHAR(255),
 CITY VARCHAR(255),
 primary key (ID)
);

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING86

Access Type of an Embeddable Class
The access type of an embeddable class is determined by the access type of the entity class in
which it exists. If the entity explicitly uses a property access type, an embeddable object will
implicitly use property access as well. A different access type for an embeddable class can be
specified by means of the @Access annotation.

The Customer entity (see Listing 3-36) and Address entity (see Listing 3-37) use different
access types.

Listing 3-36. The Customer Entity with Field Access Type

@Entity
@Access(AccessType.FIELD)
public class Customer {

 @Id @GeneratedValue
 private Long id;
 @Column(name = "first_name", nullable = false, length = 50)
 private String firstName;
 @Column(name = "last_name", nullable = false, length = 50)
 private String lastName;
 private String email;
 @Column(name = "phone_number", length = 15)
 private String phoneNumber;
 @Embedded
 private Address address;

 // Constructors, getters, setters
}

Listing 3-37. The Embeddable Object with Property Access Type

@Embeddable
@Access(AccessType.PROPERTY)
public class Address {

 private String street1;
 private String street2;
 private String city;
 private String state;
 private String zipcode;
 private String country;

 // Constructors

 @Column(nullable = false)
 public String getStreet1() {
 return street1;

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 87

 }
 public void setStreet1(String street1) {
 this.street1 = street1;
 }

 public String getStreet2() {
 return street2;
 }
 public void setStreet2(String street2) {
 this.street2 = street2;
 }

 @Column(nullable = false, length = 50)
 public String getCity() {
 return city;
 }
 public void setCity(String city) {
 this.city = city;
 }

 @Column(length = 3)
 public String getState() {
 return state;
 }
 public void setState(String state) {
 this.state = state;
 }

 @Column(name = "zip_code", length = 10)
 public String getZipcode() {
 return zipcode;
 }
 public void setZipcode(String zipcode) {
 this.zipcode = zipcode;
 }

 public String getCountry() {
 return country;
 }
 public void setCountry(String country) {
 this.country = country;
 }
}

Explicitly setting the access type on embeddables is strongly recommended to avoid map-
ping errors when an embeddable is embedded by multiple entities. Let’s extend our model
by adding an Order entity as shown in Figure 3-5. Address is now embedded by Customer (the
home address of the customer) and Order (the delivery address).

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING88

Figure 3-5. Address is embedded by Customer and Order.

Each entity defines a different access type: Customer uses field access, whereas Order uses
property access. As an embeddable object’s access type is determined by the access type of the
entity class in which it is declared, Address will be mapped in two different ways, which can
cause mapping problems. To avoid this, the Address access type should be set explicitly.

nNote  Explicit access types are also very helpful in inheritance. By default, the leaf entities inherit the
access type of their root entity. In a hierarchy of entities, each can be accessed differently from the other
classes in the hierarchy. Including an @Access annotation will cause the default access mode in effect for
the hierarchy to be locally overridden.

Relationship Mapping
The world of object-oriented programming abounds with classes and associations between
classes. These associations are structural in that they link objects of one kind to objects of
another, allowing one object to cause another to perform an action on its behalf. Several types
of associations can exist between classes.

First of all, an association has a direction. It can be unidirectional (i.e., one object can nav-
igate toward another) or bidirectional (i.e., one object can navigate toward another and vice
versa). In Java, you use the dot (.) syntax to navigate through objects. For example, when you
write customer.getAddress().getCountry(), you navigate from the object Customer to Address
and then to Country.

In Unified Modeling Language (UML), to represent a unidirectional association between
two classes, you use an arrow to indicate the orientation. In Figure 3-6, Classe1 (the source)
can navigate to Classe2 (the target), but not the inverse.

Figure 3-6. A unidirectional association between two classes

To indicate a bidirectional association, no arrows are used. As demonstrated in Figure 3-7,
Class1 can navigate to Classe2 and vice versa. In Java, this is represented as Class1 having an
attribute of type Classe2 and Class2 having an attribute of type Class1.

Figure 3-7. A bidirectional association between two classes

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 89

An association also has a multiplicity (or cardinality). Each end of an association can
specify how many referring objects are involved in the association. The UML diagram in Fig-
ure 3-8 shows that one Class1 refers to zero or more instances of Class2.

Figure 3-8. Multiplicity on class associations

In UML, a cardinality is a range between a minimum and a maximum number. So 0..1
means that you will have at minimum zero objects and at maximum one object. 1 means that
you have one and only one instance. 1..* means that you can have one or many instances,
and 3..6 means that you have a range of between three and six objects. In Java, an association
that represents more than one object uses collections of java.util.Collection, java.util.Set,
java.util.List, or even java.util.Map.

A relationship has an ownership (i.e., the owner of the relationship). In a unidirectional
relationship, ownership is implied: in Figure 3-6, no doubt the owner is Class1, but in a bidi-
rectional relationship, as depicted in Figure 3-7, the owner has to be specified explicitly. You
then show the owning side, which specifies the physical mapping, and the inverse side (the
non-owning side).

In the next sections, you’ll see how to map collections of objects with JPA annotations.

Relationships in Relational Databases
In the relational world, things are different because, strictly speaking, a relational database
is a collection of relations (also called tables), which means anything you model is a table.
To model an association, you don’t have lists, sets, or maps, you have tables. In Java, when
you have an association between one class and another, in the database you will get a table
reference. This reference can be modelled in two different ways: by using a foreign key (a join
column) or by using a join table. In database terms, a column that refers to a key of another
table is a foreign key column.

As an example, consider that a customer has one address, which is a one-to-one relation.
In Java, you would have a Customer class with an Address attribute. In a relational world, you
could have a CUSTOMER table pointing to an ADDRESS through a foreign key column (or join col-
umn), as described in Figure 3-9.

Figure 3-9. A relationship using a join column

There is a second way of modeling—using a join table. The CUSTOMER table in Figure 3-10
doesn’t store the foreign key of the ADDRESS anymore. An intermediate table is created to hold
the relationship information by storing the foreign keys of both tables.

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING90

Figure 3-10. A relationship using a join table

You wouldn’t use a join table to represent a one-to-one relationship, as this could have
performance issues (you always need to access a third table to get the address of a customer).
Join tables are generally used when you have one-to-many or many-to-many cardinalities. As
you will see in the following section, JPA uses these two modes to map object associations.

Entity Relationships
Now back to JPA. Most entities need to be able to reference, or have relationships with, other
entities. This is what produces the domain model graphs that are common in business appli-
cations. JPA makes it possible to map associations so that an entity can be linked to another
in a relational model. Like the elementary mapping annotations that you saw previously, JPA
uses configuration by exception for associations. It has a default way of storing a relation, but
if this doesn’t suit your database model, you have several annotations you can use to custom-
ize the mapping.

The cardinality between two entities may be one-to-one, one-to-many, many-to-one,
or many-to-many. Each respective mapping is named after the cardinality of the source and
target: @OneToOne, @OneToMany, @ManyToOne, or @ManyToMany annotations. Each annotation can
be used in a unidirectional or bidirectional way. Table 3-1 shows all the possible combinations
between cardinalities and directions.

Table 3-1. All Possible Cardinality-Direction Combinations

Cardinality	 Direction

One-to-one	 Unidirectional

One-to-one	 Bidirectional

One-to-many	 Unidirectional

Many-to-one/one-to-many	 Bidirectional

Many-to-one	 Unidirectional

Many-to-many	 Unidirectional

Many-to-many	 Bidirectional

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 91

You will see that unidirectional and bidirectional are repetitive concepts that apply in
the same way to all cardinalities. Next, you will see the difference between unidirectional and
bidirectional relationships and then implement some of these combinations. I will not go
through the complete catalog of the combinations but just focus on a subset. Explaining all the
combinations would get repetitive. The important point is that you understand how to map
cardinality and direction in relationships.

Unidirectional and Bidirectional
In an object modeling point of view, direction between classes is natural. In a unidirectional
association, object A points only to object B; in a bidirectional association, both objects refer to
each other. However, some work is necessary when mapping a bidirectional relationship to a
relational database, as is illustrated by the following example involving a customer who has a
home address.

In a unidirectional relationship, a Customer entity has an attribute of type Address (see Fig-
ure 3-11). The relationship is one-way, navigating from one side to the other. Customer is said
to be the owner of the relationship. In terms of the database, this means the CUSTOMER table will
have a foreign key (join column) pointing to ADDRESS, and when you own a relationship, you
are able to customize the mapping of this relationship. For example, if you need to change the
name of the foreign key, the mapping will be done in the Customer entity (i.e., the owner).

Figure 3-11. A unidirectional association between Customer and Address

As mentioned previously, relationships can also be bidirectional. To be able to navigate
between Address and Customer, you need to transform a unidirectional relationship into a bidi-
rectional one by adding a Customer attribute to the Address entity (see Figure 3-12). Note that
in UML class diagrams, attributes representing a relationship are not shown.

Figure 3-12. A bidirectional association between Customer and Address

In terms of Java code and annotations, it is similar to having two separate one-to-one
mappings, one in each direction. You can think of a bidirectional relationship as a pair of uni-
directional relationships, going both ways (see Figure 3-13).

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING92

Figure 3-13. A bidirectional association represented with two arrows

How do you map that? Who is the owner of this bidirectional relationship? Who owns the
mapping information of the join column or the join table? If unidirectional relationships have
an owning side, bidirectional ones have both an owning and an inverse side, which have to be
explicitly specified with the mappedBy element of the @OneToOne, @OneToMany, and @ManyToMany
annotations. mappedBy identifies the attribute that owns the relationship and is required for
bidirectional relationships.

By way of explanation, let’s compare the Java code (on one side) and the database map-
ping (on the other). As you can see on the left side of Figure 3-14, both entities point to each
other through attributes: Customer has an address attribute annotated with @OneToOne, and the
Address entity has a customer attribute also with an annotation. On the right side, the database
mapping shows a CUSTOMER and an ADDRESS table. CUSTOMER is the owner of the relationship
because it contains the ADDRESS foreign key.

Figure 3-14. Customer and Address code with database mapping

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 93

The Address entity uses the mappedBy element on its @OneToOne annotation. The mappedBy
element indicates that the join column (address) is specified at the other end of the relation-
ship. In fact, at the other end, the Customer entity defines the join column by using the
@JoinColumn annotation and renames the foreign key to address_fk. Customer is the owning
side of the relationship, and as the owner, it is the one to define the join column mapping.
Address is the inverse side where the table of the owning entity contains the foreign key (the
CUSTOMER table is the one with the ADDRESS_FK column).

There is a mappedBy element on the @OneToOne, @OneToMany, and @ManyToMany annotations,
but not on the @ManyToOne annotation.

nNote  If you are familiar with Hibernate, you might think of the JPA mappedBy as the equivalent of the
Hibernate inverse attribute, which indicates which end of a relationship should be ignored.

@OneToOne Unidirectional
A one-to-one unidirectional relationship between entities has a reference of cardinality 1,
which can be reached in only one direction. Referring to the example of a customer and her
address, assume the customer has only one address (cardinality 1). It is important to navigate
from the customer (the source) toward the address (the target) to know where the customer
lives. However, for some reason, in our model, shown in Figure 3-15, you don’t need to be able
to navigate in the opposite direction (i.e., you don’t need to know which customer lives at a
given address, for example).

Figure 3-15. One customer has one address.

In Java, this means the Customer will have an Address attribute (see Listings 3-38 and 3-39).

Listing 3-38. A Customer with One Address

@Entity
public class Customer {

 @Id @GeneratedValue
 private Long id;
 private String firstName;
 private String lastName;
 private String email;

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING94

 private String phoneNumber;
 private Address address;

 // Constructors, getters, setters
}

Listing 3-39. An Address Entity

@Entity
public class Address {

 @Id @GeneratedValue
 private Long id;
 private String street1;
 private String street2;
 private String city;
 private String state;
 private String zipcode;
 private String country;

 // Constructors, getters, setters
}

As you can see in Listings 3-38 and 3-39, these two entities have the minimum required
annotations: @Entity plus @Id and @GeneratedValue for the primary key, that’s all. With con-
figuration by exception, the persistence provider will map these two entities to two tables and
a foreign key for the relationship (from the customer pointing to the address). A one-to-one
mapping is triggered by the fact that Address is declared an entity and included in the Customer
entity as an attribute. No @OneToOne annotation is needed, as it relies on the defaults (see List-
ings 3-40 and 3-41).

Listing 3-40. The CUSTOMER Table with a Foreign Key to Address

create table CUSTOMER (
 ID BIGINT not null,
 FIRSTNAME VARCHAR(255),
 LASTNAME VARCHAR(255),
 EMAIL VARCHAR(255),
 PHONENUMBER VARCHAR(255),
 ADDRESS_ID BIGINT,
 primary key (ID),
 foreign key (ADDRESS_ID) references ADDRESS(ID)
);

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 95

Listing 3-41. The ADDRESS Table

create table ADDRESS (
 ID BIGINT not null,
 STREET1 VARCHAR(255),
 STREET2 VARCHAR(255),
 CITY VARCHAR(255),
 STATE VARCHAR(255),
 ZIPCODE VARCHAR(255),
 COUNTRY VARCHAR(255),
 primary key (ID)
);

As you now know, with JPA, if an attribute is not annotated, the default mapping rules are
applied. So by default, the foreign key column is named ADDRESS_ID (see Listing 3-40), which is
the concatenation of the name of the relationship attribute (here address), the symbol _, and
the name of the primary key column of the destination table (here it will be the column ID of
the ADDRESS table). Also notice that in the DDL, the ADDRESS_ID column is nullable by default,
meaning that by default, a one-to-one association is mapped to a zero (null value) or one.

To customize the mapping, you can use two annotations. The first one is @OneToOne (that’s
because the cardinality of the relation is one), and it can modify some attributes of the associa-
tion itself such as the way is has to be fetched. The API of the @OneToOne annotation is defined
in Listing 3-42.

Listing 3-42. @OneToOne Annotation API

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToOne {
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default EAGER;
 boolean optional() default true;
 String mappedBy() default "";
 boolean orphanRemoval() default false;
}

The other is @JoinColumn (its API is very similar to @Column). It is used to customize the join
column, meaning the foreign key, of the owning side. Listing 3-43 shows how you would use
these two annotations.

Listing 3-43. The Customer Entity with Customized Relationship Mapping

@Entity
public class Customer {

 @Id @GeneratedValue
 private Long id;
 private String firstName;
 private String lastName;

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING96

 private String email;
 private String phoneNumber;
 @OneToOne (fetch = FetchType.LAZY)
 @JoinColumn(name = "add_fk", nullable = false)
 private Address address;

 // Constructors, getters, setters
}

In JPA, a foreign key column is called a join column. The @JoinColumn annotation allows
you to customize the mapping of a foreign key. It is used in Listing 3-43 to rename the for-
eign key column to ADD_FK and make the relationship obligatory by refusing the null value
(nullable=false). The @OneToOne annotation gives the persistence provider a hint to fetch the
relationship lazily.

@OneToMany Unidirectional
A one-to-many relationship is when one source object refers to an ensemble of target objects.
For example, a purchase order is composed of several order lines (see Figure 3-16). The order
line could refer to the purchase order with a corresponding @ManyToOne annotation. Order is
the “one” side and the source of the relationship, and OrderLine is the “many” side and the
target.

Figure 3-16. One order has several lines.

The cardinality is multiple, and the navigation is done only from Order toward OrderLine.
In Java, this multiplicity is described by the Collection, List, and Set interfaces of the java.
util package. Listing 3-44 shows the code of the Order entity with a one-way, one-to-many
relationship toward OrderLine (see Listing 3-45).

Listing 3-44. An Order Contains OrderLines

@Entity
public class Order {

 @Id @GeneratedValue
 private Long id;
 @Temporal(TemporalType.TIMESTAMP)
 private Date creationDate;
 private List<OrderLine> orderLines;

 // Constructors, getters, setters
}

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 97

Listing 3-45. An OrderLine

@Entity
@Table(name = "order_line")
public class OrderLine {

 @Id @GeneratedValue
 private Long id;
 private String item;
 private Double unitPrice;
 private Integer quantity;

 // Constructors, getters, setters
}

The code in Listing 3-44 doesn’t have any special annotation and relies on the configu-
ration-by-exception paradigm. The fact that a collection of an entity type is being used as an
attribute on this entity triggers a OneToMany relationship mapping by default. By default, one-
to-many unidirectional relationships use a join table to keep the relationship information,
with two foreign key columns. One foreign key column refers to the table ORDER and has the
same type as its primary key, and the other refers to ORDER_LINE. The name of this joined table
is the name of both entities, separated by the _ symbol. The join table is named ORDER_ORDER_
LINE and will result in the schema structure illustrated in Figure 3-17.

Figure 3-17. Join table between ORDER and ORDER_LINE

If you don’t like the join table name and foreign key names, or if you are mapping to an
existing table, you can use JPA annotations to redefine these default values. The default value
for a join column is the concatenation of the name of the entity, the symbol _, and the name of
the referenced primary key. As the @JoinColumn annotation can be used to change the foreign
key columns, the @JoinTable annotation can do the same for the join table mapping. You can
also use the @OneToMany annotation (see Listing 3-46), which like @OneToOne customizes the
relationship itself (using fetch mode and so on).

Listing 3-46. @JoinTable Annotation API

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinTable {
 String name() default "";
 String catalog() default "";
 String schema() default "";

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING98

 JoinColumn[] joinColumns() default {};
 JoinColumn[] inverseJoinColumns() default {};
 UniqueConstraint[] uniqueConstraints() default {};
}

On the API of the @JoinTable annotation in Listing 3-46, you can see two attributes that
are of type @JoinColumn: joinColumns and inverseJoinColumns. These two attributes are distin-
guished by means of the owning side and the inverse side. The owning side (the owner of the
relationship) is described in the joinColumns element and, in our example, refers to the ORDER
table. The inverse side, the target of the relationship, is specified by the inverseJoinColumns
element and refers to ORDER_LINE.

Using the Order entity (see Listing 3-47), you can add the @OneToMany and @JoinTable
annotations on the orderLines attribute by renaming the join table to JND_ORD_LINE (instead
of ORDER_ORDER_LINE), as well as the two foreign key columns.

Listing 3-47. The Order Entity with Annotated One-to-Many Relationship

@Entity
public class Order {

 @Id @GeneratedValue
 private Long id;
 @Temporal(TemporalType.TIMESTAMP)
 private Date creationDate;
 @OneToMany
 @JoinTable(name = "jnd_ord_line",
 joinColumns = @JoinColumn(name = "order_fk"),
 inverseJoinColumns = @JoinColumn(name = "order_line_fk"))
 private List<OrderLine> orderLines;

 // Constructors, getters, setters
}

The Order entity in Listing 3-47 will get mapped to the join table described in Listing 3-48.

Listing 3-48. Structure of the Join Table

create table JND_ORD_LINE (
 ORDER_FK BIGINT not null,
 ORDER_LINE_FK BIGINT not null,
 primary key (ORDER_FK, ORDER_LINE_FK),
 foreign key (ORDER_LINE_FK) references ORDER_LINE(ID),
 foreign key (ORDER_FK) references ORDER(ID)
);

The default rule for a one-to-many unidirectional relationship is to use a join table, but
it is very easy (and useful for legacy databases) to change to using foreign keys. The Order
entity has to provide a @JoinColumn annotation instead of a @JoinTable, allowing the code to
be changed as shown in Listing 3-49.

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 99

Listing 3-49. The Order Entity with a Join Column

@Entity
public class Order {

 @Id @GeneratedValue
 private Long id;
 @Temporal(TemporalType.TIMESTAMP)
 private Date creationDate;
 @OneToMany(fetch = FetchType.EAGER)
 @JoinColumn(name = "order_fk")
 private List<OrderLine> orderLines;

 // Constructors, getters, setters
}

The code of the OrderLine entity (shown previously in Listing 3-45) doesn’t change.
Notice that in Listing 3-49 the @OneToMany annotation is overriding the default fetch mode
(turning it to EAGER instead of LAZY). By using @JoinColumn, the unidirectional association is
then mapped using the foreign key strategy. The foreign key is renamed to ORDER_FK by the
annotation and exists in the target table (ORDER_LINE). The result is the database structure
shown in Figure 3-18. There is no join table, and the reference between both tables is through
the foreign key ORDER_FK.

Figure 3-18. Join column between Order and OrderLine

@ManyToMany Bidirectional
A many-to-many bidirectional relationship exists when one source object refers to many
targets, and when a target refers to many sources. For example, a CD album is created by sev-
eral artists, and an artist appears on several albums. In the Java world, each entity will have
a collection of target entities. In the relational world, the only way to map a many-to-many
relationship is to use a join table (a join column would not work), and as you’ve seen previ-
ously, in a bidirectional relationship you need to explicitly define the owner (with the mappedBy
element).

Assuming the Artist entity is the owner of the relationship means that the CD is the
reverse owner (see Listing 3-50) and needs to use the mappedBy element on its @ManyToMany
annotation. mappedBy tells the persistence provider that appearsOnCDs is the name of the corre-
sponding attribute of the owning entity.

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING100

Listing 3-50. One CD is Created by Several Artists

@Entity
public class CD {

 @Id @GeneratedValue
 private Long id;
 private String title;
 private Float price;
 private String description;
 @ManyToMany(mappedBy = "appearsOnCDs")
 private List<Artist> createdByArtists;

 // Constructors, getters, setters
}

So, if the Artist is the owner of the relationship, as shown in Listing 3-51, it is the one to
customize the mapping of the join table via the @JoinTable and @JoinColumn annotations.

Listing 3-51. One Artist Appears on Several CD Albums

@Entity
public class Artist {

 @Id @GeneratedValue
 private Long id;
 private String firstName;
 private String lastName;
 @ManyToMany
 @JoinTable(name = "jnd_art_cd", ➥

 joinColumns = @JoinColumn(name = "artist_fk"), ➥

 inverseJoinColumns = @JoinColumn(name = "cd_fk"))
 private List<CD> appearsOnCDs;

 // Constructors, getters, setters
}

The join table between Artist and CD is renamed to JND_ART_CD as well as each join column.
The joinColumns element refers to the owning side (the Artist) and the inverseJoinColumns
refers to the inverse owning side (the CD). The database structure is shown in Figure 3-19.

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 101

Figure 3-19. Artist, CD, and the join table

Note that on a many-to-many and one-to-one bidirectional relationship, either side may
be designated as the owning side. No matter which side is designated as the owner, the other
side should include the mappedBy element. If not, the provider will think that both sides are the
owner and will treat it as two separate one-to-many unidirectional relationships. That could
result in four tables: ARTIST and CD, plus two joining tables, ARTIST_CD and CD_ARTIST. Neither
would it be legal to have a mappedBy on both sides.

Fetching Relationships
All the annotations that you have seen (@OneToOne, @OneToMany, @ManyToOne, and @ManyTo-
Many) define a fetching attribute, specifying the associated objects to be loaded immediately
(eagerly) or deferred (lazily), with a resulting impact on performance. Depending on your
application, certain relationships are accessed more often than others. In these situations, you
can optimize performance by loading data from the database when the entity is initially read
(eagerly) or when it is accessed (lazily). As an example, let’s look at some extreme cases.

Imagine four entities all linked to each other with different cardinalities (one-to-one, one-
to-many). In the first case (see Figure 3-20), they all have eager relationships. This means that
as soon as you load Class1 (by a find by ID or a query), all the dependent objects are automati-
cally loaded in memory. This can have an impact on the performance of your system.

Figure 3-20. Four entities with eager relationships

Looking at the opposite scenario, all the relationships use a lazy fetch mode (see Figure
3-21). When you load Class1, nothing else is loaded (except the direct attributes of Class1, of
course). You need to explicitly access Class2 (by using the getter method, for example) to tell
the persistence provider to load the data from the database, and so on. If you want to manipu-
late the entire object graph, you need to explicitly call each entity:

class1.getClass2().getClass3().getClass4()

Figure 3-21. Four entities with lazy relationships

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING102

But don’t think that EAGER is evil and LAZY is good. EAGER will bring all the data into mem-
ory using a small amount of database access (the persistence provider will probably use join
queries to join the tables together and extract the data). With LAZY, you don’t take the risk of
filling up your memory because you control which object is loaded. But you have to access the
database every time.

The fetch parameter is very important because, if it is misused, it can cause performance
problems. Each annotation has a default fetch value that you have to be aware of and, if not
appropriate, change (see Table 3-2).

Table 3-2. Default Fetching Strategies

Annotation	 Default Fetching Strategy

@OneToOne	 EAGER

@ManyToOne	 EAGER

@OneToMany	 LAZY

@ManyToMany	 LAZY

When you load a purchase order in your application, you always need to access its order
lines. Therefore, it may be efficient to change the default fetch mode of the @OneToMany anno-
tation to EAGER (see Listing 3-52).

Listing 3-52. An Order with an Eager Relationship to OrderLine

@Entity
public class Order {

 @Id @GeneratedValue
 private Long id;
 @Temporal(TemporalType.TIMESTAMP)
 private Date creationDate;
 @OneToMany(fetch = FetchType.EAGER)
 private List<OrderLine> orderLines;

 // Constructors, getters, setters
}

Ordering Relationships
With one-to-many or many-to-many relationships, your entities deal with collections of
objects. On the Java side, these collections are usually unordered. Neither do relational data-
bases preserve any order in their tables. Therefore, if you want an ordered list it is necessary to
either sort your collection programmatically or use a JPQL query with an Order By clause. JPA
has easier mechanisms, based on annotations that can help in ordering relationships.

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 103

@OrderBy
Dynamic ordering can be done with the @OrderBy annotation. “Dynamically” means that the
ordering of the elements of a collection is made when the association is retrieved.

The example of the CD-BookStore application allows a user to write news about music
and books. This news is text that is displayed on the web site. Once the news is published, peo-
ple are allowed to add comments (see Listing 3-53). On the web site you want to display the
comments chronologically, so ordering comes into account.

Listing 3-53. A Comment Entity with a Posted Date

@Entity
public class Comment {

 @Id @GeneratedValue
 private Long id;
 private String nickname;
 private String content;
 private Integer note;
 @Column(name = "posted_date")
 @Temporal(TemporalType.TIMESTAMP)
 private Date postedDate;

 // Constructors, getters, setters
}

The comments are modelled using the Comment entity, shown in Listing 3-53. It has con-
tent, is posted by an anonymous user (identified by a nickname) who leaves a note on the
news, and has a posted date of type TIMESTAMP that is automatically created by the system.
In the News entity, shown in Listing 3-54, you want to be able to arrange the list of comments
ordered by posted date in descending order. To achieve this, you use the @OrderBy annotation
in conjunction with the @OneToMany annotation.

Listing 3-54. The Comments of a News Entity Are Ordered by Descending Posted Date

@Entity
public class News {

 @Id @GeneratedValue
 private Long id;
 @Column(nullable = false)
 private String content;
 @OneToMany(fetch = FetchType.EAGER)
 @OrderBy("postedDate desc")
 private List<Comment> comments;

 // Constructors, getters, setters
}

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING104

The @OrderBy annotation takes as parameters the names of the attributes on which
the sorting has to be made (the postedDate attribute), as well as the method (ascending or
descending). The string ASC or DESC can be used for sorting in either an ascending or descend-
ing manner, respectively. You can have several columns used in the @OrderBy annotation. If
you need to order by posted date and note, you can use OrderBy("postedDate desc, note
asc").

The @OrderBy annotation doesn’t have any impact on the database mapping. The persist-
ence provider is simply informed to use an order by clause when the collection is retrieved.

@OrderColumn
JPA 1.0 supported dynamic ordering using the @OrderBy annotation but did not include sup-
port for maintaining a persistent ordering. JPA 2.0 addresses this by adding a new annotation:
@OrderColumn (see Listing 3-55). This annotation informs the persistence provider that it is
required to maintain the ordered list using a separate column where the index is stored. The
@OrderColumn defines this separate column.

Listing 3-55. The @OrderColumn API Is Similar to @Column

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OrderColumn {
 String name() default "";
 boolean nullable() default true;
 boolean insertable() default true;
 boolean updatable() default true;
 String columnDefinition() default "";
 boolean contiguous() default true;
 int base() default 0;
 String table() default "";
}

Let’s use the news and comments example and change it slightly. This time the Comment
entity, shown in Listing 3-56, has no postedDate attribute, and therefore there is no way to
chronologically sort the news.

Listing 3-56. A Comment Entity with No Posted Date

@Entity
public class Comment {

 @Id @GeneratedValue
 private Long id;
 private String nickname;
 private String content;
 private Integer note;

 // Constructors, getters, setters
}

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 105

What the News entity, shown in Listing 3-57, can do is annotate the relationship with
@OrderColumn. The persistence provider will then map the News entity to a table with an addi-
tional column to store the ordering.

Listing 3-57. The Ordering of Comments Is Persisted

@Entity
public class News {

 @Id @GeneratedValue
 private Long id;
 @Column(nullable = false)
 private String content;
 @OneToMany(fetch = FetchType.EAGER)
 @OrderColumn("posted_index")
 private List<Comment> comments;

 // Constructors, getters, setters
}

In Listing 3-57, the @OrderColumn renames the additional column to POSTED_INDEX. If the
name is not overridden, by default the column name is the concatenation of the referencing
entity and the _ORDER string (COMMENT_ORDER in our example). The type of this column must be a
numerical type.

There are performance impacts to be aware of; as with the @OrderColumn annotation, the
persistence provider must also track changes to the index. It is responsible for maintaining the
order upon insertion, deletion, or reordering. If data is inserted in the middle of an existing,
sorted list of information, the persistence provider will have to reorder the entire index.

Portable applications should not expect a list to be ordered by the database, under the
pretext that some database engines automatically optimize their indexes so that the data table
appears as sorted. Instead, it should use either the @OrderColumn or @OrderBy construct. Note
that you can’t use both annotations at the same time.

Inheritance Mapping
Since their creation, object-oriented languages have used the inheritance paradigm. C++
allows multiple inheritance, and Java supports single-class inheritance. In object-oriented lan-
guages, developers commonly reuse code by inheriting attributes and behavior of root classes.

You have just studied relationships, and relationships between entities have a very
straightforward mapping to a relational database. This is not the case with inheritance. Inher-
itance is a completely unknown concept and not natively implemented in a relational world.
The concept of inheritance throws in several twists when saving objects into a relational data-
base.

How do you organize a hierarchical model into a flat relational one? JPA has three differ-
ent strategies you can choose from:

	 •	 A single-table-per-class hierarchy strategy: The sum of the attributes of the entire entity
hierarchy is flattened down to a single table (this is the default strategy).

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING106

	 •	 A joined-subclass strategy: In this approach, each entity in the hierarchy, concrete or
abstract, is mapped to its own dedicated table.

	 •	 A table-per-concrete-class strategy: This strategy maps each concrete entity hierarchy to
its own separate table.

nNote  Support for the table-per-concrete-class inheritance mapping strategy is still optional in JPA 2.0.
Portable applications should avoid using it until officially mandated.

Leveraging the easy use of annotations, JPA 2.0 delivers declarative support for defining
and mapping inheritance hierarchies, including entities, abstract entities, mapped classes,
and transient classes. The @Inheritance annotation is used on the root entity to dictate the
mapping strategy to itself and to the leaf classes. JPA also transposes the object notion of over-
riding to the mapping, which allows root class attributes be overridden by child classes. In the
upcoming section, you will also see how the access type can be used with inheritance to mix
field access and property access.

Inheritance Strategies
When it comes to mapping inheritance, JPA supports three different strategies. When an
entity hierarchy exists, it always has an entity as its root. The root entity class can define the
inheritance strategy by using the @Inheritance annotation. If it doesn’t, the default single-
table-per-class strategy will be applied. To explore each strategy, I will discuss how to map a
CD and a Book entity, both inheriting from the Item entity (see Figure 3-22).

Figure 3-22. Inheritance hierarchy between CD, Book, and Item

The Item entity is the root entity and has an identifier, which will turn into a primary key,
from which both the CD and Book entities inherit. Each of these leaf classes adds extra attributes
such as an ISBN for the Book entity or a total time duration for the CD entity.

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 107

Single-Table Strategy
The default inheritance mapping strategy is the single-table strategy, in which all the entities
in the hierarchy are mapped to a single table. As it is the default, you can completely omit the
@Inheritance annotation on the root entity (thanks to configuration by exception), and that’s
what the Item entity does (see Listing 3-58).

Listing 3-58. The Item Entity Defines a Single-Table Strategy

@Entity
public class Item {

 @Id @GeneratedValue
 protected Long id;
 @Column(nullable = false)
 protected String title;
 @Column(nullable = false)
 protected Float price;
 protected String description;

 // Constructors, getters, setters
}

Item is the root class for the Book entity (see Listing 3-59) and CD entity (see Listing 3-60).
These entities inherit the attributes of Item as well as the default inheritance strategy, and
therefore don’t have to use the @Inheritance annotation.

Listing 3-59. Book Extends Item

@Entity
public class Book extends Item {

 private String isbn;
 private String publisher;
 private Integer nbOfPage;
 private Boolean illustrations;

 // Constructors, getters, setters
}

Listing 3-60. CD Extends Item

@Entity
public class CD extends Item {

 private String musicCompany;
 private Integer numberOfCDs;
 private Float totalDuration;
 private String gender;

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING108

 // Constructors, getters, setters
}

With what you have seen so far, without inheritance, these three entities would be
mapped into their own, separate tables, but with inheritance it’s different. With the
single-table strategy, they all end up in the same database table, which defaults to the name of
the root class: ITEM. Figure 3-23 shows the ITEM table structure.

Figure 3-23. ITEM table structure

As you can see in Figure 3-23, the ITEM table sums all the attributes of the Item, Book,
and CD entities. But there’s an additional column that doesn’t relate to any of the entities’
attributes: it’s the discriminator column, DTYPE.

The ITEM table will be filled with items, books, and CD albums. When accessing the data,
the persistence provider needs to know which row belongs to which entity. This way, the
provider will instantiate the appropriate object type (Item, Book, or CD) when reading the ITEM
table. That’s why a discriminator column is used to explicitly type each row.

Figure 3-24 shows a fragment of the ITEM table with some data. As you can see, the single-
table strategy has some holes; not every column is useful for each entity. The first row is the
data stored for an Item entity (the DTYPE column contains the name of the entity). Items only
have a title, a price, and a description (see Listing 3-58 earlier); they don’t have a music com-
pany, an ISBN, and so on. So these columns will always remain empty.

Figure 3-24. Fragment of the ITEM table filled with data

The discriminator column is called DTYPE by default, is of type String (mapped to a
VARCHAR), and contains the name of the entity. If the defaults don’t suit, the
@DiscriminatorColumn annotation allows you to change the name and the data type. By

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 109

default, the value of this column is the entity name to which it refers, although an entity may
override this value using the @DiscriminatorValue annotation.

In Listing 3-61, I rename the discriminator column to DISC (instead of DTYPE) and change
its data type to Char instead of String; each entity should change its discriminator value to I
for Item, B for Book (see Listing 3-62), and C for CD (see Listing 3-63).

Listing 3-61. Item Redefines the Discriminator Column

@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn (name="disc", ➥

 discriminatorType = DiscriminatorType.CHAR)
@DiscriminatorValue("I")
public class Item {

 @Id @GeneratedValue
 private Long id;
 private String title;
 private Float price;
 private String description;

 // Constructors, getters, setters
}

The root entity Item defines the discriminator column once for the entire hierarchy with
@DiscriminatorColumn. It then changes its own default value to I with the @DiscriminatorValue
annotation. Child entities have to redefine their own discriminator value only.

Listing 3-62. Book Redefines the Discriminator Value to B

@Entity
@DiscriminatorValue("B")
public class Book extends Item {

 private String isbn;
 private String publisher;
 private Integer nbOfPage;
 private Boolean illustrations;

 // Constructors, getters, setters
}

Listing 3-63. CD Redefines the Discriminator Value to C

@Entity
@DiscriminatorValue("C")
public class CD extends Item {

 private String musicCompany;

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING110

 private Integer numberOfCDs;
 private Float totalDuration;
 private String gender;

 // Constructors, getters, setters
}

The result is shown in Figure 3-25. The discriminator column and its values are different
from those shown earlier in Figure 3-24.

Figure 3-25. The ITEM table with a different discriminator name and values

The single-table strategy is the default, is the easiest to understand, and works well when
the hierarchy is relatively simple and stable. However, it has some drawbacks; adding new
entities to the hierarchy, or adding attributes to existing entities, involves adding new columns
to the table, migrating data, and changing indexes. This strategy also requires the columns of
the child entities to be nullable. If the ISBN of the Book entity happens to be nonnull, you can-
not insert a CD anymore, because the CD entity doesn’t have an ISBN.

Joined Strategy
In the joined strategy, each entity in the hierarchy is mapped to its own table. The root entity
maps to a table that defines the primary key to be used by all tables in the hierarchy, as well
as the discriminator column. Each subclass is represented by a separate table that contains
its own attributes (not inherited from the root class) and a primary key that refers to the root
table’s primary key. The nonroot tables do not hold a discriminator column.

You can implement a joined strategy by annotating the root entity with the @Inheritance
annotation as shown in Listing 3-64 (the code of CD and Book is unchanged, the same as
before).

Listing 3-64. The Item Entity with a Joined Strategy

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public class Item {

 @Id @GeneratedValue
 protected Long id;
 protected String title;

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 111

 protected Float price;
 protected String description;

 // Constructors, getters, setters
}

From a developer’s point of view, the joined strategy is natural, as each entity, abstract or
concrete, will have its state mapped to a different table. Figure 3-26 shows how the Item, Book,
and CD entities will be mapped.

Figure 3-26. Mapping inheritance with a joined strategy

You can still use @DiscriminatorColumn and @DiscriminatorValue annotations in the root
entity to customize the discriminator column and values (the DTYPE column is in the ITEM
table).

The joined strategy is intuitive and is close to what you know from the object inheritance
mechanism. But querying can have a performance impact. If this strategy is called joined, it’s
because to reassemble an instance of a subclass, the subclass table has to be joined with the
root class table. The deeper the hierarchy, the more joins needed to assemble a leaf entity.

Table-per-Class Strategy
In the table-per-class (or table-per-concrete-class) strategy, each entity is mapped to its own
dedicated table like the joined strategy. The difference is that all attributes of the root entity
will also be mapped to columns of the child entity table. From a database point of view, this
strategy denormalizes the model and causes all root entity attributes to be redefined in the
tables of all leaf entities that inherit from it. With the table-per-class strategy, there is no
shared table, no shared columns, and no discriminator column. The only requirement is that
all tables must share a common primary key that matches across all tables in the hierarchy.

Mapping our example to this strategy is a matter of specifying a TABLE_PER_CLASS on the
@Inheritance annotation (see Listing 3-65) of the root entity (Item).

Listing 3-65. The Item Entity with a Table-per-Class Strategy

@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public class Item {

 @Id @GeneratedValue
 protected Long id;
 protected String title;
 protected Float price;
 protected String description;

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING112

 // Constructors, getters, setters
}

Figure 3-27 shows the ITEM, BOOK, and CD tables. You can see that BOOK and CD duplicate the
ID, TITLE, PRICE, and DESCRIPTION columns of the ITEM table. Note that the tables are not linked.

Figure 3-27. BOOK and CD tables duplicating ITEM columns

Each table can be redefined by annotating each entity with the @Table annotation.
The table-per-class strategy performs well when querying instances of one entity, as it is

similar to using the single-table strategy: the query is confined to a single table. The downside
is that it makes polymorphic queries across a class hierarchy more expensive than the other
strategies (e.g., finding all the items, including CDs and books); it must query all subclass
tables using a UNION operation, which is expensive when a large amount of data is involved.

Overriding Attributes

With the table-per-class strategy, the columns of the root class are duplicated on the leaf
tables. They keep the same name. But what if a legacy database is being used and the columns
have a different name? JPA uses the @AttributeOverride annotation to override the column
mapping and @AttributeOverrides to override several.

To rename the ID, TITLE, and DESCRIPTION columns in the BOOK and CD tables, the code of
the Item entity doesn’t change, but the Book entity (see Listing 3-66) and CD entity (see Listing
3-67) have to use the @AttributeOverride annotation.

Listing 3-66. Book Overrides Some Item Columns

@Entity
@AttributeOverrides({
 @AttributeOverride(name = "id",➥

 column = @Column(name = "book_id")),
 @AttributeOverride(name = "title",➥

 column = @Column(name = "book_title")),
 @AttributeOverride(name = "description",➥

 column = @Column(name = "book_description"))
})
public class Book extends Item {

 private String isbn;
 private String publisher;
 private Integer nbOfPage;
 private Boolean illustrations;

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 113

 // Constructors, getters, setters
}

Listing 3-67. CD Overrides Some Item Columns

@Entity
@AttributeOverrides({
 @AttributeOverride(name = "id",➥

 column = @Column(name = "cd_id")),
 @AttributeOverride(name = "title",➥

 column = @Column(name = "cd_title")),
 @AttributeOverride(name = "description",➥

 column = @Column(name = "cd_description"))
})
public class CD extends Item {

 private String musicCompany;
 private Integer numberOfCDs;
 private Float totalDuration;
 private String gender;

 // Constructors, getters, setters
}

Because there is more than one attribute to override, you need to use
@AttributeOverrides, which takes an array of @AttributeOverride annotations. Each annota-
tion then points to an attribute of the Item entity and redefines the mapping of the column
using the @Column annotation. So name = "title" refers to the title attribute of the Item entity,
and @Column(name = "cd_title") informs the persistence provider that the title has to be
mapped to a CD_TITLE column. The result is shown in Figure 3-28.

Figure 3-28. BOOK and CD tables overriding ITEM columns

nNote  In the “Embeddables” section earlier in the chapter, you saw that an embeddable object could be
shared by several entities (Address was embedded by Customer and Order). Because embeddable objects
are an intrinsic part of an owning entity, their columns are also duplicated in each entity’s table. The
@AttributeOverrides could then be used if you need to override the embeddable columns.

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING114

Type of Classes in the Inheritance Hierarchy
The example used to explain the mapping strategies only uses entities. Item is an entity as well
as Book and CD. But entities don’t have to inherit from entities alone. A hierarchy of classes can
mix all sorts of different classes: entities and also nonentities (or transient classes), abstract
entities, and mapped superclasses. Inheriting from these different types of classes will have an
impact on the mapping.

Abstract Entity
In the previous examples, the Item entity was concrete. It was annotated with @Entity and
didn’t have an abstract keyword, but an abstract class can also be specified as an entity. An
abstract entity differs from a concrete entity only in that it cannot be directly instantiated with
the new keyword. It provides a common data structure for its leaf entities (Book and CD) and fol-
lows the mapping strategies. For the persistence provider, an abstract entity is mapped as an
entity. The only difference is in the Java space, not in the mapping.

Nonentity
Nonentities are also called transient classes, meaning they are POJOs. An entity may subclass a
nonentity or may be extended by a nonentity. Why would you have nonentities in a hierarchy?
Object modeling and inheritance are the means through which state and behavior are shared.
Nonentities can be used to provide a common data structure to leaf entities. The state of a
nonentity superclass is not persistent because it is not managed by the persistence provider
(remember that the condition for a class to be managed by the persistence provider is the
presence of an @Entity annotation).

For example, Book is an entity and, as shown in Listing 3-68, extends from an Item nonen-
tity (Item doesn’t have any annotation).

Listing 3-68. Item Is a Simple POJO with No @Entity

public class Item {

 protected String title;
 protected Float price;
 protected String description;

 // Constructors, getters, setters
}

The Book entity, shown in Listing 3-69, inherits from Item, so the Java code can access the
title, price, and description attributes, plus any other method that is defined, in a normal,
object-oriented way. Item can be concrete or abstract and does not have any impact on the
final mapping.

Listing 3-69. The Book Entity Extends from a POJO

@Entity
public class Book extends Item {

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 115

 @Id @GeneratedValue
 private Long id;
 private String isbn;
 private String publisher;
 private Integer nbOfPage;
 private Boolean illustrations;

 // Constructors, getters, setters
}

Book is an entity and extends Item. But only the attributes of Book would be mapped to a
table. No attributes from Item appear in the table structure defined in Listing 3-70. To persist
a Book, you need to create an instance of Book, set values to any attributes you want (title,
price, isbn, publisher, etc.), but only the Book’s attributes (id, isbn, etc.) will get persisted.

Listing 3-70. The BOOK Table Has No Attributes from Item

create table BOOK (
 ID BIGINT not null,
 ILLUSTRATIONS SMALLINT,
 ISBN VARCHAR(255),
 NBOFPAGE INTEGER,
 PUBLISHER VARCHAR(255),
 primary key (ID)
);

Mapped Superclass
JPA defines a special kind of class, called a mapped superclass, to share state and behavior,
as well as mapping information entities inherit from. However, mapped superclasses are
not entities. They are not managed by the persistence provider, do not have any table to be
mapped to, and cannot be queried or be part of a relationship, but they may provide persistent
properties to any entities that extend it. They are similar to embeddable classes except they
can be used with inheritance. A class is indicated as being a mapped superclass by annotating
it with the @MappedSuperclass annotation.

Using the root class, Item is annotated with @MappedSuperclass, not @Entity, as shown in
Listing 3-71. It defines an inheritance strategy (JOINED) and annotates some of its attributes
with @Column, but because mapped superclasses are not mapped to tables, the @Table annota-
tion is not permitted.

Listing 3-71. Item Is a Mapped Superclass

@MappedSuperclass
@Inheritance(strategy = InheritanceType.JOINED)
public class Item {

 @Id @GeneratedValue
 protected Long id;

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING116

 @Column(length = 50, nullable = false)
 protected String title;
 protected Float price;
 @Column(length = 2000)
 protected String description;

 // Constructors, getters, setters
}

As you can see in Listing 3-71, the title and description attributes are annotated with
@Column. Listing 3-72 shows the Book entity extending Item.

Listing 3-72. Book Extends from a Mapped Superclass

@Entity
public class Book extends Item {

 private String isbn;
 private String publisher;
 private Integer nbOfPage;
 private Boolean illustrations;

 // Constructors, getters, setters
}

This hierarchy will be mapped into only one table. Item is not an entity and does not have
any table. Attributes of Item and Book would be mapped to columns of the BOOK table, but
mapped superclasses also share their mapping information. The @Column annotations of Item
will be inherited. But as mapped superclasses are not managed entities, you would not be able
to persist or query them, for example. Listing 3-73 shows the BOOK table structure with custom-
ized TITLE and DESCRIPTION columns.

Listing 3-73. The BOOK Table Has No Attributes from Item

create table BOOK (
 ID BIGINT not null,
 TITLE VARCHAR(50) not null,
 PRICE DOUBLE(52, 0),
 ILLUSTRATIONS SMALLINT,
 DESCRIPTION VARCHAR(2000),
 ISBN VARCHAR(255),
 NBOFPAGE INTEGER,
 PUBLISHER VARCHAR(255),
 primary key (ID)
);

Chapter 3  ■﻿   OBJECT-RELATIONAL MAPPING 117

Summary
Thanks to configuration by exception, not much is required to map entities to tables; inform
the persistence provider that a class is actually an entity (using @Entity) and an attribute is its
identifier (using @Id), and JPA does the rest. This chapter could have been much shorter if it
stuck to the defaults. JPA has a very rich set of annotations to customize every little detail of
ORM.

Elementary annotations can be used on attributes (@Basic, @Temporal, etc.) or classes to
customize the mapping. You can change the table’s name or the primary key type, or even
avoid mapping with the @Transient annotation. With JPA 2.0, you can now map collections of
basic types or embeddables. Depending on your business model, you can map relationships
(@OneToOne, @ManyToMany, etc.) of different directions and multiplicity. Same thing with inherit-
ance (@Inheritance, @MappedSuperclass, etc.) where you can use different strategies to map a
hierarchy of entities and nonentities mixed together.

This chapter focused on the static part of JPA, or how to map entities to tables. The next
chapter will deal with the dynamic aspects: how to query these entities.

C h a p t e r 4

Managing Persistent Objects

Java Persistence API has two sides. The first is the ability to map objects to a relational data-
base. Configuration by exception allows persistence providers to do most of the work without
much code, but the richness of JPA also allows customized mapping from objects to tables
using either annotation or XML descriptors. From simple mapping (changing the name of a
column) to more complex mapping (inheritance), JPA offers a wide spectrum of customiza-
tions. As a result, you can map almost any object model to a legacy database.

The other aspect of JPA is the ability to query these mapped objects. In JPA, the central-
ized service to manipulate instances of entities in a standard way is the entity manager. It
provides an API to create, find, remove, and synchronize objects with the database. It also
allows execution of different sorts of JPQL queries against entities such as dynamic, static, or
native queries. Locking mechanisms are also possible with the entity manager.

The database world relies on Structured Query Language (SQL). This programming lan-
guage is designed for managing relational data (retrieval, insertion, updating, and deletion),
and its syntax is table oriented. You can select columns from tables made of rows, join tables
together, combine the results of two SQL queries through unions, and so on. There are no
objects here, only rows, columns, and tables. In the Java world, where we manipulate objects,
a language made for tables (SQL) has to be twisted to suit a language made of objects (Java).
This is where Java Persistence Query Language (JPQL) comes into play.

JPQL is the language defined in JPA to query entities stored in a relational database. JPQL
syntax resembles SQL but operates against entity objects rather than directly with database
tables. JPQL does not see the underlying database structure nor deal with tables or columns,
but rather objects and attributes. And for that, it uses the dot (.) notation that Java developers
are familiar with.

In this chapter, you will learn how to manage persistent objects. This means you will learn
how to do Create, Read, Update, and Delete (CRUD) operations with the entity manager as
well as complex queries using JPQL. At the end of the chapter, you will see how concurrency is
handled by JPA.

How to Query an Entity
Let’s take as our first example a simple query: finding a book by its identifier. In Listing 4-1 you
can see a Book entity that uses the @Id annotation to inform the persistence provider that the
id attribute has to be mapped as a primary key.

119

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS120

Listing 4-1. A Simple Book Entity

@Entity
public class Book {

 @Id
 private Long id;
 private String title;
 private Float price;
 private String description;
 private String isbn;
 private Integer nbOfPage;
 private Boolean illustrations;

 // Constructors, getters, setters
}

The Book entity holds the mapping information. In this example, using most of the
defaults, the data will be stored in a table whose name equals the name of the entity (BOOK),
and each attribute will have an equivalent column mapping. You can use a separate Main
class (see Listing 4-2) that uses the javax.persistence.EntityManager interface to store a Book
instance in the table.

Listing 4-2. A Main Class Persisting and Retrieving a Book Entity

public class Main {

 public static void main(String[] args) {

 // 1-Create an instance of the Book entity
 Book book = new Book();
 book.setId(1234L);
 book.setTitle("The Hitchhiker's Guide to the Galaxy");
 book.setPrice(12.5F);
 book.setDescription("Science fiction created by Douglas Adams.");
 book.setIsbn("1-84023-742-2");
 book.setNbOfPage(354);
 book.setIllustrations(false);

 // 2-Get an entity manager and a transaction
 EntityManagerFactory emf = ➥

 Persistence.createEntityManagerFactory("chapter04PU");
 EntityManager em = emf.createEntityManager();
 EntityTransaction tx = em.getTransaction();

 // 3-Persist the book to the database
 tx.begin();
 em.persist(book);
 tx.commit();

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 121

 // 4-Retrieve the book by its identifier
 book = em.find(Book.class, 1234L);

 System.out.println(book);

 em.close();
 emf.close();
 }
}

The Main class in Listing 4-2 uses four different steps to persist a Book and retrieve it from
the database:

	 1.	 Create an instance of the Book entity. Entities are annotated POJOs, managed by the
persistence provider. From a Java viewpoint, an instance of a class needs to be cre-
ated through the new keyword as any POJO. It is important to emphasize that up to this
point in the code, the persistence provider is not aware of the Book object.

	 2.	 Obtain an entity manager and a transaction. This is the important part of the code, as
an entity manager is needed to manipulate entities. First, an entity manager factory is
created for the chapter04PU persistence unit. This factory is then employed to obtain an
entity manager (the em variable), used throughout the code to get a transaction (tx vari-
able), and persist and retrieve a Book.

	 3.	 Persist the book to the database. The code starts a transaction (tx.begin()) and uses
the EntityManager.persist() method to insert a Book instance. When the transaction is
committed (tx.commit()), the data is flushed into the database.

	 4.	 Retrieve the book by its identifier. Again, the entity manager is used to retrieve the
book using its identifier (EntityManager.find()).

Note in this code the absence of SQL queries, JPQL queries, or JDBC calls. Figure 4-1
shows the interaction between these components. The Main class interacts with the underlying
database through the EntityManager interface, which provides a set of standard methods that
allow you to perform operations on the Book entity. Behind the scenes, the EntityManager
relies on the persistence provider to interact with the databases. When an EntityManager
method is invoked, the persistence provider generates and executes a SQL statement through
the corresponding JDBC driver.

Figure 4-1. The entity manager interacts with the entity and the underlying database

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS122

Which JDBC driver to use? How to connect to the database? What’s the database
name? This information is missing from our previous code. When the Main class creates an
EntityManagerFactory, it passes the name of a persistence unit as a parameter; in this case, it’s
called chapter04PU. The persistence unit indicates to the entity manager the type of database
to use and the connection parameters, which are defined in the persistence.xml file, shown in
Listing 4-3, that has to be deployed with the classes.

Listing 4-3. The persistence.xml File Defining the Persistence Unit

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

 <persistence-unit name="chapter04PU" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>com.apress.javaee6.chapter04.Book</class>
 <properties>
 <property name="eclipselink.target-database" value="DERBY"/>
 <property name="eclipselink.jdbc.driver" ➥

 value="org.apache.derby.jdbc.ClientDriver"/>
 <property name="eclipselink.jdbc.url" ➥

 value="jdbc:derby://localhost:1527/chapter04DB"/>
 <property name="eclipselink.jdbc.user" value="APP"/>
 <property name="eclipselink.jdbc.password" value="APP"/>
 </properties>
 </persistence-unit>
</persistence>

The chapter04PU persistence unit defines a JDBC connection for the chapter04DB Derby
database. It connects with a user (APP) and a password (APP) at a given URL. The <class> tag
tells the persistence provider to manage the Book class.

To make the code work, in addition to a Derby database running on port 1527, both a Book
and Main class need to be compiled and deployed with this META-INF/persistence.xml file.
By enabling logging, you might see some traces of SQL statements, but your code manipu-
lates objects, in an object-friendly way, with no SQL statement or JDBC direct calls using the
EntityManager API.

Entity Manager
The entity manager is a central piece in JPA. It manages the state and life cycle of entities as
well as querying entities within a persistence context. The entity manager is responsible for
creating and removing persistent entity instances and finding entities by their primary key. It
can lock entities for protecting against concurrent access by using optimistic or pessimistic
locking and can use JPQL queries to retrieve entities following certain criteria.

When an entity manager obtains a reference to an entity, it is said to be managed. Until
that point, the entity is seen as a regular POJO (i.e., detached). The strength of JPA is that
entities can be used as regular objects by different layers of an application and become man-
aged by the entity manager when you need to load or insert data into the database. When
an entity is managed, you can carry out persistence operations, and the entity manager

http://java.sun.com/xml/ns/persistence
derby://localhost:1527/chapter04DB"/

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 123

will automatically synchronize the state of the entity with the database. When the entity is
detached (i.e., not managed), it returns to a simple POJO and can then be used by other layers
(e.g., a JSF presentation layer) without synchronizing its state with the database.

With the entity manager, the real work of persistence starts. EntityManager is an interface
implemented by a persistence provider that will generate and execute SQL statements. The
javax.persistence.EntityManager interface provides the API shown in Listing 4-4 to manipu-
late entities.

Listing 4-4. EntityManager API

public interface EntityManager {

 public EntityTransaction getTransaction();
 public EntityManagerFactory getEntityManagerFactory();
 public void close();
 public boolean isOpen();

 public void persist(Object entity);
 public <T> T merge(T entity);
 public void remove(Object entity);
 public <T> T find(Class<T> entityClass, Object primaryKey);
 public <T> T find(Class<T> entityClass, Object primaryKey,➥

 LockModeType lockMode);
 public <T> T find(Class<T> entityClass, Object primaryKey,➥

 LockModeType lockMode, Map<String, Object> properties);
 public <T> T getReference(Class<T> entityClass, Object primaryKey);

 public void flush();
 public void setFlushMode(FlushModeType flushMode);
 public FlushModeType getFlushMode();

 public void lock(Object entity, LockModeType lockMode);
 public void lock(Object entity, LockModeType lockMode,➥

 Map<String, Object> properties);

 public void refresh(Object entity);
 public void refresh(Object entity, LockModeType lockMode);
 public void refresh(Object entity, LockModeType lockMode,➥

 Map<String, Object> properties);

 public void clear();
 public void detach(Object entity);
 public boolean contains(Object entity);

 public Map<String, Object> getProperties();
 public Set<String> getSupportedProperties();

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS124

 public Query createQuery(String qlString);
 public Query createQuery(QueryDefinition qdef);
 public Query createNamedQuery(String name);
 public Query createNativeQuery(String sqlString);
 public Query createNativeQuery(String sqlString, Class resultClass);
 public Query createNativeQuery(String sqlString,➥

 String resultSetMapping);

 public void joinTransaction();

 public <T> T unwrap(Class<T> cls);
 public Object getDelegate();

 public QueryBuilder getQueryBuilder();
}

Don’t get scared by the API in Listing 4-4, as this chapter will cover most of the methods.
In the next section, I explain how to get an instance of an EntityManager.

Obtaining an Entity Manager
The entity manager is the central interface to interact with entities, but it first has to be
obtained by an application. Depending on whether it is a container-managed environment
(like what you’ll see in Chapter 6 with EJBs) or application-managed environment, the code
can be quite different. For example, in a container-managed environment, the transactions
are managed by the container. That means you don’t need to explicitly write the commit or
rollback, which you have to do in an application-managed environment.

The term “application-managed” means an application is responsible for explicitly
obtaining an instance of EntityManager and managing its life cycle (it closes the entity man-
ager when finished, for example). Listing 4-2, shown earlier, demonstrates how a class running
in a Java SE environment gets an instance of an entity manager. It uses the Persistence class
to bootstrap an EntityManagerFactory associated with a persistence unit (chapter04PU), which
is then used to create an entity manager. Creating an application-managed entity manager is
simple enough using a factory, but what differentiates application-managed from container-
managed is how the factory is acquired.

A container-managed environment is when the application evolves in a servlet or an EJB
container. In a Java EE environment, the most common way to acquire an entity manager is
by the @PersistenceContext annotation to inject one, or by JNDI lookup. The component run-
ning in a container (servlet, EJB, web service, etc.) doesn’t need to create or close the entity
manager, as its life cycle is managed by the container. Listing 4-5 shows the code of a stateless
session bean into which is injected a reference of the chapter04PU persistence unit.

Listing 4-5. A Stateless EJB Injected with a Reference of an Entity Manager

@Stateless
public class BookBean {

 @PersistenceContext(unitName = "chapter04PU")
 private EntityManager em;

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 125

 public void createBook() {
 // Create an instance of book
 Book book = new Book();
 book.setId(1234L);
 book.setTitle("The Hitchhiker's Guide to the Galaxy");
 book.setPrice(12.5F);
 book.setDescription("Science fiction created by Douglas Adams.");
 book.setIsbn("1-84023-742-2");
 book.setNbOfPage(354);
 book.setIllustrations(false);

 // Persist the book to the database
 em.persist(book);

 // Retrieve the book by its identifier
 book = em.find(Book.class, 1234L);

 System.out.println(book);
 }
}

Compared with Listing 4-2, the code in Listing 4-5 is much simpler. First, there is no
Persistence or EntityManagerFactory as the entity manager instance is injected by the con-
tainer. Second, because stateless beans manage the transactions, there is no explicit commit
or rollback. This style of entity manager will be demonstrated in Chapter 6.

Persistence Context
Before exploring the EntityManager API in detail, you need to understand a crucial concept:
the persistence context. A persistence context is a set of managed entity instances at a given
time: only one entity instance with the same persistent identity can exist in a persistence
context. For example, if a Book instance with an ID of 1234 exists in the persistence context,
no other book with this ID can exist within that same persistence context. Only entities that
are contained in the persistence context are managed by the entity manager, meaning that
changes will be reflected in the database.

The entity manager updates or consults the persistence context whenever a method of
the javax.persistence.EntityManager interface is called. For example, when a persist()
method is called, the entity passed as an argument will be added to the persistence context if it
doesn’t already exist. Similarly, when an entity is found by its primary key, the entity manager
first checks whether the requested entity is already present in the persistence context. The
persistence context can be seen as a first-level cache. It’s a short, live space where the entity
manager stores entities before flushing the content to the database. Objects just live in the per-
sistent context for the duration of the transaction.

The configuration for an entity manager is bound to the factory that created it. Whether
application or container managed, the factory needs a persistence unit from which to create
an entity manager. A persistence unit dictates the settings to connect to the database and the
list of entities that can be managed in a persistence context. The persistence unit is defined in

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS126

a persistence.xml file (see Listing 4-6) located in the META-INF directory. It has a name
(chapter04PU) and a set of attributes.

Listing 4-6. A Persistence Unit with a Set of Manageable Entities

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

 <persistence-unit name="chapter04PU" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>com.apress.javaee6.chapter04.Book</class>
 <class>com.apress.javaee6.chapter04.Customer</class>
 <class>com.apress.javaee6.chapter04.Address</class>
 <properties>
 <property name="eclipselink.target-database" value="DERBY"/>
 <property name="eclipselink.jdbc.driver" ➥

 value="org.apache.derby.jdbc.ClientDriver"/>
 <property name="eclipselink.jdbc.url" ➥

 value="jdbc:derby://localhost:1527/chapter04DB"/>
 <property name="eclipselink.jdbc.user" value="APP"/>
 <property name="eclipselink.jdbc.password" value="APP"/>
 </properties>
 </persistence-unit>
</persistence>

The persistence unit is the bridge between the persistence context and the database. On
one hand, the <class> tag lists all the entities that could be managed in the persistence con-
text, and on the other, it gives all the information to physically connect to the database. This
is because you are in an application-managed environment (transaction-type="RESOURCE_
LOCAL"). In a container-managed environment, the persistence.xml would define a
datasource instead of the database connection properties and set the transaction type to JTA
(transaction-type="JTA").

Manipulating Entities
The entity manager is also used to create complex JQPL queries to retrieve an entity or a
list of entities. When manipulating single entities, the EntityManager interface can be seen
as a generic Data Access Object (DAO), which allows CRUD operations on any entity (see
Table 4-1).

Table 4-1. EntityManager Interface Methods to Manipulate Entities

Method Description

void persist(Object entity) Makes an instance managed and persistent

<T> T find(Class<T> entityClass, Object
primaryKey)

Searches for an entity of the specified class and
primary key

<T> T getReference(Class<T> entityClass,
Object primaryKey)

Gets an instance, whose state may be lazily
fetched

http://java.sun.com/xml/ns/persistence
derby://localhost:1527/chapter04DB"/

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 127

Method Description

void remove(Object entity) Removes the entity instance from the persistence
context and from the underlying database

<T> T merge(T entity) Merges the state of the given entity into the cur-
rent persistence context

void refresh(Object entity) Refreshes the state of the instance from the
database, overwriting changes made to the entity,
if any

void flush() Synchronizes the persistence context to the un-
derlying database

void clear() Clears the persistence context, causing all man-
aged entities to become detached

void clear(Object entity) Removes the given entity from the persistence
context

boolean contains(Object entity) Checks whether the instance is a managed entity
instance belonging to the current persistence
context

To gain a better understanding of these methods, I will use a simple example of a
one-way, one-to-one relationship between a Customer and an Address. Both entities have
automatically generated identifiers (thanks to the @GeneratedValue annotation), and Customer
(see Listing 4-7) has a lazy fetch to Address (see Listing 4-8).

Listing 4-7. The Customer Entity with a One-Way, One-to-One Address

@Entity
public class Customer {

 @Id @GeneratedValue
 private Long id;
 private String firstName;
 private String lastName;
 private String email;
 @OneToOne (fetch = FetchType.LAZY)
 @JoinColumn(name = "address_fk")
 private Address address;

 // Constructors, getters, setters
}

Listing 4-8. The Address Entity

@Entity
public class Address {

 @Id @GeneratedValue
 private Long id;

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS128

 private String street1;
 private String city;
 private String zipcode;
 private String country;

 // Constructors, getters, setters
}

These two entities will get mapped into the database structure shown in Figure 4-2. Note
the ADDRESS_FK column is the foreign key to ADDRESS.

Figure 4-2. CUSTOMER and ADDRESS tables

For better readability, the fragments of code used in the upcoming section assume that
the em attribute is of type EntityManager and tx of type EntityTransaction.

Persisting an Entity
Persisting an entity means inserting data into the database when the data doesn’t already exist
(otherwise an exception is thrown). To do so, it’s necessary to create a new entity instance
using the new operator, set the values of the attributes, bind one entity to another when there
are associations, and finally call the EntityManager.persist() method as shown in the JUnit
test case in Listing 4-9.

Listing 4-9. Persisting a Customer with an Address

Customer customer = new Customer("Antony", "Balla", "tballa@mail.com");
Address address = new Address("Ritherdon Rd", "London", "8QE", "UK");
customer.setAddress(address);

tx.begin();
em.persist(customer);
em.persist(address);
tx.commit();

assertNotNull(customer.getId());
assertNotNull(address.getId());

In Listing 4-9, customer and address are just two objects that reside in the JVM memory.
Both become managed entities when the entity manager (variable em) takes them into account
by persisting them (em.persist(customer)). At this time, both objects become eligible to be
inserted in the database. When the transaction is committed (tx.commit()), the data is flushed
to the database, and an address row is inserted into the ADDRESS table and a customer row into
the CUSTOMER table. As the Customer is the owner of the relationship, its table holds the foreign

mailto:tballa@mail.com

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 129

key to ADDRESS. With the assertNotNull expressions, both entities receive a generated identifier
thanks to the persistence provider and the annotations.

Note the ordering of the persist() methods: a customer is persisted and then an address.
If it were the other way round, the result would be the same. Earlier, the entity manager was
described as a first-level cache. Until the transaction is committed, the data stays in memory
and there is no access to the database. The entity manager caches data and, when ready,
flushes the data in the order that the underlying database is expecting (respecting integrity
constraints). Because of the foreign key in the CUSTOMER table, the insert statement for ADDRESS
will be executed first, followed by that for CUSTOMER.

nNote  Most of the entities in this chapter do not implement the Serializable interface. That’s because
entities don’t have to in order to get persisted in the database. They are passed by reference from one
method to the other, and when they have to be persisted, the EntityManager.persist() method is
invoked. But if you need to pass entities by value (remote invocation, external EJB container, etc.), they must
implement the java.io.Serializable marker (no method) interface. It indicates to the compiler that it
must enforce all fields on the entity class to be serializable, so that any instance can be serialized to a byte
stream and passed using Remote Method Invocation (RMI).

Finding by ID
To find an entity by its identifier, you can use two different methods. The first is the
EntityManager.find() method, which takes two parameters: the entity class and the unique
identifier (see Listing 4-10). If the entity is found, it is returned; if it is not found, a null value is
returned.

Listing 4-10. Finding a Customer by ID

Customer customer = em.find(Customer.class, 1234L)
if (customer!= null) {
 // Process the object
}

The second method is getReference() (see Listing 4-11). It is very similar to the find
operation, as it takes the same parameters, but it allows retrieval of a reference to an entity
via its primary key, not its data. It is intended for situations where a managed entity instance
is needed, but no data, other than potentially the entity’s primary key being accessed. With
getReference(), the state data is fetched lazily, which means that if you don’t access state
before the entity is detached, the data might not be there. If the entity is not found, an
EntityNotFoundException is thrown.

Listing 4-11. Finding a Customer by Reference

try {
 Customer customer = em.getReference(Customer.class, 1234L)
 // Process the object

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS130

} catch(EntityNotFoundException ex) {
 // Entity not found
}

Removing an Entity
An entity can be removed with the EntityManager.remove() method. Once removed, the entity
is deleted from the database, is detached from the entity manager, and cannot be synchro-
nized with the database anymore. In terms of Java objects, the entity is still accessible until it
goes out of scope and the garbage collector cleans it up. The code in Listing 4-12 shows how to
remove an object after it has been created.

Listing 4-12. Creating and Removing Customer and Address Entities

Customer customer = new Customer("Antony", "Balla", "tballa@mail.com");
Address address = new Address("Ritherdon Rd", "London", "8QE", "UK");
customer.setAddress(address);

tx.begin();
em.persist(customer);
em.persist(address);
tx.commit();

tx.begin();
em.remove(customer);
tx.commit();

// The data is removed from the database
// but the object is still accessible
assertNotNull(customer);

The code in Listing 4-12 creates an instance of Customer and Address, links them together
(customer.setAddress(address)), and persists them. In the database, the customer row is
linked to the address through a foreign key; later on in the code, only the Customer is deleted.
Depending on how the cascading is configured, the Address could be left with no other entity
referencing it. The address row becomes an orphan.

Orphan Removal
For data consistency, orphans are not desirable, as they result in having rows in a database
that are not referenced by any other table, without means of access. With JPA you can inform
the persistence provider to automatically remove orphans or cascade a remove operation as
you’ll see later. If a target entity (Address) is privately owned by a source (Customer), meaning a
target must never be owned by more than one source, and that source is deleted by the appli-
cation, the provider should also delete the target.

Associations that are specified as one-to-one or one-to-many support the use of
the orphan removal option. To include this option in the example, let’s look at how the
orphanRemoval=true element to the @OneToOne annotation should be added (see Listing 4-13).

mailto:tballa@mail.com

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 131

Listing 4-13. The Customer Entity Dealing with Orphan Address Removal

@Entity
public class Customer {

 @Id @GeneratedValue
 private Long id;
 private String firstName;
 private String lastName;
 private String email;
 @OneToOne (fetch = FetchType.LAZY, orphanRemoval=true)
 private Address address;

 // Constructors, getters, setters
}

With this mapping, the code in Listing 4-12 will automatically remove the Address entity
when the customer is removed. The remove operation is applied at the time of the flush opera-
tion (transaction committed).

Synchronizing with the Database
Until now the synchronization with the database has been done at commit time. The entity
manager is a first-level cache, waiting for the transaction to be committed to flush the data to
the database, but what happens when a customer and an address need to be inserted?

tx.begin();
em.persist(customer);
em.persist(address);
tx.commit();

All pending changes require an SQL statement, with two insert statements produced
and made permanent only when the database transaction commits. For most applications,
this automatic data synchronization is sufficient. Although at exactly which point in time the
provider actually flushes the changes to the database is not known, you can be sure it hap-
pens inside the commit of the transaction. The database is synchronized with the entities in
the persistence context, but data to the database can be explicitly flushed (flush), or entities
refreshed with data from the database (refresh). If the data is flushed to the database at one
point, and if later in the code the application calls the rollback() method, the flushed data will
be taken out of the database.

Flushing Data

With the EntityManager.flush() method, the persistence provider can be explicitly forced to
flush the data, allowing a developer to manually trigger the same process used by the entity
manager internally to flush the persistence context.

tx.begin();
em.persist(customer);
em.flush();

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS132

em.persist(address);
tx.commit();

Two interesting things happen in the preceding code. The first is that em.flush() will not
wait for the transaction to commit and will force the provider to flush the persistence context.
An insert statement will be generated and executed at the flush. The second is that this code
will not work because of integrity constraint. Without an explicit flush, the entity manager
caches all changes, and orders and executes them in a coherent way for the database. With an
explicit flush, the insert statement to CUSTOMER will be executed, but the integrity constraint on
the address foreign key will be violated (the ADDRESS_FK column in CUSTOMER). That will lead the
transaction to roll back. Data that has been flushed will also get rolled back. Explicit flushes
should be carefully used and only when needed.

Refreshing an Entity

The refresh() method is used for data synchronization in the opposite direction of the flush,
meaning it overwrites the current state of a managed entity with data as it is present in the
database. A typical case is where the EntityManager.refresh() method is used to undo changes
that have been done to the entity in memory only. The test class snippet in Listing 4-14 finds a
Customer by ID, changes its first name, and undoes this change using the refresh() method.

Listing 4-14. Refreshing the Customer Entity from the Database

Customer customer = em.find(Customer.class, 1234L)
assertEquals(customer.getFirstName(), "Antony");

customer.setFirstName("William");

em.refresh(customer);
assertEquals(customer.getFirstName(), "Antony");

Content of the Persistence Context
The persistence context holds the managed entities. With the EntityManager interface, you can
check whether an entity is being managed, and clear all entities from the persistence context.

Contains

Entities are either managed or not by the entity manager. The EntityManager.contains()
method returns a Boolean and allows checking of whether a particular entity instance is cur-
rently managed by the entity manager within the current persistence context. In the test case
in Listing 4-15, a Customer is persisted, and you can immediately check whether the entity is
managed (em.contains(customer)). The answer is true. Afterward, the remove() method is
called, and the entity is removed from the database and from the persistence context
(em.contains(customer) returns false).

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 133

Listing 4-15. Test Case for Whether the Customer Entity Is in the Persistence Context

Customer customer = new Customer("Antony", "Balla", "tballa@mail.com");

tx.begin();
em.persist(customer);
tx.commit();

assertTrue(em.contains(customer));

tx.begin();
em.remove(customer);
tx.commit();

assertFalse(em.contains(customer));

Clear and Detach

The clear() method is straightforward: it empties the persistence context, causing all man-
aged entities to become detached. The detach(Object entity) method removes the given
entity from the persistence context. Changes made to the entity will not be synchronized to
the database after such eviction has taken place. Listing 4-16 creates an entity, checks that it is
managed, detaches it from the persistence context, and checks that it is detached.

Listing 4-16. Checking Whether the Customer Entity Is in the Persistence Context

Customer customer = new Customer("Antony", "Balla", "tballa@mail.com");

tx.begin();
em.persist(customer);
tx.commit();

assertTrue(em.contains(customer));

em.detach(customer);

assertFalse(em.contains(customer));

Note that the clear() method can operate on the entire persistence context (clear ()) or
just on a single entity (clear(Object entity)).

Merging an Entity
A detached entity is no longer associated with a persistence context. If you want to manage
it, you need to merge it. Let’s take the example of an entity that needs to be displayed in a
JSF page. The entity is first loaded from the database in the persistent layer (it is managed), it
is returned from an invocation of a local EJB (it is detached because the transaction context
ends), the presentation layer displays it (it is still detached), and then it returns to be updated

mailto:tballa@mail.com
mailto:tballa@mail.com

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS134

to the database. However, at that moment the entity is detached and needs to be attached
again, or merged, to synchronize its state with the database.

Listing 4-17 simulates this case by clearing the persistence context (em.clear()), which
detaches the entity.

Listing 4-17. Clearing the Persistence Context

Customer customer = new Customer("Antony", "Balla", "tballa@mail.com");

tx.begin();
em.persist(customer);
tx.commit();

em.clear();

// Sets a new value to a detached entity
customer.setFirstName("William");

tx.begin();
em.merge(customer);
tx.commit();

In Listing 4-17, a customer is created and persisted. The call to em.clear() forces the
detachment of the customer entity, but detached entities continue to live outside of the
persistence context in which they were, and their state is no longer guaranteed to be synchro-
nized with the database state. That’s what happens with customer.setFirstName("William");
set is executed on a detached entity, and the data is not updated in the database. To rep-
licate this change to the database, you need to reattach the entity (i.e., merge it) with
em.merge(customer).

Updating an Entity
Updating an entity is simple, yet at the same time it can be confusing to understand. As you’ve
just seen, you can use the EntityManager.merge() to attach an entity and synchronize its state
with the database. But if an entity is currently managed, changes to it will be reflected in the
database automatically. If not, you will need to explicitly call merge().

Listing 4-18 demonstrates persisting a customer with a first name set to Antony. When
the em.persist() method is called, the entity is managed, so any changes made to the entity
will be synchronized with the database. When the setFirstName() method is called, the entity
changes its state. The entity manager caches any action starting at tx.begin() and synchro-
nizes them when committed.

Listing 4-18. Updating the Customer’s First Name

Customer customer = new Customer("Antony", "Balla", "tballa@mail.com");

tx.begin();
em.persist(customer);

mailto:tballa@mail.com
mailto:tballa@mail.com

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 135

customer.setFirstName("Williman");

tx.commit();

Cascading Events
By default, every entity manager operation applies only to the entity supplied as an argument
to the operation. But sometimes, when an operation is carried out on an entity, you want to
propagate it on its associations. This is known as cascading an event. The examples so far have
relied on default cascade behavior and not customized behavior. In Listing 4-19, to create a
customer, you instantiate a Customer and an Address entity, link them together (customer.
setAddress(address)), and then persist the two.

Listing 4-19. Persisting a Customer with an Address

Customer customer = new Customer("Antony", "Balla", "tballa@mail.com");
Address address = new Address("Ritherdon Rd", "London", "8QE", "UK");
customer.setAddress(address);

tx.begin();
em.persist(customer);
em.persist(address);
tx.commit();

Because there’s a relationship between Customer and Address, you could cascade
the persist action from the customer to the address. That would mean that a call to
em.persist(customer) would cascade the persist event to the Address entity if it allows
this type of event to be propagated. You could then shrink the code and do away with the
em.persist(address) as shown in Listing 4-20.

Listing 4-20. Cascading a Persist Event to Address

Customer customer = new Customer("Antony", "Balla", "tballa@mail.com");
Address address = new Address("Ritherdon Rd", "London", "8QE", "UK");
customer.setAddress(address);

tx.begin();
em.persist(customer);
tx.commit();

Without cascading, the customer would get persisted, but not the address. Cascading an
event is possible if the mapping of the relationship is changed. The annotations @OneToOne,
@OneToMany, @ManyToOne, and @ManyToMany have a cascade attribute that takes an array of events
to be cascaded, and a persist event can be cascaded as well as removed (commonly used to
perform delete cascades). To allow this, the mapping of the Customer entity (see Listing 4-21)
must be changed, and a cascade attribute to the @OneToOne annotation on Address must be
added.

mailto:tballa@mail.com
mailto:tballa@mail.com

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS136

Listing 4-21. Customer Entity Cascading Persist and Remove Events

@Entity
public class Customer {

 @Id @GeneratedValue
 private Long id;
 private String firstName;
 private String lastName;
 private String email;
 @OneToOne (fetch = FetchType.LAZY, ➥

 cascade = {CascadeType.PERSIST, CascadeType.REMOVE})
 @JoinColumn(name = "address_fk")
 private Address address;

 // Constructors, getters, setters
}

You can choose from several events to cascade to a target association, and these are listed
in Table 4-2. You can even cascade them all using the CascadeType.ALL type.

Table 4-2. Possible Events to Be Cascaded

Cascade Type	 Description

PERSIST	 Cascades persist operations to the target of the association

REMOVE	 Cascades remove operations to the target of the association

MERGE	 Cascades merge operations to the target of the association

REFRESH	 Cascades refresh operations to the target of the association

CLEAR	 Cascades clear operations to the target of the association

ALL	 Declares that all the previous operations should be cascaded

Cache API
Most specifications (not just Java EE) focus heavily on functional requirements, leaving
nonfunctional ones like performance, scalability, or clustering as implementation details.
Implementations have to strictly follow the specification but may also add specific features. A
perfect example for JPA would be caching.

Until JPA 2.0, caching wasn’t mentioned in the specification. The entity manager is a first-
level cache used to treat data in a comprehensive way for the database and to cache short, live
entities. The first-level cache is used on a per-transaction basis to reduce the number of SQL
queries within a given transaction. For example, if an object is modified several times within
the same transaction, the entity manager will generate only one UPDATE statement at the end of
the transaction. A first-level cache is not a performance cache.

Nevertheless, all JPA implementations use a performance cache (a.k.a. a second-level
cache) to optimize database access, queries, joins, and so on. Second-level caches reduce

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 137

database traffic because they keep objects loaded in memory and available to the whole appli-
cation. Each implementation has its own way of caching objects, either by developing their
own mechanism or by reusing open source ones. Caching can be distributed across a cluster
or not—anything is possible when the specification ignores a topic.

JPA 2.0 acknowledges that second-level cache is needed and has added caching opera-
tions to the standard API. The API, shown in Listing 4-22, is very minimalist (because the goal
of JPA is not to standardize a fully functional cache), but it allows code to query and remove
some entities from the second-level cache in a standard way. Like EntityManager, javax.
persistence.Cache is an interface implemented by the persistence provider caching system.

Listing 4-22. Cache API

public interface Cache {

 // Whether the cache contains data for the given entity.
 public boolean contains(Class cls, Object primaryKey);

 // Remove the data for the given entity from the cache.
 public void evict(Class cls, Object primaryKey);

 // Remove the data for entities of the specified class from the cache.
 public void evict(Class cls);

 // Clear the cache.
 public void evictAll();
}

JPQL
You just saw how to manipulate entities individually with the EntityManager API. You know
how to find an entity by ID, remove it, update its attributes, and so on. But finding an entity
by ID is quite limiting, as you only retrieve a single entity using its unique identifier. In prac-
tice, you may need to retrieve an entity by criteria other than the ID (by name, ISBN, etc.) or
retrieve a set of entities based on different criteria (e.g., all customers living in the USA). This
possibility is inherent to relational databases, and JPA has a language that allows this interac-
tion: JPQL.

JPQL is used to define searches against persistent entities independent of the underly-
ing database. JPQL is a query language that takes its roots in the syntax of Standard Query
Language (SQL), which is the standard language for database interrogation. But the main
difference is that in SQL the results obtained are in the form of rows and columns (tables),
whereas JPQL uses an entity or a collection of entities. JPQL syntax is object oriented and
therefore more easily understood by developers whose experience is limited to object-oriented
languages. Developers manage their entity domain model, not a table structure, by using the
dot notation (e.g., myClass.myAttribute).

Under the hood, JPQL uses the mechanism of mapping to transform a JPQL query into
language comprehensible by a SQL database. The query is executed on the underlying data-
base with SQL and JDBC calls, and then entity instances have their attributes set and are

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS138

returned to the application—all in a very simple and powerful manner using a rich query
syntax.

The simplest JPQL query selects all the instances of a single entity:

SELECT b
FROM Book b

If you know SQL, this should look familiar to you. Instead of selecting from a table, JPQL
selects entities, here Book. The FROM clause is also used to give an alias to the entity: b is an alias
for Book. The SELECT clause of the query indicates that the result type of the query is the b entity
(the Book). Executing this statement will result in a list of zero or more Book instances.

To restrict the result, add search criteria where you can use the WHERE clause as follows:

SELECT b
FROM Book b
WHERE b.title = "H2G2"

The alias is used to navigate across entity attributes through the dot operator. Since the
Book entity has a persistent attribute named title of type String, b.title refers to the title
attribute of the Book entity. Executing this statement will result in a list of zero or more Book
instances that have a title equal to H2G2.

The simplest select query consists of two mandatory parts: the SELECT and the FROM clause.
SELECT defines the format of the query results. The FROM clause defines the entity or entities
from which the results will be obtained, and optional WHERE, ORDER BY, GROUP BY, and HAVING
clauses can be used to restrict or order the result of a query. The select syntax is defined in
Listing 4-23 in the next section.

There are also DELETE and UPDATE statements that can be used to delete and update opera-
tions across multiple instances of a specific entity class.

Select
The SELECT clause follows the path expressions syntax and results in one of the following
forms: an entity, an entity attribute, a constructor expression, an aggregate function, or some
sequence of these. Path expressions are the building blocks of queries and are used to navigate
on entity attributes or across entity relationships (or a collection of entities) via the dot (.)
navigation. Listing 4-23 defines the SELECT statement syntax.

Listing 4-23. SELECT Statement Syntax

SELECT <select expression>
FROM <from clause>
[WHERE <conditional expression>]
[ORDER BY <order by clause>]
[GROUP BY <group by clause>]
[HAVING <having clause>]

A simple SELECT returns an entity. For example, if a Customer entity has an alias called c,
SELECT c will return an entity or a list of entities.

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 139

SELECT c
FROM Customer c

But a SELECT clause can also return attributes. If the Customer entity has a first name,
SELECT c.firstName will return a String or a collection of Strings with the first names.

SELECT c.firstName
FROM Customer c

To retrieve the first name and the last name of a customer, you create a list containing the
two attributes:

SELECT c.firstName, c.lastName
FROM Customer c

If a Customer entity has a one-to-one relationship with Address, c.address refers to the
address of the customer, and the result of the following query will return not a list of custom-
ers, but a list of addresses:

SELECT c.address
FROM Customer c

Navigation expressions can be chained together to traverse complex entity graphs. Using
this technique, path expressions such as c.address.country.code can be constructed, referring
to the country code of the customer’s address.

SELECT c.address.country.code
FROM Customer c

A constructor may be used in the SELECT expression to return an instance of a Java class
initialized with the result of the query. The class doesn’t have to be an entity, but the construc-
tor must be fully qualified and match the attributes.

SELECT NEW com.apress.javaee6.CustomerDTO(c.firstName, c.lastName, ➥

 c.address.street1)
FROM Customer c

The result of this query is a list of CustomerDTO objects that have been instantiated with the
new operator and initialized with the first name, last name, and street of the customers.

Executing these queries will return either a single value or a collection of zero or more
entities (or attributes) including duplicates. To remove the duplicates, the DISTINCT operator
must be used:

SELECT DISTINCT c
FROM Customer c

SELECT DISTINCT c.firstName
FROM Customer c

The result of a query may be the result of an aggregate function applied to a path expres-
sion. The following aggregate functions can be used in the SELECT clause: AVG, COUNT, MAX, MIN,
SUM. The results may be grouped in the GROUP BY clause and filtered using the HAVING clause.

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS140

SELECT COUNT(c)
FROM Customer c

Scalar expressions also can be used in the SELECT clause of a query as well as in the WHERE
and HAVING clauses. These expressions can be used on numeric (ABS, SQRT, MOD, SIZE, INDEX),
string (CONCAT, SUBSTRING, TRIM, LOWER, UPPER, LENGTH), and date-time (CURRENT_DATE, CURRENT_
TIME, CURRENT_TIMESTAMP) values.

From
The FROM clause of a query defines entities by declaring identification variables. An identifi-
cation variable, or alias, is an identifier that can be used in the other clauses (SELECT, WHERE,
etc.). The syntax of the FROM clause consists of an entity and an alias. In the following example,
Customer is the entity and c the identification variable:

SELECT c
FROM Customer c

Where
The WHERE clause of a query consists of a conditional expression used to restrict the result of a
SELECT, UPDATE, or DELETE statement. The WHERE clause can be a simple expression or set of con-
ditional expressions to filter the query in a sophisticated way.

The simplest way to restrict the result of a query is to use the attribute of an entity. For
example, the following query selects all customers named Vincent:

SELECT c
FROM Customer c
WHERE c.firstName = 'Vincent'

You can further restrict queries by using the logical operators AND and OR. The following
example uses AND to select all customers named Vincent, living in France:

SELECT c
FROM Customer c
WHERE c.firstName = 'Vincent' AND c.address.country = 'France'

The WHERE clause also uses comparison operators: =, >, >=, <, <=, <>, [NOT] BETWEEN, [NOT]
LIKE, [NOT] IN, IS [NOT] NULL, IS [NOT] EMPTY, [NOT] MEMBER [OF]. The following shows an
example using two of these operators:

SELECT c
FROM Customer c
WHERE c.age > 18

SELECT c
FROM Customer c
WHERE c.age NOT BETWEEN 40 AND 50

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 141

SELECT c
FROM Customer c
WHERE c.address.country IN ('USA', 'Portugal')

The LIKE expression consists of a string and an optional escape characters that define the
match conditions: the underscore (_) for single-character wildcards and the percent sign (%)
for multicharacter wildcards.

SELECT c
FROM Customer c
WHERE c.email LIKE '%mail.com'

Binding Parameters
Until now, the WHERE clauses shown herein only used fixed values. In an application, queries
frequently depend on parameters. JPQL supports two types of parameter-binding syn-
tax, allowing dynamic changes to the restriction clause of a query: positional and named
parameters.

Positional parameters are designated by the question mark (?) followed by an integer (e.g.,
?1). When the query is executed, the parameter numbers that should be replaced need to be
specified.

SELECT c
FROM Customer c
WHERE c.firstName = ?1 AND c.address.country = ?2

Named parameters can also be used and are designated by a String identifier that is pre-
fixed by the colon (:) symbol. When the query is executed, the parameter names that should
be replaced need to be specified.

SELECT c
FROM Customer c
WHERE c.firstName = :fname AND c.address.country = :country

In the “Queries” section later in this chapter, you will see how an application binds
parameters.

Subqueries
A subquery is a SELECT query that is embedded within a conditional expression of a WHERE or
HAVING clause. The results of the subquery are evaluated and interpreted in the conditional
expression of the main query. To retrieve the youngest customers from the database, a sub-
query with a MIN(age) is first executed and its result evaluated in the main query.

SELECT c
FROM Customer c
WHERE c.age = (SELECT MIN(c. age) FROM Customer c)

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS142

Order By
The ORDER BY clause allows the entities or values that are returned by a SELECT query to be
ordered. The ordering applies to the entity attribute specified in this clause followed by the ASC
or DESC keyword. The keyword ASC specifies that ascending ordering be used; DESC, the inverse,
specifies that descending ordering be used. Ascending is the default and can be omitted.

SELECT c
FROM Customer c
WHERE c.age > 18
ORDER BY c.age DESC

Multiple expressions may also be used to refine the sort order.

SELECT c
FROM Customer c
WHERE c.age > 18
ORDER BY c.age DESC, c.address.country ASC

Group By and Having
The GROUP BY construct enables the aggregation of result values according to a set of proper-
ties. The entities are divided into groups based on the values of the entity field specified in the
GROUP BY clause. To group customers by country and count them, use the following query:

SELECT c.address.country, count(c)
FROM Customer c
GROUP BY c.address.country

The GROUP BY defines the grouping expressions (c.address.country) over which the results
will be aggregated and counted (count(c)). Note that expressions that appear in the GROUP BY
clause must also appear in the SELECT clause.

The HAVING clause defines an applicable filter after the query results have been grouped,
similar to a secondary WHERE clause filtering the result of the GROUP BY. Using the previous
query, by adding a HAVING clause, a result of only those countries where the number of custom-
ers is greater than 1,000 can be achieved.

SELECT c.address.country, count(c)
FROM Customer c
GROUP BY c.address.country
HAVING count(c) > 100

GROUP BY and HAVING can only be used within a SELECT clause.

Bulk Delete
You know how to remove an entity with the EntityManager.remove() method and query a
database to retrieve a list of entities that correspond to certain criteria. To remove a list of enti-
ties, you can execute a query, iterate through it, and remove each entity individually. Although
this is a valid algorithm, it is terrible in terms of performance (too many database accesses).
There is a better way to do it: bulk deletes.

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 143

JPQL performs bulk delete operations across multiple instances of a specific entity class.
These are used to delete a large number of entities in a single operation. The DELETE statement
looks like the SELECT statement, as it can have a restricting WHERE clause and take parameters.
As a result, the number of entity instances affected by the operation is returned. Listing 4-24
describes the DELETE statement syntax.

Listing 4-24. DELETE Statement Syntax

DELETE FROM <entity name> [[AS] <identification variable>]
[WHERE <conditional expression>]

As an example, to delete all customers younger than 18, you can use a bulk removal via a
DELETE statement:

DELETE FROM Customer c
WHERE c.age < 18

Bulk Update
Bulk updates of entities are accomplished with the UPDATE statement, setting one or more attri-
butes of the entity subject to conditions in the WHERE clause. The UPDATE statement syntax is
described in Listing 4-25.

Listing 4-25. UPDATE Statement Syntax

UPDATE <entity name> [[AS] <identification variable>]
SET <update statement> {, <update statement>}*
[WHERE <conditional expression>]

Rather than deleting all the young customers, their first name can be changed to “too
young” with the following statement:

UPDATE Customer c
SET c.firstName = 'TOO YOUNG'
WHERE c.age < 18

Queries
You’ve seen the JPQL syntax and how to describe statements using different clauses (SELECT,
FROM, WHERE, etc.). But how do you integrate a JPQL statement to your application? The answer:
through queries. JPA 2.0 has four different types of queries that can be used in code, each with
a different purpose:

	 •	 Dynamic queries: This is the simplest form of queries, consisting of nothing more than
a JPQL query string dynamically specified at runtime.

	 •	 Named queries: Named queries are static and unchangeable.

	 •	 Native queries: This type of query is useful to execute a native SQL statement instead of
a JPQL statement.

	 •	 Criteria API: JPA 2.0 introduces this new concept.

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS144

The central point for choosing from these four types of queries is the EntityManager inter-
face, which has several factory methods, listed in Table 4-3, all returning a Query interface.

Table 4-3. EntityManager Methods for Creating Queries

Method Description

Query createQuery(String jpqlString) Creates an instance of Query for executing a
JPQL statement for dynamic queries

Query createQuery(QueryDefinition qdef) Creates an instance of Query for executing a
criteria query

Query createNamedQuery(String name) Creates an instance of Query for executing a
named query (in JPQL or in native SQL)

Query createNativeQuery(String sqlString) Creates an instance of Query for executing a
native SQL statement

Query createNativeQuery(String sqlString,
Class resultClass)

Creates an instance of Query for executing a
native SQL statement passing the class of the
expected results

When an implementation of the Query interface is obtained through one of the factory
methods in the EntityManager interface, a rich API controls it. The Query API, shown in List-
ing 4-26, is used for static queries (i.e., named queries) and dynamic queries using JPQL, and
native queries in SQL. The Query API also supports parameter binding and pagination control.

Listing 4-26. Query API

public interface Query {
 // Executes a query and returns a result
 public List getResultList();
 public Object getSingleResult();
 public int executeUpdate();

 // Sets parameters to the query
 public Query setParameter(String name, Object value);
 public Query setParameter(String name, Date value,➥

 TemporalType temporalType);
 public Query setParameter(String name, Calendar value,➥

 TemporalType temporalType);
 public Query setParameter(int position, Object value);
 public Query setParameter(int position, Date value,➥

 TemporalType temporalType);
 public Query setParameter(int position, Calendar value,➥

 TemporalType temporalType);
 public Map<String, Object> getNamedParameters();
 public List getPositionalParameters();

 // Constrains the number of results returned by a query
 public Query setMaxResults(int maxResult);

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 145

 public int getMaxResults();
 public Query setFirstResult(int startPosition);
 public int getFirstResult();

 // Sets and gets query hints
 public Query setHint(String hintName, Object value);
 public Map<String, Object> getHints();
 public Set<String> getSupportedHints();

 // Sets the flush mode type to be used for the query execution
 public Query setFlushMode(FlushModeType flushMode);
 public FlushModeType getFlushMode();

 // Sets the lock mode type to be used for the query execution
 public Query setLockMode(LockModeType lockMode);
 public LockModeType getLockMode();

 // Allows access to the provider-specific API
 public <T> T unwrap(Class<T> cls);
}

The methods that are mostly used in this API are ones that execute the query itself. To
execute a SELECT query, you have to choose between two methods depending on the required
result:

	 •	 The method getResultList() executes the query and returns a list of results (entities,
attributes, expressions, etc.).

	 •	 The getSingleResult() method executes the query and returns a single result.

To execute an update or a delete, the executeUpdate() method executes the bulk query
and returns the number of entities affected by the execution of the query.

As you saw in the “JPQL” section earlier, a query can take parameters that are either
named (e.g., :myParam) or positional (e.g., ?1). The Query API defines several setParameter
methods to set parameters before executing a query.

When a query is executed, it can return a large number of results. Depending on the appli-
cation, these can be processed together or in chunks (e.g., a web application only displays ten
rows at one time). To control the pagination, the Query interface defines setFirstResult() and
setMaxResults() methods to specify the first result to be received (numbered from zero) and
the maximum number of results to return relative to that point.

The flush mode indicates to the persistence provider how to handle pending changes and
queries. There are two possible flush mode settings: AUTO and COMMIT. AUTO (the default) means
that the persistence provider is responsible for ensuring pending changes are visible to the
processing of the query. COMMIT is when the effect of updates made to entities do not overlap
with changed data in the persistence context.

Queries can be locked using the setLockMode(LockModeType) method. Locks are intended
to provide a facility that enables the effect of repeatable read whether optimistically or pes-
simistically.

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS146

The following sections describe the four different types of queries using some of the meth-
ods just described.

Dynamic Queries
Dynamic queries are defined on the fly as needed by the application. To create a dynamic
query, use the EntityManager.createQuery() method, which takes a String as a parameter that
represents a JPQL query.

In the following code, the JPQL query selects all the customers from the database. As the
result of this query is a list, the getResultList() method is used and returns a list of Customer
entities (List<Customer>). However, if you know that your query only returns a single entity,
use the getSingleResult() method. It returns a single entity and avoids the work of pulling it
off a list.

Query query = em.createQuery("SELECT c FROM Customer c");
List<Customer> customers = query.getResultList();

This query string can also be dynamically created by the application, which can then
specify a complex query at runtime not known ahead of time. String concatenation is used to
construct the query dynamically depending on the criteria.

String jpqlQuery = "SELECT c FROM Customer c";
if (someCriteria)
 jpqlQuery += " WHERE c.firstName = 'Vincent'";
query = em.createQuery(jpqlQuery);
List<Customer> customers = query.getResultList();

The previous query retrieves customers named Vincent, but you might want to introduce
a parameter for the first name. There are two possible choices for passing a parameter: using
names or positions. In the following example, a named parameter called :fname (note the :
symbol) is used in the query and bound with the setParameter method:

jpqlQuery = "SELECT c FROM Customer c";
if (someCriteria)
 jpqlQuery += " where c.firstName = :fname";
query = em.createQuery(jpqlQuery);
query.setParameter("fname", "Vincent");
List<Customer> customers = query.getResultList();

Note that the parameter name fname does not include the colon used in the query. The
code using a position parameter would look like the following:

jpqlQuery = "SELECT c FROM Customer c";
if (someCriteria)
 jpqlQuery += " where c.firstName = ?1";
query = em.createQuery(jpqlQuery);
query.setParameter(1, "Vincent");
List<Customer> customers = query.getResultList();

If you need to use pagination to display the list of customers by chunks of ten, you can use
the setMaxResults method as follows:

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 147

Query query = em.createQuery("SELECT c FROM Customer c");
query.setMaxResults(10);
List<Customer> customers = query.getResultList();

An issue to consider with dynamic queries is the cost of translating the JPQL string into a
SQL statement at runtime. Because the query is dynamically created and cannot be predicted,
the persistence provider has to parse the JPQL string, get the ORM metadata, and generate the
equivalent SQL. The performance cost of processing each of these dynamic queries can be an
issue, and if you have static queries that are unchangeable, use named queries instead.

Named Queries
Named queries are different from dynamic queries in that they are static and unchangeable. In
addition to their static nature, which does not allow the flexibility of a dynamic query, named
queries can be more efficient to execute because the persistence provider can translate the
JPQL string to SQL once the application starts, rather than every time the query is executed.

Named queries are static queries expressed in metadata inside either a @NamedQuery anno-
tation or the XML equivalent. To define these reusable queries, annotate an entity with the
@NamedQuery annotation, which takes two elements: the name of the query and its content.
So let’s change the Customer entity and statically define three queries using annotations (see
Listing 4-27).

Listing 4-27. The Customer Entity Defining Named Queries

@Entity
@NamedQueries({
 @NamedQuery(name = "findAll", query="select c from Customer c"),
 @NamedQuery(name = "findVincent", ➥

 query="select c from Customer c where c.firstName = 'Vincent'"),
 @NamedQuery(name = "findWithParam", ➥

 query="select c from Customer c where c.firstName = :fname")
})
public class Customer {

 @Id @GeneratedValue
 private Long id;
 private String firstName;
 private String lastName;
 private Integer age;
 private String email;
 @OneToOne
 @JoinColumn(name = "address_fk")
 private Address address;

 // Constructors, getters, setters
}

Because the Customer entity defines more than one named query, it uses the @NamedQueries
annotation, which takes an array of @NamedQuery. The first query, called findAll, selects all

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS148

customers from the database with no restriction (no WHERE clause). The findWithParam query
takes the parameter :fname to restrict customers by their first name. Listing 4-27 shows an
array of @NamedQueries, but if the Customer only had one query, it would have been defined as
follows:

@Entity
@NamedQuery(name = "findAll", query="select c from Customer c")
public class Customer {
 ...
}

The way to execute these named queries resembles the way dynamic queries are used.
The EntityManager.createNamedQuery() method is invoked and passed to the query name
defined by the annotations. This method returns a Query that can be used to set parameters,
the max results, fetch modes, and so on. To execute the findAll query, write the following
code:

Query query = em.createNamedQuery("findAll");
List<Customer> customers = query.getResultList();

Following is a fragment of code calling the findWithParam named query, passing the
parameter :fname, and setting the maximum result to 3:

Query query = em.createNamedQuery("findWithParam");
query.setParameter("fname", "Vincent");
query.setMaxResults(3);
List<Customer> customers = query.getResultList();

Because most of the methods of the Query API return a Query object, you can use the
following elegant shortcut to write queries. You call methods one after the other
(setParameter().setMaxResults(), etc.).

Query query = em.createNamedQuery("findWithParam").➥

 setParameter("fname", "Vincent").setMaxResults(3);
List<Customer> customers = query.getResultList();

Named queries are useful for organizing query definitions and powerful for improving
application performance. The organization comes from the fact that the named queries are
defined statically on entities and are typically placed on the entity class that directly corre-
sponds to the query result (here the findAll query returns customers, so it should be defined
in the Customer entity).

There is a restriction in that the name of the query is scoped to the persistence unit and
must be unique within that scope, meaning that only one findAll method can exist. A findAll
query for customers and a findAll query for addresses should be named differently. A com-
mon practice is to prefix the query name with the entity name. For example, the findAll query
for the Customer entity would be named Customer.findAll.

Another problem is that the name of the query, which is a string, is manipulated, and if
you make a typo or refactor your code, you may get some exceptions indicating that the query
doesn’t exist. To limit the risks, you can replace the name of a query with a constant. Listing
4-28 shows how to refactor the Customer entity.

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 149

Listing 4-28. The Customer Entity Defining a Named Query with a Constant

@Entity
@NamedQuery(name = Customer.FIND_ALL, query="select c from Customer c"),
public class Customer {

 public static final String FIND_ALL = "Customer.findAll";

 // Attributes, constructors, getters, setters
}

The FIND_ALL constant identifies the findAll query in a nonambiguous way by prefixing
the name of the query with the name of the entity. The same constant is then used in the
@NamedQuery annotation, and you can use this constant to execute the query as follows:

Query query = em.createNamedQuery(Customer.FIND_ALL);
List<Customer> customers = query.getResultList();

Native Queries
JPQL has a very rich syntax that allows you to handle entities in any form and in a portable way
across databases. JPA enables you to use specific features of a database by using native que-
ries. Native queries take a native SQL statement (SELECT, UPDATE, or DELETE) as the parameter
and return a Query instance for executing that SQL statement. However, native queries are not
expected to be portable across databases.

If the code is not portable, why not use JDBC calls? The main reason to use JPA native que-
ries rather than JDBC calls is because the result of the query will get automatically converted
back to entities. If you want to retrieve all the customer entities from the database using SQL,
you need to use the EntityManager.createNativeQuery() method that takes in parameters the
SQL query and the entity class that the result should be mapped to.

Query query = em.createNativeQuery("SELECT * FROM t_customer", ➥

 Customer.class);
List<Customer> customers = query.getResultList();

As you can see in the preceding code fragment, the SQL query is a string that can be
dynamically created at runtime (just like JPQL dynamic queries). Again, the query could be
complex, and because the persistence provider doesn’t know in advance, it will interpret it
each time. Like named queries, native queries can use annotations to define static SQL que-
ries. Named, native queries are defined using the @NamedNativeQuery annotation, which must
be placed on any entity (see Listing 4-29). Like JPQL named queries, the name of the query
must be unique within the persistence unit.

Listing 4-29. The Customer Entity Defining a Native Named Query

@Entity
@NamedNativeQuery(name = "findAll", query="select * from t_customer")
@Table(name = "t_customer")
public class Customer {

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS150

 // Attributes, constructors, getters, setters
}

Concurrency
JPA can be used to change persistent data, and JPQL can be used to retrieve data following cer-
tain criteria, by an application running in a cluster with multiple nodes, multiple threads, and
one single database, so it is quite common for entities to be accessed concurrently. When this
is the case, synchronization must be controlled by the application using a locking mechanism.
Whether the application is simple or complex, chances are that you will make use of locking
somewhere in your code.

To illustrate the problem of concurrent database access, let’s see an example of an appli-
cation with two methods, shown in Figure 4-3. One method finds a book by its identifier and
raises the price of the book by $2. The other does the same thing but raises the price by $5. If
these two methods are executed concurrently in separate transactions and manipulate the
same book, you can’t predict the final price of the book. In this example, the initial price of the
book is $10. Depending on which transaction finishes last, the price can be $12 or $15.

Figure 4-3. Transactions one (tx1) and two (tx2) updating the price of a book concurrently

This problem of concurrency, where the “winner” is the last one to commit, is not specific
to JPA. Databases have had to deal with this for a long time and have found different solutions
to isolate one transaction from others. One common mechanism that databases use is to lock
the row on which the SQL statement is being executed.

There are two different locking mechanisms that JPA 2.0 uses (JPA 1.0 only had support for
optimistic locking):

	 •	 Optimistic locking is based on the assumption that most database transactions don’t
conflict with other transactions, allowing concurrency to be as permissive as possible
when allowing transactions to execute.

	 •	 Pessimistic locking is based in the opposite assumption, so a lock will be obtained on
the resource before operating on it.

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 151

As an example from everyday life that reinforces these concepts, consider “optimistic and
pessimistic street crossing.” In an area with very light traffic, you might be able to cross the
street without checking for approaching cars. But not in a busy city center!

JPA uses different locking mechanism at different levels of the API. Both pessimistic and
optimistic locks can be obtained via the EntityManager.find and EntityManager.refresh
methods (in addition to the lock method), as well as through JPQL queries, meaning locking
can be achieved at the EntityManager level and at the Query level with the methods listed in
Tables 4-4 and 4-5.

Table 4-4. EntityManager Methods to Lock Entities

Method Description

<T> T find(Class<T> entityClass, Object
primaryKey,LockModeType lockMode)

Searches for an entity of the specified class and
primary key and locks it with respect to the
specified lock type

void lock(Object entity, LockModeType
lockMode)

Locks an entity instance that is contained in
the persistence context with the specified lock
mode type

void refresh(Object entity, LockModeType
lockMode)

Refreshes the state of the instance from the
database, overwriting changes made to the
entity, if any, and locks it with respect to the
given lock mode type

Table 4-5. Query Method to Lock JPQL Queries

Method	 Description

Query setLockMode(LockModeType lockMode)	� Sets the lock mode type to be used for the
query execution

Each of these methods takes a LockModeType as a parameter that can take different values:

	 •	 OPTIMISTIC: Uses optimistic locking

	 •	 OPTIMISTIC_FORCE_INCREMENT: Uses optimistic locking and forces an increment to the
entity’s version column (See the upcoming “Versioning” section.)

	 •	 PESSIMISTIC_READ: Uses pessimistic locking without the need to reread the data at the
end of the transaction to obtain a lock

	 •	 PESSIMISTIC_WRITE: Uses pessimistic locking and forces serialization among transac-
tions attempting to update the entity

	 •	 PESSIMISTIC_FORCE_INCREMENT: Uses pessimistic locking and forces an increment to the
entity’s version column (See the upcoming “Versioning” section.)

	 •	 NONE: Specifies no locking mechanism should be used

You can use these parameters on multiple places depending how you need to specify
locks. You can read then lock:

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS152

Book book = em.find(Book.class, 12);
// Lock to raise the price
em.lock(book, LockModeType.PESSIMISTIC);
book.raisePriceByTwoDollars();

Or you can read and lock:

Book book = em.find(Book.class, 12, LockModeType.PESSIMISTIC);
// The book is already locked, raise the price
book.raisePriceByTwoDollars();

Concurrency and locking are key motivators for versioning.

Versioning
Java uses versioning: Java SE 5.0, Java SE 6.0, EJB 3.1, JAX-RS 1.0, and so on. When a new ver-
sion of JAX-RS is released, its version number is increased, and you upgrade to JAX-RS 1.1. JPA
uses this exact mechanism when you need to version entities. So, when you persist an entity
for the first time in the database, it will get the version number 1. Later, if you update an attri-
bute and commit this change to the database, the entity version will get the number 2, and so
on. This versioning will evolve each time a change is made to the entity.

In order for this to happen, the entity must have an attribute to store the version number,
and it has to be annotated by @Version. This version number is then mapped to a column in
the database. The attribute types supported for versioning can be int, Integer, short, Short,
long, Long, or Timestamp. Listing 4-30 shows how to add a version attribute to the Book entity.

Listing 4-30. The Book Entity with a @Version Annotation

@Entity
public class Book {

 @Id @GeneratedValue
 private Long id;
 @Version
 private Integer version;
 private String title;
 private Float price;
 private String description;
 private String isbn;
 private Integer nbOfPage;
 private Boolean illustrations;

 // Constructors, getters, setters
}

The entity can access the value of its version property but must not modify it. Only the
persistence provider is permitted to set or update the value of the version attribute when the
object is written or updated to the database. Let’s look at an example to illustrate the behavior

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 153

of this versioning. In Listing 4-31, a new Book entity is persisted to the database. Once the
transaction is committed, the persistence provider sets the version to 1. Later, the price of the
book is updated, and once the data is flushed to the database, the version number is incre-
mented to 2.

Listing 4-31. Transactions tx1 and tx2 Updating the Price of a Book Concurrently

Book book = new Book("H2G2", 21f, "Best IT book", "123-456", 321, false);

tx.begin();
em.persist(book);
tx.commit();
assertEquals(1, book.getVersion());

tx.begin();
book.raisePriceByTwoDollars();
tx.commit();
assertEquals(2, book.getVersion());

The version attribute is not required but is recommended when the entity can be con-
currently modified by more than one process or thread. Versioning is the core of optimistic
locking and provides protection for infrequent concurrent entity modification. In fact, an
entity is automatically enabled for optimistic locking if it has a property mapped with a
@Version annotation.

Optimistic Locking
As its name indicates, optimistic locking is based on the fact that database transactions don’t
conflict with one other. In other words, there is a good chance that the transaction updating
an entity will be the only one that actually updates the entity during that interval. Therefore,
the decision to acquire a lock on the entity is actually made at the end of the transaction. This
ensures that updates to an entity are consistent with the current state of the database. Trans-
actions that would cause this constraint to be violated result in an OptimisticLockException
being thrown and the transaction marked for rollback.

How would you throw an OptimisticLockException? Either by explicitly locking the entity
(with the lock or the find methods that you saw passing a LockModeType) or by letting the per-
sistence provider check the attribute annotated with @Version. The use of a dedicated @Version
annotation on an entity allows the EntityManager to perform optimistic locking simply by
comparing the value of the version attribute in the entity instance with the value of the col-
umn in the database. Without an attributed annotated with @Version, the entity manager will
not be able to do optimistic locking.

Transactions tx1 and tx2 both get an instance of the same Book entity. At that moment,
the version of the Book entity is 1. The first transaction raises the price of the book by $2 and
commits this change. When the data is flushed to the database, the persistence provider
increases the version number and sets it to 2. At that moment, the second transaction raises
the price by $5 and commits the change. The entity manager for tx2 realizes that the version
number in the database is different from that of the entity. This means the version has been

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS154

changed by a different transaction, so an OptimisticLockException is thrown, as shown in
Figure 4-4.

Figure 4-4. OptimisticLockException thrown on transaction tx2

This is the default behavior when the @Version annotation is used: an
OptimisticLockException is thrown when the data is flushed (at commit time or by explicitly
calling the em.flush() method). You can also control where you want to add the optimistic
lock using read then lock or read and lock. The code of read and lock, for example, would look
like this:

Book book = em.find(Book.class, 12);
// Lock to raise the price
em.lock(book, LockModeType.OPTIMISTIC);
book.raisePriceByTwoDollars();

With optimistic locking, the LockModeType that you pass as a parameter can take two val-
ues: OPTIMISTIC and OPTIMISTIC_FORCE_INCREMENT (or READ and WRITE, respectively, but these
values are deprecated). The only difference is that OPTIMISTIC_FORCE_INCREMENT will force an
update (increment) to the entity’s version column.

Applications are strongly encouraged to enable optimistic locking for all entities that may
be concurrently accessed. Failure to use a locking mechanism may lead to inconsistent entity
state, lost updates, and other state irregularities. Optimistic locking is a useful performance
optimization that offloads work that would otherwise be required of the database and is an
alternative to pessimistic locking, which requires low-level database locking.

Pessimistic Locking
Pessimistic locking is based on an assumption that is the opposite of that for optimistic
locking, because a lock is eagerly obtained on the entity before operating on it. This is very
resource restrictive and results in significant performance degradation, as a database lock is
held using a SELECT ... FOR UPDATE SQL statement to read data.

Chapter 4  ■﻿   MANAGING PERSISTENT OBJECTS 155

Databases typically offer a pessimistic locking service that allows the entity manager to
lock a row in a table to prevent another thread from updating the same row. This is an effec-
tive mechanism to ensure that two clients do not modify the same row at the same time, but
requires expensive, low-level checks inside the database. Transactions that would cause this
constraint to be violated result in a PessimisticLockException being thrown and the transac-
tion marked for rollback.

Optimistic locking is appropriate in dealing with moderate contention among concurrent
transactions. But in some applications with a higher risk of contentions, pessimist locking may
be more appropriate, as the database lock is immediately obtained as opposed to the often
late failure of optimistic transactions. For example, in times of economic crises, stock mar-
kets receive huge numbers of selling orders. If 100 million Americans need to sell their stock
options at the same time, the system needs to use pessimistic locks to ensure data consistency.
Note that at the moment the market is rather pessimistic instead of optimistic, and that has
nothing to do with JPA.

Pessimistic locking may be applied to entities that do not contain the annotated @Version
attribute.

Summary
In this chapter, you learned how to query entities. The entity manager is central to articulating
entities with persistence. It can create, update, find by ID, remove, and synchronize entities
with the database with the help of the persistence context, which acts as a level-one cache. JPA
also comes with a very powerful query language, JPQL, which is database vendor–indepen-
dent. You can retrieve entities with a rich syntax using WHERE, ORDER BY, or GROUP BY clauses,
and when concurrent access occurs to your entities, you know how to use versioning and
when to use optimistic or pessimistic locking.

In the next chapter, you’ll learn more about the life cycle of entities and will see how to
hook some logic to this life cycle using callback annotations or listeners.

C h a p t e r 5

Callbacks and Listeners

In the previous chapter, you saw how to query mapped entities. Now you know how to per-
sist, remove, update, and find an entity by its identifier. With JPQL, you can retrieve one or
more entities according to certain search criteria with dynamic, static, and native queries.
All these actions are carried out by the entity manager—the central piece that manipulates
entities and manages their life cycle.

I described the entity life cycle by saying that entities are managed by the entity manager
(meaning that they have a persistence identity and are synchronized with the database) or are
detached from the database and used as normal POJOs. But the life cycle of an entity is slightly
richer. Importantly, JPA allows you to hook in your own business logic when certain events
occur on the entity. This business code is then automatically called by the persistence provider
using callback methods.

You can think of life-cycle callback methods and listeners as triggers in a relational data-
base. A trigger executes business logic for each row in a table. Life-cycle callback methods and
listeners are invoked for each instance of an entity in response to a certain event, or more pre-
cisely, before or after the event occurs. You can use metadata annotations or XML descriptors
to define “Pre” and “Post” callback methods.

Entity Life Cycle
By now, you know most of the mysteries of entities, so let’s look at their life cycle. When an
entity is created or persisted by the entity manager, that entity is said to be managed. Until
that point, the entity is just seen as a regular POJO by the JVM (i.e., detached) and can be used
as a regular object by the application. When an entity is managed, the entity manager will
automatically synchronize the value of its attributes with the underlying database.

To have a better understanding of this, take a look at Figure 5-1, a UML state diagram of
the states that a Customer entity can have and the transitions between each state.

157

Chapter 5  ■﻿   CALLBACKS AND L ISTENERS158

Figure 5-1. Entity life cycle

To create an instance of the Customer entity, you use the new operator. This object exists in
memory, although JPA knows nothing about it. If you do nothing with this object, it will go out
of scope and will end up being garbage collected, and that will be the end of its life cycle. What
you can do next is persist an instance of Customer with the EntityManager.persist() method.
At that moment, the entity becomes managed, and its state is synchronized with the database.
During this managed state, you can update attributes using the setter methods (e.g., customer.
setFirstName()) or refresh the content with an EntityManager.refresh() method. All these
changes will be synchronized between the entity and the database. During this state, if you call
the EntityManager.contains(customer) method, it will return true because customer is con-
tained in the persistence context (i.e., managed).

Another way for an entity to be managed is when it is loaded from the database. When you
use the EntityManager.find() method, or create a JPQL query to retrieve a list of entities, all
are automatically managed, and you can start updating or removing their attributes.

In the managed state, you can call the EntityManager.remove() method, and the entity is
deleted from the database and not managed anymore. But the Java object continues living in
memory, and you can still use it until the garbage collector gets rid of it.

Now let’s look at the detached state. You’ve seen in the previous chapter how explicitly
calling the EntityManager.clear() method will clear the entity from the persistence context;
it becomes detached, but there is also another, more subtle, way to detach an entity: when it’s
serialized. In many examples in this book, entities don’t extend anything, but if they need to
cross a network to be invoked remotely or cross layers to be displayed in a presentation tier,
they need to implement the java.io.Serializable interface. This is not a JPA restriction but
a Java restriction. When a managed entity is serialized, crosses the network, and gets deserial-
ized, it is seen as a detached object. To reattach an entity, you need to call the EntityManager.
merge() method.

Callback methods and listeners allow you to add your own business logic when certain
life-cycle events occur on an entity, or broadly whenever a life-cycle event occurs on any
entity.

Chapter 5  ■﻿   CALLBACKS AND L ISTENERS 159

Callbacks
The life cycle of an entity falls into four categories: persisting, updating, removing, and
loading, which correspond to the database operations of inserting, updating, deleting, and
selecting, respectively. Each life cycle has a “Pre” and “Post” event that can be intercepted by
the entity manager to invoke a business method. These business methods have to be anno-
tated by one of the annotations described in Table 5-1.

Table 5-1. Life-Cycle Callback Annotations

Annotation	 Description

@PrePersist	 Marks a method to be invoked before EntityManager.persist() is executed.

@PostPersist	� Marks a method to be invoked after the entity has been persisted. If the entity
autogenerates its primary key (with @GeneratedValue), the value is available in the
method.

@PreUpdate	� Marks a method to be invoked before a database update operation is performed
(calling the entity setters or the EntityManager.merge() method).

@PostUpdate	 Marks a method to be invoked after a database update operation is performed.

@PreRemove	 Marks a method to be invoked before EntityManager.remove() is executed.

@PostRemove	 Marks a method to be invoked after the entity has been removed.

@PostLoad	� Marks a method to be invoked after an entity is loaded (with a JPQL query or an
EntityManager.find()) or refreshed from the underlying database. There is no
@PreLoad annotation, as it doesn’t make sense to preload data on an entity that is
not built yet.

Adding the callback annotations to the UML state diagram shown previously in Figure 5-1
results in the diagram you see in Figure 5-2.

Figure 5-2. Entity life cycle with callback annotations

Before inserting an entity into the database, the entity manager calls the method anno-
tated with @PrePersist. If the insert does not throw an exception, the entity is persisted, its

Chapter 5  ■﻿   CALLBACKS AND L ISTENERS160

identity is initialized, and the method annotated with @PostPersist is then invoked. This is the
same behavior for updates (@PreUpdate, @PostUpdate) and deletes (@PreRemove, @PostRemove). A
method annotated with @PostLoad is called when an entity is loaded from the database (via an
EntityManager.find() or a JPQL query). When the entity is detached and needs to be merged,
the entity manager first has to check whether there are any differences with the database
(@PostLoad) and if so, update the data (@PreUpdate, @PostUpdate).

How does it look in the code? Entities can have not only attributes, constructors, getters,
and setters, but also business logic used to validate their state or compute some of their attri-
butes. These can consist of normal Java methods that are invoked by other classes or callback
annotations (also referred to as callback methods), as shown in Listing 5-1. The entity manager
invokes them automatically depending on the event triggered.

Listing 5-1. The Customer Entity with Callback Annotations

@Entity
public class Customer {

 @Id @GeneratedValue
 private Long id;
 private String firstName;
 private String lastName;
 private String email;
 private String phoneNumber;
 @Temporal(TemporalType.DATE)
 private Date dateOfBirth;
 @Transient
 private Integer age;
 @Temporal(TemporalType.TIMESTAMP)
 private Date creationDate;

 @PrePersist
 @PreUpdate
 private void validate() {
 if (dateOfBirth.getTime() > new Date().getTime())
 throw new IllegalArgumentException("Invalid date of birth");
 if (!phoneNumber.startsWith("+"))
 throw new IllegalArgumentException("Invalid phone number");
 }

 @PostLoad
 @PostPersist
 @PostUpdate
 public void calculateAge() {
 if (dateOfBirth == null) {
 age = null;
 return;
 }

Chapter 5  ■﻿   CALLBACKS AND L ISTENERS 161

 Calendar birth = new GregorianCalendar();
 birth.setTime(dateOfBirth);
 Calendar now = new GregorianCalendar();
 now.setTime(new Date());
 int adjust = 0;
 if (now.get(DAY_OF_YEAR) - birth.get(DAY_OF_YEAR) < 0) {
 adjust = -1;
 }
 age = now.get(YEAR) - birth.get(YEAR) + adjust;
 }

 // Constructors, getters, setters
}

In Listing 5-1, the Customer entity has a method to validate its data (checks the
dateOfBirth and phoneNumber attributes). This method is annotated with @PrePersist and
@PreUpdate and will get called before inserting data into or updating data in the database. If
the data is not valid, a runtime exception is launched, and the insert or update will roll back
to ensure that the data inserted or updated in the database is valid.

The method calculateAge() calculates the age of the customer. The age attribute is tran-
sient and doesn’t get mapped into the database. After the entity gets loaded, persisted, or
updated, the calculateAge() method takes the date of birth of the customer, calculates the
age, and sets the attribute.

The following rules apply to life-cycle callback methods:

	 •	 Methods can have public, private, protected, or package-level access, but must not be
static or final. Notice in Listing 5-1 that the validate() method is private.

	 •	 A method may be annotated with multiple life-cycle event annotations (the
validateData() method is annotated with @PrePersist and @PreUpdate). However, only
one life-cycle annotation of a given type may be present in an entity class (you can’t
have two @PrePersist annotations in the same entity, for example).

	 •	 A method can throw unchecked (runtime) exceptions but not checked exceptions.
Throwing a runtime exception will roll back the transaction if one exists.

	 •	 A method can invoke JNDI, JDBC, JMS, and EJBs but cannot invoke any EntityManager
or Query operations.

	 •	 With inheritance, if a method is specified on the superclass, it will get invoked before
the method on the child class. For example, if in Listing 5-1 Customer was inheriting
from a Person entity, the Person @PrePersist method would be invoked before the
Customer @PrePresist method.

	 •	 If event cascading is used in the relationships, the callback method will also get called
in a cascaded way. For example, let’s say a Customer has a collection of addresses, and a
cascade remove is set on the relation. When you delete the customer, the Address
@PreRemove method would be invoked as well as the Customer @PreRemove method.

Chapter 5  ■﻿   CALLBACKS AND L ISTENERS162

Listeners
Callback methods in an entity work well when you have business logic that is only related to
that entity. Entity listeners are used to extract the business logic to a separate class and share
it between other entities. An entity listener is just a POJO on which you can define one or more
life-cycle callback methods. To register a listener, the entity needs to use the @EntityListeners
annotation.

Using the customer example, extract the calculateAge() and validate() methods to sep-
arate listener classes, AgeCalculationListener (see Listing 5-2) and DataValidationListener
(see Listing 5-3), respectively.

Listing 5-2. A Listener Calculating the Customer’s Age

public class AgeCalculationListener {

 @PostLoad
 @PostPersist
 @PostUpdate
 public void calculateAge(Customer customer) {
 if (customer.getDateOfBirth() == null) {
 customer.setAge(null);
 return;
 }

 Calendar birth = new GregorianCalendar();
 birth.setTime(customer.getDateOfBirth());
 Calendar now = new GregorianCalendar();
 now.setTime(new Date());
 int adjust = 0;
 if (now.get(DAY_OF_YEAR) - birth.get(DAY_OF_YEAR) < 0) {
 adjust = -1;
 }
 customer.setAge(now.get(YEAR) - birth.get(YEAR) + adjust);
 }
}

Listing 5-3. A Listener Validating the Customer’s Attributes

public class DataValidationListener {

 @PrePersist
 @PreUpdate
 private void validate(Customer customer) {
 if (dateOfBirth.getTime() > new Date().getTime())
 throw new IllegalArgumentException("Invalid date of birth");
 if (!phoneNumber.startsWith("+"))

Chapter 5  ■﻿   CALLBACKS AND L ISTENERS 163

 throw new IllegalArgumentException("Invalid phone number");
 }
}

Only simple rules apply to a listener class. The first is that the class must have a public
no-arg constructor. Second, the signatures of the callback methods are slightly different from
the ones in Listing 5-1. When the callback method is invoked on a listener, the method needs
to have access to the entity state (e.g., the customer’s first name and last name, which need to
be validated). The methods must have a parameter of a type that is compatible with the entity
type as the entity related to the event is being passed into the callback. A callback method
defined on an entity has the following signature with no parameter:

void <METHOD>();

Callback methods defined on an entity listener can have two different types of signatures.
If the method has to be used on several entities, it must have an Object argument:

void <METHOD>(Object anyEntity)

If it is only for one entity or its subclasses (when there’s inheritance), the parameter can
be of the entity type:

void <METHOD>(Customer customerOrSubclasses)

To designate that these two listeners are notified of life-cycle events on the Customer
entity, you need to use the @EntityListeners annotation (see Listing 5-4). This annotation
can take one entity listener as a parameter or an array of listeners. When several listeners are
defined and the life-cycle event occurs, the persistence provider iterates through each listener
in the order in which they are listed and will invoke the callback method, passing a reference
of the entity to which the event applies. It will then invoke the callback methods on the entity
itself (if there are any).

Listing 5-4. The Customer Entity Defining Two Listeners

@EntityListeners({DataValidationListener.class, ➥

 AgeCalculationListener.class})
@Entity
public class Customer {

 @Id @GeneratedValue
 private Long id;
 private String firstName;
 private String lastName;
 private String email;
 private String phoneNumber;
 @Temporal(TemporalType.DATE)
 private Date dateOfBirth;
 @Transient
 private Integer age;

Chapter 5  ■﻿   CALLBACKS AND L ISTENERS164

 @Temporal(TemporalType.TIMESTAMP)
 private Date creationDate;

 // Constructors, getters, setters
}

The result of this code is exactly the same as that of the previous example (shown ear-
lier in Listing 5-1). The Customer entity validates its data before an insert or an update using
the DataValidationListener.validate() method and calculates its age with the listener’s
AgeCalculationListener.calculateAge() method.

The rules that an entity listener’s methods have to follow are similar to the entity callback
methods except for a few details:

	 •	 Only unchecked exceptions can be thrown. This causes the remaining listeners and
callback methods to not be invoked and the transaction to be roll backed if one exists.

	 •	 In an inheritance hierarchy, if multiple entities define listeners, the listeners defined on
the superclass are invoked before the listeners defined on the subclasses. If an entity
doesn’t want to inherit the superclass listeners, it can explicitly exclude them by using
the @ExcludeSuperclassListeners annotation (or its XML equivalent).

In Listing 5-4, you saw a Customer entity defining two listeners, but a listener can also be
defined by more than one entity. This can be useful in cases where the listener provides more
general logic that many entities can benefit from. For example, you could create a debug lis-
tener that displays the name of the triggered events, as shown in Listing 5-5.

Listing 5-5. A Debug Listener Usable by Any Entity

public class DebugListener {

 @PrePersist
 void prePersist(Object object) {
 System.out.println("prePersist");
 }
 @PostPersist
 void postPersist(Object object) {
 System.out.println("postPersist");
 }

 @PreUpdate
 void preUpdate(Object object) {
 System.out.println("preUpdate");
 }
 @PostUpdate
 void postUpdate(Object object) {
 System.out.println("postUpdate");
 }

 @PreRemove
 void preRemove(Object object) {

Chapter 5  ■﻿   CALLBACKS AND L ISTENERS 165

 System.out.println("preRemove");
 }
 @PostRemove
 void postRemove(Object object) {
 System.out.println("postRemove");
 }

 @PostLoad
 void postLoad(Object object) {
 System.out.println("postLoad");
 }
}

Note that each method takes an Object as a parameter, meaning that any type of entity
could use this listener by adding the DebugListener class to its @EntityListeners annotation.
To have every single entity of your application use this listener, you would have to go through
each one and add it manually to the annotation. For this case, JPA has a notion of default lis-
teners that can cover all entities in a persistence unit. As there is no annotation targeted for the
entire scope of the persistence unit, the default listeners can only be declared in an XML map-
ping file.

In Chapter 3, you saw how to use XML mapping files instead of annotations. The same
steps have to be followed to define the DebugListener as a default listener. A mapping file with
the XML defined in Listing 5-6 needs to be created and deployed with the application.

Listing 5-6. A Debug Listener Defined As the Default Listener

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm" ➥

 version="2.0">

 <persistence-unit-metadata>
 <persistence-unit-defaults>
 <entity-listeners>
 <entity-listener class="com.apress.javaee6.DebugListener"/>
 </entity-listeners>
 </persistence-unit-defaults>
 </persistence-unit-metadata>

</entity-mappings>

In this file, the <persistence-unit-metadata> tag is used to define all the metadata that
doesn’t have any annotation equivalent. The <persistence-unit-defaults> tag defines all the
defaults of the persistence unit, and the <entity-listener> tag is where the default listener is
defined. This file needs to be referred in the persistence.xml and deployed with the applica-
tion. The DebugListener will then be automatically invoked for every single entity.

When a list of default entity listeners is declared, each listener gets called in the order in
which it is listed in the XML mapping file. Default entity listeners always get invoked before
any of the entity listeners listed in the @EntityListeners annotation. If an entity doesn’t want

http://java.sun.com/xml/ns/persistence/orm

Chapter 5  ■﻿   CALLBACKS AND L ISTENERS166

to have the default entity listeners applied to it, it can use the @ExcludeDefaultListeners anno-
tation, as shown in Listing 5-7.

Listing 5-7. The Customer Entity Excluding Default Listeners

@ExcludeDefaultListeners
@Entity
public class Customer {

 @Id @GeneratedValue
 private Long id;
 private String firstName;
 private String lastName;
 private String email;
 private String phoneNumber;
 @Temporal(TemporalType.DATE)
 private Date dateOfBirth;
 @Transient
 private Integer age;
 @Temporal(TemporalType.TIMESTAMP)
 private Date creationDate;

 // Constructors, getters, setters
}

Summary
This chapter described the entity life cycle and how the entity manager catches events to
invoke callback methods. Callback methods can be defined on a single entity and annotated
by several annotations (@PrePersist, @PostPersist, etc.). The method can also be extracted to
listener classes and used by several or all entities (using default entity listeners). With callback
methods, you see that entities are not just anemic objects (objects with no business logic, just
attributes, getters, and setters); entities can have business logic that can be invoked by other
objects in the application, or invoked automatically by the entity manager, depending on
the life cycle of the entity. Other Java EE 6 components, such as EJBs, also use these kinds of
interceptors.

C h a p t e r 6

Enterprise Java Beans

The previous chapter showed how to implement persistent objects using JPA and how to
query them with JPQL. The persistence layer is developed using objects that encapsulate and
map their attributes to a relational database, thanks to annotations. The idea is to keep the
entities as transparent as possible and not intermingle them with business logic. Entities can
have methods to validate their attributes, but they are not made to represent complex tasks,
which often require an interaction with other components (other persistent objects, external
services, etc.).

The persistence layer is not the appropriate layer for business processing. Similarly, the
user interface should not perform business logic, especially when there are multiple interfaces
(Web, Swing, portable devices, etc.). To separate the persistence layer from the presentation
layer, to implement business logic, to add transaction management and security, applications
need a business layer. In Java EE, this layer is implemented using Enterprise Java Beans (EJBs).

For most applications, layering is important. Following a bottom-up approach, the pre-
vious chapters on JPA modelled domain classes, usually defining nouns (Artist, CD, Book,
Customer, and so on). On top of the domain layer, the business layer models the actions (or
verbs) of the application (create a book, buy a book, print an order, deliver a book, etc.). Often,
this business layer interacts with external web services (SOAP or RESTful web services), sends
asynchronous messages to other systems (using JMS), or posts e-mails; it orchestrates several
components from databases to external systems, and serves as the central place for transac-
tion and security demarcation as well as the entry point to any kind of client such as web
interfaces (servlets or JSF managed beans), batch processing, or external systems.

This chapter is an introduction to EJBs, and the three following chapters give you all the
necessary information to build the business layer of an enterprise application. The different
types of EJBs are explained; their life cycle and how to add Aspect-Oriented Programming
(AOP) capabilities and deal with transactions and security are also described.

Understanding EJBs
EJBs are server-side components that encapsulate business logic and take care of transactions
and security. They also have an integrated stack for messaging, scheduling, remote access,
web service endpoints (SOAP and REST), dependency injection, component life cycle, AOP
with interceptors, and so on. In addition, EJBs seamlessly integrate with other Java SE and
Java EE technologies, such as JDBC, JavaMail, JPA, Java Transaction API (JTA), Java Messaging
Service (JMS), Java Authentication and Authorization Service (JAAS), Java Naming and

167

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS168

Directory Interface (JNDI), and Remote Method Invocation (RMI). This is why they are used to
build business layers (see Figure 6-1) to sit on top of the persistence layer and as an entry point
for presentation-tier technologies like JavaServer Faces (JSF).

Figure 6-1. Architecture layering

EJBs use a very powerful programming model that combines ease of use and robustness.
Today EJBs are most likely the simplest Java server-side development model, reducing com-
plexity while bringing reusability and scalability to mission-critical enterprise applications.
All this comes from annotating a single plain old Java object (POJO) that will be deployed into
a container. An EJB container is a runtime environment that provides services, such as trans-
action management, concurrency control, pooling, and security authorization. Historically,
application servers have added other features such as clustering, load balancing, and failover.
EJB developers can then concentrate on implementing business logic while the container
deals with all the technical plumbing.

Today more than ever, with version 3.1, EJBs can be written once and deployed on any
container that supports the specification. Standard APIs, portable JNDI names, lightweight
components, and configuration by exception allow easy deployment of EJBs on open source
as well as commercial implementations. The underlying technology was created more than 10
years ago, resulting in EJB applications that benefit from a stable, high-quality code base that
has been used by many enterprise environments over a long period of time.

Types of EJBs
Because enterprise applications can be complex, the Java EE platform defines several types
of EJBs. From Chapter 6 to Chapter 9, I will only focus on session beans and the timer service.
Session beans are used to encapsulate high-level business logic, which makes them the most
important part of the EJB technology. A session bean may have the following traits:

	 •	 Stateless: The session bean contains no conversational state between methods, and any
instance can be used for any client.

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS 169

	 •	 Stateful: The session bean contains conversational state, which must be retained
across methods for a single user.

	 •	 Singleton: A single session bean is shared between clients and supports concurrent
access.

The EJB timer service is the standard Java EE answer to scheduling tasks. Enterprise appli-
cations dependent on calendar-based notifications use this service to model workflow-type
business processes.

Message-driven beans (MDBs) are used for integrating with external systems by receiving
asynchronous messages using JMS. Even though MDBs are part of the EJB specification, I shall
deal with them separately (in Chapter 13) because this component model is mainly used to
integrate systems with message-oriented middleware (MOM). MDBs usually delegate the
business logic to session beans.

EJBs can also be used as web service endpoints. Chapters 14 and 15 demonstrate SOAP
and RESTful web services that can be either simple POJOs deployed in a web container or ses-
sion beans deployed in an EJB container.

nNote  For compatibility reasons, the EJB 3.1 specification still mentions entity beans. This persistent com-
ponent model has been pruned and may disappear in Java EE 7. JPA is the preferred technology for mapping
and querying relational databases. This book does not cover entity beans.

Anatomy of an EJB
Session beans encapsulate business logic, are transactional, rely on a container that does pool-
ing, multithreading, security, and so on. What artifacts are needed to create such a powerful
component? One Java class and one annotation, that’s all. The next chapter shows that session
beans can be more complex; they can use different types of interfaces, annotations, XML con-
figuration, and intercept calls. Listing 6-1 shows how simple it is for a container to recognize
that a class is a session bean and apply all the enterprise services.

Listing 6-1. A Simple Stateless EJB

@Stateless
public class BookEJB {

 @PersistenceContext(unitName = "chapter06PU")
 private EntityManager em;

 public Book findBookById(Long id) {
 return em.find(Book.class, id);
 }

 public Book createBook(Book book) {
 em.persist(book);

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS170

 return book;
 }
}

Previous versions of J2EE required developers to create several artifacts in order to create
a session bean: a local or remote interface (or both), a local home or a remote home interface
(or both), and a deployment descriptor. Java EE 5 and EJB 3.0 drastically simplified the model
to the point where only one class and one or more business interfaces are sufficient. EJB 3.1
goes further as it allows an annotated POJO to be a session bean. As the code in Listing 6-1
shows, the class doesn’t implement any interface, and no XML configuration is needed. Only
one annotation is used to turn a Java class into a transactional and secure component:
@Stateless. Then, using the entity manager (as seen in the previous chapters), the BookEJB
creates and retrieves books from the database in a simple yet powerful manner. The next
chapter will demonstrate how easy it is to declare a stateful bean or a singleton.

Simplicity also is applied to the client side. Invoking a method on this BookEJB requires
only one annotation to obtain a reference using dependency injection. Dependency injec-
tion allows a container (client, web, or EJB container) to automatically inject a reference on
an EJB with the help of the @EJB annotation. In Listing 6-2, the Main class acquires a reference
to the BookEJBRemote by annotating the private, static bookEJB attribute with @EJB. If the EJB
is deployed in a container, the Main class needs to access that EJB remotely. Adding a simple
remote interface to the EJB will give it remote access capabilities.

Listing 6-2. A Client Class Invoking the Stateless EJB

public class Main {

 @EJB
 private static BookEJBRemote bookEJB;

 public static void main(String[] args) {

 Book book = new Book();
 book.setTitle("The Hitchhiker's Guide to the Galaxy");
 book.setPrice(12.5F);
 book.setDescription("Scifi book created by Douglas Adams");
 book.setIsbn("1-84023-742-2");
 book.setNbOfPage(354);

 bookEJB.createBook(book);
 }
}

One of the differences between a pure Java class and a session bean is shown in Listing 6-2;
even if the code is similar, the Main class doesn’t create an instance of the BookEJB using the new
keyword; instead, the class needs to first obtain a reference to the EJB, either by injection or by
JNDI lookup, before calling a method. This mechanism is used because the EJB runs in a man-
aged environment. It needs to be deployed in a container (embedded or not).

Like most Java EE 6 components, EJBs need metadata to inform the container of required
actions (transaction demarcation) or services to inject. Metadata can take the form of either

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS 171

annotations or XML. EJBs can be deployed with the optional ejb-jar.xml deployment descrip-
tor, which will override annotations. With configuration by exception, a single annotation is
enough to turn a POJO into an EJB because the container applies all the default behavior.

EJB Container
As mentioned, an EJB is a server-side component and needs to be executed in a container.
This runtime environment provides core features common to many enterprise applications
such as the following:

	 •	 Remote client communication: Without writing any complex code, an EJB client
(another EJB, a user interface, a batch process, etc.) can invoke methods remotely via
standard protocols.

	 •	 Dependency injection: The container can inject several resources into an EJB (JMS des-
tinations and factories, datasources, other EJBs, environment variables, and so on).

	 •	 State management: For stateful session beans, the container manages their state trans-
parently. You can maintain state for a particular client, as if you were developing a
desktop application.

	 •	 Pooling: For stateless beans and MDBs, the container creates a pool of instances that
can be shared by multiple clients. Once invoked, an EJB returns to the pool to be
reused instead of being destroyed.

	 •	 Component life cycle: The container is responsible for managing the life cycle of each
component.

	 •	 Messaging: The container allows MDBs to listen to destinations and consume messages
without too much JMS plumbing.

	 •	 Transaction management: With declarative transaction management, an EJB can use
annotations to inform the container about the transaction policy it should use. The
container takes care of the commit or the rollback.

	 •	 Security: Class or method-level access control can be specified on EJBs to enforce user
and role authentication.

	 •	 Concurrency support: Except for singletons, where some concurrency declaration is
needed, all the other types of EJB are thread-safe by nature. You can develop high-
performance applications without worrying about thread issues.

	 •	 Interceptors: Cross-cutting concerns can be put into interceptors, which will be
invoked automatically by the container.

	 •	 Asynchronous method invocation: With EJB 3.1, it’s now possible to have asynchronous
calls without involving messaging.

Once the EJB is deployed, the container takes care of these features, leaving the developer
to focus on business logic while benefiting from these services without adding any system-
level code.

EJBs are managed objects. When a client invokes an EJB (as in Listing 6-2), it doesn’t work
directly with an instance of that EJB but rather with a proxy on an instance. Each time a client
invokes a method on an EJB, the call is actually proxied through the container, which provides

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS172

services on behalf of the bean instance. Of course, this is completely transparent to the client;
from its creation to its destruction, an enterprise bean lives in a container.

In a Java EE application, the EJB container will usually interact with other containers: the
servlet container (responsible for managing the execution of servlets and JSF pages), the appli-
cation client container, or ACC (for managing stand-alone applications), the message broker
(for sending, queuing, and receiving messages), the persistence provider, and so on. These
containers will all run inside an application server (GlassFish, JBoss, Weblogic, etc.). Applica-
tion servers are implementation specific, and most provide clustering capabilities, scalability,
load balancing, transparent failover, administration, monitoring, caching, pools, and so forth.

Embedded Container
Right from the moment when they are created, EJBs have to be executed in a container that
runs in a separate JVM. Think of GlassFish, JBoss, Weblogic, and so on, and you’ll remember
that the application server first needs to be started before deploying and using your EJB. This
is appropriate in a production environment, where the server runs continuously, but it is time
consuming in a development environment, where you frequently need to deploy for debug-
ging purposes, for example. Another issue with servers running in a different process is that
unit-testing capabilities are limited, and unit tests cannot be easily run without deploying the
EJB in a live server. To solve these problems, some application server implementations came
with embedded containers, but these were implementation specific. Today EJB 3.1 has speci-
fied an embedded container that is portable across servers.

The idea of an embedded container is to be able to execute EJB applications within a Java
SE environment allowing clients to run within the same JVM and class loader. This provides
better support for testing, offline processing (e.g., batch processing), and the use of the EJB in
desktop applications. The embeddable container API (defined in javax.ejb.embeddable) pro-
vides the same managed environment as the Java EE runtime container and includes the same
services: injection, access to a component environment, container-managed transactions
(CMTs), and so forth.

The following code snippet shows you how to create an instance of an embeddable con-
tainer, get a JNDI context, get a lookup for an EJB, and invoke a method:

EJBContainer ec = EJBContainer.createEJBContainer();
Context ctx = ec.getContext();
BookEJB bookEJB = (BookEJB) ctx.lookup("java:global/BookEJB");
bookEJB.createBook(book);

In the next chapter, you’ll see how to use the bootstrapping API to start the container and
execute EJBs.

Dependency Injection and JNDI
EJBs use dependency injection to access several kinds of resources (other EJBs, datasources,
JMS destinations, environment resources, etc.). In this model, the container pushes data into
the bean. As shown in Listing 6-2, a client gets injected a reference to an EJB using the @EJB
annotation:

@EJB
private static BookEJB bookEJB;

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS 173

Injection is made at deployment time. If there is a chance that the data will not be used,
the bean can avoid the cost of resource injection by performing a JNDI lookup. JNDI is an
alternative to injection; through JNDI, the code pulls data only if it is needed, instead of
accepting pushed data that may not be needed at all.

JNDI is an API for accessing different kinds of directory services, allowing clients to bind
and look up objects via a name. JNDI is defined in Java SE and is independent of the underly-
ing implementation, which means that objects can be looked up in a Lightweight Directory
Access Protocol (LDAP) directory or a Domain Name System (DNS) using a standard API.

The alternative to the preceding code is to use the InitialContext of JNDI and look up a
deployed EJB named java:global/chapter06/BookEJB as follows:

Context ctx = new InitialContext();
BookEJB bookEJB = (BookEJB) ctx.lookup("java:global/chapter06/BookEJB");

JNDI has been around for a long time. Its API is specified and is portable across applica-
tion servers. But this wasn’t the case with the JNDI name, which was implementation specific.
When an EJB in GlassFish or JBoss was deployed, the name of the EJB in the directory service
was different and thus not portable. A client would have to look up an EJB using one name for
GlassFish, and another name for JBoss. With EJB 3.1, JNDI names have been specified so the
code could be portable. In the preceding example, the java:global/chapter06/BookEJB name
respects the new naming convention:

java:global[/<app-name>]/<module-name>/<bean-name>[!<fully-qualified-➥

 interface-name>]

The following chapter shows how to use this portable name to look up EJBs.

Callback Methods and Interceptors
Each EJB type (stateless, stateful, singleton, and MDB) has a life cycle managed by the con-
tainer. EJBs allow annotated methods (@PostContruct, @PreDestroy, etc.), similar to the
callback methods used in entities in the previous chapter, that will automatically be invoked
by the container during certain phases of its life. These methods may initialize state informa-
tion on the bean, look up resources using JNDI, or release database connections.

For any cross-cutting concerns, developers can use interceptors, which are based on
the AOP model, in which the invocation of a method is wrapped by extra functionality
automatically.

EJBs’ life cycles, callback methods, and interceptors will be explained in Chapter 8
(Chapter 5 focused on the life cycle of JPA entities).

Packaging
Like most Java EE components (servlets, JSF pages, web services, etc.), EJBs need to be pack-
aged before they are deployed into a runtime container. In the same archive, you will usually
find the enterprise bean class, its interfaces, interceptors, any needed superclasses or super-
interfaces, exceptions, helper classes, and an optional deployment descriptor (ejb-jar.xml).
Once these artifacts are packaged in a jar (Java archive) file, they can be deployed directly into
a container. Another option is also to embed the jar file into an ear (enterprise archive) file and
deploy the ear file.

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS174

An ear file is used to package one or more modules (EJBs or web applications) into a single
archive so that deployment into an application server happens simultaneously and coher-
ently. For example, as shown in Figure 6-2, if you need to deploy a web application, you might
want to package your EJBs and entities into separate jar files, your servlets into a war file, and
the whole thing into an ear file. Deploy the ear file into an application server, and you will be
able to manipulate entities from the servlet using the EJB.

Figure 6-2. Packaging EJBs

Since EJB 3.1, EJBs can also be directly packaged within a web module (war file). On the
right side of Figure 6-2, the servlet, the EJB, and the entity are all packaged within the same war
file with all the deployment descriptors. Note that in the EJB module the deployment descrip-
tor is stored under META-INF/ejb-jar.xml and under WEB-INF/ejb-jar.xml for the web module.

EJB Specification Overview
EJB 1.0 was created back in 1998, and EJB 3.1 was released in 2009 with Java EE 6. During these
ten years, the EJB specification went through many changes, but it still retains its mature foun-
dations. From heavyweight components, to annotated POJOs, to entity beans, back to JPA,
EJBs have reinvented themselves to meet the needs of developers and modern architectures.

More than ever the EJB 3.1 specification helps to avoid vendor lock-in by providing fea-
tures that were previously nonstandard (such as nonstandard JNDI names or embedded
containers, for example). Today, EJB 3.1 is much more portable than in the past.

History of the Specification
Soon after the creation of the Java language, the industry felt the need for a technology that
could address the requirements of large-scale applications, embracing RMI and JTA. The idea
of creating a distributed and transactional business component framework arose, and as a
result IBM first started creating what eventually became known as EJBs.

EJB 1.0 supported stateful and stateless session beans, with optional support for entity
beans. The programming model used home and remote interfaces in addition to the session
bean itself. EJBs were made accessible through an interface that offered remote access with
arguments passed by value.

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS 175

EJB 1.1 mandated support for entity beans and introduced the XML deployment descrip-
tor to store metadata (which was then serialized as binary in a file). This version provided
better support for application assembly and deployment by introducing roles.

In 2001, EJB 2.0 was the first version to be standardized by the JCP (as JSR 19). It addressed
the overhead of passing arguments by value by introducing local interfaces. Clients running
inside the container would access EJBs through their local interface (using arguments passed
by reference), and clients running in a different container would use the remote interface. This
version introduced MDBs, and entity beans gained support for relationships and a query lan-
guage (EJB QL).

Two years later, EJB 2.1 (JSR 153) added support for web services, allowing session beans
to be invoked through SOAP/HTTP. A timer service was created to allow EJBs to be invoked at
designated times or intervals.

Three years passed between EJB 2.1 and EJB 3.0, which allowed the expert group to
remodel the entire design. In 2006, the EJB 3.0 specification (JSR 220) broke with previous ver-
sions as it focused on ease of use, with EJBs looking more like POJOs. The entity beans were
replaced by a brand-new specification (JPA), and session beans no longer required home or
EJB-specific component interfaces. Dependency injection, interceptors, and life cycle call-
backs were introduced.

In 2009, the EJB 3.1 specification (JSR 318) ships with Java EE 6, following the path of
the previous version by simplifying the programming model even further and bringing new
features.

What’s New in EJB 3.1
The EJB 3.1 specification (JSR 318) brings several changes: JPA is no longer part of the EJB
specification and evolves in a separate JSR (JSR 317), and the specification itself is organized
into two different documents:

	 •	 “EJB Core Contracts and Requirements”: The main document that specifies EJBs

	 •	 “Interceptor Requirements”: The document that specifies interceptors

It is necessary to be mindful that the specification must support the EJB 2.x component
model, meaning that the 600 pages of the specification deal with home interfaces, entity
beans, EJB QL, and so on. To simplify future adoption of the specification, the Java EE 6 expert
group has compiled a list of features for possible future removal. None of the following fea-
tures are actually removed from EJB 3.1, but the next version will have to either remove or
retain some of them:

	 •	 Entity bean 2.x

	 •	 Client view of an entity bean 2.x

	 •	 EJB QL (query language for container-managed persistence)

	 •	 JAX-RPC-based web service endpoints

	 •	 Client view of a JAX-RPC web service

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS176

The EJB 3.1 specification includes the following new functionalities and simplifications:

	 •	 No-interface view: Session beans with a local view can be accessed without a separate
local business interface.

	 •	 War deployment: Packaging and deployment of EJB components directly in a war file is
now possible.

	 •	 Embedded container: A new embeddable API is available for executing EJB components
within a Java SE environment (for unit testing, batch processing, etc.).

	 •	 Singleton: This new type of component provides easy access to shared state.

	 •	 Richer timer service: This feature allows automatic creation of EJB timers and calendar-
based expressions.

	 •	 Asynchrony: Asynchronous invocations are now possible without MDBs.

	 •	 EJB Lite: This definition of a lightweight subset of functionalities can be provided
within Java EE Profiles (such as the Java EE Web Profile).

	 •	 Portable JNDI name: The syntax for looking up EJB components is now specified.

EJB Lite
Enterprise Java Beans are the predominant component model in Java EE 6, being the simplest
method for transactional and secure business processing. However, EJB 3.1 still defines the old
entity beans, home interfaces, EJB QL, and so on, meaning that any new vendor implementing
the EJB 3.1 specification has to implement entity beans. Developers getting started with EJBs
would also be weighed down by many technologies that they would never use otherwise.

For these reasons, the specification defines a minimal subset of the full EJB API known
as EJB Lite. It includes a small, powerful selection of EJB features suitable for writing portable
transactional and secure business logic. Any EJB Lite application can be deployed on any Java
EE product that implements EJB 3.1. EJB Lite is composed of the subset of the EJB API listed in
Table 6-1.

Table 6-1. Comparison Between EJB Lite and Full EJB

Feature	 EJB Lite	 Full EJB 3.1

Session beans (stateless, stateful, singleton)	 Yes	 Yes

MDBs	 No	 Yes

Entity beans 1.x/2.x	 No	 Yes (proposed for pruning)

No-interface view	 Yes	 Yes

Local interface	 Yes	 Yes

Remote interface	 No	 Yes

2.x interfaces	 No	 Yes (proposed for pruning)

JAX-WS web services	 No	 Yes

JAX-RS web services	 No	 Yes

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS 177

Feature	 EJB Lite	 Full EJB 3.1

JAX-RPC web services	 No	 Yes (proposed for pruning)

Timer service	 No	 Yes

Asynchronous calls	 No	 Yes

Interceptors	 Yes	 Yes

RMI/IIOP interoperability	 No	 Yes

Transaction support	 Yes	 Yes

Security	 Yes	 Yes

Embeddable API	 Yes	 Yes

Reference Implementation
GlassFish is an open source application server project led by Sun Microsystems for the Java EE
platform. The project was launched in 2005 and became the reference implementation of Java
EE 5 in 2006. Today, GlassFish v3 is the reference implementation for EJB 3.1. Internally, the
product is built around modularity (based on the Apache Felix OSGi runtime), allowing a very
fast startup time and use of a set of various application containers (Java EE 6, of course, but
also Ruby, PHP, and so on).

GlassFish will be used throughout this book as the main application server to deploy and
run EJBs, as well as JSF pages, SOAP and RESTful web services, and JMS MDBs.

Putting It All Together
In the “Putting It All Together” section in Chapter 2, I demonstrated development of a Book
entity (shown in Listing 2-3) that is mapped to a Derby database. Then I showed you a Main
class (shown in Listing 2-4) that uses the entity manager to persist a book and retrieve all
the books from the database (using explicit transactional demarcation: tx.begin() and
tx.commit()). This example employs the same use case, but replaces the Main class used in
Chapter 2 with a stateless session bean (BookEJB).

EJBs are transactional by nature, so our stateless session bean (BookEJB) will handle
Create, Read, Update, Delete (CRUD) operations on the Book entity with CMTs. The BookEJB
and the Book entity will then be packaged and deployed into GlassFish. The EJB needs a
remote interface, as an external client application (Main class) will invoke methods remotely
on the EJB (see Figure 6-3) using the ACC.

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS178

Figure 6-3. Putting it all together

To use transactions, the stateless session bean needs to access the database through a
datasource (jdbc/chapter06DS) that will have to be created in GlassFish and linked to the
chapter06DB database.

The directory structure for the project follows the Maven conventions, so classes and files
have to be placed in the following directories:

	 •	 src/main/java: For the Book entity, the BookEJB, the BookEJBRemote interface, and the
Main class

	 •	 src/main/resources: The persistence.xml file containing the persistence unit used for
the Derby database server

	 •	 src/test/java: The BookTest class for unit testing

	 •	 src/test/resources: The persistence.xml file used by the test cases for an embedded
Derby database

	 •	 pom.xml: The Maven Project Object Model (POM) describing the project, its dependen-
cies on other external modules, and components

Writing the Book Entity
Listing 6-3 refers to the same Book entity described in Chapter 2 (Listing 2-3), so I will not
explain it in much detail. Note that the entity has to be under the src/main/java directory.

Listing 6-3. A Book Entity with a Named Query

@Entity
@NamedQuery(name = "findAllBooks", query = "SELECT b FROM Book b")
public class Book {

 @Id @GeneratedValue
 private Long id;

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS 179

 @Column(nullable = false)
 private String title;
 private Float price;
 @Column(length = 2000)
 private String description;
 private String isbn;
 private Integer nbOfPage;
 private Boolean illustrations;

 // Constructors, getters, setters
}

Writing the BookEJB Stateless Session Bean
The BookEJB is a stateless session bean that acts like a façade and handles CRUD operations on
the Book entity. Listing 6-4 shows the Java class that needs to be annotated with @javax.ejb.
Stateless and implements the BookEJBRemote interface (see Listing 6-5). The EJB obtains a
reference of an entity manager using dependency injection, employed on each of the following
methods:

	 •	 findBooks: This method uses the findAllBooks named query defined in the Book entity
to retrieve all the book instances from the database.

	 •	 findBookById: Given an ID, this method uses the EntityManager.find() method to
retrieve a book from the database.

	 •	 createBook: This method takes a Book as a parameter and persists it to the database.

	 •	 updateBook: This method takes a detached Book object as a parameter. By using the
merge() method, the object is attached to the entity manager and synchronized with
the database.

	 •	 deleteBook: Before removing a Book entity from the database, this method has to reat-
tach the object to the entity manager and them remove it.

Listing 6-4. A Stateless Session Bean Acting Like a Façade for CRUD Operations

@Stateless
public class BookEJB implements BookEJBRemote {

 @PersistenceContext(unitName = "chapter06PU")
 private EntityManager em;

 public List<Book> findBooks() {
 Query query = em.createNamedQuery("findAllBooks");
 return query.getResultList();
 }

 public Book findBookById(Long id) {

mailto:@javax.ejb

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS180

 return em.find(Book.class, id);
 }

 public Book createBook(Book book) {
 em.persist(book);
 return book;
 }

 public void deleteBook(Book book) {
 em.remove(em.merge(book));
 }

 public Book updateBook(Book book) {
 return em.merge(book);
 }
}

The main differences between the Main class defined in Chapter 2 (Listing 2-4) and the
class in Listing 6-4 is that an instance of EntityManager is directly injected into the session
bean instead of using the EntityManagerFactory to create it. The EJB container deals with
the EntityManager life cycle, so it injects an instance of it and then closes it when the EJB is
destroyed. Also, JPA calls are not wrapped between tx.begin() and tx.commit() anymore, as
session bean methods are implicitly transactional. This default behavior is known as a CMT
and is discussed in Chapter 9.

Because the BookEJB is invoked remotely by the Main class, it needs to implement a remote
interface. The only difference between a normal Java interface and a remote interface is the
presence of the @Remote annotation as shown in Listing 6-5.

Listing 6-5. A Remote Interface

@Remote
public interface BookEJBRemote {

 public List<Book> findBooks();
 public Book findBookById(Long id);
 public Book createBook(Book book);
 public void deleteBook(Book book);
 public Book updateBook(Book book);
}

Persistence Unit for the BookEJB
In Chapter 2, the persistence unit (Listing 2-5) had to define the JDBC driver, the JDBC URL,
the user, and the password to connect to the Derby database because the transactions were
managed by the application (transaction-type ="RESOURCE_LOCAL"). In a container-managed
environment where EJBs evolve, transactions are managed by the container, not by the appli-
cation, so transaction-type of the persistent unit (see Listing 6-6) has to be set to JTA.

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS 181

Listing 6-6. A Persistence Unit Using the chapter06DS Datasource

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="chapter06PU" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>jdbc/chapter06DS</jta-data-source>
 <class>com.apress.javaee6.chapter06.Book</class>
 <properties>
 <property name="eclipselink.ddl-generation" ➥

 value="drop-and-create-tables"/>
 <property name="eclipselink.logging.level" value="INFO"/>
 </properties>
 </persistence-unit>
</persistence>

In Listing 6-4, the BookEJB gets injected with a reference of an EntityManager associated
with the chapter06PU persistence unit. This persistence unit (defined in Listing 6-6) needs to
define the name of the datasource to connect to (jdbc/chapter06DS) without specifying any
access properties (URL, JDBC driver, etc.). This information is held by the datasource, to be
created later in GlassFish.

Writing the Main Class
Frequently, Java EE applications consist of web applications acting as clients for EJBs, as
described in Chapter 10, where JSF managed beans will invoke EJBs. For now, let’s use a plain
Java class.

The Main class (see Listing 6-7) declares an instance of the BookEJBRemote interface and
decorates it with the @EJB annotation so a reference can be injected. Remember that this Main
class is executed within the application client container, so injection is possible. The main()
method starts by creating a new instance of the Book object, sets some values to the attributes,
and uses the EJB createBook() method to persist the entity. It then changes the value of the
book’s title, updates the book, and removes it. Because this code has no persistence context,
the Book entity is a detached object manipulated as a normal Java class by another Java class,
with no JPA involved. The EJB is the one holding the persistence context and using the entity
manager to access the database.

Listing 6-7. A Main Class Invoking the BookEJB

public class Main {

 @EJB
 private static BookEJBRemote bookEJB;

 public static void main(String[] args) {

 Book book = new Book();
 book.setTitle("The Hitchhiker's Guide to the Galaxy");
 book.setPrice(12.5F);

http://java.sun.com/xml/ns/persistence

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS182

 book.setDescription("Scifi book created by Douglas Adams");
 book.setIsbn("1-84023-742-2");
 book.setNbOfPage(354);
 book.setIllustrations(false);

 bookEJB.createBook(book);

 book.setTitle("H2G2");
 bookEJB.updateBook(book);

 bookEJB.deleteBook(book);
 }
}

Compiling and Packaging with Maven
Now you can use Maven to compile the Book entity, the BookEJB, the BookEJBRemote interface,
and the Main class, and package the lot in a jar file with the persistence unit. Maven needs
a pom.xml file (see Listing 6-8) to describe the project and the external dependencies. This
example needs the JPA API (javax.persistence) as well as the EJB API (javax.ejb). The classes
will be compiled and packaged (<packaging>jar</packaging>) in a jar file named chapter06-
1.0.jar, and Maven needs to be informed that you are using Java SE 6 by configuring the
maven-compiler-plugin as shown in Listing 6-8.

Listing 6-8. The Maven pom.xml File Used to Build the Application

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" ➥

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"➥

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 ➥

 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId> com.apress.javaee6</groupId>
 <artifactId>chapter06</artifactId>
 <packaging>jar</packaging>
 <version>1.0</version>
 <name>chapter06</name>

 <dependencies>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>javax.persistence</artifactId>
 <version>1.1.0</version>
 </dependency>
 <dependency>
 <groupId>org.glassfish</groupId>

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0%E2%9E%A5
http://maven.apache.org/POM/4.0.0%E2%9E%A5
http://maven.apache.org/xsd/maven-4.0.0.xsd

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS 183

 <artifactId>javax.ejb</artifactId>
 <version>3.0</version>
 </dependency>

 <dependency>
 <groupId>org.glassfish.embedded</groupId>
 <artifactId>glassfish-embedded-all</artifactId>
 <version>3.0</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.2</version>
 <configuration>
 <archive>
 <manifest>
 <mainClass>
 com.apress.javaee6.chapter06.Main
 </mainClass>
 </manifest>
 </archive>
 </configuration>
 </plugin>
 </plugins>
 </build>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <inherited>true</inherited>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

The produced jar file has a special META-INF\MANIFEST.MF file that can be used to add
metadata to the structure of the jar; that’s the role of the maven-jar-plugin. You can add the
Main class to the Main-Class element so that the jar becomes executable.

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS184

Notice this code includes the glassfish-embedded-all dependency, used by the test class
(<scope>test</scope>), to invoke the embedded container and run the EJB.

To compile and package the classes, open a command-line interpreter and enter the
following Maven command:

mvn package

The BUILD SUCCESSFUL message should appear, letting you know that compilation and
packaging were successful. Further, if you check under the target subdirectory, you’ll see that
Maven has created the chapter06-1.0.jar file.

Deploying on GlassFish
Now that the BookEJB session bean has been packaged into a jar archive, it can be deployed to
the GlassFish application server. Before doing so, make sure GlassFish and Derby are up and
running. The jdbc/chapter06DS datasource required by the persistence unit must be created
using the GlassFish administration console or the command line. The command-line method
is quick and easy to reproduce.

Before creating a datasource, you need a connection pool. GlassFish comes with a set of
already-defined pools you can use, or you can create your own with the following command:

asadmin create-jdbc-connection-pool ➥

--datasourceclassname=org.apache.derby.jdbc.ClientDataSource ➥

--restype=javax.sql.DataSource ➥

--property portNumber=1527:password=APP:user=APP:serverName=localhost:➥

databaseName=chapter06DB:connectionAttributes=;create\=true Chapter06Pool

This command creates the Chapter06Pool using a Derby datasource and a set of properties
to connect to the database: its name (chapter06DB), the server (localhost) and the port (1527)
it listens to, a user (APP), and password (APP) to connect to. If you now ping this datasource,
Derby will create the database automatically (because you set connectionAttributes=;create\
=true). To ping the datasource, use the following command:

asadmin ping-connection-pool Chapter06Pool

After this command is successfully executed, you should see the directory chapter06DB on
your hard drive where Derby stores the data. The database and the connection pool are cre-
ated, and now you need to declare the jdbc/chapter06DS datasource and link it to the newly
created pool as follows:

asadmin create-jdbc-resource --connectionpoolid Chapter06Pool ➥

 jdbc/chapter06DS

To list all the datasources hosted by GlassFish, enter the following command:

asadmin list-jdbc-resources

Use the asadmin utility to deploy the application into GlassFish. After executing, this com-
mand gives a message informing you of the result of the deployment operation:

asadmin deploy --force=true target\chapter06-1.0.jar

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS 185

Now that the EJB is deployed with the entity and the persistent unit in GlassFish, Derby is
running, and the datasource is created, it’s time to run the Main class.

Running the Main Class with Derby
The Main class (shown earlier in Listing 6-7) is a stand-alone application that runs outside
the GlassFish container, yet it uses the @EJB annotation, which needs a container to inject a
reference of the BookEJBRemote interface. The Main class has to be executed in an ACC. A JNDI
lookup could have been used instead of the ACC, but the ACC can wrap a jar file and gives it
access to the application server resources. To execute the ACC, use the appclient utility that
comes with GlassFish and pass the jar file as a parameter as follows:

appclient -client chapter06-1.0.jar

Remember that the chapter06-1.0.jar file is executable, as we’ve added a Main-Class
element to the MANIFEST.MF file. By executing the previous command line, the ACC executes
the Main class and injects a reference of the BookEJBRemote, which in turns creates, updates,
and removes the Book entity.

Writing the BookEJBTest Class
Running the Main class is not enough in modern development teams—you need to unit test
your classes. In the previous version of EJB, to unit test our BookEJB wasn’t easy; you had to use
specific features of certain application servers or make some twists to the code. With the new
embedded container, an EJB becomes a testable class like any other, as it can run in a normal
Java SE environment. The only thing necessary is to add a specific jar file to your classpath,
as done in the pom.xml file (shown earlier in Listing 6-8) with the glassfish-embedded-all
dependency.

In Chapter 2, I explained all the required artifacts to unit test with an embedded data-
base, so I will not go into too much detail here on the subject. To unit test the EJB, you use the
embedded Derby database, a different persistence unit, and the EJB embedded container.
Everything is embedded and runs in the same process, necessitating only a JUnit test class
(see Listing 6-9) to initialize the EJBContainer (EJBContainer.createEJBContainer()), run some
tests (createBook()), and close the container (ec.close()).

Listing 6-9. JUnit Class Testing the EJB with the Embeddable Container

public class BookEJBTest {

 private static EJBContainer ec;
 private static Context ctx;

 @BeforeClass
 public static void initContainer() throws Exception {
 ec = EJBContainer.createEJBContainer();
 ctx = ec.getContext();
 }

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS186

 @AfterClass
 public static void closeContainer() throws Exception {
 ec.close();
 }

 @Test
 public void createBook() throws Exception {

 // Creates an instance of book
 Book book = new Book();
 book.setTitle("The Hitchhiker's Guide to the Galaxy");
 book.setPrice(12.5F);
 book.setDescription("Science fiction comedy book");
 book.setIsbn("1-84023-742-2");
 book.setNbOfPage(354);
 book.setIllustrations(false);

 // Looks up the EJB
 BookEJBRemote bookEJB = (BookEJBRemote) ➥

 ctx.lookup("java:global/ chapter06/BookEJBRemote");

 // Persists the book to the database
 book = bookEJB.createBook(book);
 assertNotNull("ID should not be null", book.getId());

 // Retrieves all the books from the database
 List<Book> books = bookEJB.findBooks();
 assertNotNull(books);
 }
}

The createBook() method creates an instance of a Book, looks up the EJB remote interface
using JNDI to persist the Book to the database, checks whether the returned identifier is null
or not, retrieves a collection of all books from the database, and checks whether the returned
collection is not null. Ensure that the BookEJBTest class is under the src/test/java Maven
directory and enter the following command:

mvn test

The BookEJBTest class is executed, and a Maven report should inform you that the test was
successful.

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 12.691 sec
Results :
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 26 seconds

Chapter 6  ■﻿  E NTERPRISE JAVA BEANS 187

[INFO] Finished
[INFO] Final Memory: 4M/14M
[INFO] --

Summary
This chapter provided an introduction to EJB 3.1. Starting with EJB 2.x, the EJB specification
has evolved over the past ten years from a heavyweight model where home and remote/local
interfaces had to be packaged with tons of XML, to a simple Java class with no interface and
one annotation. The underlying functionality is always the same: transactional and secure
business logic.

EJB 3.1 brings many new features that simplify the programming model (no-interface
view, war deployment), make it richer (embedded container, singletons, timer service, asyn-
chronous calls), and make it more portable across application servers (standard global JNDI
names). One major simplification is the creation of EJB Lite, which is a subset of the full EJB
API, giving newcomers a simpler yet still powerful version of EJB that can be used in the Java
EE Web Profile. The embedded EJB container also makes unit testing easier and portable
across implementations. EJB 3.1 follows the trajectory of its predecessor EJB 3.0.

Looking forward to the next chapters, Chapter 7 will focus on describing stateless, state-
ful, and singleton session beans and the timer service. Chapter 8 will explain callback methods
and interceptors, and Chapter 9 will look at transactions and security.

189

C h a p t e r 7

Session Beans and the Timer
Service

From Chapter 2 to Chapter 5, I focused on persistent objects using JPA entities. Entities
encapsulate data, relational mapping, and sometimes validation logic. I will now show you
how to develop a business layer that handles these persistent objects using session beans.
Session beans handle complex tasks that require interaction with other components (enti-
ties, web services, messaging, etc.). This logical separation between entities and session beans
follows the “separation of concerns” paradigm wherein an application is split into separate
components whose functions overlap as little as possible.

In this chapter, you will learn about the three different types of session beans: stateless,
stateful, and singleton. Stateless beans are the most scalable of the three, as they keep no state
and complete business logic in a single method call. Stateful beans maintain a conversational
state with one client. The singleton session bean (one instance per application) is the new
model brought about by EJB 3.1.

The last section of the chapter will show you how to use the enhanced timer service to
schedule tasks.

Message-driven beans, which are part of the EJB specification, are discussed in Chapter 13
along with Java Message Service (JMS). As you will see in Chapters 14 and 15, a stateless
session bean can be turned into a SOAP web service or a RESTful web service. Or more pre-
cisely, these web services can profit from some EJB features such as transactions, security,
interceptors, and so on.

Session Beans
Session beans are great for implementing business logic, processes, and workflow. But before
using them, you need to choose which type of session bean to use:

	 •	 Stateless: This type of session bean does not maintain any conversational state on
behalf of a client application. It is used to handle tasks that can be concluded with a
single method call.

	 •	 Stateful: This type of bean maintains state and is associated with a specific client. It is
useful for tasks that have to be done in several steps.

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE190

	 •	 Singleton: This type of bean follows the singleton design pattern. The container will
make sure that only one instance exists for the entire application.

The three types of session beans all have their specific features, of course, but they also have
a lot in common. First of all, they have the same programming model. As you’ll see later on, a
session bean can have a local or remote interface, or no interface at all. Session beans are con-
tainer-managed components, so they need to be packaged in an archive (jar, war, or ear file) and
deployed in a container. The container is responsible for managing its session beans’ life cycle
(as you’ll see in the next chapter), transactions, interceptors, and much more. Figure 7-1 shows a
very high-level picture of session beans and the timer service in an EJB container.

Figure 7-1. Session beans and the timer service in an EJB container

Stateless Beans
In Java EE applications, stateless beans are the most popular session bean components. They
are simple, powerful, and efficient, and respond to the common task of doing stateless busi-
ness processing. What does stateless mean? It means that a task has to be completed in a
single method call.

As an example, we can go back to the roots of object-oriented programming where an
object encapsulates its state and behavior. To persist a book to a database using only one
object, you would do something like this: create an instance of a Book object, set some values,
and call a method so it could persist itself to a database (book.persistToDatabase()). In the
following code, you can see that from the very first line to the last one, the book object is called
several times and keeps its state.

Book book = new Book();
book.setTitle("The Hitchhiker's Guide to the Galaxy");
book.setPrice(12.5F);
book.setDescription("Science fiction comedy series created by Douglas Adams.");
book.setIsbn("1-84023-742-2");
book.setNbOfPage(354);
book.setIllustrations(false);
book.persistToDatabase();

Stateless beans are ideal when you need to implement a task that can be concluded with
a single method call. So if you take the preceding code and introduce a stateless component,
you need to create a Book object, set some values, and then use a stateless component to

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE 191

invoke a method that will persist the book on its behalf, in a single call. The state is maintained
by Book, but not by the stateless component.

Book book = new Book();
book.setTitle("The Hitchhiker's Guide to the Galaxy");
book.setPrice(12.5F);
book.setDescription("Science fiction comedy series created by Douglas Adams.");
book.setIsbn("1-84023-742-2");
book.setNbOfPage(354);
book.setIllustrations(false);
statelessComponent.persistToDatabase(book);

Stateless session beans are also the most efficient kind because they can be pooled and
shared by several clients. This means that for each stateless EJB, the container keeps a certain
number of instances in memory (i.e., a pool) and shares them between clients. Because state-
less beans have no client state, all instances are equivalent. When a client invokes a method on
a stateless bean, the container picks up an instance from the pool and assigns it to the client.
When the client request finishes, the instance returns to the pool to be reused. This means
only a small number of beans are needed to handle several clients, as shown in Figure 7-2.
The container doesn’t guarantee the same instance for the same client.

Figure 7-2. Clients accessing stateless beans in a pool

Listing 7-1 shows what a stateless EJB could look like: a standard Java class with just a single
@Stateless annotation. Because it lives in a container, it can use any container-managed service,
one of which being dependency injection. The @PersistenceContext annotation is used to
inject a reference of an entity manager. For stateless session beans, the persistence context is
transactional, which means that any method invoked in this EJB (createBook(), createCD(),
etc.) is transactional. This will be explained in more detail in Chapter 9. Notice that all meth-
ods have the needed parameters to process business logic in one single call. For example, the
createBook() method takes a Book as a parameter and persists it without relying on any other
state.

Listing 7-1. Stateless Session Bean ItemEJB

@Stateless
public class ItemEJB {

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE192

 @PersistenceContext(unitName = "chapter07PU")
 private EntityManager em;

 public List<Book> findBooks() {
 Query query = em.createNamedQuery("findAllBooks");
 return query.getResultList();
 }

 public List<CD> findCDs() {
 Query query = em.createNamedQuery("findAllCDs");
 return query.getResultList();
 }

 public Book createBook(Book book) {
 em.persist(book);
 return book;
 }

 public CD createCD(CD cd) {
 em.persist(cd);
 return cd;
 }
}

Stateless session beans often contain several closely related business methods. For exam-
ple, the ItemEJB bean in Listing 7-1 defines methods related to items sold by the CD-BookStore
application. So you will find methods to create, update, or find books and CDs, as well as other
related business logic.

The @Stateless annotation marks the ItemEJB POJO as a stateless session bean, thus turn-
ing a simple Java class into a container-aware component. The specification of the @javax.
ejb.Stateless annotation is described in Listing 7-2.

Listing 7-2. @Stateless Annotation API

@Target({TYPE}) @Retention(RUNTIME)
public @interface Stateless {
 String name() default "";
 String mappedName() default "";
 String description() default "";
}

The name parameter specifies the name of the bean and by default is the name of the class
(ItemEJB in the example in Listing 7-1). This parameter can be used to look up an EJB with
JNDI, for example. The description parameter is a string that can be used to describe the
EJB. The mappedName attribute is the global JNDI name assigned by the container. Note that
this JNDI name is vendor specific and is therefore not portable. mappedName has no relation-
ship with the portable global JNDI name, which I introduced in the previous chapter and I’ll
describe in detail later in the “Global JNDI Access” section.

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE 193

Stateless session beans can support a large number of clients, minimizing any needed
resources. That’s why applications written with stateless EJBs are more scalable. Stateful ses-
sion beans are instead related to one and only one client.

Stateful Beans
Stateless beans provide business methods to their clients but don’t maintain a conversational
state with them. Stateful session beans, on the other hand, preserve conversational state.
They are useful for tasks that have to be done in several steps, each of which relies on the state
maintained in a previous step. Let’s take the example of a shopping cart in an e-commerce
web site. A customer logs on (his session starts), chooses a first book, adds it to his shopping
cart, chooses a second book, and adds it to his cart. At the end, the customer checks out the
books, pays for them, and logs out (the session ends). The shopping cart keeps the state of how
many books the customer has chosen throughout the interaction (which can take some time,
specifically the time of the client’s session).

Book book = new Book();
book.setTitle("The Hitchhiker's Guide to the Galaxy");
book.setPrice(12.5F);
book.setDescription("Science fiction comedy series created by Douglas Adams.");
book.setIsbn("1-84023-742-2");
book.setNbOfPage(354);
book.setIllustrations(false);
statefullComponent.addBookToShoppingCart(book);
book.setTitle("The Robots of Dawn");
book.setPrice(18.25F);
book.setDescription("Isaac Asimov's Robot Series");
book.setIsbn("0-553-29949-2");
book.setNbOfPage(276);
book.setIllustrations(false);
statefullComponent.addBookToShoppingCart(book);
statefullComponent.checkOutShoppingCart();

The preceding code shows exactly how a stateful session bean works. Two books are
created and added to a shopping cart of a stateful component. At the end, the
checkOutShoppingCart() method relies on the maintained state and can check out the two
books.

When a client invokes a stateful session bean in the server, the EJB container needs to
provide the same instance for each subsequent method invocation. Stateful beans cannot be
reused by other clients. Figure 7-3 shows the one-to-one correlation between a bean instance
and a client. As far as the developer is concerned, no extra code is needed, as this one-to-one
correlation is managed automatically by the EJB container.

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE194

Figure 7-3. Clients accessing stateful beans

The one-to-one correlation comes at a price because, as you might have guessed, if you
have one million clients, you will get one million stateful beans in memory. To avoid such
memory footprint, stateful beans have to be cleared temporarily from memory before the next
request from the client brings them back. This technique is called passivation and activation.
Passivation is the process of removing an instance from memory and saving it to a persistent
location (a file on a disk, a database, etc.). It helps you to free memory and release resources
(a database or JMS connections, etc.). Activation is the inverse process of restoring the state
and applying it to an instance. Passivation and activation are done automatically by the con-
tainer; you shouldn’t worry about doing it yourself, as it’s a container service. What you should
worry about is freeing any resource (e.g., database connection, JMS factories connection, etc.)
before the bean is passivated, as you’ll see in the next chapter.

Let’s return to the shopping cart example and apply it to a stateful bean (see Listing
7-3). A customer logs on to a web site, browses the catalog of items, and adds two books to
the shopping cart (addItem() method). The cartItems attribute holds the content of the cart.
Then the customer decides to get a coffee at a coffee machine. During this time, the container
might passivate the instance to free some memory, which in turn saves the shopping content
to permanent storage. A few minutes later, the customer comes back and wants to know the
total price (getTotal() method) of his shopping cart before buying anything. The container
activates the EJB and restores the data to the shopping cart. The customer can then check out
(checkout() method) and buy the books. Once the customer logs off, the customer’s session
ends, and the container frees memory by permanently removing the instance of the stateful
bean.

Listing 7-3. Stateful Session Bean ShoppingCartEJB

@Stateful
@StatefulTimeout(20000)
public class ShoppingCartEJB {

 private List<Item> cartItems = new ArrayList<Item>();

 public void addItem(Item item) {
 if (!cartItems.contains(item))
 cartItems.add(item);
 }

 public void removeItem(Item item) {

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE 195

 if (cartItems.contains(item))
 cartItems.remove(item);
 }

 public Float getTotal() {
 if (cartItems == null || cartItems.isEmpty())
 return 0f;

 Float total = 0f;
 for (Item cartItem : cartItems) {
 total += (cartItem.getPrice());
 }
 return total;
 }

 @Remove
 public void checkout() {
 // Business logic
 cartItems.clear();
 }

 @Remove
 public void empty() {
 cartItems.clear();
 }
}

The shopping cart situation is a standard way of using stateful beans in which the con-
tainer automatically takes care of maintaining the conversational state. The only needed
annotation is @javax.ejb.Stateful, which has the same parameters as @Stateless, described
in Listing 7-2.

Notice the optional @javax.ejb.StatefulTimeout and @javax.ejb.Remove annotations.
@Remove decorates the checkout() and empty() methods. Invoking one of these methods causes
the bean instance to be permanently removed from memory. @StatefulTimeout assigns a
timeout value, which is the number of milliseconds the bean is permitted to remain idle (not
receiving any client invocations) before being removed by the container. Alternatively, you can
avoid these annotations and rely on the container automatically removing an instance when
the client’s session ends or expires. However, making sure the stateful bean is removed at the
appropriate moment might reduce memory consumption. This could be critical in highly con-
current applications.

Singletons
A singleton bean is a session bean that is instantiated once per application. It follows the
famous Gang of Four design pattern, as outlined in Design Patterns: Elements of Reusable
Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John M.
Vlissides (Addison-Wesley, 1995), which is probably one of the most widely used. It ensures

mailto:@javax.ejb.Stateful
mailto:@javax.ejb.StatefulTimeout
mailto:@javax.ejb.Remove

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE196

that only one instance of a class exists in the whole application and provides a global point
of access to it. There are many situations where singleton objects are needed, that is, where
your application only needs one instance of an object: a mouse, a window manager, a printer
spooler, a file system, and so on.

Another common use case is a caching system whereby the entire application shares a
single cache (a Hashmap, for example) to store objects. In an application-managed environ-
ment, you need to tweak your code a little bit to turn a class into a singleton, as shown in
Listing 7-4. First, you need to prevent the creation of a new instance by having a private
constructor. The public static method getInstance() returns the single instance of the
CacheSingleton class. If a client class wants to add an object to the cache using the singleton,
it needs to call

CacheSingleton.getInstance().addToCache(myObject);

If you want this code to be thread-safe, you will have to use the synchronized keyword to
prevent thread interference and inconsistent data.

Listing 7-4. A Java Class Following the Singleton Design Pattern

public class {

 private static CacheSingleton instance = new CacheSingleton();
 private Map<Long, Object> cache = new HashMap<Long, Object>();

 private CacheSingleton() {
 }

 public static synchronized CacheSingleton getInstance() {
 return instance;
 }

 public void addToCache(Long id, Object object) {
 if (!cache.containsKey(id))
 cache.put(id, object);
 }

 public void removeFromCache(Long id) {
 if (cache.containsKey(id))
 cache.remove(id);
 }

 public Object getFromCache(Long id) {
 if (cache.containsKey(id))
 return cache.get(id);
 else
 return null;
 }
}

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE 197

EJB 3.1 introduces the brand-new singleton session bean, which follows the singleton
design pattern. Once instantiated, the container makes sure there is only one instance of a
singleton for the duration of the application. An instance is shared between several clients, as
shown in Figure 7-4. Singletons maintain their state between client invocations.

Figure 7-4. Clients accessing a singleton bean

nNote  Singletons are not cluster-aware. A cluster is a group of containers that work together closely
(sharing the same resources, EJBs, and so on). So, in cases where there are several distributed containers
clustered together over several machines, each container will have its own instance of the singleton.

To turn the code in Listing 7-4 from a singleton Java class to a singleton session bean (see
Listing 7-5), there is not much to do. In fact, you just need to annotate a class with @Singleton
and not worry about the private constructor or the static getInstance() method. The con-
tainer will make sure only one instance is created. The @javax.ejb.Singleton annotation has
the same API as the @Stateless annotation described earlier in Listing 7-2.

Listing 7-5. Singleton Session Bean

@Singleton
public class CacheEJB {

 private Map<Long, Object> cache = new HashMap<Long, Object>();

 public void addToCache(Long id, Object object) {
 if (!cache.containsKey(id))
 cache.put(id, object);
 }

 public void removeFromCache(Long id) {
 if (cache.containsKey(id))
 cache.remove(id);
 }

 public Object getFromCache(Long id) {
 if (cache.containsKey(id))
 return cache.get(id);
 else

mailto:@javax.ejb.Singleton

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE198

 return null;
 }
}

As you can see, stateless, stateful, and singleton session beans are very easy to develop:
you just need one annotation. Singletons though have a bit more to them. They can be initial-
ized at startup, be chained together, and have their concurrency access customized.

Initialization
When a client class needs to access a method on a singleton session bean, the container makes
sure to either instantiate it or use the one already living in the container. However, some-
times initializing a singleton can be time consuming. Imagine if CacheEJB (shown previously
in Listing 7-5) needs to access a database to load its cache with thousands of objects. The first
call to the bean will be expensive, and the first client will have to wait for initialization to be
completed.

To avoid such latency, you can ask the container to initialize a singleton bean at startup.
If the @Startup annotation appears on the bean class, the container initializes it during the
application startup, not when a client invokes it. The following code shows you how to use the
annotation:

@Singleton
@Startup
public class CacheEJB {
 // ...
}

Chaining Singletons
In some cases, when you have several singleton beans, explicit initialization ordering can be
important. Imagine if the CacheEJB needs to store data that comes from another singleton
bean (let’s say a CountryCodeEJB that returns all the ISO country codes). The CountryCodeEJB
then needs to be initialized before the CacheEJB. Dependencies can exist between multiple sin-
gletons, and the @javax.ejb.DependsOn annotation is there to express it. The following example
illustrates the use of the annotation:

@Singleton
public class CountryCodeEJB {
 ...
}

@DependsOn("CountryCodeEJB")
@Singleton
public class CacheEJB {
 ...
}

@DependsOn holds one or more strings, where each specifies the name of the target single-
ton bean. The following code shows how CacheEJB depends on the initialization of
CountryCodeEJB and ZipCodeEJB. @DependsOn("CountryCodeEJB", "ZipCodeEJB") tells the

mailto:@javax.ejb.DependsOn

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE 199

container to guarantee that singleton CountryCodeEJB and ZipCodeEJB are initialized before
CacheEJB.

@Singleton
public class CountryCodeEJB {
 ...
}

@Singleton
public class ZipCodeEJB {
 ...
}

@DependsOn("CountryCodeEJB", "ZipCodeEJB")
@Startup
@Singleton
public class CacheEJB {
 ...
}

As you can see in this code, you can even combine dependencies with startup initializa-
tion. CacheEJB is eagerly initialized at startup (because it holds the @Startup annotation), and
therefore CountryCodeEJB and ZipCodeEJB will also be initialized at startup before CacheEJB.

Concurrency
As you understand by now, there is only one instance of a singleton session bean shared by
multiple clients. So concurrent access by clients is allowed and can be controlled with the
@ConcurrencyManagement annotation in three different ways:

	 •	 Container-managed concurrency (CMC): The container controls concurrent access to
the bean instance based on metadata (annotation or the XML equivalent).

	 •	 Bean-managed concurrency (BMC): The container allows full concurrent access and
defers the synchronization responsibility to the bean.

	 •	 Concurrency not allowed: If a client invokes a business method that is being used by
another client, the concurrent invocation will result in a ConcurrentAccessException.

If no concurrency management is specified, the CMC demarcation is used by default.
A singleton bean can be designed to use either CMC or BMC, but not both.

Container-Managed Concurrency

With CMC, the default demarcation, the container is responsible for controlling concurrent
access to the singleton bean instance. You can then use the @Lock annotation to specify how
the container must manage concurrency when a client invokes a method. The annotation can
take the values READ (shared) or WRITE (exclusive):

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE200

	 •	 @Lock(LockType.WRITE): A method associated with an exclusive lock will not allow con-
current invocations until the method’s processing is completed. For example, if a client
C1 invokes a method with an exclusive lock, client C2 will not be able to invoke the
method until C1 has finished.

	 •	 @Lock(LockType.READ): A method associated with a shared lock will allow any number
of other concurrent invocations to the bean’s instance. For example, two clients, C1
and C2, can access simultaneously a method with a shared lock.

The @Lock annotation can be specified on the class, the methods, or both. Specifying on
the class means that it applies to all methods. If the concurrency locking attribute is not speci-
fied, it is assumed to be @Lock(WRITE) by default. The code in Listing 7-6 shows CacheEJB with
a READ lock in the bean class. This implies that all methods will have READ concurrency except
getFromCache(), which is overridden by WRITE.

Listing 7-6. A Singleton Session Bean with CMC

@Singleton
@Lock(LockType.READ)
public class CacheEJB {

 private Map<Long, Object> cache = new HashMap<Long, Object>();

 public void addToCache(Long id, Object object) {
 if (!cache.containsKey(id))
 cache.put(id, object);
 }

 public void removeFromCache(Long id) {
 if (cache.containsKey(id))
 cache.remove(id);
 }

 @AccessTimeout(2000)
 @Lock(LockType.WRITE)
 public Object getFromCache(Long id) {
 if (cache.containsKey(id))
 return cache.get(id);
 else
 return null;
 }
}

In Listing 7-6, the getFromCache() method uses an @AccessTimeout annotation. When a
concurrent access is blocked, a timeout can be specified to reject a request if the lock is not
acquired within a certain time. If a getFromCache() invocation is locked for more than 2,000
milliseconds, the client will get a ConcurrentAccessTimeoutException.

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE 201

Bean-Managed Concurrency

With BMC demarcation, the container allows full concurrent access to the singleton bean
instance. You are then responsible for guarding its state against synchronization errors due
to concurrent access. In this case, you are allowed to use Java synchronization primitives
such as synchronized and volatile. The code in Listing 7-7 shows CacheEJB with BMC
(@ConcurrencyManagement(BEAN)) using the synchronized keyword on the addToCache()
method.

Listing 7-7. A Singleton Session Bean with BMC

@Singleton
@ConcurrencyManagement(ConcurrencyManagementType.BEAN)
public class CacheEJB {

 private Map<Long, Object> cache = new HashMap<Long, Object>();

 public synchronized void addToCache(Long id, Object object) {
 if (!cache.containsKey(id))
 cache.put(id, object);
 }

 public void removeFromCache(Long id) {
 if (cache.containsKey(id))
 cache.remove(id);
 }

 public synchronized Object getFromCache(Long id) {
 if (cache.containsKey(id))
 return cache.get(id);
 else
 return null;
 }
}

Concurrency Not Allowed

You can also disallow concurrent access on a method or to the entire bean. This will result
in throwing a ConcurrentAccessException if a client invokes a method that is currently being
used. This can have performance issues as clients might have to handle the exception, retry
to access the bean, potentially receive another exception, try again, and so on. In Listing 7-8,
CacheEJB disallows concurrency on the addToCache() method. The other two methods are, by
default, CMC with a @Lock(WRITE).

Listing 7-8. A Singleton Session Bean Not Allowing Concurrency

@Singleton
@Lock(LockType.READ)
public class CacheEJB {

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE202

 private Map<Long, Object> cache = new HashMap<Long, Object>();

 @ConcurrencyManagement(ConcurrencyManagementType.CONCURRENCY_NOT_ALLOWED)
 public void addToCache(Long id, Object object) {
 if (!cache.containsKey(id))
 cache.put(id, object);
 }

 public void removeFromCache(Long id) {
 if (cache.containsKey(id))
 cache.remove(id);
 }

 @AccessTimeout(2000)
 @Lock(LockType.WRITE)
 public Object getFromCache(Long id) {
 if (cache.containsKey(id))
 return cache.get(id);
 else
 return null;
 }
}

Session Bean Model
So far you’ve seen examples of code using the easiest programming model for session beans:
an annotated POJO with no interface. But depending on your needs, session beans can give
you a much richer model, allowing you to perform remote calls, dependency injection, or
asynchronous calls.

Interfaces and Bean Class
Until now you’ve seen session beans composed only of a bean class. In fact, they can be richer
and made of the following elements:

	 •	 Business interfaces: These interfaces contain the declaration of business methods that
are visible to the client and implemented by the bean class. A session bean can have
local interfaces, remote interfaces, or no interface at all (a no-interface view with local
access only).

	 •	 A bean class: The bean class contains the business method implementation and can
implement zero or several business interfaces. The session bean must be annotated
with @Stateless, @Stateful, or @Singleton depending on its type.

As shown in Figure 7-5, a client application can access a session bean by one of its inter-
faces (local or remote) or directly by invoking the bean class itself.

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE 203

Figure 7-5. Session beans have several types of interfaces.

Remote, Local, and No-Interface Views

Depending from where a client invokes a session bean, the bean class will have to implement
remote or local interfaces, or no interface at all. If your architecture has clients residing outside
the EJB container’s JVM instance, they must use a remote interface. As shown in Figure 7-6,
this applies for clients running in a separate JVM (e.g., a rich client), in an application client
container (ACC), or in an external web or EJB container. In this case, clients will have to invoke
session bean methods through Remote Method Invocation (RMI). You can use local invoca-
tion when the bean and the client are running in the same JVM. That can be an EJB invoking
another EJB or a web component (servlet, JSF) running in a web container in the same JVM.
It is also possible for your application to use both remote and local calls on the same session
bean.

Figure 7-6. Session beans invoked by several clients

A session bean can implement several interfaces or none. A business interface is a stan-
dard Java interface that does not extend any EJB-specific interfaces. Like any Java interface,
business interfaces define a list of methods that will be available for the client application.
They can use the following annotations:

	 •	 @Remote: Denotes a remote business interface. Method parameters are passed by value
and need to be serializable as part of the RMI protocol.

	 •	 @Local: Denotes a local business interface. Method parameters are passed by reference
from the client to the bean.

You cannot mark the same interface with more than one annotation. The session beans
that you have seen so far in this chapter have no interface. The no-interface view is a variation
of the local view that exposes all public business methods of the bean class locally without the
use of a separate business interface.

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE204

Listing 7-9 shows a local interface (ItemLocal) and a remote interface (ItemRemote) imple-
mented by the ItemEJB stateless session bean. With this code, clients will be able to invoke the
findCDs() method locally or remotely as it is defined in both interfaces. The createCd() will
only be accessible remotely through RMI.

Listing 7-9. Stateless Session Bean Implementing a Remote and Local Interface

@Local
public interface ItemLocal {
 List<Book> findBooks();
 List<CD> findCDs();
}

@Remote
public interface ItemRemote {
 List<Book> findBooks();
 List<CD> findCDs();
 Book createBook(Book book);
 CD createCD(CD cd);
}

@Stateless
public class ItemEJB implements ItemLocal, ItemRemote {
 ...
}

Alternatively to the code in Listing 7-9, you might specify the interface in the bean’s class.
In this case, you would have to include the name of the interface in the @Local and @Remote
annotations as shown in Listing 7-10. This is handy when you have legacy interfaces and need
to use them in your session bean.

Listing 7-10. A Bean Class Defining a Remote and Local Interface

public interface ItemLocal {
 List<Book> findBooks();
 List<CD> findCDs();
}

public interface ItemRemote {
 List<Book> findBooks();
 List<CD> findCDs();
 Book createBook(Book book);
 CD createCD(CD cd);
}

@Stateless
@Remote (ItemRemote)
@Local (ItemLocal)
public class ItemEJB implements ItemLocal, ItemRemote {
 ...
}

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE 205

Web Services Interface

In addition to remote invocation through RMI, stateless beans can also be invoked remotely
as SOAP web services or RESTful web services. Chapters 14 and 15 are dedicated to web ser-
vices, so I won’t describe them here. I just want to show you how a stateless session bean can
be accessed in various forms just by implementing different annotated interfaces. Listing 7-11
shows a stateless bean with a local interface, a SOAP web services endpoint (@WebService), and
a RESTful web service endpoint (@Path).

Listing 7-11. A Stateless Session Bean Implementing a Web Services Interface

@Local
public interface ItemLocal {
 List<Book> findBooks();
 List<CD> findCDs();
}

@WebService
public interface ItemWeb {
 List<Book> findBooks();
 List<CD> findCDs();
 Book createBook(Book book);
 CD createCD(CD cd);
}

@Path(/items)
public interface ItemRest {
 List<Book> findBooks();
}

@Stateless
public class ItemEJB implements ItemLocal, ItemWeb, ItemRest {
 ...
}

Bean Class

A stateless session bean class is any standard Java class that implements business logic. The
requirements to develop a session bean class are as follows:

	 •	 The class must be annotated with @Stateless, @Stateful, @Singleton, or the XML
equivalent in a deployment descriptor.

	 •	 It must implement the methods of its interfaces, if any.

	 •	 The class must be defined as public, and must not be final or abstract.

	 •	 The class must have a public no-arg constructor that the container will use to create
instances.

	 •	 The class must not define the finalize() method.

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE206

	 •	 Business method names must not start with ejb, and they cannot be final or static.

	 •	 The argument and return value of a remote method must be legal RMI types.

Client View
Now that you have seen examples of session beans and their different interfaces, you might
want to take a look at how the client invokes these beans. The client of a session bean can be
any kind of component: a POJO, a graphical interface (Swing), a servlet, a JSF-managed bean, a
web service (SOAP or REST), or another EJB (deployed in the same or a different container).

To invoke a method on a session bean, a client does not directly instantiate the bean
(using the new operator). It needs a reference to the bean (or to its interfaces). It can obtain it
via dependency injection (with the @EJB annotation) or via JNDI lookup. Unless specified, a cli-
ent invokes a session bean synchronously. As you’ll see later, EJB 3.1 now allows asynchronous
method calls as well.

@EJB

Java EE uses several annotations to inject references of resources (@Resource), entity manag-
ers (@PersistenceContext), web services (@WebServiceRef), and so on. But the @javax.ejb.
EJB annotation is specifically intended for injecting session bean references into client code.
Dependency injection is only possible within managed environments such as EJB containers,
web containers, and application-client containers.

Let’s take our initial examples in which session beans had no interface. For a client to
invoke a session bean’s no-interface view, it needs to obtain a reference to the bean class itself.
For example, in the following code, the client gets a reference to the ItemEJB class using the
@EJB annotation:

@Stateless
public class ItemEJB {
 ...
}
// Client code
@EJB ItemEJB itemEJB;

If the session bean implements several interfaces, the client has to specify which one it
wants a reference to. In the following code, the ItemEJB implements two interfaces. The
client can invoke the EJB through either its local or remote interface, but not through the
no-interface view anymore.

@Stateless
@Remote (ItemRemote)
@Local (ItemLocal)
public class ItemEJB implements ItemLocal, ItemRemote {

 ...
}
// Client code
@EJB ItemEJB itemEJB; // Not possible
@EJB ItemLocal itemEJBLocal;
@EJB ItemRemote itemEJBRemote;

mailto:@javax.ejb

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE 207

If the bean exposes at least one interface, it needs to specify that it exposes a no-interface
view by using the @LocalBean annotation on the bean class. As you can see in the following
code, the client can now invoke the bean through its local, remote, and no-interface view.

@Stateless
@Remote (ItemRemote)
@Local (ItemLocal)
@LocalBean
public class ItemEJB implements ItemLocal, ItemRemote {
 ...
}
// Client code
@EJB ItemEJB itemEJB;
@EJB ItemLocal itemEJBLocal;
@EJB ItemRemote itemEJBRemote;

Depending on your client environment, you might not be able to use injection (if the
component is not managed by the container). In this case, you can use JNDI to look up session
beans through their portable JNDI name.

Global JNDI Access

Session beans can also be looked up using JNDI. JNDI is mostly used for remote access when
a client is not container managed and cannot use dependency injection. But JNDI can also
be used by local clients, even if dependency injection results in simpler code. To look up ses-
sion beans, a client application needs the JNDI API to communicate with a directory naming
service.

Once a session bean is deployed to the container, it is automatically bound to a JNDI
name. This name wasn’t standardized before Java EE 6, so a session bean deployed in differ-
ent containers (GlassFish, JBoss, WebLogic, etc.) would have a different name. The Java EE 6
specification defines portable JNDI names with the following syntax:

java:global[/<app-name>]/<module-name>/<bean-name> ➥

 [!<fully-qualified-interface-name>]

Each portion of the JNDI name has the following meaning:

	 •	 <app-name> is optional because it only applies if the session bean is packaged within an
ear file. If this is the case, the <app-name> defaults to the name of the ear file (without
the .ear file extension).

	 •	 <module-name> is the name of the module in which the session bean is packaged.
It can be an EJB module in a stand-alone jar file or a web module in a war file. The
<module-name> defaults to the base name of the archive with no file extension.

	 •	 <bean-name> is the name of the session bean.

	 •	 <fully-qualified-interface-name> is the fully qualified name of each defined business
interface. For the no-interface view, the name is the fully qualified bean class name.

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE208

To illustrate this naming convention, let’s take the example of ItemEJB. ItemEJB is the
<bean-name> and is packaged in the cdbookstore.jar (the <module-name>). The EJB has a remote
interface and a no-interface view (using the @LocalBean annotation). Once deployed, the con-
tainer will create the following JNDI names:

package com.apress.javaee6;
@Stateless	
@LocalBean
@Remote (ItemRemote)
public class ItemEJB implements ItemRemote {
 ...
}
// JNDI name
java:global/cdbookstore/ItemEJB!com.apress.javaee6.ItemEJB
java:global/cdbookstore/ItemEJB!com.apress.javaee6.ItemRemote

In addition to the previous naming convention, if the bean exposes only one client inter-
face (or has only a no-interface view), the container registers a JNDI entry for that view with
the following syntax :

java:global[/<app-name>]/<module-name>/<bean-name>

The following code represents the ItemEJB bean with only a no-interface view. The JNDI
name is then composed only of the module name (cdbookstore) and the bean name.

package com.apress.javaee6;
@Stateless
public class ItemEJB {
 ...
}
// JNDI name
java:global/cdbookstore/ItemEJB

Session Context
Session beans are business components that live in a container. Usually, they don’t access the
container or use the container services directly (transaction, security, dependency injection,
and so forth). These services are meant to be handled transparently by the container on the
bean’s behalf. However, it is sometimes necessary for the bean to explicitly use container ser-
vices in code (such as explicitly marking a transaction to be rolled back). And this can be done
through the javax.ejb.SessionContext interface. The SessionContext allows programmatic
access to the runtime context provided for a session bean instance. SessionContext extends
the javax.ejb.EJBContext interface. Some methods of the SessionContext API are described in
Table 7-1.

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE 209

Table 7-1. Some Methods of the SessionContext Interface

Method	 Description

getCallerPrincipal	� Returns the java.security.Principal associated with the invocation.

getRollbackOnly	 Tests whether the current transaction has been marked for rollback.

getTimerService	� Returns the javax.ejb.TimerService interface. Only stateless beans and
singletons can use this method. Stateful session beans cannot be timed
objects.

getUserTransaction	� Returns the javax.transaction.UserTransaction interface to demar-
cate transactions. Only session beans with bean-managed transaction
(BMT) can use this method.

isCallerInRole	 Tests whether the caller has a given security role.

lookup	� Enables the session bean to look up its environment entries in the JNDI
naming context.

setRollbackOnly	� Allows the bean to mark the current transaction for rollback. Only
session beans with BMT can use this method.

wasCancelCalled	� Checks whether a client invoked the cancel() method on the client
Future object corresponding to the currently executing asynchronous
business method.

A session bean can have access to its environment context by injecting a reference
of SessionContext with a @Resource annotation.

@Stateless
public class ItemEJB {
 @Resource
 private SessionContext context;
 ...
 public Book createBook(Book book) {
 ...
 if (cantFindAuthor())
 context.setRollbackOnly();
 }
}

Deployment Descriptor
Java EE 6 components use configuration by exception, which means that the container, the
persistence provider, or the message broker will apply a set of default services to that com-
ponent. Configuring these default services is the exception. If nondefault behavior is desired,
an annotation, or its counterpart in XML, needs to be explicitly specified. That’s what you’ve
already seen with JPA entities, where a set of annotations allows you to customize the default
mapping. The same principal applies for session beans. A single annotation (@Stateless,
@Stateful, etc.) is enough to inform the container to apply certain services (transaction, life
cycle, security, interceptors, concurrency, asynchrony, etc.), but if you need to change them,
you use annotations or XML. Annotations attach additional information to a class, an inter-
face, a method, or a variable, and so does an XML deployment descriptor.

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE210

An XML deployment descriptor is an alternative to annotations, which means that
any annotation has an equivalent XML tag. If both annotations and deployment descrip-
tors are used, the settings in the deployment descriptor will override the annotations during
deployment process. I will not go into too much detail describing the structure of the XML
deployment descriptor (called ejb-jar.xml), as it is optional and can end up being very
verbose. As an example, Listing 7-12 shows what the ejb-jar.xml file of ItemEJB (shown previ-
ously in Listing 7-9) could look like. It defines the bean class, the remote and local interface,
its type (Stateless), and that it uses container-managed transaction (CMT) (Container). The
<env-entry> defines the environment entries of the session bean. I will explain these soon in
the “Environment Naming Context” section.

Listing 7-12. The ejb-jar.xml File

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>ItemEJB</ejb-name>
 <ejb-class>com.apress.javaee6.ItemEJB</ejb-class>
 <local>com.apress.javaee6.ItemLocal</local>
 <remote>com.apress.javaee6.ItemLocal</remote>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <env-entry>
 <env-entry-name>aBookTitle</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>Beginning Java EE 6</env-entry-value>
 </env-entry>
 </session>
 </enterprise-beans>
</ejb-jar>

If the session bean is deployed in a jar file, the deployment descriptor needs to be stored
in the META-INF/ejb-jar.xml file. If it’s deployed in a war file, it needs to be stored in the
WEB-INF/ejb-jar.xml file.

Dependency Injection
I’ve already talked about dependency injection in this book, and you will come across this
mechanism several times in the next chapters. It is a simple yet powerful mechanism used by
Java EE 6 to inject references of resources into attributes. Instead of the application looking up
resources in JNDI, they are injected by the container.

The containers can inject various types of resources into session beans using different
annotations (or deployment descriptors):

	 •	 @EJB: Injects a reference of the local, remote, or no-interface view of an EJB into the
annotated variable.

	 •	 @PersistenceContext and @PersistenceUnit: Expresses a dependency on an
EntityManager and on an EntityManagerFactory, respectively.

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE 211

	 •	 @WebServiceRef: Injects a reference to a web service.

	 •	 @Resource: Injects several resources such as JDBC datasources, session context, user
transactions, JMS connection factories and destinations, environment entries, the
timer service, and so on.

Listing 7-13 shows a snippet of a stateless session bean using various annotations to inject
different resources into attributes. Note that these annotations can be set on instance vari-
ables as well as on setter methods.

Listing 7-13. A Stateless Bean Using Injection

@Stateless
public class ItemEJB {

 @PersistenceContext(unitName = "chapter07PU")
 private EntityManager em;

 @EJB
 private CustomerEJB customerEJB;

 @WebServiceRef
 private ArtistWebService artistWebService;

 private SessionContext context;

 @Resource
 public void setCtx(SessionContext ctx) {
 this.ctx = ctx;
 }

 ...
}

Environment Naming Context
When you work with enterprise applications, there are some situations where parameters of
your application change from one deployment to another (depending on the country you are
deploying in, the version of the application, etc.). For example, in the CD-BookStore applica-
tion, ItemConverterEJB (see Listing 7-14) converts the price of an item to the currency of the
country where the application is deployed (applying a change rate based on the dollar). If you
deploy this stateless bean somewhere in Europe, you need to multiply the price of the item by
0.80 and change the currency to euros.

Listing 7-14. A Stateless Session Bean Converting Prices to Euros

@Stateless
public class ItemConverterEJB {

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE212

 public Item convertPrice(Item item) {
 item.setPrice(item.getPrice() * 0.80);
 item.setCurrency("Euros");
 return item;
 }
}

As you can understand, the problem of hard-coding these parameters is that you have
to change your code, recompile it, and redeploy the component for each country where the
currency changes. The other option is to access a database each time you invoke the
convertPrice() method. That’s wasting resources. What you really want is to store these
parameters somewhere you can change them at deployment time. The deployment descriptor
is the perfect place to set these parameters.

The deployment descriptor (ejb-jar.xml) might be optional in EJB 3.1, but its use is
legitimate with environment entries. Environment entries are specified in the deployment
descriptor and are accessible via dependency injection (or via JNDI). They support the follow-
ing Java types: String, Character, Byte, Short, Integer, Long, Boolean, Double, and Float. Listing
7-15 shows the ejb-jar.xml file of ItemConverterEJB defining two entries: currencyEntry of
type String with the value Euros and a changeRateEntry of type Float with the value 0.80.

Listing 7-15. ItemConverterEJB Environment Entries in ejb-jar.xml

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>ItemConverterEJB</ejb-name>
 <ejb-class>com.apress.javaee6.ItemConverterEJB</ejb-class>
 <env-entry>
 <env-entry-name>currencyEntry</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>Euros</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>changeRateEntry</env-entry-name>
 <env-entry-type>java.lang.Float</env-entry-type>
 <env-entry-value>0.80</env-entry-value>
 </env-entry>
 </session>
 </enterprise-beans>
</ejb-jar>

Now that the parameters of the application are externalized in the deployment descriptor,
ItemConverterEJB can use dependency injection to get the value of each environment entry.
In Listing 7-16, @Resource(name = "currencyEntry") injects the value of the currencyEntry into
the currency attribute. Note that the data types of the environment entry and the injected vari-
able must be compatible; otherwise, the container throws an exception.

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE 213

Listing 7-16. An ItemConverterEJB Using Environment Entries

@Stateless
public class ItemConverterEJB {

 @Resource(name = "currencyEntry")
 private String currency;
 @Resource(name = "changeRateEntry")
 private Float changeRate;

 public Item convertPrice(Item item) {
 item.setPrice(item.getPrice() * changeRate);
 item.setCurrency(currency);
 return item;
 }
}

Asynchronous Calls
By default, session bean invocations through remote, local, and no-interface views are syn-
chronous: a client invokes a method, and it gets blocked for the duration of the invocation
until the processing has completed, the result is returned, and the client can carry on its work.
But asynchronous processing is a common requirement in many applications handling long-
running tasks. For example, printing an order can be a very long task depending on whether
the printer is online, there is enough paper, or dozens of documents are already waiting to
be printed in the printer’s spool. When a client calls a method to print a document, it wants
to trigger a fire-and-forget process that will print the document so the client can carry on its
processing.

Before EJB 3.1, asynchronous processing could be handled by JMS and MDBs (see
Chapter 13). You had to create administrated objects (JMS factories and destinations), deal
with the low-level JMS API to send a message to a destination, and then develop an MDB that
would consume and process the message. This works, but it is heavyweight for many use
cases, as you have to set up a MOM system when what you want is just to call a method
asynchronously.

Since EJB 3.1, you can call methods asynchronously simply by annotating a session bean
method with @javax.ejb.Asynchronous. Listing 7-17 shows OrderEJB, which has one method
for sending an e-mail to a customer and another for printing the order. Since these two meth-
ods are time consuming, they are both annotated with @Asynchronous.

Listing 7-17. An OrderEJB That Declares Two Asynchronous Methods

@Stateless
public class OrderEJB {

 @Asynchronous
 private void sendEmailOrderComplete(Order order, Customer customer) {
 // Send e-mail
 }

mailto:@javax.ejb.Asynchronous

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE214

 @Asynchronous
 private void printOrder(Order order) {
 // Print order
 }
}

When a client invokes either the printOrder() or sendEmailOrderComplete() method,
the container returns control to the client immediately and continues processing the invoca-
tion on a separate thread of execution. As you can see in Listing 7-17, the return type of the
two asynchronous methods is void. This might be suitable in a vast majority of use cases, but
sometimes you need a method to return a value. An asynchronous method can return void as
well as a java.util.concurrent.Future<V> object, where V represents the result value. Future
objects allow you to obtain a return value from a method executed in a separate thread. The
client can then use the Future API to get the result or even cancel the call.

Listing 7-18 shows an example of a method that returns a Future<Integer>. The
sendOrderToWorkflow() method uses a workflow to process an Order object. Let’s imagine that
it calls several enterprise components (messages, web services, etc.), and each step returns
a status (an integer). When the client invokes the sendOrderToWorkflow() method asynchro-
nously, it expects to receive the status of the workflow. The client can retrieve the result using
the Future.get() method, or if for any reason it wants to cancel the call, it can use Future.
cancel(). If a client invokes Future.cancel(), the container will attempt to cancel the asyn-
chronous call only if that call has not already started. Notice that the sendOrderToWorkflow()
method uses the SessionContext.wasCancelCalled() method to check whether the client has
requested to cancel the call or not. As a result, the method returns javax.ejb.AsyncResult<V>,
which is a convenient implementation of Future<V>. Bear in mind that AsyncResult is used as
a way to pass the result value to the container, not directly to the caller.

Listing 7-18. An OrderEJB Declares Two Asynchronous Methods

@Stateless
@Asynchronous
public class OrderEJB {

 @Resource
 SessionContext ctx;

 private void sendEmailOrderComplete(Order order, Customer customer) {
 // Send e-mail
 }

 private void printOrder(Order order) {
 // Print order
 }

 private Future<Integer> sendOrderToWorkflow(Order order) {
 Integer status = 0;
 // processing
 status = 1;

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE 215

 if (ctx.wasCancelCalled()) {
 return new AsyncResult<Integer>(2);
 }
 // processing
 return new AsyncResult<Integer>(status);
 }
}

Notice in Listing 7-18 that the @Asynchronous annotation can also be applied at the class
level. This defines all methods as being asynchronous. When the client invokes the
sendOrderToWorkflow() method, it needs to call Future.get() in order to retrieve the result
value.

Future<Integer> status = orderEJB.sendOrderToWorkflow (order);
Integer statusValue = status.get();

Embeddable Usage
Session beans are container-managed components, and that’s their advantage. The container
deals with all sorts of services (transaction, life cycle, asynchrony, interceptors, etc.), which
leaves you to concentrate on business code. The downside is that you always need to execute
your EJBs in a container, even if you just want to test them. To solve this problem, you end up
having to tweak your business code to be able to test it: adding remote interfaces when your
EJB only needs local access, creating a remote TestEJB façade that delegates the calls to your
real EJBs, or using a vendor’s specific features—but one way or another, you need to have a
container running with your deployed EJBs.

This problem has been solved in EJB 3.1 with the creation of an embeddable EJB
container. EJB 3.1 brings a standard API to execute EJBs in a Java SE environment. The embed-
dable API (package javax.ejb.embeddable) allows a client to instantiate an EJB container that
runs within its own JVM. The embeddable container provides a managed environment with
support for the same basic services that exist within a Java EE container: injection, transac-
tions, life cycle, and so forth. Embeddable EJB containers only work with the EJB Lite subset
API (no MDBs, no Entity Beans 2.x, etc.).

Listing 7-19 shows a JUnit test class that uses the bootstrapping API to start the container
(the javax.ejb.embeddable.EJBContainer abstract class), look up an EJB, and invoke methods
on it.

Listing 7-19. A Test Class Using the Embeddable Container

public class ItemEJBTest {

 private static EJBContainer ec;
 private static Context ctx;

 @BeforeClass
 public static void initContainer() throws Exception {
 ec = EJBContainer.createEJBContainer();
 ctx = ec.getContext();
 }

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE216

 @AfterClass
 public static void closeContainer() throws Exception {
 ec.close();
 }

 @Test
 public void createBook() throws Exception {

 // Creates an instance of book
 Book book = new Book();
 book.setTitle("The Hitchhiker's Guide to the Galaxy");
 book.setPrice(12.5F);
 book.setDescription("Science fiction comedy book");
 book.setIsbn("1-84023-742-2");
 book.setNbOfPage(354);
 book.setIllustrations(false);

 // Looks up for the EJB
 ItemEJB bookEJB = (ItemEJB) ➥

 ctx.lookup("java:global/chapter07/ItemEJB");

 // Persists the book to the database
 book = itemEJB.createBook(book);
 assertNotNull("ID should not be null", book.getId());

 // Retrieves all the books from the database
 List<Book> books = itemEJB.findBooks();
 assertNotNull(books);
 }
}

As you can see in the initContainer() method in Listing 7-19, EJBContainer contains
a factory method (createEJBContainer()) for creating a container instance. By default, the
embeddable container searches the client’s classpath to find the set of EJBs for initialization.
Once the container has been initialized, the method gets the container context (EJBContainer.
getContext(), which returns a javax.naming.Context) to look up the ItemEJB (using the por-
table global JNDI name syntax).

Note that ItemEJB (shown earlier in Listing 7-1) is a stateless session bean exposing busi-
ness methods through a no-interface view. It uses injection, container-managed transactions,
and a JPA Book entity. The embeddable container takes care of injecting an entity manager
and committing or rolling back any transaction. The closeContainer() method invokes the
EJBContainer.close() method to shut down the embeddable container instance.

I’ve used a test class in this example to show you how to use an embeddable EJB con-
tainer. But bear in mind that EJBs can now be used in any kind of Java SE environment: from
test classes to Swing applications, or even just a Main class with a public static void main().

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE 217

The Timer Service
Some Java EE applications need to schedule tasks in order to get notified at certain times. For
example, the CD-BookStore application needs to send a birthday e-mail to its customers every
year, print monthly statistics about the items sold, generate nightly reports about inventory
levels, and refresh a technical cache every 30 seconds.

As a result, EJB 2.1 introduced a scheduling facility called the timer service because clients
couldn’t use the Thread API directly. Compared with other proprietary tools or frameworks
(the Unix cron utility, Quartz, etc.), the timer service was less feature-rich. The EJB specifica-
tion had to wait until the 3.1 version to see a drastic improvement of the timer service. It took
inspiration from Unix cron and other successful tools, and today competes with the other
products as it responds to most scheduling use cases.

The EJB timer service is a container service that allows EJBs to be registered for callback
invocation. EJB notifications may be scheduled to occur according to a calendar-based sched-
ule, at a specific time, after a specific elapsed duration, or at specific recurring intervals. The
container keeps a record of all the timers, and invokes the appropriate bean instance method
when a timer has expired. Figure 7-7 shows the two steps involving the timer service. First, the
EJB needs to create a timer (automatically or programmatically) and get registered for callback
invocation, and then the timer service triggers the registered method on the EJB instance.

Figure 7-7. Interaction between the timer service and the session bean

Timers are intended for long-lived business processes and are by default persistent. This
means they survive server shutdowns, and once the server starts again, the timers are executed
as if no shutdown had happened. Optionally, you can specify timers to be nonpersistent.

nNote  Stateless beans, singletons, and MDBs can be registered by the timer service, but stateful beans
can’t and shouldn’t use the scheduling API.

Timers can be created automatically by the container at deployment time if the bean has
methods annotated with the @Schedule annotation. But timers can also be created program-
matically and must provide one callback method annotated with the @Timeout annotation.

Calendar-Based Expression
The timer service uses a calendar-based syntax that takes its roots from the Unix cron utility.
This syntax is used for programmatic timer creation (using the ScheduleExpression class) and
for automatic timer creation (via the @Schedule annotation or the deployment descriptor). The
attributes creating calendar-based expressions are defined in Table 7-2.

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE218

Table 7-2. Attributes of a Calendar-Based Expression

Attribute	 Description	 Possible Values	 Default Value

second	� One or more seconds
within a minute	 [0,59]	 0

minute	� One or more minutes
within an hour	 [0,59]	 0

hour	� One or more hours
within a day	 [0,23]	 0

dayOfMonth	� One or more days 	 [1,31] or {"1st", "2nd", "3rd", . . . ,	 *
within a month	� "30th", "31st"} or {"Sun", "Mon",

"Tue", "Wed", "Thu", "Fri", "Sat"}
or "Last" (the last day of the month)
or -x (means x day(s) before the last
day of the month)	

month	� One or more months 	 [1,12] or {"Jan", "Feb", "Mar", "Apr",	 *
within a year	� "May", "Jun", "Jul", "Aug", "Sep",

"Oct", "Nov", "Dec"}	

dayOfWeek	� One or more days 	 [0,7] or {"Sun", "Mon", "Tue", "Wed",	 *
within a week	� "Thu", "Fri", "Sat"}—"0" and "7"

both refer to Sunday	

year	 A particular calendar year	 A four-digit calendar year	 *

timezone	 A specific time zone	� List of time zones as provided by
the zoneinfo (or tz) database	

Each attribute of a calendar-based expression (second, minute, hour, etc.) supports values
expressed in different forms. For example, you can have a list of days or a range of years. Table
7-3 defines the different forms that an attribute can take.

Table 7-3. Forms of Expression

Form	 Description	 Example

Single value	� The attribute has only one 	 year = "2009"
possible value.	 month= "May"

Wildcard	� This form represents all possible 	 second = "*"
values for a given attribute.	 dayOfWeek = "*"

List	� The attribute has two or more values 	 year = "2008,2012,2016"
separated by a comma.	� dayOfWeek = "Sat,Sun"

minute = "0-10,30,40"

Range	� The attribute has a range of values 	 second="1-10"
separated by a dash.	 dayOfWeek = "Mon-Fri"

Increments	� The attribute has a starting point and 	 minute = "*/15"
an interval separated by a forward slash.	 second = "30/10"

If you have used Unix cron syntax before, this might sound familiar and much simpler.
With this rich syntax, you can express nearly any kind of calendar expression, as shown in
Table 7-4.

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE 219

Table 7-4. Examples of Expressions

Example	 Expression

Every Wednesday at midnight	 dayOfWeek="Wed"

Every Wednesday at midnight	� second="0", minute="0", hour="0",
dayOfMonth="*", month="*",
dayOfWeek="Wed", year="*"

Every weekday at 6:55	� minute="55", hour="6", dayOfWeek="Mon-
Fri"

Every weekday at 6:55 Paris time	� minute="55", hour="6", dayOfWeek="Mon-
Fri", timezone="Europe/Paris"

Every minute of every hour of every day	 minute="*", hour="*"

Every second of every minute of every 	 second="*", minute="*", hour="*"
hour of every day	

Every Monday and Friday at 30 seconds past noon	� second="30", hour="12", dayOfWeek="Mon,
Fri"

Every five minutes within the hour	 minute="*/5", hour="*"

Every five minutes within the hour	� minute="0,5,10,15,20,25,30,35,
40,45,50,55", hour="*"

The last Monday of December at 3 p.m.	� hour="15", dayOfMonth="Last Mon",
month="Dec"

Three days before the last day of each month at 1 p.m.	 hour="13", dayOfMonth="-3"

Every other hour within the day starting at noon 	 hour="12/2", dayOfMonth="2nd Tue"
on the second Tuesday of every month	

Every 14 minutes within the hour, for the hours 	 minute = "*/14", hour="1,2"
of 1 and 2 a.m.	

Every 14 minutes within the hour, for the 	 minute = "0,14,28,42,56",
hours of 1 and 2 a.m.	 hour = "1,2"

Every 10 seconds within the minute, 	 second = "30/10"
starting at second 30	

Every 10 seconds within the minute, 	 second = "30,40,50"
starting at second 30	

Automatic Timer Creation
Timers can be created automatically by the container at deployment time based on metadata.
The container creates a timer for each method annotated with @javax.ejb.Schedule or
@Schedules (or the XML equivalent in the ejb-jar.xml deployment descriptor). By default,
each @Schedule annotation corresponds to a single persistent timer, but you can also define
nonpersistent timers.

Listing 7-20 shows the StatisticsEJB bean that defines several methods.
statisticsItemsSold() creates a timer that will call the method every first day of the month at
5:30 a.m. The generateReport() method creates two timers (using @Schedules): one every day
at 2 a.m., and another one every Wednesday at 2 p.m. refreshCache() creates a nonpersistent
timer that will refresh the cache every 10 minutes.

mailto:@javax.ejb.Schedule

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE220

Listing 7-20. A StatisticsEJB Registering Four Timers

@Stateless
public class StatisticsEJB {

 @Schedule(dayOfMonth = "1", hour = "5", minute = "30")
 public void statisticsItemsSold() {
 // ...
 }

 @Schedules({
 @Schedule(hour = "2"),
 @Schedule(hour = "14", dayOfWeek = "Wed")
 })
 public void generateReport() {
 // ...
 }

 @Schedule(minute = "*/10", hour = "*", persistent = false)
 public void refreshCache() {
 // ...
 }
}

Programmatic Timer Creation
To create a timer programmatically, the EJB needs to access the javax.ejb.TimerService inter-
face using either dependency injection or the EJBContext (EJBContext.getTimerService()), or
through JNDI lookup. The TimerService API has several methods that allow you to create dif-
ferent kinds of timers divided into four categories:

	 •	 createTimer: Creates a timer based on dates, intervals, or durations. These methods do
not use calendar-based expressions.

	 •	 createSingleActionTimer: Creates a single-action timer that expires at a given point in
time or after a specified duration. The container removes the timer after the timeout
callback method has been successfully invoked.

	 •	 createIntervalTimer: Creates an interval timer whose first expiration occurs at a given
point in time and whose subsequent expirations occur after specified intervals.

	 •	 createCalendarTimer: Creates a timer using a calendar-based expression with the
ScheduleExpression helper class.

The ScheduleExpression helper class allows you to create calendar-based expressions pro-
grammatically. You will find methods related to the attributes defined in Table 7-2, and you
will be able to program all the examples that you saw in Table 7-4. Here are some examples to
give you an idea:

new ScheduleExpression().dayOfMonth("Mon").month("Jan");
new ScheduleExpression().second("10,30,50").minute("*/5").hour("10-14");
new ScheduleExpression().dayOfWeek("1,5").timezone("Europe/Lisbon");

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE 221

All the methods of TimerService (createSingleActionTimer, createCalendarTimer, etc.)
return a Timer object that contains information about the created timer (what time was it
created, whether it is persistent, etc.). Timer also allows the EJB to cancel the timer prior to its
expiration. When the timer expires, the container calls the associated @Timeout method of the
bean, passing the Timer object. A bean can have at most one @Timeout method.

When CustomerEJB (see Listing 7-21) creates a new customer in the system
(createCustomer() method), it creates a calendar timer based on the date of birth of the cus-
tomer. Thus, every year the container will trigger a bean to create and send a birthday e-mail
to the customer. To do that, the stateless bean first needs to inject a reference of the timer ser-
vice (using @Resource). The createCustomer() persists the customer in the database and uses
the day and the month of her birth to create a ScheduleExpression. A calendar timer is created
given the expression and the customer object using a TimerConfig. new TimerConfig(customer,
true) configures a persistent timer (as indicated by the true parameter) that passes the
customer object.

Listing 7-21. A CustomerEJB Creating a Timer Programmatically

@Stateless
public class CustomerEJB {

 @Resource
 TimerService timerService;

 @PersistenceContext(unitName = "chapter07PU")
 private EntityManager em;

 public void createCustomer(Customer customer) {
 em.persist(customer);
 ScheduleExpression birthDay = new ScheduleExpression().➥

 dayOfMonth(customer.getBirthDay()).month(customer.getBirthMonth());
 timerService.createCalendarTimer(birthDay, new TimerConfig(customer, true));

 }

 @Timeout
 public void sendBirthdayEmail(Timer timer) {
 Customer customer = (Customer) timer.getInfo();
 // ...
 }
}

Once the timer is created, the container will invoke the @Timeout method
(sendBirthdayEmail()) every year, which passes the Timer object. Because the timer had been
serialized with the customer object, the method can access it by calling the getInfo() method.

Chapter 7  ■﻿   SESSION BEANS AND THE T IMER SERVICE222

Summary
This chapter focused on session beans and the timer service (you will find MDBs in Chapter 13,
SOAP web services in Chapter 14, and RESTful web services in Chapter15). Session beans are
container-managed components that are used to develop business layers. There are three
different types of session beans: stateless, stateful, and singleton. Stateless beans are easily
scalable because they keep no state, live in a pool, and process tasks that can be completed
in a single method call. Stateful beans have a one-to-one correlation with a client and can be
temporarily cleared from memory using passivation and activation. Singletons have a unique
instance shared among several clients and can be initialized at startup time, chained together,
and customized in their concurrency access.

Despite these differences, session beans share a common programming model. They can
have a local, remote, or no-interface view, use annotations, or be deployed with a deployment
descriptor. Session beans can use dependency injection to get references to several resources
(JDBC datasources, persistence context, environment entries, etc.), as well as their runtime
environment context (the SessionContext object). Since EJB 3.1, you can invoke methods
asynchronously, look up EJBs with a portable JNDI name, or use the embeddable EJB con-
tainer in the Java SE environment. EJB 3.1 has also enhanced the timer service, which can
now effectively compete with other scheduling tools.

The next chapter will explain the life cycle of the different session beans and how you
can interact with callback annotations. Interceptors, which provide a way of doing Aspect-
Oriented Programming (AOP) with session beans, will also be discussed.

C h a p t e r 8

Callbacks and Interceptors

In the previous chapter, you learned that session beans are container-managed components.
They live in an EJB container, which wraps business code behind the scenes with several
services (dependency injection, transaction management, security, and so on). Two of these
services are life-cycle management and interception.

Life cycle means that a session bean goes through a predefined set of state transitions.
Depending on the type of your bean (stateless, stateful, singleton), the life cycle will consist
of different states. Each time the container changes the life-cycle state, it can invoke methods
that are annotated with callback annotations. You can use these annotations to initialize any
resources on your session beans or release them before they get destroyed.

Interceptors allow you to add cross-cutting concerns to your beans. When a client invokes
a method on your session bean, the container is able to intercept the call and process business
logic before the bean’s method is invoked.

This chapter shows you the different life cycles used by session beans and the callback
annotations you can apply to process business logic during certain phases. You will also learn
how to intercept method invocations and wrap them with your own code.

Session Beans Life Cycle
As you’ve seen in the previous chapter, a client doesn’t create an instance of a session bean
using the new operator. It gets a reference to a session bean either through dependency injec-
tion or JNDI lookup. The container is the one creating the instance and destroying it. This
means that neither the client nor the bean is responsible for determining when the bean
instance is created, when dependencies are injected, or when the instance is destroyed. The
container is responsible for managing the life cycle of the bean.

All session beans have two obvious phases in their life cycle: creation and destruction.
In addition, stateful session beans go through the passivation and activation phases that I
mentioned in the previous chapter.

Stateless and Singleton
Stateless and singleton beans have in common the fact that they don’t maintain conversa-
tional state with a dedicated client. Both bean types allow access by any client—stateless does

223

Chapter 8  ■﻿   CALLBACKS AND INTERCEPTORS224

this serially on a per-instance basis, while singleton provides concurrent access to a single
instance. Both share the same life cycle shown in Figure 8-1 and described as follows:

	 1.	 The life cycle of a stateless or singleton session bean starts when a client requests a ref-
erence to the bean (using either dependency injection or JNDI lookup). The container
creates a new session bean instance.

	 2.	 If the newly created instance uses dependency injection through annotations
(@Resource, @EJB, @PersistenceContext, etc.) or deployment descriptors, the container
injects all the needed resources.

	 3.	 If the instance has a method annotated with @PostContruct, the container invokes it.

	 4.	 The bean instance processes the call invoked by the client and stays in ready mode to
process future calls. Stateless beans stay in ready mode until the container frees some
space in the pool. Singletons stay in ready mode until the container is shut down.

	 5.	 The container does not need the instance any more. It invokes the method annotated
with @PreDestroy, if any, and ends the life of the bean instance.

Figure 8-1. Stateless and singleton bean life cycle

Stateless and singleton beans share the same life cycle, but there are some differences in
the way they are created and destroyed.

When a stateless session bean is deployed, the container creates several instances and
adds them into a pool. When a client calls a method on a stateless session bean, the container
selects one instance from the pool, delegates the method invocation to that instance, and
returns it to the pool. When the container no longer needs the instance (usually when the
container wants to reduce the number of instances in the pool), it destroys it.

nNote  GlassFish allows you to customize several EJB pool parameters. You can set a pool size (initial,
minimum, and maximum number of beans in the pool), the number of beans to be removed when the pool
idle timeout expires, and the number of milliseconds for the pool to timeout.

For singleton session beans, creation depends whether they are instantiated eagerly
(@Startup) or not, or whether they depend (@DependsOn) on another singleton that had been

Chapter 8  ■﻿   CALLBACKS AND INTERCEPTORS 225

eagerly created. If the answer is yes, an instance will be created at deployment time. If not,
the container will create an instance when a business method is invoked by a client. Because
singletons last for the duration of the application, the instance is destroyed when the con-
tainer shuts down.

Stateful
Stateful session beans are programmatically not very different from stateless or singleton ses-
sion beans: only the metadata changes (@Stateful instead of @Stateless or @Singleton). But
the real difference is that stateful beans maintain conversational state with their client, and
therefore have a slightly different life cycle. The container generates an instance and assigns
it only to one client. Then, each request from that client is passed to the same instance. Fol-
lowing this principle and depending on your application, you might end up with a one-to-one
relationship between a client and a stateful bean (e.g., a thousand simultaneous users might
produce a thousand stateful beans). If one client doesn’t invoke its bean’s instance for a long
enough time, the container has to clear it before the JVM runs out of memory, preserve the
instance state to a permanent storage, and then bring back the instance with its state when
it’s needed. The container employs the technique of passivation and activation.

As discussed in Chapter 7, passivation is when the container serializes the bean instance
to a permanent storage medium (file on a disk, database, etc.) instead of holding it in memory.
Activation, which is the opposite, is done when the bean instance is needed again by the cli-
ent. The container deserializes the bean from permanent storage and activates it back into
memory. This means the bean’s attributes have to be serializable (it must either be a Java
primitive or implement the java.io.Serializable interface). The stateful bean life cycle is
shown in Figure 8-2 and described as follows:

	 1.	 The life cycle of a stateful bean starts when a client requests a reference to the bean
(either using dependency injection or JNDI lookup). The container creates a new
session bean instance and stores it in memory.

	 2.	 If the newly created instance uses dependency injection through annotations
(@Resource, @EJB, @PersistenceContext, etc.) or deployment descriptors, the container
injects all the needed resources.

	 3.	 If the instance has a method annotated with @PostContruct, the container invokes it.

	 4.	 The bean executes the requested call and stays in memory, waiting for subsequent
client requests.

	 5.	 If the client remains idle for a period of time, the container invokes the method anno-
tated with @PrePassivate, if any, and passivates the bean instance into a permanent
storage.

	 6.	 If the client invokes a passivated bean, the container activates it back to memory and
invokes the method annotated with @PostActivate, if any.

	 7.	 If the client does not invoke a passivated bean instance for the session timeout period,
it is destroyed by the container.

	 8.	 Alternatively to step 7, if the client calls a method annotated by @Remove, the container
then invokes the method annotated with @PreDestroy, if any, and ends the life of the
bean instance.

Chapter 8  ■﻿   CALLBACKS AND INTERCEPTORS226

Figure 8-2. Stateful bean life cycle

In some cases, a stateful bean contains open resources such as network sockets or data-
base connections. Because a container cannot keep these resources open for each bean, you
will have to close and reopen the resources before and after passivation. That’s when life-cycle
callback methods can be used.

Callbacks
As you just saw, each session bean has its own container-managed life cycle. The container
lets you optionally provide your own business code when the state of the bean changes. The
change from one state to another can be intercepted by the container to invoke methods
annotated by one of the annotations listed in Table 8-1.

Table 8-1. Life-Cycle Callback Annotations

Annotation	 Description

@PostConstruct	� Marks a method to be invoked immediately after a bean instance is
created and dependency injection is done by the container. This an-
notation is often used to perform any initialization.

@PreDestroy	� Marks a method to be invoked immediately before the bean instance
is destroyed by the container. The method annotated with @PreDestroy
is often used to release resources that had been previously initialized.
With stateful beans this happens after a method annotated with
@Remove has been completed.

@PrePassivate	� Marks a method to be invoked before the container passivates the in-
stance. It usually gives the bean the time to prepare for serialization and
to release resources that cannot be serialized (e.g., it closes connections
to a database, a message broker, a network socket, etc.).

@PostActivate	� Marks a method to be invoked immediately after the container reacti-
vates the instance. Gives the bean a chance to reinitialize resources that
had been closed during passivation.

Chapter 8  ■﻿   CALLBACKS AND INTERCEPTORS 227

nNote  @PrePassivate and @PostActivate annotations are defined in the javax.ejb package and the
EJB 3.1 specification (JSR 318). @PostConstruct and @PreDestroy are part of the Common Annotations
1.0 specification (JSR 250) and come from the javax.annotation package (like @Resource or other
security annotations that you’ll see in the next chapter).

A callback method is required to have the following signature:

void <METHOD>();

The following rules apply to a callback method:

	 •	 The method must not have any parameters and must return void.

	 •	 The method must not throw a checked exception but can throw runtime exceptions.
Throwing a runtime exception will roll back the transaction if one exists (as explained
in the next chapter).

	 •	 The method can have public, private, protected, or package-level access, but must not
be static or final.

	 •	 A method may be annotated with multiple annotations (the init() method shown
later in Listing 8-2 is annotated with @PostConstruct and @PostActivate). However,
only one annotation of a given type may be present on a bean (you can’t have two
@PostConstruct annotations in the same session bean, for example).

	 •	 A callback method can access the beans’ environment entries (see the “Environment
Naming Context” section in Chapter 7).

These callbacks are typically used to allocate and/or release the bean’s resources. As an
example, Listing 8-1 shows the singleton bean CacheEJB using a @PostConstruct annotation
to initialize its cache. Straight after creating the single instance of the CacheEJB, the container
invokes the initCache() method.

Listing 8-1. A Singleton Initializing Its Cache with the @PostConstruct Annotation

@Singleton
public class CacheEJB {

 private Map<Long, Object> cache = new HashMap<Long, Object>();

 @PostConstruct
 private void initCache() {
 // Initializes the cache
 }

Chapter 8  ■﻿   CALLBACKS AND INTERCEPTORS228

 public Object getFromCache(Long id) {
 if (cache.containsKey(id))
 return cache.get(id);
 else
 return null;
 }
}

Listing 8-2 shows a snippet of code for a stateful bean. The container maintains conversa-
tional state, which can include heavy-duty resources such as a database connection. Because
it is expensive to open a database connection, it should be shared across calls but released
when the bean is idle (or passivated).

After creating an instance of a stateful bean, the container injects the reference of a data-
source to the ds attribute. Once the injection is done, the container will call the designated
@PostConstruct method (init()), which creates a database connection. If the container
happens to passivate the instance, the close() method will be invoked (@PrePassivate). The
purpose of this is to close the JDBC connection, which holds native resources and is no longer
needed during passivation. When the client invokes a business method on the bean, the con-
tainer activates it and calls the init() method again (@PostActivate). When the client invokes
the checkout() method (annotated with the @Remove annotation), the container removes the
instance but first will call the close() method again (@PreDestroy).

Listing 8-2. A Stateful Bean Initializing and Releasing Resources

@Stateful
public class ShoppingCartEJB {

 @Resource
 private DataSource ds;

 private Connection connection;
 private List<Item> cartItems = new ArrayList<Item>();

 @PostConstruct
 @PostActivate
 private void init() {
 connection = ds.getConnection();
 }

 @PreDestroy
 @PrePassivate
 private void close() {
 connection.close();
 }

Chapter 8  ■﻿   CALLBACKS AND INTERCEPTORS 229

 // ...

 @Remove
 public void checkout() {
 cartItems.clear();
 }
}

For better readability, I’ve omitted the SQL exception handling in the callback methods.

Interceptors
Before talking about interceptors, I want to briefly discuss Aspect-Oriented Programming
(AOP). AOP is a programming paradigm that separates cross-cutting concerns (concerns that
cut across the application) from your business code. Most applications have common code
that is repeated across components. These could be technical concerns (log the entry and exit
from each method, log the duration of a method invocation, store statistics of method usage,
etc.) or business concerns (perform additional checks if a customer buys more than $10,000
of items, send a refill order when the inventory level is too low, etc.). These concerns can be
applied automatically through AOP to your entire application or to a subset of it.

EJBs support AOP-like functionality by providing the ability to intercept method invoca-
tion through interceptors. Interceptors are automatically triggered by the container when an
EJB method is invoked. As shown in Figure 8-3, interceptors can be chained and are called
before and/or after the execution of a method.

nNote  Interceptors can be applied to session beans and message-driven beans. In Chapters 14 and 15,
you will see that a SOAP or RESTful web service can also be implemented as an EJB endpoint (by adding a
@Stateless annotation). If that is the case, these web services can also use interceptors.

Figure 8-3. A container intercepting a call and invoking interceptors

Figure 8-3 shows you a number of interceptors that are called between the client and the
EJB. You could think of an EJB container as a chain of interceptors itself. When you develop
a session bean, you just concentrate on your business code. But behind the scenes, when a
client invokes a method on your EJB, the container intercepts the invocation and applies dif-
ferent services (life-cycle management, transaction, security, etc.). With interceptors you add

Chapter 8  ■﻿   CALLBACKS AND INTERCEPTORS230

your own cross-cutting mechanisms and apply them transparently to your business code.
Interceptors fall into three types (which I explain in the next section):

	 •	 Around-invoke interceptors

	 •	 Business method interceptors

	 •	 Life-cycle callback interceptors

nNote  The EJB 3.1 specification (JSR 318) is composed of two documents: the core EJB specification and
the interceptor requirements document. The latter defines the way interceptors work and should be used. If
interceptors are defined in a separate document, it’s because in future revisions interceptors might be under-
taken independently of EJBs.

Around-Invoke Interceptors
There are several ways of defining a business method interceptor. The simplest is to add a
 @javax.interceptor.AroundInvoke annotation (or <around-invoke> deployment descriptor
element) in the bean itself as shown in Listing 8-3. CustomerEJB annotates logMethod() with
@AroundInvoke. logMethod() is used to log a message when a method is entered, and to log
another message when a method is exited. Once this EJB is deployed, any client invocation to
createCustomer() or findCustomerById() methods will be intercepted, and the logMethod()
will be applied. Note that the scope of this interceptor is limited to this bean. Around-invoke
methods occur within the same transaction and security context as the method on which they
are interposing.

Listing 8-3. CustomerEJB Uses an Interceptor

@Stateless
public class CustomerEJB {

 @PersistenceContext(unitName = "chapter08PU")
 private EntityManager em;
 private Logger logger = Logger.getLogger("com.apress.javaee6");

 public void createCustomer(Customer customer) {
 em.persist(customer);
 }

 public Customer findCustomerById(Long id) {
 return em.find(Customer.class, id);
 }

 @AroundInvoke
 private Object logMethod(InvocationContext ic) throws Exception {

mailto:@javax.interceptor.AroundInvoke

Chapter 8  ■﻿   CALLBACKS AND INTERCEPTORS 231

 logger.entering(ic.getTarget().toString(), ic.getMethod().getName());
 try {
 return ic.proceed();
 } finally {
 logger.exiting(ic.getTarget().toString(), ic.getMethod().getName());
 }
 }
}

Despite being annotated with @AroundInvoke, the logMethod() has to follow a certain sig-
nature:

@AroundInvoke
Object <METHOD>(InvocationContext ic) throws Exception;

The following rules apply to an around-invoke method:

	 •	 The method can have public, private, protected, or package-level access, but must not
be static or final.

	 •	 The method must have a javax.interceptor.InvocationContext parameter and must
return Object, which is the result of the invoked target method (if the method returns
void, it returns null).

	 •	 The method can throw a checked exception.

The InvocationContext object allows interceptors to control the behavior of the invoca-
tion chain. If several interceptors are chained, the same InvocationContext instance is passed
to each interceptor, which can add contextual data to be processed by other interceptors. The
InvocationContext API is described in Table 8-2.

Table 8-2. Definition of the InvocationContext Interface

Method	 Description

getContextData	� Allows values to be passed between interceptor methods in the same
InvocationContext instance using a Map.

getMethod	� Returns the method of the bean class for which the interceptor was
invoked.

getParameters	� Returns the parameters that will be used to invoke the business
method.

getTarget	 Returns the bean instance that the intercepted method belongs to.

getTimer	 Returns the timer associated with a @Timeout method.

proceed	� Causes the invocation of the next interceptor method in the chain.
It returns the result of the next method invoked. If a method is of type
void, proceed returns null.

setParameters	� Modifies the value of the parameters used for the target class method
invocation. The types and the number of parameters must match the
bean’s method signature, or IllegalArgumentException is thrown.

Chapter 8  ■﻿   CALLBACKS AND INTERCEPTORS232

To explain how the code works in Listing 8-3, let’s take a look at the sequence diagram
shown in Figure 8-4 to see what happens when a client invokes the createCustomer()
method. First of all, the container intercepts the call and, instead of directly processing
createCustomer(), first invokes the logMethod() method. logMethod() uses the
InvocationContext interface to get the name of the invoked bean (ic.getTarget()) and
invoked method (ic.getMethod()) to log an entry message (logger.entering()). Then, the
proceed() method is called. Calling InvocationContext.proceed() is extremely important as
it tells the container that it should proceed to the next interceptor or call the bean’s business
method. Not calling proceed() would stop the interceptors chain and would avoid calling the
business method. The createCustomer() is finally invoked, and once it returns, the intercep-
tor finishes its execution by logging an exit message (logger.entering()). The same sequence
would happen if a client invokes the findCustomerById() method.

Figure 8-4. Chaining different types of interceptors

Method Interceptors
Listing 8-3 defines an interceptor that is only available for CustomerEJB. But most of the time
you want to isolate a cross-cutting concern into a separate class and tell the container to inter-
cept the calls on several session beans. Logging is a typical example of a situation when you
want all the methods of all your EJBs to log entering and exiting messages. To specify an inter-
ceptor, you need to develop a separate class and instruct the container to apply it on a specific
bean or bean’s method.

To share some code among multiple beans, let’s take the logMethod() from Listing 8-3 and
isolate it in a separate class as shown in Listing 8-4. As you can see, LoggingInterceptor is a
simple POJO that has a method annotated with @AroundInvoke.

Listing 8-4. An Interceptor Class Logging a Method on Entering and Exiting

public class LoggingInterceptor {

 private Logger logger = Logger.getLogger("com.apress.javaee6");

 @AroundInvoke
 public Object logMethod(InvocationContext ic) throws Exception {

Chapter 8  ■﻿   CALLBACKS AND INTERCEPTORS 233

 logger.entering(ic.getTarget().toString(), ic.getMethod().getName());
 try {
 return ic.proceed();
 } finally {
 logger.exiting(ic.getTarget().toString(), ic.getMethod().getName());
 }
 }
}

The LoggingInterceptor can now be wrapped transparently by any EJB interested in this
interceptor. To do this, the bean needs to inform the container with a @javax.interceptor.
Interceptors annotation. In Listing 8-5, the annotation is set on the createCustomer()
method. This means that any invocation of this method will be intercepted by the container,
and the LoggingInterceptor class will be invoked (logging a message on entry and exit of the
method).

Listing 8-5. CustomerEJB Uses an Interceptor on One Method

@Stateless
public class CustomerEJB {

 @PersistenceContext(unitName = "chapter08PU")
 private EntityManager em;

 @Interceptors(LoggingInterceptor.class)
 public void createCustomer(Customer customer) {
 em.persist(customer);
 }

 public Customer findCustomerById(Long id) {
 return em.find(Customer.class, id);
 }
}

In Listing 8-5, @Interceptors is only attached to the createCustomer() method. This
means that if a client invokes findCustomerById(), the container will not intercept the call.
If you want the calls to both methods to be intercepted, you can add the @Interceptors
annotation either on both methods or on the bean itself. When you do so, the interceptor is
triggered if either method is invoked:

@Stateless
@Interceptors(LoggingInterceptor.class)
public class CustomerEJB {
 public void createCustomer(Customer customer) { ... }
 public Customer findCustomerById(Long id) { ... }
}

If your bean has several methods, and you want to apply an interceptor to the entire bean
except for a specific method, you can use the javax.interceptor.ExcludeClassInterceptors

mailto:@javax.interceptor

Chapter 8  ■﻿   CALLBACKS AND INTERCEPTORS234

annotation to exclude a call from being intercepted. In the following code, the call to
updateCustomer() will not be intercepted, but all others will:

@Stateless
@Interceptors(LoggingInterceptor.class)
public class CustomerEJB {
 public void createCustomer(Customer customer) { ... }
 public Customer findCustomerById(Long id) { ... }
 public void removeCustomer(Customer customer) { ... }
 @ExcludeClassInterceptors
 public Customer updateCustomer(Customer customer) { ... }
}

Life-Cycle Interceptor
In the first part of this chapter, you learned how to handle callback events in your EJB. With
a callback annotation, you can inform the container to invoke a method at a certain life-cycle
phase (@PostConstruct, @PrePassivate, @PostActivate, and @PreDestroy). For example, if
you want to log an entry each time a bean instance is created, you just need to add a
@PostConstruct annotation on one method of your bean and add some logging mechanisms
to it. But what if you need to capture life-cycle events across many types of beans? Life-cycle
interceptors allow you to isolate some code into a class and invoke it when a life-cycle event is
triggered.

Life-cycle interceptors really look like what you’ve just seen in Listing 8-4. Instead of
@AroundInvoke, methods can be annotated with callback annotations. Listing 8-6 shows the
ProfileInterceptor class with two methods: logMethod(), used for postconstruction, and
profile(), used for predestruction.

Listing 8-6. A Life-Cycle Interceptor Defining Two Methods

public class ProfileInterceptor {

 private Logger logger = Logger.getLogger("com.apress.javaee6");

 @PostConstruct
 public void logMethod(InvocationContext ic) {
 logger.entering(ic.getTarget().toString(), ic.getMethod().getName());
 try {
 return ic.proceed();
 } finally {
 logger.exiting(ic.getTarget().toString(), ic.getMethod().getName());
 }
 }

 @PreDestroy
 public void profile(InvocationContext ic) {
 long initTime = System.currentTimeMillis();
 try {

Chapter 8  ■﻿   CALLBACKS AND INTERCEPTORS 235

 return ic.proceed();
 } finally {
 long diffTime = System.currentTimeMillis() - initTime;
 logger.fine(ic.getMethod() + " took " + diffTime + " millis");
 }
 }
}	

As you can see in Listing 8-6, life-cycle interceptor methods take an InvocationContext
parameter, return void instead of Object (because life-cycle callback methods return void as
explained earlier in the “Callbacks” section), and cannot throw checked exceptions.

To apply the interceptor defined in Listing 8-6, the session bean needs to use the
@Interceptors annotation. As you can see in Listing 8-7, CustomerEJB defines the
ProfileInterceptor. When the EJB is instantiated by the container, the logMethod() of the
interceptor will be invoked prior to the init() method. Then, if a client calls createCustomer()
or findCustomerById(), no interception will happen. But before CustomerEJB is destroyed by
the container, the profile() method will be invoked.

Listing 8-7. CustomerEJB Using a Callback Interceptor

@Stateless
@Interceptors(ProfileInterceptor.class)
public class CustomerEJB {

 @PersistenceContext(unitName = "chapter08PU")
 private EntityManager em;

 @PostConstruct
 public void init() {
 // ...
 }

 public void createCustomer(Customer customer) {
 em.persist(customer);
 }

 public Customer findCustomerById(Long id) {
 return em.find(Customer.class, id);
 }
}

Life-cycle callback methods and @AroundInvoke methods may be defined in the same
interceptor class.

Chaining and Excluding Interceptors
You’ve seen how to intercept calls within a single bean (with @AroundInvoke) and across mul-
tiple beans (using @Interceptors). EJB 3.1 lets you chain several interceptors, as well as have
default interceptors that can apply to all your session beans.

Chapter 8  ■﻿   CALLBACKS AND INTERCEPTORS236

In fact, the @Interceptors annotation is capable of attaching more than one interceptor,
as it takes a comma-separated list of interceptors as a parameter. When multiple interceptors
are defined, the order in which they are invoked is determined by the order in which they
are specified in the @Interceptors annotation. For example, the code in Listing 8-8 uses
@Interceptors at the bean and method level.

Listing 8-8. CustomerEJB Using a Callback Interceptor

@Stateless
@Interceptors(I1.class, I2.class)
public class CustomerEJB {
 public void createCustomer(Customer customer) { ... }
 @Interceptors(I3.class, I4.class)
 public Customer findCustomerById(Long id) { ... }
 public void removeCustomer(Customer customer) { ... }
 @ExcludeClassInterceptors
 public Customer updateCustomer(Customer customer) { ... }
}

When a client calls the updateCustomer() method, no interceptor is invoked (the method
is annotated with @ExcludeClassInterceptors). When the createCustomer() method is called,
interceptor I1 is executed followed by interceptor I2. When the findCustomerById() method is
invoked, interceptors I1, I2, I3, and I4 get executed in this order.

Besides specifying method and class-level interceptors, EJB 3.1 allows you to create
default interceptors that are used for all methods of all the EJBs defined in the application.
There is no annotation that has an application scope. If you want to apply default interceptors
in your application, you need to define them in the deployment descriptor (ejb-jar.xml).
If you want to apply the default interceptor ProfileInterceptor to all your EJBs, this is the
portion of XML you need to add to the deployment descriptor:

<assembly-descriptor>
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>
 com.apress.javaee6.ProfileInterceptor
 </interceptor-class>
 </interceptor-binding>
</assembly-descriptor>

As you can see, the wildcard * in <ejb-name> means that every EJB should apply the inter-
ceptor defined in the <interceptor-class> element. If you deploy CustomerEJB in Listing 8-7
with this default interceptor, the ProfileInterceptor will be invoked before any other inter-
ceptor.

If multiple types of interceptor are defined for a session bean, the container applies them
from the largest scope (default interceptor) to the smallest (method interceptor). The rules
governing their invocation order are shown in Figure 8-5.

Chapter 8  ■﻿   CALLBACKS AND INTERCEPTORS 237

Figure 8-5. Chaining different types of interceptors

If you want to disable default interceptors for a specific EJB, you can apply the @javax.
interceptor.ExcludeDefaultInterceptors annotation either at the class or at the method level
as shown in Listing 8-9.

Listing 8-9. EJB Excluding Default Interceptors

@Stateless
@ExcludeDefaultInterceptors
@Interceptors(LoggingInterceptor.class)
public class CustomerEJB {
 public void createCustomer(Customer customer) { ... }
 public Customer findCustomerById(Long id) { ... }
 public void removeCustomer(Customer customer) { ... }
 @ExcludeClassInterceptors
 public Customer updateCustomer(Customer customer) { ... }
}

Summary
In this chapter, you learned that stateless and singleton session beans share the same life
cycle and that stateful beans have a slightly different one. That’s because stateful beans keep
a conversational state with the client and need to temporarily serialize their state to a perma-
nent storage (passivation). Callback annotations allow you to add business logic to your bean
before or after an event occurs (@PostConstruct, @PreDestroy, etc.).

Interceptors are the AOP-like mechanism of EJBs, allowing the container to invoke
cross-cutting concerns on your application. Interceptors are easy to use, powerful, and can
be chained together to apply several concerns to your beans. You can also specify default
interceptors that are applied to every method of every bean of your application.

An EJB container can be seen as a chain of interceptors. Method invocations are inter-
cepted by the container, which then applies several services such as transaction and security
management. The next chapter will focus on these two container-managed services.

C h a p t e r 9

Transactions and Security

Transaction and security management are important matters for enterprises. They allow
applications to have consistent data and secure the access to it. Both services are low-level
concerns that a business developer shouldn’t have to code himself. EJBs provide these services
in a very simple way: either programmatically with a high-level of abstraction or declaratively
using metadata.

Most of an enterprise application’s work is about managing data: storing it (typically in a
database), retrieving it, processing it, and so on. Often this is done simultaneously by several
applications attempting to access the same data. A database has low-level mechanisms to
preserve concurrent access, such as pessimistic locking, and uses transactions to ensure that
data stays in a consistent state. EJBs make usage of these mechanisms.

Securing data is also important. You want your business tier to act like a firewall and
authorize some actions to certain groups of users and deny access to others (e.g., only employ-
ees are allowed to persist data, but users and employees are authorized to read data).

The first part of this chapter is devoted to exploring transaction management in EJB
3.1. I’ll introduce transactions as a whole, and then discuss the different types of transaction
demarcation supported by EJBs. In the second part of the chapter, I’ll focus on security.

Transactions
Data is crucial for business, and it must be accurate regardless of the operations you perform
and the number of applications concurrently accessing it. A transaction is used to ensure that
the data is kept in a consistent state. It represents a logical group of operations that must be
performed as a single unit, also known as a unit of work. These operations can involve persist-
ing data in one or several databases, sending messages, or invoking web services. Companies
rely on transactions every day for their banking and e-commerce applications or business-to-
business interactions with partners

These indivisible business operations are performed either sequentially or in parallel over
a relatively short period of time. Every operation must succeed in order for the transaction to
succeed (we say that the transaction is committed). If one of the operations fails, the trans-
action fails as well (the transaction is rolled back). Transactions must guarantee a degree of
reliability and robustness and follow the ACID properties.

239

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY240

ACID
ACID refers to the four properties that define a reliable transaction: Atomicity, Consistency,
Isolation, and Durability (described in Table 9-1). To explain these properties, I’ll take the
classical example of a banking transfer: you need to debit your savings account to credit your
current account.

Table 9-1. ACID Properties

Property	 Description

Atomicity	� A transaction is composed of one or more operations grouped in a unit
of work. At the conclusion of the transaction, these operations are either
all performed successfully (commit), or none of them are performed at
all (rollback) if something unexpected or irrecoverable happens.

Consistency	 At the conclusion of the transaction, the data is left in a consistent state.

Isolation	� The intermediate state of a transaction is not visible to external
applications.

Durability	� Once the transaction is committed, the changes made to the data are
visible to other applications.

When you transfer money from one account to the other, you can imagine a sequence of
database accesses: the savings account is debited using a SQL update statement, the current
account is credited using a different update statement, and a log is created in a different table
to keep track of the transfer. These operations have to be done in the same unit of work (Atom-
icity) because you don’t want the debit to occur but not the credit. From the perspective of an
external application querying the accounts, only when both operations have been successfully
performed are they visible (Isolation). Consistency is when transaction operations (either with
a commit or a rollback) are done within the constraints of the database (such as primary keys,
relationships, or fields). Once the transfer is completed, the data can be accessed from other
applications (Durability).

Local Transactions
Several components have to be in place for transactions to work and follow the ACID prop-
erties. Let’s first take the simplest example of an application performing several changes to
a single resource (e.g., a database). When there is only one transactional resource, all that
is needed is a local transaction. Distributed transactions (à la JTA) can still be used, but are
not strictly necessary. Figure 9-1 shows the application interacting with a resource through a
transaction manager and a resource manager.

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY 241

Figure 9-1. A transaction involving one resource

The components shown in Figure 9-1 abstract most of the transaction-specific processing
from the application:

	 •	 The transaction manager is the core component responsible for managing the transac-
tional operations. It creates the transactions on the behalf of the application, informs
the resource manager that it is participating in a transaction (an operation known as
enlistment), and conducts the commit or rollback on the resource manager.

	 •	 The resource manager is responsible for managing resources and registering them with
the transaction manager. An example of a resource manager is a driver for a relational
database, a JMS resource, or a Java connector.

	 •	 The resource is persistent storage from which you read or write (a database, a message
destination, etc.).

It is not the application’s responsibility to preserve ACID properties. The application just
decides to either commit or roll back the transaction, and the transaction manager prepares
all the resources to successfully make it happen.

In Java EE, these components handle transactions through the Java Transaction API (JTA)
specified by JSR 907. JTA defines a set of interfaces for the application to demarcate transactions’
boundaries, and it also defines APIs to deal with the transaction manager. These interfaces are
defined in the javax.transaction package, and some of them are described in Table 9-2.

Table 9-2. Main JTA Interfaces

Interface	 Description

UserTransaction	� Defines the methods that an application can use to control transaction
boundaries programmatically. It is used by EJBs with bean-managed
transaction (BMT) to begin, commit, or roll back a transaction (as dis-
cussed in the “Bean-Managed Transaction” section).

TransactionManager	� Allows the EJB container to demarcate transaction boundaries on
behalf of the EJB.

Continued

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY242

Table 9-2. Continued

Interface	 Description

Transaction	� Allows operations to be performed against the transaction in the target
Transaction object.

XAResource	� Serves as Java mapping of the industry standard X/Open XA interface
(as discussed in the next section).

XA and Distributed Transactions
As you’ve just seen, a transaction using a single resource (shown previously in Figure 9-1) is
called a local transaction. However, many enterprise applications use more than one resource.
Returning to the example of the fund transfer, the savings account and the current account
could be in separate databases. You would then need transaction management across several
resources, or resources that are distributed across the network. Such enterprise-wide transac-
tions require special coordination involving XA and Java Transaction Service (JTS).

Figure 9-2 shows an application that uses transaction demarcation across several
resources. This means that in the same unit of work, the application can persist data in a
database and send a JMS message, for example.

Figure 9-2. An XA transaction involving two resources

To have a reliable transaction across several resources, the transaction manager needs to
use an XA resource manager interface. XA is a standard specified by the Open Group (http://
www.opengroup.org) for distributed transaction processing (DTP) that preserves the ACID
properties. It is supported by JTA and allows heterogeneous resource managers from different
vendors to interoperate through a common interface. XA uses a two-phase commit (2pc) to
ensure that all resources either commit or roll back any particular transaction simultaneously.

In our fund transfer example, suppose that the savings account is debited on a first data-
base, and the transaction commits successfully. Then the current account is credited on a
second database, but the transaction fails. We would have to go back to the first database and
undo the committed changes. To avoid this data inconsistency problem, the two-phase com-
mit performs an additional preparatory step before the final commit as shown in Figure 9-3.

http://www.opengroup.org
http://www.opengroup.org

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY 243

During phase 1, each resource manager is notified through a “prepare” command that a com-
mit is about to be issued. This allows the resource managers to declare whether they can apply
their changes or not. If they all indicate that they are prepared, the transaction is allowed to
proceed, and all resource managers are asked to commit in the second phase.

Figure 9-3. Two-phase commit

Most of the time, the resources are distributed across the network (see Figure 9-4). Such a
system relies on JTS. JTS implements the Object Management Group (OMG) Object Transac-
tion Service (OTS) specification, allowing transaction managers to participate in distributed
transactions through Internet Inter-ORB Protocol (IIOP). JTS is intended for vendors who pro-
vide the transaction system infrastructure. As an EJB developer, you don’t have to worry about
this; just use JTA, which interfaces with JTS at a higher-level.

Figure 9-4. A distributed XA transaction

Transaction Support in EJB
When you develop business logic with EJBs, you don’t have to worry about the internal
structure of transaction managers or resource managers because JTA abstracts most of the
underlying complexity. With EJBs, you can develop a transactional application very easily,

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY244

leaving the container to implement the low-level transaction protocols, such as the two-phase
commit or the transaction context propagation. An EJB container is a transaction manager that
supports JTA as well as JTS to participate in distributed transactions involving other EJB con-
tainers. In a typical Java EE application, session beans establish the boundaries of a transaction,
call entities to interact with the database, or send JMS messages in a transaction context.

From its creation, the EJB model was designed to manage transactions. In fact, trans-
actions are natural to EJBs, and by default each method is automatically wrapped in a
transaction. This default behavior is known as a container-managed transaction (CMT),
because transactions are managed by the EJB container (a.k.a. declarative transaction
demarcation). You can also choose to manage transactions yourself using BMTs, also called
programmatic transaction demarcation. Transaction demarcation determines where transac-
tions begin and end.

Container-Managed Transactions
When managing transactions declaratively, you delegate the demarcation policy to the con-
tainer. You don’t have to explicitly use JTA in your code (even if JTA is used underneath); you
can leave the container to demarcate transaction boundaries by automatically beginning and
committing transactions based on metadata. The EJB container provides transaction manage-
ment services to session beans and MDBs (see Chapter 13 for more on MDBs).

In Chapter 7, you saw several examples of session beans, annotations, and interfaces, but
never anything specific to transactions. Listing 9-1 shows the code of a stateless session bean
using CMT. As you can see, there is no extra annotation added nor special interface to imple-
ment. EJBs are by nature transactional. With configuration by exception, all the transaction
management defaults are applied (REQUIRED is the default transaction attribute as explained
later in this section).

Listing 9-1. A Stateless Bean with CMT

@Stateless
public class ItemEJB {

 @PersistenceContext(unitName = "chapter09PU")
 private EntityManager em;
 @EJB
 private InventoryEJB inventory;

 public List<Book> findBooks() {
 Query query = em.createNamedQuery("findAllBooks");
 return query.getResultList();
 }

 public Book createBook(Book book) {
 em.persist(book);
 inventory.addItem(book);
 return book;
 }
}

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY 245

You might ask what makes the code in Listing 9-1 transactional. The answer is the con-
tainer. Figure 9-5 shows what happens when a client invokes the createBook() method. The
client call is intercepted by the container, which checks immediately before invoking the
method whether a transaction context is associated with the call. By default, if no transaction
context is available, the container begins a new transaction before entering the method and
then invokes the createBook() method. Once the method exits, the container automatically
commits the transaction or rolls it back (if a particular type of exception is thrown, as you’ll see
later in the “Exception Handling” section).

Figure 9-5. The container handles the transaction.

It’s interesting to note in Listing 9-1 and Figure 9-5 that a business method of a bean
(ItemEJB.createBook()) can be a client of a business method of another bean (InventoryEJB.
addItem()).The default behavior is that whatever transaction context is used for createBook()
(from the client or created by the container) is applied to addItem(). The final commit happens
if both methods have returned successfully. This behavior can be changed using metadata
(annotation or XML deployment descriptor). Depending on the transaction attribute you
choose (REQUIRED, REQUIRES_NEW, SUPPORTS, MANDATORY, NOT_SUPPORTED, or NEVER), you can affect
the way the container demarcates transactions: the container uses the client’s transaction,
runs the method in a new transaction, runs the method with no transaction, or throws an
exception. Table 9-3 defines the transaction attributes.

Table 9-3. CMT Attributes

Attribute	 Description

REQUIRED	� This attribute, the default value, means that a method must always be invoked
within a transaction. The container creates a new transaction if the method is
invoked from a nontransactional client. If the client has a transaction context,
the business method runs within the client’s transaction. You should use
REQUIRED if you modify any data and you don’t know whether the client has
started a transaction or not.

REQUIRES_NEW	� The container always creates a new transaction before executing a method,
regardless of whether the client is executed within a transaction. If the client
is running within a transaction, the container suspends that transaction
temporarily, creates a second one, commits it, and then resumes the first
transaction. This means that the success or failure of the second transaction
has no effect on the existing client transaction. You should use REQUIRES_NEW
when you don’t want a rollback to affect the client.

Continued

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY246

Table 9-3. Continued

Attribute	 Description

SUPPORTS	� The EJB method inherits the client’s transaction context. If a transaction
context is available, it is used by the method; if not, the container invokes the
method with no transaction context. You should use SUPPORTS when you have
read-only access to the database table.

MANDATORY	� The container requires a transaction before invoking the business method
but should not create a new one. If the client has a transaction context, it is
propagated; if not, a javax.ejb.EJBTransactionRequiredException is thrown.

NOT_SUPPORTED	� The EJB method cannot be invoked in a transaction context. If the client has
no transaction context, nothing happens; if it does, the container suspends
the client’s transaction, invokes the method, and then resumes the transac-
tion when the method returns.

NEVER	� The EJB method must not be invoked from a transactional client. If the client
is running within a transaction context, the container throws a javax.ejb.
EJBException.

Figure 9-6 illustrates all the possible behaviors that an EJB can have depending on the
presence or not of a client’s transaction context. For example, if the createBook() method
doesn’t have a transaction context and invokes addItem() with a MANDATORY attribute, an excep-
tion is thrown. The bottom part of Figure 9-6 shows the same combinations but with a client
that has a transaction context.

Figure 9-6. Two calls made to InventoryEJB with different transaction policies

To apply one of these six demarcation attributes to your session bean, you have to use
the @javax.ejb.TransactionAttribute annotation or the deployment descriptor (setting the
<trans-attribute> element in the ejb-jar.xml). This metadata can be applied either to indi-
vidual methods or to the entire bean. If applied at the bean level, all business methods will
inherit the bean’s transaction attribute value. Listing 9-2 shows how the ItemEJB uses a

mailto:@javax.ejb.TransactionAttribute

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY 247

SUPPORT transaction demarcation policy and overrides the createBook() method with
REQUIRED.

Listing 9-2. A Stateless Bean with CMT

@Stateless
@TransactionAttribute(TransactionAttributeType.SUPPORTS)
public class ItemEJB {

 @PersistenceContext(unitName = "chapter09PU")
 private EntityManager em;
 @EJB
 private InventoryEJB inventory;

 public List<Book> findBooks() {
 Query query = em.createNamedQuery("findAllBooks");
 return query.getResultList();
 }

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public Book createBook(Book book) {
 em.persist(book);
 inventory.addItem(book);
 return book;
 }
}

nNote  Client transaction context does not propagate with asynchronous method invocation. MDBs support
only the REQUIRED and NOT_SUPPORTED attributes as explained in Chapter 13.

Marking a CMT for Rollback
You’ve seen that the EJB container demarcates transactions automatically and invokes begin,
commit, and rollback operations on your behalf. But as a developer, you might want to pre-
vent the transaction from being committed if some error or business condition is encountered.
It is important to stress that a CMT bean is not allowed to roll back the transaction explicitly.
Instead, you need to use the EJB context (see the “Session Context” section in Chapter 7) to
inform the container to roll back.

As you can see in Listing 9-3, the InventoryEJB has a oneItemSold() method that accesses
the database through the persistence manager, and sends a JMS message to inform the
shipping company that an item has been sold and should be delivered. If the inventory
level is equal to zero (which means no more items are available), the method needs to
explicitly roll back the transaction. To do so, the stateless bean first needs to obtain the

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY248

SessionContext through dependency injection and then call its setRollbackOnly() method.
Calling this method doesn’t roll back the transaction immediately; instead a flag is set for the
container to do the actual rollback when it is time to end the transaction.

Listing 9-3. A Stateless Bean Marks the Transaction for Rollback

@Stateless
public class InventoryEJB {

 @PersistenceContext(unitName = "chapter09PU")
 private EntityManager em;
 @Resource
 private SessionContext ctx;

 public void oneItemSold(Item item) {
 em.merge(item);
 item.decreaseAvailableStock();
 sendShippingMessage();

 if (inventoryLevel(item) == 0)
 ctx.setRollbackOnly();
 }
}

Similarly, a bean can call the SessionContext.getRollbackOnly() method, which returns
a boolean, to determine whether the current transaction has been marked for rollback.

Another way to programmatically inform the container to roll back is through throwing
specific types of exceptions.

Exception Handling
Exception handling in Java has been confusing since the creation of the language (as it
involves both checked exceptions and unchecked exceptions). Associating transactions and
exceptions in EJBs is also quite intricate. Before going any further, I just want to say that
throwing an exception in a business method will not always mark the transaction for rollback.
It depends on the type of exception or the metadata defining the exception. In fact, the EJB 3.1
specification outlines two types of exceptions:

	 •	 Application exceptions: Exceptions related to business logic handled by the EJB. For
example, an application exception might be raised if invalid arguments are passed to a
method, the inventory level is too low, or the credit card number is invalid. Throwing
an application exception does not automatically result in marking the transaction for
rollback. As detailed later in this section in Table 9-4, the container doesn't roll back
when checked exceptions (which extend java.lang.Exception) are thrown, but it does
for unchecked exceptions (which extend RuntimeException).

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY 249

	 •	 System exceptions: Exceptions caused by system-level faults, such as JNDI errors, JVM
errors, failure to acquire a database connection, and so on. A system exception must
be a subclass of a RuntimeException or java.rmi.RemoteException (and therefore a sub-
class of javax.ejb.EJBException). Throwing a system exception results in marking the
transaction for rollback.

With this definition, we know now that if the container detects a system exception,
such as an ArithmeticException, ClassCastException, IllegalArgumentException, or
NullPointerException, it will roll back the transaction. Application exceptions depend on
various factors. As an example, let’s change the code from Listing 9-3 and use an application
exception as shown in Listing 9-4.

Listing 9-4. A Stateless Bean Throwing an Application Exception

@Stateless
public class InventoryEJB {

 @PersistenceContext(unitName = "chapter09PU")
 private EntityManager em;

 public void oneItemSold(Item item) throws InventoryLevelTooLowException{
 em.merge(item);
 item.decreaseAvailableStock();
 sendShippingMessage();

 if (inventoryLevel(item) == 0)
 throw new InventoryLevelTooLowException();
 }
}

InventoryLevelTooLowException is an application exception because it’s related to the
business logic of the oneItemSold() method. Depending on whether you want to roll back the
transaction or not, you can either make it extend from a checked or an unchecked exception
or annotate it with @javax.ejb.ApplicationException (or the XML equivalent in the deploy-
ment descriptor). This annotation has a rollback element that can be set to true to explicitly
roll back the transaction. Listing 9-5 shows the InventoryLevelTooLowException as an anno-
tated checked exception.

Listing 9-5. An Application Exception with rollback = true

@ApplicationException(rollback = true)
public class InventoryLevelTooLowException extends Exception {

 public InventoryLevelTooLowException() {
 }

 public InventoryLevelTooLowException(String message) {
 super(message);
 }
}

mailto:@javax.ejb.ApplicationException

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY250

If the InventoryEJB in Listing 9-4 throws the exception defined in Listing 9-5, it will mark
the transaction for rollback, and the container will do the actual rollback when it is time to end
the transaction. That’s because the InventoryLevelTooLowException is annotated with
@ApplicationException(rollback = true). Table 9-4 shows all the possible combinations with
application exceptions. The first line of the table could be interpreted as “If the application
exception extends from Exception and has no @ApplicationException annotation, throwing it
will not mark the transaction for rollback.”

Table 9-4. Combination of Application Exceptions

Extends from	 @ApplicationException	 Description

Exception	 No annotation	� By default, throwing a checked exception
doesn’t mark the transaction for rollback.

Exception	 rollback = true	 The transaction is marked for rollback.

Exception	 rollback = false	 The transaction is not marked for rollback.

RuntimeException	 No annotation	� By default, throwing an unchecked exception
marks the transaction for rollback.

RuntimeException	 rollback = true	 The transaction is marked for rollback.

RuntimeException	 rollback = false	 The transaction is not marked for rollback.

Bean-Managed Transactions
With CMT, you leave the container to do the transaction demarcation just by specifying a
transaction attribute and using the session context or exceptions to mark a transaction for
rollback. In some cases, the declarative CMT may not provide the demarcation granularity that
you require (for example, a method cannot generate more than one transaction). To address
this, EJBs offer a programmatic way to manage transaction demarcations with BMT. BMT
allows you to explicitly manage transaction boundaries (begin, commit, rollback) using JTA.

To turn off the default CMT demarcation and switch to BMT mode, a bean simply has to
use the @javax.ejb.TransactionManagement annotation (or the XML equivalent in the ejb-jar.
xml file) as follows:

@Stateless
@TransactionManagement(TransactionManagementType.BEAN)
public class ItemEJB {
 ...
}

With BMT demarcation, the application requests the transaction, and the EJB container
creates the physical transaction and takes care of a few low-level details. Also, it does not
propagate transactions from one BMT to another.

The main interface used to carry out BMT is javax.transaction.UserTransaction. It
allows the bean to demarcate a transaction, get its status, set a timeout, and so on. The
UserTransaction is instantiated by the EJB container and made available through dependency
injection, JNDI lookup, or the SessionContext (with the SessionContext.getUserTransaction()
method). The API is described in Table 9-5.

mailto:@javax.ejb.TransactionManagement

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY 251

Table 9-5. Methods of the javax.transaction.UserTransaction Interface

Interface	 Description

begin	 Begins a new transaction and associates it with the current thread

commit	 Commits the transaction attached to the current thread

rollback	 Rolls back the transaction attached to the current thread

setRollbackOnly	 Marks the current transaction for rollback

getStatus	 Obtains the status of the current transaction

setTransactionTimeout	 Modifies the timeout for the current transactions

Listing 9-6 shows how to develop a BMT bean. First of all, we get a reference of the
UserTransaction using injection through the @Resource annotation. The oneItemSold()
method begins the transaction, does some business processing, and then, depending on
some business logic, commits or rolls back the transaction. Notice also that the transaction
is marked for rollback in the catch block (I’ve simplified exception handling for better
readability).

Listing 9-6. A Stateless Bean with BMT

@Stateless
public class InventoryEJB {

 @PersistenceContext(unitName = "chapter09PU")
 private EntityManager em;
 @Resource
 private UserTransaction ut;

 public void oneItemSold(Item item) {
 try {
 ut.begin();

 em.merge(item);
 item.decreaseAvailableStock();
 sendShippingMessage();

 if (inventoryLevel(item) == 0)
 ut.rollback();
 else
 ut.commit();

 } catch (Exception e) {
 ut.rollback();
 }
 sendInventoryAlert();
 }
}

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY252

The difference with the CMT code shown in Listing 9-3 is that with CMT the container
starts the transaction before the method execution and commits it immediately after. With
the BMT code shown in Listing 9-6, you manually define transaction boundaries inside the
method itself.

Security
Securing applications is (or should be) a primary concern for companies. It can go from secur-
ing a network, to encrypting data transfer, to granting users certain permissions on a system.
In our day-to-day Internet browsing, we cross many web sites where we need to enter a user-
name and a password to have access to certain parts of an application. Security has become a
common necessity in the Web, and consequently, Java EE has defined several mechanisms to
secure applications.

Various concepts have to be understood when securing a Java EE application. One of
them is the way users are bound to a principal and can have several roles. Each of these roles
will give permission to a set of resources. But to have an identity in the security domain, a user
needs to be authenticated. Then the platform will control the access by authorizing resources
depending on the user’s role.

Principals and Roles
Principals and roles are an important notion in software security. A principal represents a
user who has been authenticated by an authentication system (e.g., by verifying a username
and password in the database). You can then organize principals into groups, known as roles,
allowing principals to share a common set of permissions (e.g., having access to the billing
system or being able to send messages to a workflow).

Figure 9-7 shows you how users can be represented in a secure system. As you can see, a
user, once authenticated, is bound to a principal. The principal has a unique identifier and can
be linked to several roles. For example, the user Frank has a principal (identified by a user ID,
for example) bound to the employee and admin roles.

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY 253

Figure 9-7. Principals and roles

Authentication and Authorization
Securing an application involves two functions: authentication and authorization. Authentica-
tion is the process of verifying the user’s identity (user ID and password, OpenID, fingerprint
check, and so on) against an authentication system, and assigning a principal to the user.
Authorization is the process of determining whether a principal (an authenticated user) has
access to a particular resource (e.g., a book) or a function (e.g., removing a book). Depending
on his role, the user can have access to all resources, none, or a subset.

Figure 9-8 shows a common security scenario. A user is asked to enter her username and
password through a client interface (web or Swing). Her credentials are checked using Java
Authentication and Authorization Service (JAAS) against an underlying authentication system.
If the authentication succeeds, the user is given a principal. At this point, the principal is asso-
ciated with one or more roles. When the user accesses a secured EJB, the principal is passed
transparently to the EJB, which uses it to determine whether the caller’s role is allowed to
access the method she is trying to execute.

Figure 9-8. Common security scenario using JAAS

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY254

As shown in Figure 9-8, Java EE security is largely based on the JAAS API. In fact, JAAS is
the API used internally by the web and EJB tier to perform authorization and authentication.
It also accesses the underlying authentication systems such as the Lightweight Directory
Access Protocol (LDAP), Microsoft Active Directory, and so on.

Security Support in EJB
The primary purpose of the EJB security model is to control access to business code. As you’ve
just seen, authentication is handled by the web tier (or a client application), the principal and
its roles are then passed to the EJB tier, and the EJB checks whether the authenticated user is
allowed to access a method based on its role. Like transaction management, authorization can
be done either in a declarative or a programmatic way.

With declarative authorization, access control is made by the EJB container. With pro-
grammatic authorization, access control is made in the code using the JAAS API.

Declarative Security
The declarative security policy can be defined in the bean using annotations or in the XML
deployment descriptor. Declarative authorization involves declaring roles, assigning permis-
sion to methods (or to the entire bean), or changing temporarily a security identity. These
controls are made by the annotations described in Table 9-6. Each annotation can be used
on the bean and/or on the method.

Table 9-6. Security Annotations

Annotation	 Bean	 Method	 Description

@PermitAll	 X	 X	� Indicates that the given method (or the entire
bean) is accessible by everyone (all roles are per-
mitted)

@DenyAll		 X		� Indicates that no role is permitted to execute the
specified method (all roles are denied)

@RolesAllowed	 X	 X	� Indicates that a list of roles is allowed to execute
the given method (or the entire bean)

@DeclareRoles	 X		 Defines roles for security checking

@RunAs	 X		 Temporarily assigns a new role to a principal

nNote  The @TransactionManagement and @TransactionAttribute annotations that you saw at the
beginning of this chapter are defined in the javax.ejb package in the EJB 3.1 specification (JSR 318).
Security annotations (@RollesAllowed, @DenyAll, etc.) are part of the Common Annotations 1.0 specifica-
tion (JSR 250) and come from the javax.annotation.security package.

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY 255

The @RolesAllowed annotation is used to authorize a list of roles to access a method. It
can be applied to a particular method or to the entire bean (then all business methods will
inherit the bean’s role access). This annotation can take either a single String (only one role
can access the method) or an array of String (any of the roles can access the method). The
@DeclareRoles annotation that you’ll see later in this section can be used to declare other roles.

Listing 9-7 shows the ItemEJB using the @RolesAllowed annotation at the bean and method
levels. This code indicates that any method is accessible by a principal associated with one
of the following roles: user, employee, or admin. The deleteBook() method overrides the class-
level settings and is only allowing access to the admin role.

Listing 9-7. A Stateless Bean Allowing Certain Roles

@Stateless
@RolesAllowed({"user", "employee", "admin"})
public class ItemEJB {

 @PersistenceContext(unitName = "chapter09PU")
 private EntityManager em;

 public Book findBookById(Long id) {
 return em.find(Book.class, id);
 }

 public Book createBook(Book book) {
 em.persist(book);
 return book;
 }

 @RolesAllowed("admin")
 public void deleteBook(Book book) {
 em.remove(em.merge(book));
 }
}

@RolesAllowed defines a list of roles that are allowed to access a method. The @PermitAll
and @DenyAll annotations are applied for any role. So, you can use the @PermitAll annotation
to mark an EJB, or a method, to be invoked by any role. Conversely, the @DenyAll forbids any
role to have access to a method.

As you can see in Listing 9-8, the findBookById() method is now accessible to any role, not
just user, employee, and admin. On the other hand, the findConfidentialBook() method is not
accessible at all.

Listing 9-8. A Stateless Bean Using @PermitAll and @DenyAll

@Stateless
@RolesAllowed({"user", "employee", "admin"})
public class ItemEJB {

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY256

 @PersistenceContext(unitName = "chapter09PU")
 private EntityManager em;

 @PermitAll
 public Book findBookById(Long id) {
 return em.find(Book.class, id);
 }

 public Book createBook(Book book) {
 em.persist(book);
 return book;
 }

 @RolesAllowed("admin")
 public void deleteBook(Book book) {
 em.remove(em.merge(book));
 }

 @DenyAll
 public Book findConfidentialBook(Long secureId){
 return em.find(ConfidentialBook.class, id);
 }
}

The @DeclareRoles annotation is slightly different as it doesn’t permit or deny any access.
It declares roles for the entire application. When the EJB in Listing 9-8 is deployed, the con-
tainer will automatically declare the user, employee, and admin roles by inspecting the
@RolesAllowed annotation. But you might want to declare other roles in the security domain
through the @DeclareRoles annotation. This annotation, which only applies at the class level,
takes an array of roles and declares them in the security domain. In fact, you declare security
roles using either of these two annotations or a combination of both. If both annotations are
used, the aggregation of the roles in @DeclareRoles and @RolesAllowed are declared. We usu-
ally declare roles for the entire enterprise application, so in this case it makes more sense to
declare roles in the deployment descriptor than with the @DeclareRoles annotation.

When the ItemEJB in Listing 9-9 is deployed, the five roles HR, salesDpt, user, employee,
and admin are declared. Then, with the @RolesAllowed annotation, certain of these roles are
given access to certain methods (as previously explained).

Listing 9-9. A Stateless Bean Declaring Roles

@Stateless
@DeclareRoles({"HR", "salesDpt"})
@RolesAllowed({"user", "employee", "admin"})
public class ItemEJB {

 @PersistenceContext(unitName = "chapter09PU")
 private EntityManager em;

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY 257

 public Book findBookById(Long id) {
 return em.find(Book.class, id);
 }

 public Book createBook(Book book) {
 em.persist(book);
 return book;
 }

 @RolesAllowed("admin")
 public void deleteBook(Book book) {
 em.remove(em.merge(book));
 }
}

The last annotation, @RunAs, is handy if you need to temporarily assign a new role to the
existing principal. You might need to do this, for example, if you’re invoking another EJB
within your method, but the other EJB requires a different role.

For example, the ItemEJB in Listing 9-10 authorizes access to the user, employee, and
admin role. When one of these roles accesses a method, the method is run with the temporary
inventoryDpt role (@RunAS("inventoryDpt")). This means that when the createBook() method
is executed, the InventoryEJB.addItem() method will be invoked with an inventoryDpt role.

Listing 9-10. A Stateless Bean Running As a Different Role

@Stateless
@RolesAllowed({"user", "employee", "admin"})
@RunAS("inventoryDpt")
public class ItemEJB {

 @PersistenceContext(unitName = "chapter09PU")
 private EntityManager em;
 @EJB
 private InventoryEJB inventory;

 public List<Book> findBooks() {
 Query query = em.createNamedQuery("findAllBooks");
 return query.getResultList();
 }

 public Book createBook(Book book) {
 em.persist(book);
 inventory.addItem(book);
 return book;
 }
}

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY258

As you can see, declarative security gives you easy access to a powerful authentication
policy. But what if you need to provide security settings to an individual, or apply some busi-
ness logic based on the current principal’s role? This is where programmatic security comes
into play.

Programmatic Security
Declarative security covers most security cases needed by an application. But sometimes you
need means of a finer grain for authorizing access (allowing a block of code instead of the
entire method, permitting or denying access to an individual, etc.). You can use programmatic
authorization to selectively permit or block access to a role or a principal. That’s because you
have direct access to the JAAS javax.security.Principal interface, as well as the EJB context
to check the principal’s role in the code.

The following methods related to security are defined in the SessionContext interface:

	 •	 isCallerInRole(): This method returns a boolean and tests whether the caller has a
given security role.

	 •	 getCallerPrincipal(): This method returns the java.security.Principal that
identifies the caller.

To show how to use these methods, let’s take a look at an example. The ItemEJB in Listing 9-11
doesn’t use any declarative security but still needs to do some kind of checking program-
matically. First of all, the bean needs to get a reference to its context (using the @Resource
annotation). With this context, the deleteBook() method can check whether the caller has
an admin role or not. If it doesn’t, it throws a java.lang.SecurityException to notify the user
about the authorization violation. The createBook() method does some business logic using
the roles and the principal. Notice that the getCallerPrincipal() method returns a Principal
object, which has a name. The method checks whether the principal’s name is paul, and then
sets the special user value to the book entity.

Listing 9-11. A Bean Using Programmatic Security

@Stateless
public class ItemEJB {

 @PersistenceContext(unitName = "chapter09PU")
 private EntityManager em;
 @Resource
 private SessionContext ctx;

 public Book findBookById(Long id) {
 return em.find(Book.class, id);
 }

 public void deleteBook(Book book) {
 if (!ctx.isCallerInRole("admin"))
 throw new SecurityException("Only admins are allowed");

Chapter 9  ■﻿  TRA NSACTIONS AND SECURITY 259

 em.remove(em.merge(book));
 }

 public Book createBook(Book book) {
 if (ctx.isCallerInRole("employee") && !ctx.isCallerInRole("admin")){
 book.setCreatedBy("employee only");
 } else if (ctx.getCallerPrincipal().getName().equals("paul")){
 book.setCreatedBy("special user");
 }
 em.persist(book);
 return book;
 }
}

Summary
In this last chapter related to EJBs, I have shown you how to handle transaction and secu-
rity management. These two very important services can be defined either declaratively or
programmatically.

Transactions allow the business tier to keep the data in an accurate state even when
accessed concurrently by several applications. They follow the ACID properties and can be
distributed across several resources (databases, JMS destinations, web services, etc.). CMT
allows you to easily customize the EJB container behavior in terms of transaction demarcation.
You can influence this behavior by marking a transaction for rollback through the EJB context
or exceptions. You can always use BMT if you need finer control of the transaction demarca-
tion directly using JTA.

For security, you have to bear in mind that the business tier doesn’t authenticate users,
it authorizes roles to access methods. Declarative security is done through a relatively small
number of annotations and allows you to cover most cases an enterprise application is likely
to need. Again, you can switch to programmatic security and manipulate the JAAS API.

The next three chapters will explain how to develop a presentation layer using JSF. JSF
pages use managed beans to invoked business methods on EJB.

C h a p t e r 1 0

JavaServer Faces

If information coming from the back end is to be displayed graphically, a user interface has
to be added. These can be of various types: desktop applications, web applications running in
a browser, or mobile applications running in a portable device that displays a graphical inter-
face and interacts with the end user. Chapter 10 through Chapter 12 will focus on web user
interfaces.

The World Wide Web (WWW) started as a mechanism for sharing documents written in
Hypertext Markup Language (HTML). Hypertext Transfer Protocol (HTTP) was used to serve
these documents, which were mostly static (in that their content didn’t change much over
time). Static pages are composed of pure HTML, optionally with some static graphics (e.g.,
JPG, PNG). Dynamic pages are, to some extent, assembled in real time with data computed
from user input.

To create dynamic content, you need to parse HTTP requests, understand what they
mean, and create responses in an appropriate format for the browser to display. That’s what
the servlet API simplified by providing an object-oriented view of the HTTP world (HttpRequest,
HttpResponse, etc.). The servlet model was too low level, however; JavaServer Pages (JSP)
simplified the creation of dynamic pages. Behind the scenes, a JSP is a servlet, except that it’s
mostly written using HTML—but still with a bit of Java for processing.

In response to some limitations of JSP, JavaServer Faces (JSF, or simply Faces) was created
with a new model in mind: bringing graphical components to the Web. Inspired by the Swing
component model, and other GUI frameworks, JSF allows developers to think in terms of com-
ponents, events, managed beans, and their interactions, instead of requests, responses, and
markup language. Its goal is to make web development faster and easier by supporting user
interface components (such as text boxes, list boxes, tabbed panes, and data grids) in a rapid
application development (RAD) approach.

Chapter 10 introduces JSF, chapters 11 and 12 show different technologies bundled with
Java EE 6 to create web interfaces (JSP, EL, and JSTL) and will mostly focus on JSF 2.0, which is
more powerful and the preferred technology to create modern web applications.

Understanding JSF
JSF’s architecture is easy to understand (see Figure 10-1), if you are familiar with web frame-
works. JSF applications are standard web applications that intercept HTTP via the Faces
servlet and produce HTML. Under the hood, the architecture allows you to plug in any page
declaration language (PDL), render it in different devices (web browser, portable devices, etc.),

261

Chapter 10  ■﻿   JAVASERVER FACES262

and create pages using events, listeners, and components, à la Swing. Swing is a Java widget
toolkit that has been part of Java SE since release 1.2. It is a GUI framework to create desktop
applications (not web applications) using graphical components and the event-listener model
to process user inputs. JSF also brings a standard set of UI widgets (buttons, hyperlinks, check
boxes, text fields, etc.) and allows easy plug-in of third-party components. On a very high level,
the JSF architecture is represented in Figure 10-1.

Figure 10-1. JSF architecture

This figure represents several important pieces of JSF that make its architecture rich and
flexible:

	 •	 FacesServlet and faces-config.xml: FacesServlet is the main servlet for the applica-
tion and can optionally be configured by a faces-config.xml descriptor file.

	 •	 Pages and components: JSF allows multiple PDLs such as JSP or Facelets.

	 •	 Renderers: These are responsible for displaying a component and translating a user’s
input into the component’s value.

	 •	 Converters: These convert a component’s value (Date, Boolean, etc.) to and from
markup values (String).

	 •	 Validators: These are responsible for ensuring that the value entered by a user is valid.

	 •	 Managed bean and navigation: The business logic is made in managed beans, which
also control the navigation between pages.

	 •	 Ajax support: JSF 2.0 comes with built-in support for Ajax as explained in Chapter 12.

Chapter 10  ■﻿   JAVASERVER FACES 263

FacesServlet and faces-config.xml
Most of the web frameworks use the Model-View-Controller (MVC) design pattern, as does
JSF. The MVC pattern is used to decouple the view (the page) and the model (the data to be
displayed in the view). The controller handles user actions that might result in changes in the
model and updates to the views. In JSF, this controller is a servlet called FacesServlet. All user
requests go through the FacesServlet, which examines the request and calls various actions
on the model using managed beans.

This servlet is internal and part of JSF. The only way it can be configured is by using exter-
nal metadata. Up to JSF 1.2, the only source of configuration was the faces-config.xml file.
Today, with JSF 2.0, this file is optional, and most metadata can be defined through annota-
tions (on managed beans, converters, components, renderers, and validators).

Pages and Components
The JSF framework has to send a page to the client’s output device (a browser, for example)
and requires some sort of display technology. This display technology is the PDL. A JSF
application is free to use several technologies for its PDL such as JSP or Facelets. A JSF 2.0
implementation that claims compliance with the specification must include a complete JSP
implementation. JSP was the default PDL in JSF 1.1 and JSF 1.2, but Facelets is preferred for
JSF 2.0.

Both JSP and Facelets pages are made up of a tree of components (also called widgets or
controls) that provide specific functionality for interacting with an end user (text field, button,
list box, etc.). JSF has a standard set of components and allows you to easily create your own.
The page goes through a complex life cycle to manage this tree of components (initialization,
events, rendering, etc.).

The code in Listing 10-1 is a Facelets XHTML page that uses JSF tags (xmlns:h="http://
java.sun.com/jsf/html") to display a form with two input fields (the ISBN and the title of a
book) and a button. This page is composed of several JSF components. Some of them have no
visual appearance, like the ones used to declare the header (<h:head>), the body (<h:body>),
or the form (<h:form>). Others are visual and represent a label (<h:outputLabel>), a text field
(<h:inputText>), or a button (<h:commandButton>). Notice that pure HTML tags can also be
mixed in the page (<table>, <tr>, <hr/>, etc.).

Listing 10-1. Snippet of an XHTML Page

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
<h:head>
 <title>Creates a new book</title>
</h:head>
<h:body>
<h1>Create a new book</h1>
<hr/>
<h:form>
 <table border="0">

http://java.sun.com/jsf/html
http://java.sun.com/jsf/html
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

Chapter 10  ■﻿   JAVASERVER FACES264

 <tr>
 <td><h:outputLabel value="ISBN : "/></td>
 <td><h:inputText value="#{bookController.book.isbn}"/></td>
 </tr>

 <tr>
 <td><h:outputLabel value="Title :"/></td>
 <td><h:inputText value="#{bookController.book.title}"/></td>
 </tr>

 </table>
 <h:commandButton value="Create a book" ➥

 action="#{bookController.doCreateBook}" styleClass="submit"/>

</h:form>
<hr/>
<i>APress - Beginning Java EE 6</i>
</h:body>
</html>

Renderer
JSF supports two programming models for displaying components: the direct implementation
and the delegated implementation. When the direct model is used, components must decode
themselves from, and encode themselves to, a graphical representation. When the delegated
model is used, these operations are delegated to a renderer. This allows a component to be
independent of a rendering technology (browser, portable device, etc.) and to have several
graphical representations.

A renderer is responsible for displaying a component and translating user input into the
component’s value. Think of it as a translator between the client and the server: it decodes the
user request to set values to the component, and encodes the response to create a representa-
tion of a component that the client understands and can display.

Renderers are organized into render kits, which focus on a specific type of output. To
ensure application portability, JSF includes support for a standard render kit and associated
renderers for HTML 4.01. JSF implementations can then create their own render kit to gener-
ate Wireless Markup Language (WML), Scalable Vector Graphics (SVG), and so on.

Converters and Validators
Once the page is rendered, the user can interact with it to enter data. As there are no type
constraints, a renderer cannot know beforehand how to display the object. This is where
converters come in: they translate an object (Integer, Date, Enum, Boolean, etc.) to a string for
display, and from an input string back into an object. JSF comes with a set of converters for
common types (in the javax.faces.convert package), but you can develop your own or incor-
porate third-party types.

Sometimes this data also has to be validated before being processed in the back end.
Validators are responsible for ensuring that the value entered by a user is acceptable. One or

Chapter 10  ■﻿   JAVASERVER FACES 265

more validators can be associated with a single component. JSF comes with a few validators
(LengthValidator, RegexValidator, etc.) and allows you to create your own using annotated
classes. When there’s a conversion or validation error, a message is sent back to the response
to be displayed.

Managed Beans and Navigation
All of the concepts so far have been related to a single page: what is a page, what is a com-
ponent, how are they rendered, converted, and validated. Web applications are made up
of multiple pages and need to perform business logic (by calling an EJB layer, for example).
Going from one page to another, invoking EJBs, and synchronizing data with components is
handled by managed beans.

A managed bean is a specialized Java class that synchronizes values with components,
processes business logic, and handles navigation between pages. You associate a component
with a specific managed bean property or action using the Expression Language (EL). Using
some snippets of code from the previous example:

<h:inputText value="#{bookController.book.isbn}"/>
<h:commandButton value="Create" action="#{bookController.doCreateBook}"/>

The first line of code hooks up the input text’s value directly to the book.isbn property of
a managed bean called bookController. The value of the input text is synchronized with the
book.isbn property of the managed bean.

A managed bean also handles events. The second line of code shows a submit button
associated with an action. When the submit button is clicked, it triggers an event to the man-
aged bean where an event listener method is executed (here the doCreateBook() method).

Listing 10-2 shows the BookController managed bean. This Java class is annotated with
@ManagedBean, and it has a property, book, that is synchronized with the component’s value of
the page. The doCreateBook() method invokes a stateless EJB and then returns a string that
allows navigation between pages.

Listing 10-2. BookController Managed Bean

@ManagedBean
public class BookController {

 @EJB
 private BookEJB bookEJB;

 private Book book = new Book();

 public String doCreateBook() {
 book = bookEJB.createBook(book);
 return "listBooks.xhtml";
 }

 // Getters, setters
}

Chapter 10  ■﻿   JAVASERVER FACES266

nNote  A managed bean is the class that acts as a controller, navigates from one page to another, calls
EJBs, and so on. Backing beans are the objects that hold properties bound to components. In this example,
we could say that BookController is a managed bean and the book attribute the backing bean.

Ajax Support
A web application must provide a rich and responsive interface. This reactivity can be
obtained by updating only small portions of the page in an asynchronous manner, which is
what Ajax is all about. Previous versions of JSF didn’t offer any out-of-the-box solution, so
third-party libraries such as a4jsf filled this gap. With JSF 2.0, Ajax support has been added in
the form of a JavaScript library (jsf.js) defined in the specification. For example, you can use
the request function to submit a form in an asynchronous way as shown in the following code:

<h:commandButton id="submit" value="Create a book"
 onclick="jsf.ajax.request(this, event,
 {execute:'isbn title price description nbOfPage illustrations',
 render:'booklist'}); return false;"
 actionListener="#{bookController.doCreateBook}" />

Web Interface Specifications Overview
Web development in Java started in 1996 with the servlet API, a very rudimentary way to cre-
ate dynamic web content. You had to manipulate a low-level HTTP API (HttpServletRequest,
HttpServletResponse, HttpSession, etc.) to display HTML tags inside your Java code. JSPs
arrived in 1999 and provided a higher level of abstraction than servlets. In 2004, the first ver-
sion of JSF arrived, with version 1.2 becoming part of Java EE 5 in 2006. JSF 2.0 is now bundled
with Java EE 6.

A Brief History of Web Interfaces
At first, web pages were static. A user would request a resource (a web page, an image, a video,
etc.), and the server would return it; simple, but very limited. With the growth of commercial
activity on the Web, companies had to deliver dynamic content to their customers. The first
solution for creating dynamic content was the Common Gateway Interface (CGI). By using
HTML pages and CGI scripts written in any number of languages (from Perl to Visual Basic),
an application could access databases and serve dynamic content, but it was clear that CGI
was too low level (you had to handle HTTP headers, call HTTP commands, etc.) and needed to
be improved.

In 1995, a new language called Java was released with a platform-independent user inter-
face API called Abstract Window Toolkit (AWT). Later on, in Java SE 1.2, AWT, which relies
on the operating system’s user interface module, was superseded by the Swing API (which

Chapter 10  ■﻿   JAVASERVER FACES 267

draws its own widgets by using Java 2D). During these early days of Java, Netscape’s Naviga-
tor browser offered support for this new language, which opened the era of applets. Applets
are applications that run on the client side, inside a browser. This allowed developers to write
applications in AWT or Swing and embed them on a web page. However, applets never really
took off. Netscape also created a scripting language called JavaScript that executes directly in
the browser. Despite some incompatibilities between browsers, JavaScript is still heavily used
today and is a powerful way to create dynamic web applications.

After the failure of applets to become widely adopted, Sun introduced servlets as a way to
have thin, dynamic web clients. Servlets were an alternative to CGI scripts because they would
offer a higher-level library for handling HTTP, had full access to the Java API (allowing data-
base access, remote invocation, etc.), and could create HTML as a response to be displayed for
the user.

Sun released JSP in 1999 as an enhancement of the servlet model. But because JSPs were
mixing Java and HTML code, in 2001 an open source framework arrived and opened doors to
a new approach: Struts. This extended the servlet API and encouraged developers to adopt an
MVC architecture. Recent history is full of other web frameworks, each trying to fill the gaps
of the last (Tapestry, Wicket, WebWork, DWR, etc.). Today, JSF 2.0 is the preferred web frame-
work in Java EE 6. It competes with Struts and Tapestry within the Java space. Rails and Grails
compete with JSF overall, in the sense that Java competes with Ruby or Groovy. Google Web
Toolkit (GWT), Flex, and JavaFX can be complementary to JSF.

JSP 2.2, EL 2.2, and JSTL 1.2
Architecturally, JSPs are a high-level abstraction of servlets and were implemented as an
extension of Servlet 2.1. JSP 1.2 and Servlet 2.3 were specified together in JSR 53. At the same
time, the JSP Standard Tag Library (JSTL) was specified in JSR 52.

Since 2002, the JSP 2.0 specification has evolved separately from servlets in JSR 152. In
2006, JSP 2.1 was part of Java EE 5 and facilitated the integration between JSF and JSP by intro-
ducing a unified EL. With Java EE 6, both JSP and EL specifications have been updated to a 2.2
version. One of the major changes is the possibility of invoking a method with EL (instead of
just properties).

JSF 2.0
JSF is a specification published by the Java Community Process (JCP) and was created in
2001 as JSR 127. In 2004, a 1.1 maintenance version was released. Only in 2006 was JSF 1.2
introduced into Java EE as JSR 252 (with Java EE 5). The biggest challenge in this version was
to preserve backward compatibility as well as integrate JSP with a unified EL. Despite these
efforts, JSF and JSP didn’t fit well, so other frameworks such as Facelets were introduced as
alternatives to JSPs.

JSF 2.0 is a major release evolving in JSR 314 and is the preferred choice for web develop-
ment in Java EE 6 (JSP is still maintained in Java EE 6, but no major improvements have been
made). JSF 2.0 was inspired by many open source web frameworks and today brings many new
features.

Chapter 10  ■﻿   JAVASERVER FACES268

What’s New in JSF 2.0
With many new features, JSF 2.0 is an evolution from 1.2, but it’s also a step forward—for
example, in terms of PDL, where Facelets is preferred to JSP. New features of JSF 2.0 include
the following:

	 •	 An alternative viewing technology to JSP based on Facelets

	 •	 A new resource-handling mechanism (for images, CSS, JavaScript files, and so on)

	 •	 Additional scopes (view scope and component scope)

	 •	 Easy development with annotations for managed beans, renderers, converters, valida-
tors, and so on

	 •	 Reducing XML configuration by exploiting annotations and configuration by exception
(faces-config.xml is optional)

	 •	 Ajax support

	 •	 Easy component development

Reference Implementation
Mojarra, named after a fish that is found on the South American and Caribbean coast, is
the open source reference implementation of JSF 2.0. Mojarra, available in the GlassFish V3
update center, allows development of JSF 2.0 web applications invoking an EJB 3.1 business
tier and a JPA 2.0 persistence tier. It is used in the example presented next.

Putting It All Together
Using this information, you can write a small web application consisting of two web pages:
one that displays a form, letting you create a book (newBook.xhtml), and the other listing all
books available in the database (listBooks.xhtml). These two pages use the BookController
managed bean to store the necessary properties and for navigation. Using persistence with JPA
and business logic with EJB, everything can be plugged together. The managed bean delegates
all the business logic to the BookEJB, which contains two methods: one to persist a book into a
database (createBook()) and another to retrieve the books (findBooks()). This stateless session
bean uses the EntityManager API to manipulate a Book entity. The navigation is quite simple:
once a book is created, the list is shown. A link on the list page allows you to go back to the
newBook.xhtml page and create another book.

Figure 10-2 shows the interacting components in this web application. They are packaged
in a war file, deployed in a running instance of GlassFish and a live Derby database.

Chapter 10  ■﻿   JAVASERVER FACES 269

Figure 10-2. Pages and classes involved in the web application

This web application follows the Maven directory structure, so classes, files, and web
pages have to be placed in the following directories:

	 •	 src/main/java: Contains the Book entity, the BookEJB, and the BookController managed
bean

	 •	 src/main/resources: Contains the persistence.xml file used to map the entity in the
database

	 •	 src/webapp: Contains the two web pages newBook.xhtml and listBooks.xhtml

	 •	 src/webapp/WEB-INF: Contains the web.xml file used to declare the FacesServlet

	 •	 pom.xml: Represents the Maven Project Object Model (POM) describing the project, its
dependencies, and plug-ins

Writing the Book Entity
I will not go into too much detail about Listing 10-3, as you should by now understand
the code of the Book entity. Despite the mapping annotations, notice the named query,
findAllBooks, that retrieves books from the database.

Listing 10-3. A Book Entity with a Named Query

@Entity
@NamedQuery(name = "findAllBooks", query = "SELECT b FROM Book b")
public class Book {

 @Id @GeneratedValue
 private Long id;
 @Column(nullable = false)
 private String title;
 private Float price;
 @Column(length = 2000)
 private String description;
 private String isbn;

Chapter 10  ■﻿   JAVASERVER FACES270

 private Integer nbOfPage;
 private Boolean illustrations;

 // Constructors, getters, setters
}

As you know, this entity also has to be packaged with a persistence.xml file, but in the
interests of simplicity I won’t show it here.

Writing the BookEJB
Listing 10-4 represents a stateless session bean that exposes a no-interface view. This means
that the client (i.e., the managed bean) doesn’t need an interface (local or remote) and can
directly invoke the EJB. This EJB gets injected a reference to an entity manager, with which
it persists a Book entity (createBook() method), and retrieves all the books from the database
(using the findAllBooks named query). No deployment descriptor is needed for this EJB.

Listing 10-4. A Stateless EJB That Creates and Retrieves Books

@Stateless
public class BookEJB {

 @PersistenceContext(unitName = "chapter10PU")
 private EntityManager em;

 public List<Book> findBooks() {
 Query query = em.createNamedQuery("findAllBooks");
 return query.getResultList();
 }

 public Book createBook(Book book) {
 em.persist(book);
 return book;
 }
}

Writing the BookController Managed Bean
One of the roles of a managed bean is to interact with other layers of the application (the EJB
layer, for example) or perform validation. The BookController in Listing 10-5 is a managed
bean because it is annotated with @ManagedBean. The second annotation, @RequestScoped,
defines the life duration of the bean; it lasts for the duration of the request (note that there are
other scopes to choose from). This managed bean contains two attributes that will be used by
the pages:

	 •	 bookList is the list of books retrieved from the database to be displayed in the
listBooks.xhtml page.

Chapter 10  ■﻿   JAVASERVER FACES 271

	 •	 book is the object that will get mapped to the form (newBook.xhtml page) and persisted
to the database.

All the business processing (creating and retrieving books) is done through the BookEJB.
The managed bean is injected with a reference to the EJB using the @EJB annotation and has
two methods that will get invoked by the pages:

	 •	 doNew(): This method doesn’t do any processing. It allows navigation to the newBook.
xhtml. Navigating from page to page can be done in several ways (as you will see in
Chapter 12). The easiest is to return the name of the target page.

	 •	 doCreateBook(): This method allows book creation by invoking the stateless EJB and
passing the book attribute. It then invokes the EJB again to get all the books from the
database. This list is stored in the bookList attribute of the managed bean. Then the
method returns the name of the page it needs to navigate to.

Listing 10-5 shows the BookController managed bean. All the getters and setters in this
snippet of code have been omitted for better readability but are required for each attribute
(book and booklist).

Listing 10-5. The BookController Managed Bean Invoking the EJB

@ManagedBean
@RequestScoped
public class BookController {

 @EJB
 private BookEJB bookEJB;

 private Book book = new Book();
 private List<Book> bookList = new ArrayList<Book>();

 public String doNew() {
 return "newBook.xhtml";
 }

 public String doCreateBook() {
 book = bookEJB.createBook(book);
 bookList = bookEJB.findBooks();
 return "listBooks.xhtml";
 }

 // Getters, setters
}

Writing the newBook.xhtml Page
The newBook.xhtml page in Listing 10-6 is a form that allows the user to enter the data needed
to create a book (ISBN, title, price, description, number of pages, and illustrations).

Chapter 10  ■﻿   JAVASERVER FACES272

Listing 10-6. The newBook.xhtml Page

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
<h:head>
 <title>Creates a new book</title>
</h:head>
<h:body>
<h1>Create a new book</h1>
<hr/>
<h:form>
 <table border="0">

 <tr>
 <td><h:outputLabel value="ISBN : "/></td>
 <td><h:inputText value="#{bookController.book.isbn}"/></td>
 </tr>

 <tr>
 <td><h:outputLabel value="Title :"/></td>
 <td><h:inputText value="#{bookController.book.title}"/></td>
 </tr>

 <tr>
 <td><h:outputLabel value="Price : "/></td>
 <td><h:inputText value="#{bookController.book.price}"/></td>
 </tr>

 <tr>
 <td><h:outputLabel value="Description : "/></td>
 <td><h:inputTextarea value="#{bookController.book.description}"
 cols="20" rows="5"/></td>
 </tr>

 <tr>
 <td><h:outputLabel value="Number of pages : "/></td>
 <td><h:inputText value="#{bookController.book.nbOfPage}"/></td>
 </tr>

 <tr>
 <td><h:outputLabel value="Illustrations : "/></td>
 <td><h:selectBooleanCheckbox
 value="#{bookController.book.illustrations}"/></td>
 </tr>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

Chapter 10  ■﻿   JAVASERVER FACES 273

 </table>

 <h:commandButton value="Create a book" ➥

 action="#{bookController.doCreateBook}"/>

</h:form>
<hr/>
<i>APress - Beginning Java EE 6</i>

</h:body>
</html>

As shown in Figure 10-3, most of the data is entered in text fields except for the descrip-
tion, which uses a text area, and the Illustrations check box option.

Figure 10-3. The newBook.xhtml page

When the Create a book button is pressed, the doCreateBook() method of the managed
bean is invoked, and the EJB persists the book to the database.

The code has been simplified but contains the essentials. First you need to declare the
HTML components with the h namespace, so you can use components for displaying text
(<h:outputText>) or buttons (<h:commandButton>). The EL allows you to dynamically bind the
value of a component to the corresponding property in the managed bean. So the following
code:

<h:inputText value="#{bookController.book.isbn}"/>

will set the value of the isbn attribute of the book with the content of the input text com-
ponent. bookController is the default name for our managed bean, so the code above is
identical to

bookController.getBook().setISBN("the value of the input text component")

Chapter 10  ■﻿   JAVASERVER FACES274

The page uses different graphical components. Here is a quick overview of those used in
the newBook.xhtml page:

	 •	 <h:form> allows you to create a form, the values of the components of which will be
sent to the server on submission.

	 •	 <h:outputLabel> is used to display a label, either by using a fixed string (like
value="ISBN : ") or by binding a bean to the property.

	 •	 <h:inputTextarea> displays a text area and binds its value to the book’s description
attribute.

	 •	 <h:selectBooleanCheckbox> displays a check box and binds it to the Boolean
illustrations attribute.

	 •	 <h:commandButton> shows a submit button. When clicked, it invokes the doCreateBook()
method on the managed bean (action="#{bookController.doCreateBook}").

Writing the listBooks.xhtml Page
When the submit button is clicked in the newBook.xhtml page (see Figure 10-3), the
doCreateBook() method of the managed bean is invoked, a book is persisted, and, if no excep-
tion is thrown, the name of the page to navigate to is returned: listBooks.xhtml. You’ve just
created a book, and the listBooks.xhtml page displays all the books from the database (see
Figure 10-4). A link allows you to go back to the newBook.xhtml page to create another book.

Figure 10-4. The listBooks.xhtml page

The code of the listBooks.xhtml page (see Listing 10-7) uses different components but
has the same underlying ideas as the previous page. The most important component is the
one that displays the data in a table:

<h:dataTable value="#{bookController.bookList}" var="bk">

The <h:dataTable> tag binds to the bookList attribute of the managed bean (an
ArrayList of books) and declares the variable bk to iterate through the list. Then, inside the
<h:dataTable> tag, you can use expressions such as #{bk.isbn} to get the isbn attribute of a
book. Each column of the table is defined with an <h:column> tag. At the bottom of the page,
the <h:commandLink> tag creates an HTML link that, when clicked, invokes the doNew() method
of the managed bean (which is used to navigate back to the newBook.xhtml page).

Chapter 10  ■﻿   JAVASERVER FACES 275

Listing 10-7. The listBooks.xhtml Page

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">
<h:head>
 <title>List of the books</title>
</h:head>
<h:body>
<h1>List of the books</h1>
<hr/>

<h:dataTable value="#{bookController.bookList}" var="bk">

 <h:column>
 <f:facet name="header">
 <h:outputText value="ISBN"/>
 </f:facet>
 <h:outputText value="#{bk.isbn}"/>
 </h:column>

 <h:column>
 <f:facet name="header">
 <h:outputText value="Title"/>
 </f:facet>
 <h:outputText value="#{bk.title}"/>
 </h:column>

 <h:column>
 <f:facet name="header">
 <h:outputText value="Price"/>
 </f:facet>
 <h:outputText value="#{bk.price}"/>
 </h:column>

 <h:column>
 <f:facet name="header">
 <h:outputText value="Description"/>
 </f:facet>
 <h:outputText value="#{bk.description}"/>
 </h:column>

 <h:column>
 <f:facet name="header">
 <h:outputText value="Number Of Pages"/>
 </f:facet>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

Chapter 10  ■﻿   JAVASERVER FACES276

 <h:outputText value="#{bk.nbOfPage}"/>
 </h:column>

 <h:column>
 <f:facet name="header">
 <h:outputText value="Illustrations"/>
 </f:facet>
 <h:outputText value="#{bk.illustrations}"/>
 </h:column>

 </h:dataTable>

 <h:form>
 <h:commandLink action="#{bookController.doNew}">Create a new book
 </h:commandLink>
 </h:form>

<hr/>
<i>APress - Beginning Java EE 6</i>
</h:body>
</html>

Configuration with web.xml
Web applications are usually configured with a web.xml deployment descriptor. I say “usually”
because with the new Servlet 3.0 specification, the web.xml file has become optional. But
because JSF 2.0 is based on Servlet 2.5 (and not Servlet 3.0), you still need to deploy your web
application with a descriptor.

JSF applications require a servlet, called FacesServlet, which acts as a front controller for
the entire application. This servlet must be defined in the web.xml file with mapping added, as
shown in Listing 10-8.

Listing 10-8. The web.xml File Declaring the FacesServlet

<?xml version='1.0' encoding='UTF-8'?>
<web-app version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd

Chapter 10  ■﻿   JAVASERVER FACES 277

 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.faces</url-pattern>
 </servlet-mapping>
</web-app>

The deployment descriptor maps the requests to a URL finished with .faces to the
servlet, meaning that any page requested with the extension .faces will be handled by the
FacesServlet.

Compiling and Packaging with Maven
The web application needs to be compiled and packaged in a war file (<packaging>war
</packaging>). The pom.xml shown in Listing 10-9 declares all the dependencies necessary for
compiling code (jsf-api, javax.ejb, and javax.persistence) and uses version 1.6 of the JDK.
The faces-config.xml file has become optional in JSF 2.0.

Listing 10-9. Maven pom.xml File for Compiling and Packaging the Web Application

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" ➥

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"➥

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 ➥

 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.apress.javaee6</groupId>
 <artifactId>chapter10</artifactId>
 <packaging>war</packaging>
 <version>1.0</version>

 <dependencies>
 <dependency>
 <groupId>javax.faces</groupId>
 <artifactId>jsf-api</artifactId>
 <version>2.0.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.glassfish</groupId>
 <artifactId>javax.ejb</artifactId>
 <version>3.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>javax.persistence</artifactId>
 <version>1.1.0</version>
 <scope>provided</scope>

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0%E2%9E%A5
http://maven.apache.org/POM/4.0.0%E2%9E%A5
http://maven.apache.org/xsd/maven-4.0.0.xsd

Chapter 10  ■﻿   JAVASERVER FACES278

 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <inherited>true</inherited>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

To compile and package the classes, open a command-line interpreter in the directory
that contains the pom.xml file and enter the following Maven command:

mvn package

Go to the target directory to find the chapter10-1.0.war file. Open it, and you will see that
it contains the Book entity, the BookEJB, the BookController managed bean, the two deploy-
ment descriptors (persistence.xml and web.xml), and the two web pages (newBook.xhtml and
listBooks.xhtml).

Deploying on GlassFish
Once the web application has been packaged, it needs to be deployed into GlassFish. Ensure
GlassFish is up and running, and, because the application stores data in the database, check
that Derby is running and listening on its default port. Open a DOS console, go to the target
directory where the chapter10-1.0.war file is located, and enter the following:

asadmin deploy chapter10-1.0.war

If the deployment is successful, the following command should return the name of the
deployed application and its type. There are two types: web, because it’s a web application, and
ejb, because the application contains an EJB:

asadmin list-components
chapter10-1.0 <ejb, web>

Running the Example
Now that the application is deployed, open your browser and go to the following URL:

http://localhost:8080/chapter10-1.0/newBook.faces

http://localhost:8080/chapter10-1.0/newBook.faces

Chapter 10  ■﻿   JAVASERVER FACES 279

The browser is pointing to newBook.faces, not newBook.xhtml, because of the mapping
you used for the FacesServlet. With the .faces extension, JSF knows it has to process the page
before rendering it. Once the newBook page shows up, enter some data, and click the submit
button to be redirected to the listBooks page.

Summary
Today, the race between user interfaces continues, with the proliferation of Rich Desktop
Application (RDAs), Rich Internet Application (RIAs), mobile device applications, and so forth.
A few years ago, JSF entered this race, and today, with the new features of JSF 2.0, it is holding
its own.

JSF has an architecture based on components and a rich API for developing renderers,
converters, validators, and more. It can render and convert several languages, and the pre-
ferred presentation declaration language (PDL) of JSF 2.0 is Facelets.

Annotations have been introduced in JSF 2.0 and are now used in most Java EE 6 specifi-
cations. Chapter 11 focuses on the presentation part of Java EE 6. It covers specifications like
JSP 2.2, EL 2.2, and JSTL 1.2, introduces Facelets, and concentrates mostly on JSF. Chapter 12
deals with all the dynamic aspects of the specification. You will learn how navigation works,
about managed beans, and also how to write your own converter and validator.

281

C h a p t e r 1 1

Pages and Components

We live in an Internet world. With our transactional back end processing thousands of
requests, communicating with heterogeneous systems with web services, we need a presen-
tation layer to interact with end users, preferably one that runs in a browser. Browsers are
everywhere, and user interfaces are richer, more dynamic, and easier to use. Rich Internet
Applications (RIAs) are gaining in popularity as users expect more from their browsing expe-
rience. They need to consult catalogs of books and CDs online, but they also want to access
e-mail and documents, receive e-mail notification, or have parts of their browser refreshed
when a server event occurs. Add to that the Web 2.0 philosophy whereby people can share any
kind of information with groups of friends and interact with each other, and the result is web
interfaces that are getting more and more complex to develop.

In the early days of Java, developers dealt in HTML directly, by emitting HTML from serv-
lets. We then moved from servlets to Java Server Pages (JSP) to custom tags. Today, Java EE 6
brings with it a new version of JSF, simplifying web interface development.

In this chapter, you will see different technologies used in Java EE 6 to create web pages.
First, the text covers some basic concepts such as HTML, CSS, and JavaScript, and then moves
on to JSP, EL, and JSTL. I then introduce you to Facelet, the preferred page declaration lan-
guage (PDL) in JSF. The remainder of the chapter focuses on how to create web interfaces
using JSF or custom components. The next chapter will focus on how to navigate between
pages and how to interact with a back end so that dynamic data can be displayed.

Web Pages
When we create a web application, we are really interested in displaying dynamic content: a
list of items from a catalog (CDs and books, for instance), the customer details for a given iden-
tifier, a shopping cart containing the items the customer wants to buy, and so on. Conversely,
static content, such as the address of a book company and FAQs with information on how to
buy or ship items, rarely or never changes. Static content can also be the images, videos, or
artwork that make up a page.

The final goal of creating a page is to display it in a browser. The page has to use languages
that the browser can understand, of which there are several: HTML, XHTML, CSS, and
JavaScript.

Chapter 11  ■﻿  PA GES AND COMPONENTS282

HTML
Hypertext Markup Language (HTML) is the predominant language for web pages. It is based
on Standard Generalized Markup Language (SGML), which is a standard metalanguage to
define markup languages. HTML uses markups, or tags, to structure text into paragraphs, lists,
links, buttons, text areas, and so on.

An HTML page is a text document used by browsers to present text and graphics. These
documents are text files that often have an .html or .htm extension. A web page is made of con-
tent, tags to change some aspects of the content, and external objects such as images, videos,
JavaScript, or CSS files.

In the previous chapter, the “Putting It All Together” section showed a couple of JSF
pages, with one displaying a form to create a new book. In pure HTML, without using any JSF
tags, this page could look like the code in Listing 11-1.

Listing 11-1. The newBook.html Page

<H1>Create a new book</h1>
<hr>
<TABLE border=0>
 <TR>
 <TD>ISBN :</TD>
 <TD><input type=text/></td>
 </tr>
 <tr>
 <td>Title :</td>
 <TD><input type=text/></td>
 </tr>
 <tr>
 <td>Price :</td>
 <TD><input type=text/></td>
 </tr>
 <tr>
 <td>Description :
 <td><textarea name=textarea cols=20 rows=5></textarea>
 </tr>
 <TR>
 <TD>Number of pages :
 <td><input type=text/>
 </tr>
 <tr>
 <td>Illustrations :
 <td><input type=checkbox/>
 </tr>
</table>
<input type=submit value=Create>
<hr>
<i>APress - Beginning Java EE 6</i>

Chapter 11  ■﻿  PA GES AND COMPONENTS 283

Normally, a valid HTML page starts with an <html> tag that acts like a container for the
document. It is followed by a <head> and <body> tag. <body> contains the visible content such
as the HTML code displaying a table, labels, input fields, and a button. As you can see in
Listing 11-1, the newBook.html markup doesn’t follow these rules, but browsers will display
nonvalid HTML pages to a certain extent. So the visible result would look like Figure 11-1.

Figure 11-1. Graphical representation of the newBook.html page

The graphical representation shown in Figure 11-1 is the one expected because Listing 11-1
is not well formatted in terms of XML:

	 •	 The page does not have any <html>, <head>, or <body> tags.

	 •	 The <input type=submit value=Create> tag is not closed.

	 •	 Uppercase and lowercase are mixed in tags (e.g., <TR>and </tr> both appear in
the listing).

Most browsers will permit such mistakes and display this form. However, if you want to
process this document with XML parsers, for example, it would fail. To uncover why this is,
let’s look at a web page that uses a strict XML structure with Extensible Hypertext Markup
Language, or XHTML.

XHTML
XHTML was created shortly after HTML 4.01. It takes its roots in HTML but is reformulated
in strict XML. This means an XHTML document is an XML document that follows a certain
schema and has a graphical representation on browsers. An XHTML file (which has the exten-
sion .xhtml) can be used as XML right away or displayed in a browser. In contrast to HTML,
this has the advantage of providing document validation using standard XML tools (XSL, or
Extensible Stylesheet Language; XSLT, or XSL Transformations; etc.). Hence XHTML is much
more flexible and powerful than HTML, because it allows you to define any set of tags you
wish.

Listing 11-2 shows how the XHTML version of the web page to create a book would look.

Chapter 11  ■﻿  PA GES AND COMPONENTS284

Listing 11-2. The newBook.xhtml Page

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title>Creates a new book</title>
</head>
<body>
<h1>Create a new book</h1>
<hr/>
<table border="0">
 <tr>
 <td>ISBN :</td>
 <td><input type="text"/></td>
 </tr>
 <tr>
 <td>Title :</td>
 <td><input type="text"/></td>
 </tr>
 <tr>
 <td>Price :</td>
 <td><input type="text"/></td>
 </tr>
 <tr>
 <td>Description :</td>
 <td><textarea name="textarea" cols="20" rows="5"></textarea></td>
 </tr>
 <tr>
 <td>Number of pages :</td>
 <td><input type="text"/></td>
 </tr>
 <tr>
 <td>Illustrations :</td>
 <td><input type="checkbox"/></td>
 </tr>
</table>
<input name="" type="submit" value="Create"/>
<hr/>
<i>APress - Beginning Java EE 6</i>
</body>
</html>

Some differences exist between Listing 11-1 and Listing 11-2: the document in Listing 11-2
follows a strict structure and has <html>, <head>, and <body> tags; all the tags are closed, even
ones with empty elements (each <td> is closed, and <hr/> is used instead of <hr>); attributes

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

Chapter 11  ■﻿  PA GES AND COMPONENTS 285

appear between single or double quotes (<table border="0"> or <table border='0'>, but not
<table border=0>); and tags are all lowercase (<tr> instead of <TR>). Compare this to Listing 11-1,
which as mentioned previously shows invalid HTML that browsers will be able to display any-
way.

The strict validation of XML syntax rules and schema constraints makes XHTML easier
to maintain and to parse than HTML, and as a result it is now the preferred language for web
pages.

CSS
Browsers live in a world of client-side languages such as HTML, XHTML, CSS, and JavaScript.
Cascading Style Sheets (CSS) is a styling language used to describe the presentation of a docu-
ment written in HTML or XHTML. CSS is used to define colors, fonts, layout, and other aspects
of document presentation. It allows separation of a document’s content (written in XHTML)
from its presentation (written in CSS). Like HTTP, HTML, and XHTML, the CSS specifications
are maintained by the World Wide Web Consortium (W3C).

For example, say you want to alter the labels on the newBook.xhtml page by making them
italic (font-style: italic;), changing the color to blue (color: #000099;), and increasing
the font size (font-size: 22px;); you do not have to repeat these changes for each tag. You
can define a CSS style (in a <style type="text/css"> tag) and give it an alias (e.g., .title and
.row), and the page (see Listing 11-3) will use this alias on all elements to be changed in the
presentation (<h1 class="title">).

Listing 11-3. The newBook.xhtml Page with Some CSS Styles

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title>Creates a new book</title>
 <style type="text/css">
 .title {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 22px;
 color: #000099;
 font-style: italic;
 }

 .row {
 font-family: Arial, Helvetica, sans-serif;
 color: #000000;
 font-style: italic;
 }
 </style>
</head>
<body>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

Chapter 11  ■﻿  PA GES AND COMPONENTS286

<h1 class="title">Create a new book</h1>
<hr/>
<table border="0">
 <tr>
 <td class="row">ISBN :</td>
 <td><input type="text"/></td>
 </tr>
 <tr>
 <td class="row">Title :</td>
 <td><input type="text"/></td>
 </tr>
 <tr>
 <td class="row">Price :</td>
 <td><input type="text"/></td>
 </tr>
 <tr>
 <td class="row">Description :</td>
 <td><textarea name="textarea" cols="20" rows="5"></textarea></td>
 </tr>
 <tr>
 <td class="row">Number of pages :</td>
 <td><input type="text"/></td>
 </tr>
 <tr>
 <td class="row">Illustrations :</td>
 <td><input type="checkbox"/></td>
 </tr>
</table>
<input name="" type="submit" value="Create"/>
<hr/>
<i>APress - Beginning Java EE 6</i>
</body>
</html>

In this example, the CSS code is embedded in the XHTML page. In a real application, all
the styles would be written in a separate file and this file imported into the web page. The
webmaster can draw up one or more sets of CSS for various groups of pages, and then content
contributors can write or change pages without needing to be concerned about the look and
feel.

Compared with Figure 11-1, the end result is that all the labels are in italic and the title is
blue (see Figure 11-2).

Chapter 11  ■﻿  PA GES AND COMPONENTS 287

Figure 11-2. Graphical representation of the newBook.xhtml page

DOM
An XHTML page is an XML document and thus has a Document Object Model (DOM) repre-
sentation. DOM is a W3C specification for accessing and modifying the content and structure
of XML documents as well as an abstract API for querying, traversing, and manipulating such
documents. DOM can be thought of as a tree representation of the structure of a document.
Figure 11-3 shows how the newBook.xhtml page might look as a DOM representation; at the
root there’s the html tag, at the same level, head and body, and under body a table with a list of
tr tags.

Figure 11-3. Tree representation of the newBook.xhtml page

DOM provides a standard way to interact with XML documents. You can traverse the tree
and edit the content of a node (a leaf of the tree). With some JavaScript, you can introduce
dynamism into your web pages. As you will see in the next chapter, Ajax is based on JavaScript
interacting with the DOM representation of a web page.

Chapter 11  ■﻿  PA GES AND COMPONENTS288

JavaScript
Until now you’ve seen different languages used to represent static content and graphical
aspects of a web page. But often, a web page needs to interact with the end user by showing
dynamic content. As you’ll see, dynamic content can be handled with server-side technologies
such as JSP or JSF, but browsers can also do so by executing JavaScript.

JavaScript is a scripting language used for client-side web development. Despite its
name, it is unrelated to the Java programming language, as it is an interpreted, weakly typed
language. JavaScript is a powerful way to create dynamic web applications by writing func-
tions that interact with the DOM of a page. W3C standardized DOM, whereas the European
Computer Manufacturers Association (ECMA) standardized JavaScript as the ECMAScript
specification. Any page written with these standards (XHTML, CSS, and JavaScript) should
look and behave mostly identically in any browser that adheres to these guidelines.

An example of JavaScript interacting with DOM is the newBook.xhtml page in Listing 11-4.
This page displays a form where you can enter information about a book. The price of the
book needs to be completed by the user on the client side before hitting the server. To do such
a validation, you can create a JavaScript function (priceRequired()) that checks whether the
price text field is empty or not.

Listing 11-4. The newBook.xhtml Page with Some JavaScript

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title>Creates a new book</title>

 <script type="text/javascript">
 function priceRequired() {
 if (document.getElementById("price").value == "") {
 document.getElementById("priceError").innerHTML = ➥

 "Please, fill the price !";
 }
 }
 </script>

</head>
<body>
<h1>Create a new book</h1>
<hr/>
<table border="0">
 <tr>
 <td>ISBN :</td>
 <td><input type="text"/></td>
 </tr>
 <tr>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

Chapter 11  ■﻿  PA GES AND COMPONENTS 289

 <td>Title :</td>
 <td><input type="text"/></td>
 </tr>
 <tr>
 <td>Price :</td>
 <td><input id="price" type="text" ➥

 onblur="javascript:priceRequired()"/>

 </td>
 </tr>
 <tr>
 <td>Description :</td>
 <td><textarea name="textarea" cols="20" rows="5"></textarea></td>
 </tr>
 <tr>
 <td>Number of pages :</td>
 <td><input type="text"/></td>
 </tr>
 <tr>
 <td>Illustrations :</td>
 <td><input type="checkbox"/></td>
 </tr>
</table>
<input name="" type="submit" value="Create"/>
<hr/>
<i>APress - Beginning Java EE 6</i>
</body>
</html>

In Listing 11-4, the priceRequired() JavaScript function is embedded in the page
within a <script> tag. This function is called when the price text field loses the focus (that’s
what the onblur event does). The priceRequired() function uses the implicit document
object that represents the DOM of the XHTML document. The getElementById("price")
method looks for an element that has an identifier called price (<input id="price">) and
checks whether it’s empty. If so, the function looks for another element called priceError
(getElementById("priceError")) and sets the value to Please, fill the price !. If the price
is not completed, the client validation will display the message shown in Figure 11-4.

Chapter 11  ■﻿  PA GES AND COMPONENTS290

Figure 11-4. The newBook.html page with an error message

JavaScript is a rich language. The preceding covers only a small part that demonstrates
the interaction between JavaScript and DOM. It is important to understand that a JavaScript
function can get to a node in the page (either by name or by ID such as the getElementById()
method) and change its content dynamically on the client side. For details, see the “Ajax”
section in the next chapter.

Java Server Pages
You’ve just seen technologies and languages, such as XHTML or CSS, that represent the
content and the visual aspect of a static web page. To add some interaction and to change
dynamically parts of the web page, you can use JavaScript functions that run on the browser.
But most of the time, you need to invoke a business layer of EJBs to display data from the data-
base. This dynamic content can be obtained using JSP (or JSF with JSP or Facelets, as you’ll see
later).

JSP, introduced in 1999 as part of J2EE 1.2, allows developers to create dynamically gen-
erated web pages in response to a client request. Pages are processed on the server side and
compiled as servlets. JSPs look like HTML or XHTML pages, but have special tags to perform
server-side processing, display values, and invoke server-side Java code.

Much of what a JSP does is based on the servlet API. Servlets were developed to extend
the server’s capabilities to accept HTTP requests from clients and create dynamic responses
to those requests. Servlets can use any server-side resources such as EJBs, databases, web ser-
vices, and other components, as can JSPs. JSPs are dynamic because they execute Java code to
tailor a response based on the request.

JSPs run on a server in a servlet container and respond to requests from clients who are
users, accessing a web application through a web browser via HTTP, the same protocol used
by browsers to get XHTML pages from a web server. The servlet container manages the life
cycle of a JSP by

Chapter 11  ■﻿  PA GES AND COMPONENTS 291

	 •	 Compiling the JSP code into a servlet

	 •	 Loading and initializing the JSP

	 •	 Processing clients’ requests and dispatching them to the JSP

	 •	 Returning responses to clients (Responses consist solely of HTML or XHTML tags to be
displayed in a browser.)

	 •	 Unloading the JSP and stopping sending requests to the JSP (when the server shuts
down, for example)

The difference between an HTML and XHTML page is that the latter complies strictly with
XML rules. Similarly, JSPs can produce HTML or strict XHTML (as an example, you can use
different file extensions, .jsp and .jspx, for strict XML format). So, now that you’ve seen how
JSPs work, let’s look at some code.

<html>
<head><title>Lists all the books</title></head>
<body>
 <h1>Lists all the books</h1>
 <hr/>
</body>
</html>

As you can see, a valid JSP can be formed of only HTML tags. You could save this code
into a listBooks.jsp page and deploy it into a servlet container that would return a simple
HTML page. The point is that a JSP looks like HTML, but with some extra tags allowing you to
add dynamic content so the response to the client changes depending on the request. The JSP
specification defines the following elements:

	 •	 Directive elements

	 •	 Scripting elements

	 •	 Action elements

As you’ll see, for all these elements the JSP specification defines two syntaxes: the XML
syntax to use in XHTML pages (e.g., <jsp:directive attributes/>) and the JSP syntax, which
is not XML compliant (e.g., <%@ attributes %>).

Directive Elements
Directive elements provide information about the JSP and do not produce any output. There
are three directives: page, include, and taglib. Directives have two syntactic forms:

<%@ directive attributes %>
<jsp:directive attributes />

The page directive is used to specify page attributes such as the programming language
used in the page (Java in this case), the MIME type, and the character encoding for the
response of the JSP, whether the current JSP is intended to be an error page, and so on.

Chapter 11  ■﻿  PA GES AND COMPONENTS292

<%@ page contentType=" text/html; ISO-8859-1" language="java" %>
<jsp:directive.page contentType="text/html; ISO-8859-1" language="java"/>

The include directive is used to include another page (HTML, XHTML, or JSP) within the
current page. You use this directive when you have a standard page (such as a header or a
footer) you want included in multiple JSPs.

<%@ include file="header.jsp"%>
<jsp:directive.include file="header.jsp" />

The “JSP Standard Tag Library” section shows that JSPs can be extended through a tag
library. The taglib directive in a JSP declares the page uses a certain tag library, uniquely iden-
tified by a URI and a prefix. In XML, it translates into a unique namespace (xmlns) at a given
URI. In the following example, the http://java.sun.com/jstl/core tag library is made avail-
able to a page using the prefix c:

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<jsp:root xmlns:c="http://java.sun.com/jstl/core">

Scripting Elements
Scripting elements are used to manipulate objects and to perform computation that affects the
content by including Java code. There are three categories of scripting elements: declarations,
scriptlets, and expressions. These can be defined following two different syntaxes.

<%! this is a declaration %>
<jsp:declaration>this is a declaration</jsp:declaration>

<% this is a scriptlet %>
<jsp:scriptlet>this is a scriptlet</jsp:scriptlet>

<%= this is an expression %>
<jsp:expression>this is an expression</jsp:expression>

Declarations are used to declare Java variables or methods that are available to all other
scripting elements of the page. The declaration appears only within the translated JSP (i.e.,
the servlet) but not in the output to the client. Any variable or method declared within a dec-
laration element becomes an instance method of the JSP and is global to the entire page. For
example, you declare an ArrayList as follows:

<%! ArrayList books = new ArrayList(); %>
<jsp:declaration>ArrayList books = new ArrayList();</jsp:declaration>

Scriptlets contain Java code used to describe actions to be performed in response to
requests. They can be employed to do things like iterations and conditional execution of
other elements in the JSP. Like declarations, the code in the scriptlet appears in the translated
JSP (the servlet), but not in the output to the client. For example, you add a Book object to an
ArrayList as follows:

http://java.sun.com/jstl/core
http://java.sun.com/jstl/core
http://java.sun.com/jstl/core

Chapter 11  ■﻿  PA GES AND COMPONENTS 293

<%
books.add(new Book("H2G2", 12f, "Scifi IT book", "1234-234", 241, true));
%>

<jsp:scriptlet>
books.add(new Book("H2G2", 12f, "Scifi IT book", "1234-234", 241, true));
</jsp:scriptlet>

Expressions are used to output the value of a Java expression to the client. They get evalu-
ated at response time, and the result is converted into a string and inserted into the output
stream to be displayed in the browser. For example, the following code fragment would result
in displaying the ISBN of a book:

<%= book.getIsbn()%>
<jsp:expression>book.getIsbn()</jsp:expression>

Declarations, scriptlets, and expressions must contain valid Java code. And when you
choose to use the XML syntax, the content must be valid XML. For example, to declare an
ArrayList of books using generics, you would do the following:

<%! ArrayList<Book> books = new ArrayList<Book>(); %>

If you declare this array list in a strict XML format, it will not be valid because you include
the < and > symbols, which already have the meaning of opening and closing a tag in XML. To
allow such a declaration, you must use CDATA. The term CDATA (which stands for character data)
is used to indicate something that should not be parsed by the XML parser.

<jsp:declaration><![CDATA[
 ArrayList<Book> books = new ArrayList<Book>();
]]></jsp:declaration>

Action Elements
Standard actions are defined by the JSP specification and cause the page to perform some
actions (include external resources, forward a request to another page, or use Java objects’
properties). They look similar to HTML tags, as they are represented using XML elements with
a prefix of jsp (e.g., <jsp:useBean>, <jsp:include>, etc.). Table 11-1 lists all the available action
elements.

Table 11-1. JSP Action Elements

Action	 Description

useBean	� Associates an instance of an object within a given scope and available
with a given ID.

setProperty	 Sets the value of a property in a bean.

getProperty	 Displays the value of a bean property.

include	� Allows the inclusion of static and dynamic resources in the same
context as the current page.

Continued

Chapter 11  ■﻿  PA GES AND COMPONENTS294

Table 11-1. Continued

Action	 Description

forward	� Dispatches the current request to a static resource, a JSP, or a servlet in
the same context as the current page.

param	� Is used in the include, forward, and params elements. The included or
forwarded page will see the original request object with the original
parameters augmented with the new parameters.

plugin	� Enables a JSP to generate HTML that contains the appropriate browser-
dependent constructs (OBJECT or EMBED) that will result in the download
of a plug-in.

params	 Passes parameters. This is part of the plugin action.

element	 Dynamically defines the value of the tag of an XML element.

attribute	 Defines an XML attribute. This is part of the element action.

body	 Defines the body of an XML element. This is part of the element action.

Putting It All Together
These elements allow you to invoke Java code and any kind of component (EJBs, databases,
web services, etc.). As an example, let’s write some Java code. The web page that you want to
create has to display a list of books stored in an ArrayList. There is no database access, just an
ArrayList initialized with a fixed number of Book objects through which the JSP iterates and
displays the attributes (ISBN, title of the book, description, and so on). The result should look
like Figure 11-5.

Figure 11-5. The listBooks.jsp page displays a list of books

To construct this page, you need several elements. As shown in Listing 11-5, you need
to import the java.util.ArrayList and Book class using a directive element (<%@ page
import="java.util.ArrayList" %>). Once imported, you need to declare the books attribute
of type ArrayList so it is accessible in the entire page. For this, you need a scripting element
of type declaration (<%! ArrayList<Book> books = new ArrayList<Book>(); %>). One scriplet
adds book objects into an ArrayList, and another scriptlet loops through the list with a for
statement. To display the attributes of each book, expression elements are used (<%= book.
getTitle()%>). The full code of the page is shown in Listing 11-5.

Chapter 11  ■﻿  PA GES AND COMPONENTS 295

Listing 11-5. The listBooks.jsp Page

<%@ page import="com.apress.javaee6.chapter11.Book" %>
<%@ page import="java.util.ArrayList" %>
<%!
 ArrayList<Book> books = new ArrayList<Book>();
%>
<html>
<head>
 <title>List all the books</title>
</head>
<body>
<h1>Lists all the books</h1>
<hr/>
<%
books.add(new Book("H2G2", 12f, "Scifi IT book", "1234-234", 241, true));
books.add(new Book("Robots", 18.5f, "Best seller", "564-694", 317, true));
books.add(new Book("Dune", 23.25f, "The trilogy", "256-6-56", 529, true));
%>
<table border="1">
 <tr>
 <td>ISBN</td>
 <td>Title</td>
 <td>Price</td>
 <td>Description</td>
 <td>Number of pages</td>
 <td>Illustrations</td>
 </tr>
 <%
 Book book;
 for (int i = 0; i < books.size(); i++) {
 book = books.get(i);
 %>
 <tr>
 <td><%= book.getIsbn()%></td>
 <td><%= book.getTitle()%></td>
 <td><%= book.getPrice()%></td>
 <td><%= book.getDescription()%></td>
 <td><%= book.getNbOfPage()%></td>
 <td><%= book.getIllustrations()%></td>
 </tr>
 <%
 } // End of the for statement
 %>

</table>
<hr/>
<i>APress - Beginning Java EE 6</i>
</body>
</html>

Chapter 11  ■﻿  PA GES AND COMPONENTS296

You can freely interleave Java code, HTML tags, and text. Everything between the script-
let (<% and %>) is Java code, which will be executed on the server, and everything outside is
template data, which will be written to the response page. Notice in Listing 11-5 that the for
statement block begins and ends in different scriptlets. A JSP can quickly get difficult to read
if you start mixing a lot of HTML tags and Java code. Also, there is no separation between the
business logic and the presentation, which makes the page difficult to maintain. And you are
mixing two languages made for two different categories of people: Java for the business devel-
oper and XHTML/CSS for the web designer.

JSPs can use tag libraries and expression language (EL) to solve this problem. The JSP
Standard Tag Library (JSTL) standardizes a number of common actions using a markup lan-
guage familiar to web developers, while EL uses a simpler syntax for performing some of the
same actions of JSP scripting elements.

Expression Language
You have just seen how to use scripting elements that embed Java code in the JSP. EL state-
ments provide a simpler syntax to perform similar actions and are easier for non-Java
programmers to use. You can use EL statements to print the value of variables or access
objects’ attributes in a page. It also has a rich set of mathematical, logical, and relational
operators. The basic syntax for an EL statement is

${expr}

where expr is a valid expression that is parsed and interpreted. As of JSP 2.1, you can also use
the following syntax:

#{expr}

The ${expr} and #{expr} statements will be parsed and evaluated in exactly the same
manner for JSPs. However, for JSF it is a different matter because, as you’ll see, JSF pages have
a life cycle different from that of JSPs. You can use ${expr} for expressions that are evaluated
immediately (the expression is compiled when the JSP is compiled and is evaluated once,
when the JSP executes) and #{expr} for expressions with a deferred evaluation (the expression
is not evaluated until its value is needed). These two ELs have been unified, so a JSP and a JSF
page can use both, but with the life-cycle difference.

EL expressions can use most of the usual Java operators:

	 •	 Arithmetic: +, -, *, / (div), % (mod)

	 •	 Relational: == (eq), != (ne), < (lt), > (gt), <= (le), >= (ge)

	 •	 Logical: && (and), || (or), ! (not)

	 •	 Other: (), empty, [], .

Note that some operators have both symbolic and word variants (> can be gt, / can be div,
and so on). These equivalents allow you to make your JSP XML compliant while avoiding
using entity references (such as < for <). A “less than” could be coded #{2 lt 3} rather than
#{2 < 3}.

The empty operator tests whether an object is null or whether it references an empty
String, List, Map, or array. It returns true if empty; otherwise it returns false. For example, if a

Chapter 11  ■﻿  PA GES AND COMPONENTS 297

JSP uses a declaration element to define a Book object (<%! Book book = new Book(); %>), you
could check whether the object or one of its attributes is null.

#{empty book}
#{empty book.isbn}

The dot operator is used to access the attribute isbn of the book object. Another syntax is
possible by using the [] operator; the isbn attribute can be accessed using either notation, like
this:

#{book.isbn}
#{book[isbn]}

An enhancement in EL 2.2 is its ability to invoke methods. The following code fragment
shows how to buy a book by calling the book.buy() method and how to pass a parameter (the
currency used).

#{book.buy}
#{book.buy('EURO')}

EL statements can be used in conjunction with JSP and JSF pages, faces-config.xml,
scriplets, or JSTL.

JSP Standard Tag Library
There’s a useful set of standard tags called JSTL that allow you to avoid mixing Java code and
XHTML tags. The dynamic data within a JSP can be manipulated using XML tags instead of
Java code. These actions range from setting the value of an object easily to catching excep-
tions, controlling the flow structure with conditions and iterators, and accessing databases.

A tag library is a collection of functions that can be used in a JSP or JSF page. Table 11-2
lists these functions along with the URIs used to reference the libraries and associated prefixes
(which are commonly used but can also be changed).

Table 11-2. JSTL Tag Libraries

Functional Area	 URI	 Commonly Used Prefix

Core	 http://java.sun.com/jsp/jstl/core	 c

XML processing	 http://java.sun.com/jsp/jstl/xml	 x

I18N and formatting	 http://java.sun.com/jsp/jstl/fmt	 fmt

Database access	 http://java.sun.com/jsp/jstl/sql	 sql

Functions	 http://java.sun.com/jsp/jstl/functions	 fn

Before using any of these actions, the JSP needs to import the tag library URI and set a
prefix. This can be done with a JSP directive element with either the JSP markup scheme or the
XML-compliant syntax.

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
// or

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/xml
http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/sql
http://java.sun.com/jsp/jstl/functions
http://java.sun.com/jsp/jstl/core

Chapter 11  ■﻿  PA GES AND COMPONENTS298

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jstl/core" version="1.2">

With such a declaration, you can use all the actions of the core tag library by prefixing with
the letter c as follows:

<c:set var="upperLimit" value="20"/>

This code sets the value 20 for a variable called upperLimit. Each tag library has a set of
actions that can be used in a JSP or JSF page.

Core Actions
The core actions provide tags for manipulating variables, dealing with errors, performing tests,
and executing loops and iterations. Table 11-3 shows the actions contained in the core library.

Table 11-3. Core Actions

Action	 Description

<c:out>	 Evaluates an expression and outputs the result of the evaluation

<c:set>	 Sets a value for an object

<c:remove>	 Removes a variable

<c:catch>	 Catches a java.lang.Throwable thrown by any of its nested actions

<c:if>	 Evaluates whether the expression is true

<c:choose>	 Provides mutually exclusive conditions

<c:when>	 Represents an alternative within a <c:choose> action

<c:otherwise>	 Represents the last alternative within a <c:choose> action

<c:forEach>	� Repeats the nested body over a collection of objects, or repeats it a fixed
number of times

<c:forTokens>	 Iterates over tokens, separated by the supplied delimiters

<c:import>	 Imports a resource

<c:url>	 Encodes a URL

<c:param>	 Adds request parameters to a URL

<c:redirect>	 Redirects to a specific URL

To see some of these tags in action, let’s write a JSP that loops from number 3 to number
15, tests whether the number is odd or even, and displays this information in front of each
number (see Listing 11-6).

Listing 11-6. A JSP Displaying a List of Odd and Even Numbers

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jstl/core" version="1.2">
<html>
<body>

http://java.sun.com/JSP/Page
http://java.sun.com/jstl/core
http://java.sun.com/JSP/Page
http://java.sun.com/jstl/core

Chapter 11  ■﻿  PA GES AND COMPONENTS 299

<c:set var="upperLimit" value="20"/>
<c:forEach var="i" begin="3" end="${upperLimit - 5}">

 <c:choose>
 <c:when test="${i%2 == 0}">
 <c:out value="${i} is even"/>

 </c:when>
 <c:otherwise>
 <c:out value="${i} is odd"/>

 </c:otherwise>
 </c:choose>

</c:forEach>

</body>
</html>

To use the core tag library, the page needs to import its URI with a prefix (i.e., XML
namespace), assign the value 20 to the upperLimit variable with the <c:set> tag, and then
iterate from the number 3 to number 15. You can see the usage of the EL with the arithmetic
expression ${upperLimit - 5}. Inside the loop, the value of the index (variable i) is tested to
see whether its value is odd or even (<c:when test="${i%2 == 0}">). The <c:out> tag displays
the value of the index with the text ("${i} is even").

The logic is only done via tags, and this page is totally XML compliant, using a markup
language easy for non-Java programmers to read and understand.

Formatting Actions
Formatting actions provide support for formatting dates, numbers, currencies, and percent-
ages, and also support internationalization (i18n). You can get or set locales and time zones,
or get the encoding of the web page. Table 11-4 shows the actions contained in the format
library.

Table 11-4. Formatting Actions

Action	 Description

<fmt:message>	 Internationalizes a JSP by pulling a message from a message bundle

<fmt:param>	 Supplies a parameter for <fmt:message>

<fmt:bundle>	 Determines the resource bundle

<fmt:setLocale>	 Sets the locale

<fmt:requestEncoding>	 Sets the request’s character encoding

<fmt:timeZone>	 Specifies the time zone in which time information is to be formatted

<fmt:setTimeZone>	 Stores the specified time zone on a variable

Continued

Chapter 11  ■﻿  PA GES AND COMPONENTS300

Table 11-4. Continued

Action	 Description

<fmt:formatNumber>	� Formats a numeric value (number, currency, percentage) in a locale-
sensitive manner

<fmt:parseNumber>	� Parses the string representation of numbers, currencies, and percent-
ages

<fmt:formatDate>	 Formats dates and times in a locale-sensitive manner

<fmt:parseDate>	 Parses the string representation of dates and times

For an understanding of these tags, take a look at the JSP shown in Listing 11-7, which
uses some of these actions to format dates and numbers, and internationalize currencies.

Listing 11-7. A JSP Formatting Dates and Numbers

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>
<html>
<body>

Dates
<c:set var="now" value="<%=new java.util.Date()%>"/>
<fmt:formatDate type="time" value="${now}"/>
<fmt:formatDate type="date" value="${now}"/>
<fmt:formatDate type="both" dateStyle="short" timeStyle="short" ➥

 value="${now}"/>
<fmt:formatDate type="both" dateStyle="long" timeStyle="long" ➥

 value="${now}"/>

Currency
<fmt:setLocale value="en_us"/>
<fmt:formatNumber value="20.50" type="currency"/>
<fmt:setLocale value="en_gb"/>
<fmt:formatNumber value="20.50" type="currency"/>

</body>
</html>

The page imports the core and format tag libraries using the <%@ taglib> directive ele-
ment. The <c:set var="now" value="<%=new java.util.Date()%>"/> line sets the current date
to a variable named now. The <fmt:formatDate> tag formats this date using different patterns:
shows only the time, only the date, both time and date. The <fmt:setLocale value="en_us"/>
line sets the locale to USA and formats currency so the result is $20.50. Then, the locale is
changed to Great Britain and the result is changed to pounds sterling. This JSP produces the
following result:

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/fmt

Chapter 11  ■﻿  PA GES AND COMPONENTS 301

Dates
11:31:12
14 may 2009
14/02/09 11:31
14 may 2009 11:31:12 CET

Currency
$20.50
£20.50

SQL Actions
The JSTL SQL actions allow database queries (inserts, updates, and deletes), access query
results, and even establish a transaction context. You have seen how to access a database
using EJBs and JPA entities. Sometimes, for specific applications, you need to access the data-
base from the web page (for example, for a noncritical administrative web application used
once in a while by a single user). For this kind of use case, the SQL library and its rich set of
tags can be useful (see Table 11-5).

Table 11-5. SQL Actions

Action	 Description

<sql:query>	 Queries a database

<sql:update>	 Executes a SQL INSERT, UPDATE, or DELETE statement

<sql:transaction>	� Establishes a transaction context for <sql:query> and <sql:update>
subtags

<sql:setDataSource>	 Sets the datasource

<sql:param>	 Sets the values of parameter markers (?) in a SQL statement

<sql:dateParam>	� Sets the values of parameter markers (?) in a SQL statement for values
of type java.util.Date

The JSP shown in Listing 11-8 accesses a database, retrieves all the book rows contained in
the BOOK table, and displays them.

Listing 11-8. A JSP Accessing a Database and Retrieving All the Books

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql" %>
<html>
<head>
 <title>Lists all the books</title>
</head>
<body>
<h1>Lists all the books</h1>
<hr/>

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/sql

Chapter 11  ■﻿  PA GES AND COMPONENTS302

<sql:setDataSource dataSource="jdbc/__default"/>
<sql:query var="books">
 select * from book
</sql:query>

<table border="1">
 <tr>
 <th>ISBN</th>
 <th>Title</th>
 <th>Price</th>
 <th>Description</th>
 <th>Number of pages</th>
 <th>Illustrations</th>
 </tr>
 <c:forEach var="row" items="${books.rows}">
 <tr>
 <td><c:out value="${row.isbn}"/></td>
 <td><c:out value="${row.title}"/></td>
 <td><c:out value="${row.price}"/></td>
 <td><c:out value="${row.description}"/></td>
 <td><c:out value="${row.nbOfPage}"/></td>
 <td><c:out value="${row.illustrations}"/></td>
 </tr>
 </c:forEach>
</table>
<hr/>
<i>APress - Beginning Java EE 6</i>
</body>
</html>

This JSP first needs to import the sql taglib with the <%@ taglib> directive element and set
the datasource (in this example, the default datasource jdbc/__default bundled with Glass-
Fish). The query select * from book is executed, and the result is set in the books variable. The
results can be accessed by books.rows, and the <c:forEach> tag iterates over this collection of
rows. The result is the same one shown previously in Figure 11-5.

XML Actions
In certain aspects, the XML tag library is similar to the core library; it has core tags to perform
XML parsing, flow control tags to iterate over element collections, operations based on XPath
expressions, and XML transformation using XSLT documents. Table 11-6 shows the actions
contained in the XML library.

Chapter 11  ■﻿  PA GES AND COMPONENTS 303

Table 11-6. XML Actions

Action	 Description

<x:parse>	 Parses an XML document.

<x:out>	 Evaluates an XPath expression and outputs the result.

<x:set>	 Evaluates an XPath expression and stores the result into a variable.

<x:if>	 Evaluates the XPath expression if the expression evaluates to true.

<x:choose>	 Provides mutually exclusive conditions.

<x:when>	 Represents an alternative within an <x:choose> action.

<x:otherwise>	 Represents the last alternative within an <x:choose> action.

<x:forEach>	 Evaluates an XPath expression and repeats its content over the result.

<x:transform>	 Applies an XSLT style sheet transformation to an XML document.

<x:param>	 Set transformation parameters. Nested action of <x:transform>.

To perform some XML manipulation with these tags, first create an XML document. The
books.xml file in Listing 11-9 contains a list of books where the data is stored in XML elements
and XML attributes.

Listing 11-9. The books.xml File

<?xml version='1.0' encoding='UTF-8'?>

<books>
 <book isbn='1234-234' price='12' nbOfPage='241' illustrations='true'>
 <title>H2G2</title>
 <description>Scifi IT book</description>
 </book>
 <book isbn='564-694' price='18.5' nbOfPage='317' illustrations='true'>
 <title>Robots</title>
 <description>Best seller</description>
 </book>
 <book isbn='256-6-56' price='23.25' nbOfPage='529' ➥

 illustrations='false'>
 <title>Dune</title>
 <description>The trilogy</description>
 </book>
</books>

To function, this books.xml file has to be deployed with the JSP or be imported by a URL.
The JSP in Listing 11-10 parses the file and displays all the books on the page.

Chapter 11  ■﻿  PA GES AND COMPONENTS304

Listing 11-10. The JSP Parses the books.xml File and Displays Its Content

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/xml" prefix="x" %>
<html>
<body>

<table border="1">
 <tr>
 <th>ISBN</th>
 <th>Title</th>
 <th>Price</th>
 <th>Description</th>
 <th>Number of pages</th>
 <th>Illustrations</th>
 </tr>

 <c:import url="books.xml" var="bookUrl"/>
 <x:parse xml="${bookUrl}" var="doc"/>

 <x:forEach var="b" select="$doc/books/book">
 <tr>
 <td><x:out select="$b/@isbn"/></td>
 <td><x:out select="$b/title"/></td>
 <td><x:out select="$b/@price"/></td>
 <td><x:out select="$b/description"/></td>
 <td><x:out select="$b/@nbOfPage"/></td>
 <td><x:out select="$b/@illustrations"/></td>
 </tr>
 </x:forEach>
</table>
</body>
</html>

To commence, this JSP needs to import the XML taglib (with the directive <%@ taglib>)
and then access the books.xml file, which is loaded into the variable bookUrl using the
<c:import> tag. bookUrl contains the raw text that needs to be parsed using the <x:parse> tag,
and the resulting DOM is stored in the variable doc. Now that the document is parsed, you
iterate through it and display the values by using XPath expressions with <x:out> (/@isbn
represents an XML attribute and /title an XML element). The result is the same as that in
Figure 11-5.

Functions
Functions are not tags but are defined in the JSTL specification. They can be used with EL and
are mostly employed to deal with string manipulation. For example:

${fn:contains("H2G2", "H2")}

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/xml

Chapter 11  ■﻿  PA GES AND COMPONENTS 305

This code checks whether a string contains a substring. In this example, it will return true
because H2G2 contains H2. The following function returns the length of a string or a collection.
The result will be 4.

${fn:length("H2G2")}

These functions can display their result in a JSP (within a <c:out> tag) and can be used in
a test or in a loop.

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fn" prefix="fn" %>
<html>
<body>
 <c:out value="${fn:toLowerCase(sentence)}" />
 <c:if test="${fn:length('H2G2') == 4}">
 H2G2 is four caracters long
 </c:if>
</body>
</html>

Table 11-7 shows all the functions contained in the library.

Table 11-7. Functions

Function	 Description

fn:contains	 Tests whether a string contains the specified substring

fn:containsIgnoreCase	� Tests whether a string contains the specified substring in a case-insen-
sitive way

fn:endsWith	 Tests whether a string ends with the specified suffix

fn:escapeXml	 Escapes characters that could be interpreted as XML markup

fn:indexOf	� Returns the index within a string of the first occurrence of a specified
substring

fn:join	 Joins all elements of an array into a string

fn:length	� Returns the number of items in a collection or the number of characters
in a string

fn:replace	� Returns a string resulting from replacing an input string with all occur-
rences of a substring

fn:split	 Splits a string into an array of substrings

fn:startsWith	 Tests whether a string starts with the specified prefix

fn:substring	 Returns a subset of a string

fn:substringAfter	 Returns a subset of a string following a specific substring

fn:substringBefore	 Returns a subset of a string before a specific substring

fn:toLowerCase	 Converts all of the characters of a string to lowercase

fn:toUpperCase	 Converts all of the characters of a string to uppercase

fn:trim	 Removes white space from both ends of a string

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/fn

Chapter 11  ■﻿  PA GES AND COMPONENTS306

Facelets
When JSF was created, the intention was to reuse JSP as the main PDL, as it was already part
of Java EE. JSP was using EL and JSTL, so the idea was to make use of all these technologies
within JSF. JSP is a page language, and JSF is a component layer on top of it. However, JSP and
JSF life cycles don’t fit together well. Tags in JSPs are processed once from top to bottom in
order to produce a response. JSF has a more complex life cycle where the component tree gen-
eration and the rendering occur at different phases. This is where Facelets comes into play: to
fit the JSF life cycle.

Facelets is an open source alternative to JSP. Unlike JSP, EL, and JSTL, it doesn’t have a
JSR and is not part of Java EE. Facelets is a replacement for JSP and provides an XML-based
alternative (XHTML) for pages in a JSF-based application. Facelets was designed with JSF in
mind, and this is why it provides a simpler programming model than JSP’s.

Facelets comes with a tag library for writing the user interface and provides partial sup-
port for JSTL tags. While the function tag library is fully supported, only a few core tags are
(c:if, c:forEach, c:catch, and c:set). But the key feature of Facelets is its page templating,
which is more flexible than the JSP one. It also allows you to create custom components to be
used in the JSF component tree model.

The Facelets tag library is defined by the http://java.sun.com/jsf/facelets URI and usu-
ally uses the ui prefix. Table 11-8 lists all the available tags.

Table 11-8. Facelets Tags

Tag	 Description

<ui:composition>	� Defines a composition that optionally uses a template. Multiple compo-
sitions can use the same template.

<ui:component>	 Creates a component.

<ui:debug>	 Captures debugging information.

<ui:define>	 Defines content that is inserted into a page by a template.

<ui:decorate>	 Allows you to decorate some content in a page.

<ui:fragment>	 Adds a fragment of a page.

<ui:include>	� Encapsulates and reuses content among multiple XHTML pages, similar
to JSP’s <jsp:include>.

<ui:insert>	 Inserts content into a template.

<ui:param>	� Passes parameters to an included file (using <ui:include>) or a
template.

<ui:repeat>	 Serves as an alternative to <c:forEach>.

<ui:remove>	 Removes content from a page.

Facelets pages are written in XHTML and look like what you saw earlier in Listing 11-2. In
the “Templating” section of this chapter, you will see how to use templating with Facelets.

http://java.sun.com/jsf/facelets

Chapter 11  ■﻿  PA GES AND COMPONENTS 307

JavaServer Faces
I began this chapter by introducing JSP, JSTL, and Facelets, as they are essential for an under-
standing of JSF 2.0. You need to choose a PDL to use when writing JSF. JSP was the preferred
PDL until JSF 1.2. JSP and JSF have different page life cycles; with JSF 2.0, the preferred PDL is
Facelets (XHTML formatted pages). This does not mean that you cannot use JSP, but it does
mean that you will be limited in terms of tags and functionality.

JSPs have a relatively simple life cycle. A JSP source is compiled into a servlet, and when
a web container receives an HTTP request, it passes it to the servlet. The servlet processes the
request, and then writes the response back to the client.

JSF has a more complex life cycle, and this is why in the “Expression Language” section, I
showed you two different syntaxes: one using the dollar symbol (${expression}) and the other
using the hash (#{expression}). $ is for expressions that can be executed immediately (when
you know that the objects in the expression are available), and # is for deferred expressions
(which have to be evaluated later in the life cycle).

With JSF 1.2, both syntaxes were unified, but this led to much confusion and many errors.
For example, if you use JSP as the PDL, you won’t have access to some JSF tags (such as the
Facelets tags for example). In this section, I will use Facelets as the PDL.

Table 11-9 lists all the tag libraries that a Facelets PDL page can use. There are the
functions and core libraries that were in the JSTL sections, the Facelets tags (with the ui prefix),
and new tags such as JSF’s core and html, and composite, which allows you to create custom
components. Other JSTL tags (formatting, SQL, and XML actions) are not supported by
Facelets.

Table 11-9. Tag Libraries Allowed with Facelets PDL

URI	 Common Prefix	 Description

http://java.sun.com/jsf/html	 h	� This tag library contains
components and their HTML
renderers (h:commandButton,
h:commandLink, h:inputText,
etc.).

http://java.sun.com/jsf/core	 f	� This library contains custom
actions that are inde-
pendent of any particular
rendering (f:selectItem,
f:validateLength,
f:convertNumber, etc.).

http://java.sun.com/jsf/facelets	 ui	� Tags in this library add
templating support.

http://java.sun.com/jsf/composite	 composite	� This tag library is used for
declaring and defining com-
posite components.

http://java.sun.com/jsp/jstl/core	 c	� Facelets pages can use some
of the core JSP tag libraries
(<c:if/>, <c:forEach/>, and
<c:catch/>).

http://java.sun.com/jsp/jstl/functions	 fn	� Facelets pages can use all the
function JSP tag libraries.

http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/composite
http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/functions

Chapter 11  ■﻿  PA GES AND COMPONENTS308

Let’s focus on the JSF HTML components that will allow you to create rich web interfaces.
Chapter 12 shows most of the JSF core library with converters and validators. But first let’s take
a look at the JSF page life cycle.

Life Cycle
A JSF page is a component tree with a specific life cycle. You should understand it so you know
when components are validated or the model is updated. Clicking a button causes a request
to be sent from your web browser to the server. This request is translated into an event that
can be processed by your application logic on the server. All data entered by the user enters
a phase of validation before the model is updated and any business logic invoked. JSF is then
responsible for making sure that every graphical component (child and parent components)
is properly rendered to the browser. Figure 11-6 shows the different phases of a JSF page life
cycle.

Figure 11-6. The JSF life cyle

The JSF life cycle is divided into six distinct phases:

	 1.	 Restore view: JSF finds the target view and applies the user’s input to it. If this is the cli-
ent’s first visit to the page, JSF creates the view as a UIViewRoot component (root of the
component tree that makes up a particular page). If this is a subsequent request, the
previously saved UIViewRoot is retrieved for processing the current HTTP request.

	 2.	 Apply request values: Values that have come from the request (from input fields in a
web form, from cookies, or from request headers) are applied to the various compo-
nents of the page. Note that only UI components update their state—not the business
objects that compose the model.

	 3.	 Process validations: After the preceding steps, the UI components have a value set. In
the validation processing, JSF traverses the component tree and asks each component
to ensure its submitted value is acceptable. If both conversion and validation are suc-
cessful for all components, the life cycle continues to its next phase. Otherwise, the life
cycle goes to the Render response phase with the appropriate validation and conversion
error messages.

Chapter 11  ■﻿  PA GES AND COMPONENTS 309

	 4.	 Update model values: With all values of the components set and validated, you can
update the managed beans associated with them.

	 5.	 Invoke application: Now you can perform some business logic. Whatever action has
been triggered will be executed on the managed bean, and this is where the navigation
comes into effect, as its return will determine the render response.

	 6.	 Render response: To achieve the primary goal of this phase, send the response back to
the user. The secondary goal is to save the state of the view so that it can be restored in
the restore view phase if the user requests it again.

The thread of execution for a request/response cycle can flow through each phase or
not, depending on the request and what happens during the processing; if an error occurs,
the flow of execution transfers immediately to the render response phase. Note that four of
these phases can generate messages: apply request values, process validations, update model
values, and invoke application. With or without messages, it is the render response phase that
sends output back to the user.

Standard HTML Components
JSF’s architecture is designed to be independent of any particular protocol or markup lan-
guage, and it is also made to write applications for HTML clients that communicate via HTTP.
A user interface for a particular web page is created by assembling components. Components
provide specific functionality for interacting with an end user (labels, tables, check boxes, etc.).
JSF provides a number of component classes that cover most of the common requirements.

A page is a tree of classes that extends javax.faces.component.UIComponent and has prop-
erties, methods, and events. The components in the tree have parent-child relationships with
other components, starting at the root element of the tree, which is an instance of UIViewRoot.
Let’s focus on using these components on web pages.

Commands
Commands are controls that a user can click to trigger an action. Such a component is typi-
cally rendered as a button or a hyperlink. Table 11-10 lists the two command tags that can be
used.

Table 11-10. Command Tags

Tag	 Description

<h:commandButton>	 Represents an HTML input element for a button of type submit or reset.

<h:commandLink>	� Represents an HTML element for a hyperlink that acts like a submit
button. This component must be placed inside a form.

If on your page you need to add submit buttons, reset buttons, images that you can click,
or hyperlinks that trigger an event, do so as follows:

<h:commandButton value="A submit button"/>
<h:commandButton type="reset" value="A reset button"/>
<h:commandButton image="javaee6.gif" title="A button with an image"/>
<h:commandLink>A hyperlink</h:commandLink>

Chapter 11  ■﻿  PA GES AND COMPONENTS310

By default, a commandButton is of type submit, but it can be changed to type reset
(type="reset"). If you want to turn a button into an image, don’t use the value attribute (that’s
the name of the button), use the image attribute to specify the path of the image you want to
display. Following is the graphical result of the previous code:

Both buttons and links have an action attribute to invoke a method on a managed bean.
To call the doNew() method of the bookController, use the expression language to specify it in
the action attribute as follows:

<h:commandLink action="#{bookController.doNew}">
 Create a new book
</h:commandLink>

Inputs
Inputs are components that display their current value to the user and allow the user to enter
different kinds of textual information. These can be text fields, text areas, or components to
enter a password or hidden data. The input tags are listed in Table 11-11.

Table 11-11. Input Tags

Tag	 Description

<h:inputHidden>	 Represents an HTML input element of type hidden.

<h:inputSecret>	� Represents an HTML input element of type password. On a redisplay,
any previously entered value will not be rendered (for security reasons)
unless the redisplay property is set to true.

<h:inputText>	 Represents an HTML input element of type text.

<h:inputTextarea>	 Represents an HTML text area element.

Many web pages contain forms in which a user has to enter some data or log on using a
password. Input components have several attributes that allow you to change their length,
content, or look and feel, as follows:

<h:inputHidden value="Hidden data"/>
<h:inputSecret maxlength="8"/>
<h:inputText value="An input text"/>
<h:inputText size="40" value="A longer input text"/>
<h:inputTextarea rows="4" cols="20" value="A text area"/>

Chapter 11  ■﻿  PA GES AND COMPONENTS 311

All the components have a value attribute to set their default value. You can use the
maxLength attribute to check that text entered doesn’t go over a certain length or the size attri-
bute to change the default size of the component. The previous code will have the following
graphical representation:

Outputs
Output components display a value, optionally retrieved from a managed bean, a value
expression, or fixed text. The user cannot directly modify the value because it is for display
purposes only. Table 11-12 lists the output tags available.

Table 11-12. Output Tags

Tag	 Description

<h:outputLabel>	 Renders an HTML <label> element

<h:outputLink>	 Render an HTML <a> anchor element

<h:outputText>	 Outputs text

Most of the web pages have to display some text. You can do this with normal HTML
elements, but JSF output tags allow you to display the content of a variable bound to a man-
aged bean using EL. You can display text with <h:outputText> and hypertext links with
<h:outputLink>. Notice that the difference between <h:commandLink> and <h:outputLink> is
that the latter displays the link but doesn’t invoke any method when clicked. It just creates an
external link or anchor.

<h:outputLabel value="#{bookController.book.title}"/>
<h:outputText value="A text"/>
<h:outputLink value="http://www.apress.com/">A link</h:outputLink>

The preceding code doesn’t have any special graphical representation. Following is the
HTML rendering:

<label>The title of the book</label>
A text
A link

http://www.apress.com/
http://www.apress.com/

Chapter 11  ■﻿  PA GES AND COMPONENTS312

Selections
Selection components (see Table 11-13), which are used to select one or more values out of a
list, are represented by check boxes, radio buttons, lists, or combo boxes. They allow the user
to choose between a definite set of available options.

Table 11-13. Select Tags

Tag	 Description

<h:selectBooleanCheckbox>	� Renders one check box representing a single Boolean value. The
check box will be rendered as checked or not based on the value
of the property.

<h:selectManyCheckbox>	 Renders a list of check boxes.

<h:selectManyListbox>	� Renders a multiple-selection component where one or more
options can be selected.

<h:selectManyMenu>	 Renders an HTML <select> element.

<h:selectOneListbox>	� Renders a single-selection component where only one available
option can be selected.

<h:selectOneMenu>	� Renders a single-selection component where only one available
option can be selected. It only shows a single available option at
a time.

<h:selectOneRadio>	 Renders a list of radio buttons.

The tags listed in this table have a graphical representation but require different tags to
hold available options: <f:selectItem> or <f:selectItems>. These tags are nested inside the
graphical components and create additional available options. To represent a combo box with
a list of book genres, you should nest a set of <f:selectItem> tags in an <h:selectOneMenu> tag.

<h:selectOneMenu>
 <f:selectItem itemLabel="History" />
 <f:selectItem itemLabel="Biography"/>
 <f:selectItem itemLabel="Literature"/>
 <f:selectItem itemLabel="Comics"/>
 <f:selectItem itemLabel="Child"/>
 <f:selectItem itemLabel="Scifi"/>
</h:selectOneMenu>

Figure 11-7 shows all the possible representations. Some lists have multiple choices, oth-
ers single choices, and like all the other components, you can bind the value of a managed
bean (List, Set, etc.) directly to one of the lists.

Chapter 11  ■﻿  PA GES AND COMPONENTS 313

Figure 11-7. Multiple representations of lists

Graphics
There is only one component for displaying images: <h:graphicImage>. It displays a graphical
image to users that they cannot manipulate. This tag is rendered as an HTML element. It
has several attributes that allow you to resize the image, use a graphic as an image map, and so
on. You can display an image that is bound to a property in a managed bean and comes from a
file system or a database. The following code displays an image and resizes it:

<h:graphicImage value="book.gif" height="200" width="320"/>

Grid and Tables
Very often data needs to be displayed in a table format (see Table 11-14). JSF has the very pow-
erful <h:dataTable> tag that iterates through a list of elements and creates a table (refer back
to the code of the listBooks.xhtml page that appears in Listing 10-7 of the previous chapter).
Tables can also be used to create a layout for a grid-based user interface. In this case, you can
employ the <h:panelGrid> and <h:panelGroup> tags to lay out your components.

Table 11-14. Grid and Table Tags

Tag	 Description

<h:dataTable>	� Represents a set of repeating data that will be rendered in an HTML
<table> element

<h:column>	 Renders a single column of data within an <h:dataTable> component

<h:panelGrid>	 Renders an HTML <table> element

<h:panelGroup>	� Is a container of components that can be embedded in an <h:panelGrid>

Chapter 11  ■﻿  PA GES AND COMPONENTS314

Unlike <h:dataTable>, the <h:panelGrid> tag does not use an underlying data model to
render rows of data. Rather, this component is a layout container that renders other JSF com-
ponents in a grid of rows and columns. You can specify how many columns are used to display
the components, and the <h:panelGrid> will determine how many rows are needed. The
columns attribute is the number of columns to render before starting a new row. For example,
in the following code, the rendering will be three columns and two rows:

<h:panelGrid columns="3" border="1">
 <h:outputLabel value="One"/>
 <h:outputLabel value="Two"/>
 <h:outputLabel value="Three"/>
 <h:outputLabel value="Four"/>
 <h:outputLabel value="Five"/>
 <h:outputLabel value="Six"/>
</h:panelGrid>

If you want to combine several components into a single column, you can use an
<h:panelGroup> that will render its children as only one component. You can also define a
header and a footer using the special <f:facet> tag.

<h:panelGrid columns="3" border="1">
 <f:facet name="header">
 <h:outputText value="Header"/>
 </f:facet>
 <h:outputLabel value="One"/>
 <h:outputLabel value="Two"/>
 <h:outputLabel value="Three"/>
 <h:outputLabel value="Four"/>
 <h:outputLabel value="Five"/>
 <h:outputLabel value="Six"/>
 <f:facet name="footer">
 <h:outputText value="Footer"/>
 </f:facet>
</h:panelGrid>

The two tables previously described will have the following graphical representation, one
with a header and a footer, and the other with neither:

Chapter 11  ■﻿  PA GES AND COMPONENTS 315

Error Messages
Applications can sometimes throw exceptions due to incorrectly formatted data or technical
reasons. But as far as users are concerned, as little information as possible should be displayed
on the interface to draw their attention to correct the problem. The mechanism for managing
error messages is to include <h:message> and <h:messages> tags in a page (see Table 11-15).
<h:message> is tied to a particular component, while <h:messages> can provide global messag-
ing for all components on the page.

Table 11-15. Message Tags

Tag	 Description

<h:message>	 Renders one error message

<h:messages>	 Renders all the enqueued error messages

Messages can have different severities (INFO, WARN, ERROR, and FATAL), each of which cor-
responds to a CSS style (infoStyle, warnStyle, errorStyle, and fatalStyle). In this way, each
type of message can have a different rendering style. For example, the following code will dis-
play all messages in red:

<h:messages style="color:red"/>
<h:form>
 Enter a title:
 <h:inputText value="#{bookController.title}" required="true"/>
 <h:commandButton action="#{bookController.save}" value="Save"/>
</h:form>

This will display an input field bound to a managed bean property. This property is
required, so if the user clicks the save button without filling it, an error message will be
displayed.

Chapter 11  ■﻿  PA GES AND COMPONENTS316

Miscellaneous
There are other tags that don’t have any graphical representation but do have an HTML
equivalent. The native HTML tag can be used and will work. With JSF tags, extra attributes
are available to make development easier. For example, you can add a JavaScript library
to a page using the standard HTML <script type="text/javascript"> tag. But with the
JSF <h:outputScript> tag, you can use new resource management, as you’ll see later in the
“Resource Management” section. These miscellaneous tags are shown in Table 11-16.

Table 11-16. Miscellaneous Tags

Tag	 Description

<h:body>	 Renders an HTML <body> element

<h:head>	 Renders an HTML <head> element

<h:form>	 Renders an HTML <form> element

<h:outputScript>	 Renders the markup for a <script>

<h:outputStylesheet>	 Render the markup for a <link> element

Templating
A typical web application contains several pages that share a look and feel, a header, a footer,
a menu, and so forth. Facelets allows you to define a layout in a template file that can be
used for all the pages in the web application. A template defines areas (with the <ui:insert>
tag) where the content can be replaced. The client page then uses the tags <ui:component>,
<ui:composition>, <ui:fragment>, or <ui:decorate> to embed fragments into the template.
Table 11-17 lists the various templating tags.

Table 11-17. Templating Tags

Tag	 Description

<ui:composition>	� Defines a composition that optionally uses a template. Multiple
compositions can use the same template.

<ui:define>	� Defines a set of content to be inserted into a corresponding <ui:insert>
element in a template.

<ui:decorate>	 Allows you to decorate some content in a page.

<ui:fragment>	 Adds a fragment of a page.

<ui:insert>	� Defines an insertion point in a template where content can be inserted
using <ui:define> tags around the actual content.

<ui:param>	� Passes parameters to an included file (using <ui:include>) or a
template.

Chapter 11  ■﻿  PA GES AND COMPONENTS 317

As an example, let’s reuse the page representing a form to create a new book (refer back
to Figure 11-1). You could say that the title is the header of the page, and the footer would be
the underlying text Apress - Beginning Java EE 6. So, the template called layout.xml would look
like the code in Listing 11-11.

Listing 11-11. The layout.xml File Is a Facelets Template

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xml:lang="en" lang="en">

<head>
 <title><ui:insert name="title">Default title</ui:insert></title>
</head>
<body>
 <h1><ui:insert name="title">Default title</ui:insert></h1>
 <hr/>

 <ui:insert name="content">Default content</ui:insert>

 <hr/>
 <i>APress - Beginning Java EE 6</i>

</body>
</html>

Our template must first define the needed tag library (xmlns:ui="http://java.sun.com/
jsf/facelets"). Then, it uses the <ui:insert> tag to insert a title attribute into the <title>
and <h1> tags. The body of the page will be inserted into the attribute called content.

To use this template, our newBook.xhtml page, shown in Listing 11-12, needs to declare
which template it needs (<ui:composition template="layout.xhtml">). Then, the idea is to
bind the attributes defined in the <ui:define> tag with the <ui:insert> tag in the template. For
example, the title of the page is “Create a new book.” This text is stored in the title variable
(with <ui:define name="title">), which is bound to the matching <ui:insert name="title">.
It is the same for the rest of the page, which is inserted into the content variable (<ui:define
name="content">).

Listing 11-12. The newBook.xhtml Page Using the Template

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xml:lang="en" lang="en">

<ui:composition template="layout.xhtml">

 <ui:define name="title">Create a new book</ui:define>

 <ui:define name="content">

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/facelets
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets

Chapter 11  ■﻿  PA GES AND COMPONENTS318

 <table border="0">
 <tr>
 <td>ISBN :</td>
 <td><input type="text"/></td>
 </tr>
 <tr>
 <td>Title :</td>
 <td><input type="text"/></td>
 </tr>
 <tr>
 <td>Price :</td>
 <td><input type="text"/></td>
 </tr>
 <tr>
 <td>Description :</td>
 <td><textarea name="textarea" cols="20" rows="5">
 </textarea>
 </td>
 </tr>
 <tr>
 <td>Number of pages :</td>
 <td><input type="text"/></td>
 </tr>
 <tr>
 <td>Illustrations :</td>
 <td><input type="checkbox"/></td>
 </tr>
 </table>
 <input name="" type="submit" value="Create"/>

 </ui:define>

</ui:composition>
</html>

Figure 11-8 shows the result of the newBook.xhtml page being bound to the layout.xhtml
template, which is the same as that shown previously in Figure 11-1.

Chapter 11  ■﻿  PA GES AND COMPONENTS 319

Figure 11-8. The newBook.html page with the layout.xhtml template

Resource Management
Most of the components may need external resources in order to be rendered properly.
<h:graphicImage> needs an external image to display, <h:commandButton> can also display an
image as a button, <h:outputScript> references an external JavaScript file, and components
can apply CSS styles. In JSF, a resource is a static element that can be transmitted to compo-
nents so they can be displayed (images) or processed (JavaScript, CSS) by the browser.

Previous versions of JSF had no facility for serving resources. When you wanted to provide
a resource, you had to put it in the WEB-INF directory so that the client’s browser could access
it. The problem was that if you wanted to update it, you had to replace the file in the directory
and have different directories to render localized resources (for example, an image with
English or Portuguese text). JSF 2.0 has support for this functionality, so you can now package
your resources directly into a separate jar with a version and a locale. The packaged resource
can then be placed in the web application root under the path:

resources/<resourceIdentifier>

or under the jar entry name:

META-INF/resources/<resourceIdentifier>

<resourceIdentifier> consists of several subfolders, specified as follows:

[localePrefix/][libraryName/][libVersion/]resourceName[/resourceVersion]

Items in this resource identifier in [] are optional. The local prefix consists of the language
code followed by an optional country code (en, en_US, pt, pt_BR). As this line indicates, you can
add versioning to the library or the resource itself. Following are resource structures you might
end up with:

Chapter 11  ■﻿  PA GES AND COMPONENTS320

book.gif
en/book.gif
en_us/book.gif
en/myLibrary/book.gif
myLibrary/book.gif
myLibrary/1_0/book.gif
myLibrary/1_0/book.gif/2_3.gif

You can then use a resource, such as this book.gif image, directly in the <h:graphicImage>
component or by specifying the library name (library="myLibrary"). The resource with the
right locale for your client will get pulled automatically.

<h:graphicImage value="book.gif" />
<h:graphicImage value="book.gif" library="myLibrary" />
<h:graphicImage value="#{resource['book.gif']}" />
<h:graphicImage value="#{resource['myLibrary:book.gif']}" />

Composite Components
All the previously discussed components are part of JSF and come with any implementation
that follows the specification. Because JSF is based on reusable components, it provides a
design that allows you to easily create and integrate your own components or third-party
components into your applications.

Earlier I mentioned that all components you’ve seen extend, directly or indirectly, the
javax.faces.component.UIComponent class. Before JSF 2.0, if you wanted to create your own
component, you had to extend the component class that most closely represented your
component (UICommand, UIGraphic, UIOutput, etc.), declare it in the faces-config.xml file,
and provide a tag handler and a renderer. These steps were complex, and other web frame-
works such as Facelets showed that it was possible to create powerful components with less
complexity. This is the point of composite components: to enable developers to write real,
reusable, JSF UI components without any Java code or configuration XML.

This new approach involves creating an XHTML page that contains components, and
then using this page as a component in other pages. This XHTML page is then seen as a real
component that can support validators, converters, and listeners. Any valid markup can be
used inside of a composite component, including the templating features. Composite compo-
nents are handled as resources and therefore must reside within the new standard resource
directories. Table 11-18 lists all the tags involved in the creation and definition of a composite
component.

Chapter 11  ■﻿  PA GES AND COMPONENTS 321

Table 11-18. Tags Used for Declaring and Defining Composite Components

Tag	 Description

<composite:interface>	 Declares the contract for a component.

<composite:implementation>	 Defines the implementation of a component.

<composite:attribute>	� Declares an attribute that may be given to an instance of the
component. There may be zero or many of these inside of
the <composite:interface> section.

<composite:facet>	 Declares that this component supports a facet.

<composite:insertFacet>	� Is used in the <composite:implementation> section. The
inserted facet will be rendered in the component.

<composite:insertChildren>	� Is used in the <composite:implementation> section. Any
child components or template within the component will be
inserted into the rendered output.

<composite:valueHolder>	� Declares that the component whose contract is declared by
the <composite:interface> in which this element is nested
exposes an implementation of ValueHolder.

<composite:editableValueHolder>	� Declares that the component whose contract is declared by
the <composite:interface> in which this element is nested
exposes an implementation of EditableValueHolder.

<composite:actionSource>	� Declares that the component whose contract is declared by
the <composite:interface> in which this element is nested
exposes an implementation of ActionSource.

Let’s explore an example that shows how easy it is to create a graphical component and
use it in other pages. You might remember from previous chapters that the CD-BookStore
application sells two different items: books and CDs. In Chapter 3 I represented them as three
different objects: Book and CD extending Item. Item contains the common attributes (a title,
a price, and a description), and then the Book and the CD have specialized ones (isbn,
publisher, nbOfPage, and illustrations for Book; musicCompany, numberOfCDs, totalDuration,
and gender for CD). If you want your web application to be able to create new books and CDs,
you need two different forms. But the common attributes of Item could be in a separate page
that would act as a component. Figure 11-9 shows these two pages.

Chapter 11  ■﻿  PA GES AND COMPONENTS322

Figure 11-9. Two forms, one to create a CD, another one to create a book

So let’s create a composite component with two input texts (for the title and the
price) and one text area (for the description). The approach to writing a component with
JSF 2.0 is relatively close to what you are used to in Java. You must first write an interface,
<composite:interface> (see Listing 11-13), that acts as an entry point for the component. It
describes the names and the parameters used by the component. Then comes the imple-
mentation, <composite:implementation>. It is the body of the component written in XHTML
and using any JSF tags or templates. Interface and implementation are in the same XHTML
page. The implementation uses <tr> and <td> markups because I’m assuming it will be placed
within a preexisting <table> with two columns.

Listing 11-13. The newItem.xhtml Contains a Composite Component

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:composite="http://java.sun.com/jsf/composite">

<composite:interface>
 <composite:attribute name="item" required="true"/>
 <composite:attribute name="style" required="false"/>
</composite:interface>

<composite:implementation>
 <tr style="#{compositeComponent.attrs.style}">
 <td>Title :</td>
 <td>
 <h:inputText value="#{compositeComponent.attrs.item.title}"/>
 </td>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/composite

Chapter 11  ■﻿  PA GES AND COMPONENTS 323

 </tr>
 <tr style="#{compositeComponent.attrs.style}">
 <td>Price :</td>
 <td>
 <h:inputText value="#{compositeComponent.attrs.item.price}"/>
 </td>
 </tr>
 <tr style="#{compositeComponent.attrs.style}">
 <td>Description :</td>
 <td>
 <h:inputTextarea
 value="#{compositeComponent.attrs.item.description}"
 cols="20" rows="5"/>
 </td>
 </tr>
</composite:implementation>
</html>

This component declares an interface with two attributes: item represents the Item entity
(and the subclasses Book and CD), and style is a CSS style used for rendering. These attributes
are then employed in the implementation of the composite component using the following
syntax:

#{compositeComponent.attrs.style}

This code indicates the getAttributes() method will be called in the current composite
component; within the returned Map, the code will look for the value under the key style. This
is how a component uses attributes that are defined in the interface.

Before I explain how to use this component, recall the discussion on resource manage-
ment earlier in the chapter and the notion of configuration by exception. The component has
to be saved in a file that resides inside a resource library. For example, the file for this example
is called newItem.xhtml and is saved under /resources/apress. If you leave all the defaults, to
use this component you need to declare a library called apress and give it an XML namespace
(ago in the following code):

<html xmlns:ago="http://java.sun.com/jsf/composite/apress">

Then, call the component newItem (the name of the page), passing any required param-
eters: item is the parameter that refers to the Item entity, and style is the optional parameter
that refers to a CSS style.

<ago:newItem item="#{itemController.book}" style="myCssStyle"/>
<ago:newItem item="#{itemController.cd}"/>

To give you an overall picture of how to incorporate a component, Listing 11-14 shows
the newBook.xhtml page representing the form to enter the book data. It includes the newItem
composite component and adds input fields for the ISBN, the number of pages, and a check
box to indicate whether the book has illustrations or not.

http://java.sun.com/jsf/composite/apress

Chapter 11  ■﻿  PA GES AND COMPONENTS324

Listing 11-14. The newBook.xhtml Page Uses the newItem Component

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ago="http://java.sun.com/jsf/composite/apress">
<h:head>
 <title>Creates a new book</title>
</h:head>
<h:body>
<h1>Create a new book</h1>
<hr/>
<h:form>
 <table border="0">

 <ago:newItem item="#{itemController.book}"/>

 <tr>
 <td><h:outputLabel value="ISBN : "/></td>
 <td><h:inputText value="#{itemController.book.isbn}"/></td>
 </tr>

 <tr>
 <td><h:outputLabel value="Number of pages : "/></td>
 <td><h:inputText value="#{itemController.book.nbOfPage}"/></td>
 </tr>

 <tr>
 <td><h:outputLabel value="Illustrations : "/></td>
 <td><h:selectBooleanCheckbox
 value="#{itemController.book.illustrations}"/></td>
 </tr>

 </table>

 <h:commandButton value="Create a book"
 action="#{itemController.doCreateBook}"/>

 </h:form>
 <hr/>
 <i>APress - Beginning Java EE 6</i>

</h:body>
</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/composite/apress

Chapter 11  ■﻿  PA GES AND COMPONENTS 325

Implicit Objects
When you created your composite component, in the implementation you used a
compositeComponent object. You didn’t declare it anywhere; it was simply available so you
could get the attributes of the component. These kinds of objects are called implicit objects
(or implicit variables). Implicit objects are special identifiers that map to specific commonly
used objects. They are implicit because a page has access to them and can use them without
needing to explicitly declare or initialize them. Implicit objects are used within EL expressions.
Table 11-19 lists all the implicit objects that a page can have access to.

Table 11-19. Implicit Objects

Implicit Object	 Description	 Returns

application	� Represents the web application environment. 	 Object
Used to get application-level configuration
parameters.	

applicationScope	� Maps application-scoped attribute names 	 Map
to their values.	

component	 Indicates the current component.	 UIComponent

compositeComponent	 Indicates the current composite component.	 UIComponent

cookie	� Specifies a Map containing cookie names 	 Map
(the key) and Cookie objects.	

facesContext	� Indicates the FacesContext instance of 	 FacesContext
this request.	

header	� Maps HTTP header names to a single String 	 Map
header value.	

headerValues	� Maps HTTP header names to a String[] of 	 Map
all values for that header.	

initParam	� Maps context initialization parameter names 	 Map
to their String parameter values.	

param	� Maps request parameter names to a single 	 Map
String parameter value.	

paramValues	� Maps request parameter names to a String[] 	 Map
of all values for that parameter.	

request	 Represents the HTTP request object.	 Object

requestScope	� Maps request-scoped attribute names to 	 Map
their values.	

resource	 Specifies the resource object.	 Object

session	 Represents the HTTP session object.	 Object

sessionScope	 Maps session-scoped attribute names to their values.	 Map

view	 Represents the current view.	 UIViewRoot

viewScope	 Maps view-scoped attribute names to their values.	 Map

Chapter 11  ■﻿  PA GES AND COMPONENTS326

All these implicit objects are actual objects with interfaces, and once you know what they
are (refer to the specification), you can access their attributes with EL. For example, #{view.
locale} will get the locale of the current view (en_US, pt_PT, etc.). If you store a book object
in the session scope, you could access it like this: #{sessionScope.book}. You can even use a
richer algorithm to display all the HTTP headers and their values as follows:

<h3>headerValues</h3>
<c:forEach var="parameter" items="#{headerValues}">
 <h:outputText value="#{parameter.key}"/> =
 <c:forEach var="value" items="#{parameter.value}">
 <h:outputText value="#{value}" escape="false"/>

 </c:forEach>
</c:forEach>

If you execute this page, you will get a page that shows all the HTTP headers.

Summary
This chapter explained the different ways of creating web pages using static languages such as
HTML, XHTML, or CSS and dynamic ones such as JavaScript or server-side technologies. To
create dynamic web interfaces with Java EE 6, you can choose from several specifications.
JSP 2.2, EL 2.2, and JSTL 1.2 are specifications that were created with servlets in mind. Pages
consist of HTML data and Java code compiled into servlets that send back a response to a
given request.

Even though JSP can serve as a JSF PDL, it is better to use Facelets to achieve the power
of the JSF component-based architecture and rich life cycle. JSF provides a set of standard
widgets (buttons, hyperlinks, check boxes, etc.) and a new model for creating your own
widgets (composite components). JSF 2.0 also provides a new resource-handling mechanism,
allowing you to easily version and localize you external resources.

JSF 2.0 uses a rich UI component architecture, and its components can be converted and
validated, and can interact with managed beans. This will be the topic of the next chapter.

C h a p t e r 1 2

Processing and Navigation

In the previous chapter, I showed you how to create web pages using different technologies
(HTML, JSP, JSTL, etc.), knowing that JSF is the preferred Java EE specification for writing
modern web applications. However, drawing pages with graphical components is not enough;
these pages need to interact with a back-end system, navigate through pages, and validate and
convert data. JSF is a rich specification: managed beans allow you to invoke the business tier
and to navigate in your application, and a set of classes allow you to convert component val-
ues to and from a corresponding type or validate them to conform to business rules. With the
use of annotations, it is now easy to develop custom converters and validators.

JSF 2.0 brings simplicity and richness in terms of dynamic user interfaces. It natively sup-
ports Ajax calls in a simple manner. The specification comes with a JavaScript library, allowing
asynchronous calls to the server and refreshing small portions of the page.

Creating user interfaces, controlling navigation in the entire application, and calling
business logic synchronously or asynchronously are possible because JSF is built on the
Model-View-Controller (MVC) design pattern. Each part is separate from the other, allowing
the UI to change without impacting the business logic and vice versa.

This chapter will present all these concepts, complementing the previous chapters.

The MVC Pattern
JSF, and most web frameworks, encourage separation of concerns by using variations of the
MVC design pattern. MVC is an architectural pattern used to isolate business logic from user
interface. Business logic doesn’t mix well with user interface code. When the two are mixed,
applications are much harder to maintain and less scalable. In the previous chapter, in the
“JavaServer Pages” section, I showed you a JSP with Java code and SQL statements. Though
technically correct, you can imagine how difficult it would get to maintain with time. The page
mixes two developer roles (graphic designer and business logic developer), and it could end
up using many more APIs (database access, EJB invocation, and so on), handling exceptions,
or processing complex business logic. All that would result in a very complex web page. When
MVC is applied, it results in a loosely coupled application; with this type of application, it is
easier to modify either the visual appearance of the application or the underlying business
rules without one affecting the other.

In MVC, the model represents the data of the application, the view corresponds to the
user interface, and the controller manages the communication between both (see Figure 12-1).

327

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION328

Figure 12-1. The MVC design pattern

The model is represented by the content, which is often stored in a database and dis-
played in the view. The model is built without concern for its look and feel when presented to
the user. In JSF, it can consist of backing beans, EJB calls, JPA entities, and so forth.

The view in JSF is the actual XHTML page (XHTML is for web interfaces, but this could
be something different, such as WML for wireless devices). As in the previous chapter, a view
provides a graphical representation for a model. A model can also have several views, showing
a book as a form or as a list, for example.

When a user manipulates a view, the view informs a controller of the desired changes. The
controller then gathers, converts, and validates the data, invokes business logic, and generates
the content in XHTML. In JSF, the controller is the FacesServlet.

FacesServlet
The FacesServlet is an implementation of javax.servlet.Servlet and acts as the central con-
troller element, through which all user requests pass. As shown in Figure 12-2, when an event
occurs (e.g., when the user clicks a button), the event notification is sent via HTTP to the server
and is intercepted by javax.faces.webapp.FacesServlet. It examines the request and calls
various actions on the model using managed beans.

Figure 12-2. The FacesServlet interactions

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION 329

Behind the scenes, the FacesServlet accepts incoming requests and hands control over
to the javax.faces.lifecycle.Lifecycle object. Using a factory, it creates an object of type
javax.faces.context.FacesContext, which contains and processes all the per-request state
information. The Lifecycle object uses the FacesContext object in six phases (described in the
previous chapter) before rendering the response.

For requests to be processed by the FacesServlet, they must be redirected using a servlet
mapping in the deployment descriptor. The web pages, managed beans, converters, and so on
have to be packaged with the web.xml file shown in Listing 12-1.

Listing 12-1. web.xml Defining the FacesServlet

<?xml version='1.0' encoding='UTF-8'?>
<web-app version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.faces</url-pattern>
 </servlet-mapping>

 <context-param>
 <param-name>javax.faces.PROJECT_STAGE</param-name>
 <param-value>Development</param-value>
 </context-param>
</web-app>

This web.xml file defines the javax.faces.webapp.FacesServlet by giving it a name (e.g.,
Faces Servlet) and a mapping. In this example, all requests that have the .faces extension are
mapped to be managed by the servlet, and any request such as http://localhost:8080/
chapter10-1.0/newBook.faces will be handled by JSF.

You can also configure a few JSF-specific parameters in the <context-param> element.
Table 12-1 lists some of these parameters.

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd
http://localhost:8080/

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION330

Table 12-1. JSF-Specific Configuration Parameters

Parameter	 Description

javax.faces.CONFIG_FILES	� Defines a comma-delimited list of context-
relative resource paths under which the JSF
implementation will look for resources.

javax.faces.DEFAULT_SUFFIX	� Allows the web application to define a list of
alternative suffixes for pages containing JSF
content (e.g., .xhtml).

javax.faces.LIFECYCLE_ID	� Identifies the Lifecycle instance to be used
when processing JSF requests.

javax.faces.STATE_SAVING_METHOD	� Defines the location where state is saved.
Valid values are server, which is the default
(typically saved in HttpSession) and client
(saved as a hidden field in the subsequent
form submit).

javax.faces.PROJECT_STAGE	� Describes where this particular JSF appli-
cation is in the software development life
cycle (Development, UnitTest, SystemTest,
or Production). This could be used by a JSF
implementation to cache resources in order
to improve performance in production, for
example.

javax.faces.DISABLE_FACELET_JSF_VIEWHANDLER	� Disables Facelets as the default page decla-
ration language (PDL) if set to true.

javax.faces.LIBRARIES	� Interprets each file found in the semicolon-
separated list of paths as a Facelets tag
library.

FacesContext
JSF defines the javax.faces.context.FacesContext abstract class for representing the
contextual information associated with processing an incoming request and creating the cor-
responding response. This is the class that allows interaction with the UI and the rest of the
JSF environment.

To gain access, you can either use the implicit facesContext object in your pages (see
the previous chapter for discussion of implicit objects) or obtain a reference in your man-
aged beans using the static method getCurrentInstance(). This will return the FacesContext
instance for the current thread, and then you can invoke the methods listed in Table 12-2.

Table 12-2. Some Methods of the FacesContext

Method	 Description

addMessage	 Appends an error message.

getApplication	 Returns the Application instance associated with this web application.

getAttributes	� Returns a Map representing the attributes associated with the
FacesContext instance.

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION 331

Method	 Description

agetCurrentInstance	� Returns the FacesContext instance for the request that is being
processed by the current thread.

getMaximumSeverity	� Returns the maximum severity level recorded on any FacesMessage that
has been queued.

getMessages	 Returns a collection of FacesMessage.

getViewRoot	 Returns the root component that is associated with the request.

release	 Releases any resources associated with this FacesContext instance.

renderResponse	� Signals the JSF implementation that, as soon as the current phase of
the request-processing life cycle has been completed, control should be
passed to the Render response phase, bypassing any phases that have
not been executed yet.

responseComplete	� Signals the JSF implementation that the HTTP response for this request
has already been generated (such as an HTTP redirect), and that the
request-processing life cycle should be terminated as soon as the
current phase is completed.

Faces Config
The FacesServlet is internal to JSF implementations, and though you don’t have access to its
code, you do require metadata to configure it. By now, you may be accustomed to the
two possible choices of metadata in Java EE 6: annotations and XML deployment descriptors
(/WEB-INF/faces-config.xml). Before JSF 2.0, the only choice was XML; today managed beans,
converters, event listeners, renderers, and validators can have annotations, as using XML con-
figuration files has become optional.

I mostly recommended annotations, but to show an extract of what a faces-config.xml
file looks like, the example in Listing 12-2 defines a locale and a message bundle for interna-
tionalization and some navigation rules. Soon you will see how to navigate with and without
faces-config.xml.

Listing 12-2. Snippet of a faces-config.xml File

<?xml version='1.0' encoding='UTF-8'?>
<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd"
 version="2.0">

 <application>
 <locale-config>
 <default-locale>fr</default-locale>
 </locale-config>
 <resource-bundle>
 <base-name>messages</base-name>
 <var>msg</var>

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION332

 </resource-bundle>
 </application>

 <navigation-rule>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>doCreateBook-sucess</from-outcome>
 <to-view-id>/listBooks.htm</to-view-id>
 </navigation-case>
 </navigation-rule>

</faces-config>

Managed Beans
As noted earlier in this chapter, the MVC pattern encourages separation between the model,
the view, and the controller: JSF pages form the view and the FacesServlet the controller.
Managed beans are the gateway to the model.

Managed beans are annotated Java classes and are central to web applications. They can
perform business logic (or delegate to EJBs, for example), handle navigation between pages,
and hold data. A typical JSF application includes one or more managed beans that can be
shared by several pages.

The data is held within attributes of the managed bean, also called a backing bean. A
backing bean defines the data that a UI component is bound to (the target of a form, for exam-
ple). To bind components to a backing bean, you need to use the expression language.

How to Write a Managed Bean
Writing a managed bean is as easy as writing an EJB or a JPA entity; it’s simply a Java class
annotated with @ManagedBean (see Listing 12-3). There are no faces-config.xml entries, no
helper classes, nor inheritance. JSF 2.0 also uses the configuration-by-exception mechanism,
whereby with only one annotation, you can use all defaults and deploy your web application
with such a managed bean.

Listing 12-3. A Simple Managed Bean

@ManagedBean
public class BookController {

 private Book book = new Book();

 public String doCreateBook() {
 createBook(book);
 return "listBooks.xhtml";
 }

 // Constructors, getters, setters
}

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION 333

Listing 12-3 shows the programming model of a managed bean: it holds state (the book
attribute), defines action methods (doCreateBook()) that are referenced in a page, and handles
navigation (return "listBooks.xhtml").

Managed Bean Model
Managed beans are Java classes that are managed by the FacesServlet. The UI components
are bound to the managed bean’s properties (or backing bean) and can invoke action meth-
ods. A managed bean needs to follow these requirements:

	 •	 The class must be annotated with @javax.faces.model.ManagedBean or the XML equiva-
lent in the faces-config.xml deployment descriptor.

	 •	 The class must have a scope (which defaults to @RequestScoped).

	 •	 The class must be defined as public; it must not be final or abstract.

	 •	 The class must have a public no-arg constructor that the container will use to create
instances.

	 •	 The class must not define the finalize() method.

	 •	 Attributes must have public getters and setters to be bound to a component.

Following the ease-of-use model of Java EE 6, a managed bean can simply be an anno-
tated POJO, eliminating most of the configuration. However, if you still need customization,
you can use the elements of the @ManagedBean and @ManagedProperty scope annotations (or
XML equivalent).

@ManagedBean
The presence of the @javax.faces.model.ManagedBean annotation on a class automatically reg-
isters it as a managed bean. The API of this annotation is simple, and all elements are optional
(see Listing 12-4).

Listing 12-4. The ManagedBean Annotation API

@Target(TYPE) @Retention(RUNTIME)
public @interface ManagedBean {
 String name() default "";
 boolean eager() default false;
}

The name element specifies the name of the managed bean (which by default is the name
of the class starting with a lowercase letter). If the value of the eager element is true, the man-
aged bean is instantiated when the web application starts.

UI components are bound to managed bean properties; changing the default name of a
managed bean has an impact on how you invoke a property or a method. The code in Listing
12-5 renames the managed bean to myManagedBean.

mailto:@javax.faces.model.ManagedBean
mailto:@javax.faces.model.ManagedBean

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION334

Listing 12-5. A Renamed Managed Bean

@ManagedBean(name = "myManagedBean")
public class BookController {

 private Book book = new Book();

 public String doCreateBook() {
 createBook(book);
 return "listBooks.xhtml";
 }

 // Constructors, getters, setters
}

To invoke attributes or methods of this managed bean in your pages, you must use the
overridden name as follows:

<h:outputText value="#{myManagedBean.book.isbn}"/>
<h:form>
 <h:commandLink action="#{myManagedBean.doCreateBook}">
 Create a new book
 </h:commandLink>
</h:form>

Scopes
Objects that are created as part of a managed bean have a certain lifetime and may or may
not be accessible to UI components or objects in the web application. The lifetime and acces-
sibility of an object is known as scope. You can specify the scope of a managed bean using five
different annotations:

	 •	 @ApplicationScoped: This is the least restrictive annotation, with the longest life span.
Objects that are created are available in all request/response cycles for all clients using
the web application, for as long as the application is active. These objects can be called
concurrently and need to be thread-safe (using the synchronized keyword). Objects
with this scope can use other objects with no scope or application scope.

	 •	 @SessionScoped: Objects are available for any request/response cycles that belong to
the client’s session. These objects have their state persisted between requests and last
until the session is invalidated. Objects with this scope can use other objects with no
scope, session scope, or application scope.

	 •	 @ViewScoped: Objects are available within a given view until the view is changed, and
have their state persisted until the user navigates to a new view, at which point they
will be cleared out. Objects with this scope can use other objects with no scope, view
scope, session scope, or application scope.

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION 335

	 •	 @RequestScoped: If not specified in the managed bean, this is the default scope. Objects
are available from the beginning of a request until the response has been sent to the
client. A client can execute several requests but stay on the same view. That’s why the
@ViewScoped duration lasts longer than that of the @RequestScoped. Objects with this
scope can use other objects with no scope, request scope, view scope, session scope, or
application scope.

	 •	 @NoneScoped: Managed beans with this scope are not visible in any JSF page and define
objects that are used by other managed beans in the application. Objects with this
scope can use other objects with the same scope.

You need to be careful when you choose a scope for your managed beans. You should give
them only as much scope as needed. Excessively scoped beans (e.g., @ApplicationScoped) will
increase memory usage, and the potential need to persist them could cause increased disk
usage. It makes no sense to give application scope to an object that is used only within a single
component. Likewise, an object with too much restriction will be unavailable to different parts
of your application.

The code in Listing 12-6 defines a managed bean with application scope. It is eagerly
instantiated (eager = true) and initializes the defaultBook attributes as soon as it’s con-
structed (@PostConstruct). This could be a perfect bean to initialize parts of your web
application or to be referenced by other managed beans’ properties.

Listing 12-6. A ManagedBean with an Application Scope Eagerly Instantiated

@ManagedBean(eager = true)
@ApplicationScoped
public class InitController {

 private Book defaultBook;

 @PostConstruct
 private void init() {
 defaultBook=new Book("default title", 0, "default descritpion",➥

 "0000-000", 100, true);
 }

 // Constructors, getters, setters
}

@ManagedProperty
In a managed bean, you can instruct the system to inject a value into a property (an attribute
with getters and/or setters) by using either the faces-config.xml file or the @javax.faces.
model.ManagedProperty annotation, which has a value attribute that can take a literal string
or an EL expression. Listing 12-7 gives some examples of property initialization.

mailto:@javax.faces

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION336

Listing 12-7. Managed Bean Properties Being Initialized

@ManagedBean
public class BookController {

 @ManagedProperty(value = "#{initController.defaultBook}")
 private Book book;

 @ManagedProperty(value = "this is a title")
 private String aTitle;

 @ManagedProperty(value = "999")
 private Integer aPrice;

 // Constructors, getters, setters & methods
}

In Listing 12-7, the properties aTitle and aPrice are initialized with a String value. The
aTitle attribute, of type String, will be initialized to this is a title and the attribute aPrice,
of type Integer, will be initialized with the number 999 (despite being a string, "999" will be
converted to an Integer); as properties are evaluated at runtime (usually when a view is ren-
dered), properties referencing other managed beans can be initialized. The value of book is
initialized with an expression referencing the defaultBook property of the initController
managed bean that you’ve seen before (#{initController.defaultBook}). Listing 12-6 shows
that defaultBook is an attribute of type Book initialized by the InitController managed bean,
and as a result, when the BookController is initialized, the JSF implementation will inject the
defaultBook attribute from the InitController. It is a good practice to initialize literals in the
faces-config.xml and use the annotation for cross-managed bean references (with expression
language).

Life Cycle and Callback Annotations
The previous chapter explained the life cycle of a page (with six phases from receiving the
request to rendering the response). Managed beans also have a life cycle (see Figure 12-3),
which is completely different from that of the page. In fact, managed beans have a similar life
cycle to stateless session beans; if they do exist, it is for the lifetime of the defined scope.

Figure 12-3. The managed bean life cycle

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION 337

Managed beans running in a servlet container can use the @PostConstruct and
@PreDestroy annotations. After the container creates an instance of a managed bean, it calls
the @PostConstruct callback method, if any. After this stage the message bean is bound to a
scope and responds to any user’s request. Before removing the managed bean, the container
calls the @PreDestroy method. These methods can be used to initialize attributes, or to create
and release any external resource.

Navigation
Web applications are made of multiple pages that you need to navigate through. Depending
on the application, you can have various levels of navigation with page flows that are more or
less sophisticated. You can think of wizards, where you can go back to the previous or initial
page, business cases where you go to a particular page depending on a certain rule, and so
on. JSF has multiple options for navigation and allows you to control the flow, based on single
pages or globally for the entire application.

When you just want to go from page to page by clicking a link or a button without doing
any processing, you can use the UI components <h:commandButton> and <h:commandLink>.
Their action attribute takes the name of the page you need to navigate to:

<h:commandButton value="Create" action="listBooks.xhtml"/>

But most of the time this is not enough because you need to access a business tier or a
database to retrieve or process data. That’s when you need a managed bean. In the “Putting
It All Together” section of Chapter 10, we had a first page (newBook.xhtml) displaying a form
to create a book. Once you click the Create button, the book is created and the managed bean
navigates to the listBooks.xhtml page, which will list all the books. Once the page is loaded
into the browser, the Create a new book link at the bottom of the page allows you to go back to
the previous page (as shown in Figure 12-4).

Figure 12-4. Navigating between newBook.xhtml and listBooks.xhtml

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION338

The page flow is simple, but these two pages need a managed bean (BookController) to
do business logic and navigation. They use the button and the link components for navigating
and interacting with the managed bean.

The newBook.xhtml page uses a button to call the doCreateBook() method of the managed
bean:

<h:commandButton value="Create" action="#{bookController.doCreateBook}"/>

The listBooks.xhtml page uses a link to call the doNewBookForm() method:

<h:commandLink action="#{bookController.doNewBookForm}">
 Create a new book
</h:commandLink>

The button and link components do not directly call the page they need to go to. They
invoke methods on the managed bean that are responsible for navigation and have the code
that decides which page to load next. The navigation operates on a set of rules that define all
the application’s possible navigation paths. The code of the managed bean in Listing 12-8 uses
the simplest form of navigation rules: each method defines the page it needs to go to.

Listing 12-8. A Managed Bean Explicitly Defining Navigation

@ManagedBean
public class BookController {

 @EJB
 private BookEJB bookEJB;

 private Book book = new Book();
 private List<Book> bookList = new ArrayList<Book>();

 public String doNewBookForm() {
 return "newBook.xhtml";
 }

 public String doCreateBook() {
 book = bookEJB.createBook(book);
 bookList = bookEJB.findBooks();
 return "listBooks.xhtml";
 }

 // Constructors, getters, setters
}

When the <h:commandButton> invokes the doCreateBook() method, this method creates a
book (using a stateless session bean) and returns the name of the page to navigate to:
listBooks.xhtml. The FacesServlet will then redirect the page flow to the desired page.

The returned String can take several forms. Here is the simplest: it returns the page name.
By default, the page file extension is .xhtml; the code could be simplified and the extension
removed:

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION 339

public String doNewBookForm() {
 return "newBook";
}

The FacesServlet understands that the target page is in fact newBook.xhtml (and not newBook).
With JSF, the page flow navigation can be defined externally via faces-config.xml. In

faces-config.xml, navigation is specified in <navigation-rule> elements. A <navigation-rule>
element identifies the start page, a condition, and the target page to navigate to when the
condition occurs. The condition is based on a logical name rather than the name of the page.
The code of the previous managed bean could have used the logical name success as shown in
Listing 12-9.

Listing 12-9. Snippet of the Managed Bean Using Logical Names

@ManagedBean
public class BookController {
 // ...

 public String doNewBookForm() {
 return "sucess";
 }

 public String doCreateBook() {
 book = bookEJB.createBook(book);
 bookList = bookEJB.findBooks();
 return "sucess";
 }

 // Constructors, getters, setters
}

Both methods return the same logical name. So faces-config.xml has to be structured to
understand that in one case the newBook.xhtml page has to be loaded, and in the other case the
listBooks.xhtml page has to be loaded. Listing 12-10 shows the structure of the faces-config.
xml file. The <from-view-id> tag defines the page where the action request is initially made. In
the first case, you start on newBook.xhtml before making the call to the managed bean. If the
returned logical name is success (<from-outcome>), the FacesServlet will forward the call to
the listBooks.xhtml page (<to-view-id>).

Listing 12-10. A faces-config.xml File Defining Navigation

<?xml version='1.0' encoding='UTF-8'?>
<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd"
 version="2.0">

 <navigation-rule>

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION340

 <from-view-id>newBook.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>sucess</from-outcome>
 <to-view-id>listBooks.xhtml</to-view-id>
 </navigation-case>
 </navigation-rule>
 <navigation-rule>
 <from-view-id>listBooks.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>sucess</from-outcome>
 <to-view-id>newBook.xhtml</to-view-id>
 </navigation-case>
 </navigation-rule>

</faces-config>

Navigation can be done directly in the managed beans or by faces-config.xml, but when
to use one over the other? The first reason to directly return the page name in managed beans
is simplicity; the Java code is explicit, and there is no external XML file to work with. If the web
application has an extensive page flow, you might want to keep it in a single place, so that any
changes can be made in a central location instead of across several pages; and again, using
a mix of both can result in having part of your navigation in your beans and another in the
faces-config.xml file.

There is one case where using XML configuration is very useful; when there are global
links on several pages (for example, login or logout that can be done in an entire application),
as you do not want to define them for every single page. Global navigation rules can be used in
XML (but the same feature is not possible within managed beans):

<navigation-rule>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>logout</from-outcome>
 <to-view-id>logout.xhtml</to-view-id>
 </navigation-case>
</navigation-rule>

If you have an action that applies to every page in the application, you can use a navigation-
rule element without a <from-view-id> or using a wildcard (*). The preceding code indicates
that for any page the user is on, if the method of the managed bean returns the logical name
logout, forward the user to the logout.xhtml page.

The previous examples showed simple navigation where one page has only one naviga-
tion rule and only one page to go to. This is not often the case, and depending on certain rules
or exceptions, users can be redirected to different pages. This is also possible with managed
beans and with the faces-config.xml file. The following code shows a switch case that redi-
rects to three different pages. Note that when the null value is returned, the user goes back to
the page he is already on.

public String doNewBookForm() {
 switch (value) {

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION 341

 case 1: return "page1.xhtml"; break;
 case 2: return "page2.xhtml"; break;
 case 3: return "page3.xhtml"; break;
 default: return null; break;
 }
}

Message Handling
Managed beans process business logic, call EJBs and databases, and so on, and sometimes
things can go wrong. In this case, the user has to be informed through a message to take
action. Messages can be split into two categories: application errors (involving business logic
or database or network connection) and user input errors (invalid ISBN or empty fields).
Application errors can generate a completely different page asking the user to retry in a few
moments, for example. Input errors can be displayed in the same page, with text describing
the error, and messages can also be informational, such as one indicating that a book was
successfully added to the database.

In the previous chapter, tags were used to display messages on pages (<h:message> and
<h:messages>). To produce these messages, JSF allows you to queue messages by calling the
FacesContext.addMessage() method in your managed beans. The signature of the method is
as follows:

void addMessage(String clientId, FacesMessage message)

This method appends a FacesMessage to the set of messages to be displayed. The first
parameter of this method specifies a client identifier. This parameter refers to the UI com-
ponent ID the message is registered to. If clientId is null, the message doesn’t refer to any
special component and is said to be global to all pages. A message consists of a summary text,
a detailed text, and a severity level (fatal, error, warning, and info). Messages can also be inter-
nationalized using message bundles.

FacesMessage(Severity severity, String summary, String detail)

The following code is a snippet of a managed bean that creates a book. If the creation
succeeds, an informational message is queued. If an exception is caught, an error message is
added to the messages queue to be displayed. Note that both messages are global because the
clientId is null:

FacesContext ctx = FacesContext.getCurrentInstance();
try {
 book = bookEJB.createBook(book);
 ctx.addMessage(null, new FacesMessage(FacesMessage.SEVERITY_INFO, ➥

 "Book has been created", "The book" + book.getTitle() + ➥

 " has been created with id=" + book.getId()));
} catch (Exception e) {
 ctx.addMessage(null, new FacesMessage(FacesMessage.SEVERITY_ERROR,➥

 "Book hasn't been created", e.getMessage()));
}

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION342

These messages being global, they can be displayed in a page using a single <h:messages>
tag. But you might want to display a message at a specific place on the page for a specific com-
ponent (as is usually the case with validation or conversion errors). Figure 12-5 shows a page
with a message specifically aimed at the price input field.

Figure 12-5. A page displaying a message for a UI component

The page will have an input text field with an identifier (id="priceId"), and the
<h:message> tag will refer to that component (for="priceId"). The result will be that this
specific message will only be displayed for this component:

<h:inputText id="priceId" value="#{bookController.book.price}"/>
<h:message for="priceId"/>

If the price field has not been completed, a message appears next to the price input text
field, which is when the clientId can be used, as components are identified by their identifier.
The code of the managed bean that follows checks the price and, if not valid, creates a warning
message associating it with the priceId component ID:

if (book.getPrice() == null || "".equals(book.getPrice())) {
 ctx.addMessage("priceId", new FacesMessage(SEVERITY_WARN, ➥

 "Please, fill the price !", "Enter a number value"));

JSF uses this messaging mechanism for converters and validators.

Conversion and Validation
You’ve just seen how to handle messages to inform the end user about actions to be taken.
One possible action is to correct an invalid input value (e.g., invalid ISBN). JSF provides a
standard conversion and validation mechanism that can process user inputs to ensure data
integrity. In this way, when you invoke business methods to process, you can safely rely on
valid data. Conversion and validation allow the developer to focus on business logic rather
than checking whether the input data is not null, fits a range of values, and so on.

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION 343

Conversion takes place when data input by the end user has to be converted from a String
to an object and vice versa. It ensures that data is of the right type—for example, in convert-
ing a String to a java.util.Date, a String to an Integer, or a price in dollars to euros. As for
validation, it ensures data contains the expected content (a date following the dd/MM/yyyy
format, a float between 3.14 and 3.15, etc.).

Conversion and validation occur during different phases of the page life cycle (which you
saw in the previous chapter) as shown in Figure 12-6.

Figure 12-6. Conversation and validation during page life cycle

During the Apply request values phase in Figure 12-6, the UI component value is con-
verted to the targeted object and then validated during the Process validation phase. It makes
sense that conversion and validation occur before component data is bound to the backing
bean (which happens during the Update model values phase). If any error is found, it will
result in adding error messages and shortening the life cycle, so it goes straight to Render
response (and messages will be displayed on the user interface with <h:messages/>). During
this phase, the backing bean properties are converted back to a string to be displayed.

JSF has a set of standard converters and validators and allows you to create your own in a
very easy way.

Converters
When a form is displayed on a browser, the end user fills the input fields and hits a button,
resulting in transporting the data to the server in an HTTP request using string formats. Before
updating the model on the managed bean, this data has to be converted from strings to the
target objects (Float, Integer, BigDecimal, etc.). The reverse action will take place when the
data has to be sent back to the client in the response and be rendered in the browser.

JSF ships with converters for common types like dates and numbers. In cases where the
managed bean property is a primitive type (Integer, int, Float, float, and so on), JSF will
automatically convert the UI component value to the correct type and back. When the prop-
erty is some other data type, you need to provide your own converter. Table 12-3 lists all the
standard converters that are in the javax.faces.convert package.

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION344

Table 12-3. Standard Converters

Converter	 Description

BigDecimalConverter	 Converts a String to a java.math.BigDecimal and vice versa

BigIntegerConverter	 Converts a String to a java.math.BigInteger and vice versa

BooleanConverter	 Converts a String to a Boolean (and boolean primitive) and vice versa

ByteConverter	 Converts a String to a Byte (and byte primitive) and vice versa

CharacterConverter	 Converts a String to a Character (and char primitive) and vice versa

DateTimeConverter	 Converts a String to a java.util.Date and vice versa

DoubleConverter	 Converts a String to a Double (and double primitive) and vice versa

EnumConverter	 Converts a String to an Enum (and enum primitive) and vice versa

FloatConverter	 Converts a String to a Float (and float primitive) and vice versa

IntegerConverter	 Converts a String to an Integer (and int primitive) and vice versa

LongConverter	 Converts a String to a Long (and long primitive) and vice versa

NumberConverter	 Converts a String to an abstract java.lang.Number class and vice versa

ShortConverter	 Converts a String to a Short (and short primitive) and vice versa

JSF will automatically convert input values to numbers when the managed bean property
is some primitive numeric type and to date or time when the property is some date type. If
automatic conversion doesn’t suit, you can explicitly control it through the standard
convertNumber and convertDateTime tags. To use these tags, you need to nest the converter
inside any of the input or output tags. The converter will be called by JSF during the life cycle.

The convertNumber tag has attributes that allow conversion of the input value to a number
(default), a currency, or a percentage. You can specify a currency symbol or a number of frac-
tion digits, as well as a formatting pattern determining how the number should be formatted
and parsed.

<h:inputText value="#{bookController.book.price}">
 <f:convertNumber currencySymbol="$" type="currency"/>
</h:inputText>

The convertDateTime tag can convert dates in various formats (date, time, or both). It has
several attributes that control the date conversion and time zones. A pattern attribute allows
identification of the pattern of the date string that will be converted.

<h:inputText value="#{bookController.book.publishedDate}">
 <f:convertDateTime pattern="MM/dd/yy"/>
</h:inputText>

Custom Converters
Sometimes converting numbers, dates, enums, and so on is insufficient, and you may require
custom conversion. It is easy to develop your own converters and use them in pages with JSF.

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION 345

You simply have to write a class that implements the javax.faces.convert.Converter interface
and register it with metadata. This interface has two methods:

Object getAsObject(FacesContext ctx, UIComponent component, String value)
String getAsString(FacesContext ctx, UIComponent component, Object value)

The getAsObject() method converts the string value of a UI component into the corre-
sponding supported type and returns the new instance. This method throws a
ConverterException if the conversion fails. Conversely, the getAsString() method converts
the provided type to a string, to be rendered in markup language (such as XHTML).

Once the custom converter is developed, it must be registered to allow it to be used in the
web application. One method is by declaring the converter in the faces-config.xml file, the
other is to use the @FacesConverter annotation.

Listing 12-11 shows how to write a custom converter that converts a price from dollars
to euros. It starts by associating this converter with the name euroConverter (value =
"euroConverter") using the @FacesConverter annotation, and implements the Converter
interface. This example only overrides the getAsString() method, which returns a string rep-
resentation of a given price in euros.

Listing 12-11. A Euro Converter

@FacesConverter(value = "euroConverter")
public class EuroConverter implements Converter {

 @Override
 public Object getAsObject(FacesContext ctx, UIComponent component,➥

 String value) {
 return value;
 }

 @Override
 public String getAsString(FacesContext ctx, UIComponent component,➥

 Object value) {
 float amountInDollars = Float.parseFloat(value.toString());
 double ammountInEuros = amountInDollars * 0.8;
 DecimalFormat df = new DecimalFormat("###,##0.##");
 return df.format(ammountInEuros);
 }
}

To use this converter, use either the converter attribute of a tag or the <f:converter> tag.
In both cases, you must pass the name of the custom converter defined in the @FacesConverter
annotation (euroConverter). The following code displays two output texts, one representing
the price in dollars and the other converting this price to euros:

<h:outputText value="#{book.price}"/>
<h:outputText value="#{book.price}">
 <f:converter converterId="euroConverter"/>
</h:outputText>

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION346

Or you can use the converter attribute of the outputText tag:

<h:outputText value="#{book.price}" converter="euroConverter"/>

Validators
When working with web applications, the accuracy of the user-entered data must be ensured.
Enforcing the right values are entered can be done on the client side using JavaScript or on the
server side using validators. JSF simplifies data validation through the use of standard and cus-
tom server-side validators. Validators act as a first level of control by validating the value of UI
components before being processed by the managed bean.

UI components generally handle simple validation, such as whether or not a value is
required. For example, the following tag would require that a value in the text field be entered:

<h:inputText value="#{bookController.book.title}" required="true"/>

If a value is not entered, JSF returns the page with a message indicating that a value
should be entered (the page must have a <h:messages> tag). This uses the same message mech-
anism that I described before. But JSF comes with a set of richer validators that can be used
(described in Table 12-4), which are defined in the javax.faces.validator package.

Table 12-4. Standard Validators

Converter	 Description

DoubleRangeValidator	� Checks the value of the corresponding component against specified
minimum and maximum double values

LengthValidator	� Checks the number of characters in the string value of the associated
component

LongRangeValidator	� Checks the value of the corresponding component against specified
minimum and maximum long values

RegexValidator	� Checks the value of the corresponding component against a regular
expression

These validators are useful for generic cases like the length of a field or a number range
and can be easily associated within a component, in the same way as converters are (both can
be used on the same component). The following code ensures the book’s title is between 2 and
20 characters in length and its price is from 1 to 500 dollars.

<h:inputText value="#{bookController.book.title}" required="true">
 <f:validateLength minimum="2" maximum="20"/>
</h:inputText>
<h:inputText value="#{bookController.book.price}">
 <f:validateLongRange minimum="1" maximum="500"/>
</h:inputText>

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION 347

Custom Validators
Perhaps the standard JSF validators might not suit your needs; you may have data that has
to follow certain business formats such as a ZIP code, a state, or an e-mail address. You must
create your own custom validator to address these cases. Like converters, a validator is a class
that needs to implement an interface and override some method. In the case of a validator, the
interface is javax.faces.validator.Validator, which has a single validate() method:

void validate(FacesContext context, UIComponent component, Object value)

In this method the value argument is the one that has to be checked, based on some busi-
ness logic. If it passes the validation check, you can simply return from the method, and the
life cycle of the page will continue. If not, you can throw a ValidatorException and include a
FacesMessage with a summary and a detail message describing the validation error, and regis-
ter the validator either in the faces-config.xml or by using the @FacesValidator annotation.

As an example, create an ISBN validator that ensures the ISBN entered by the user for the
book follows a certain format. Listing 12-12 shows the code for the IsbnValidator.

Listing 12-12. An ISBN Validator

@FacesValidator(value = "isbnValidator")
public class IsbnValidator implements Validator {

 private Pattern pattern;
 private Matcher matcher;

 @Override
 public void validate(FacesContext context, UIComponent component, ➥

 Object value) throws ValidatorException {

 String componentValue = value.toString();

 pattern = Pattern.compile("(?=[-0-9xX]{13}$)");
 matcher = pattern.matcher(componentValue);

 if (!matcher.find()) {
 String message = MessageFormat.format(➥

 "{0} is not a valid isbn format", componentValue);
 FacesMessage facesMessage = new FacesMessage(SEVERITY_ERROR, ➥

 message, message);
 throw new ValidatorException(facesMessage);
 }
 }
}

The code in Listing 12-12 starts by associating the validator with the name isbnValidator,
to allow it to be used in a page. It implements the Validator interface and adds the validation
logic to the validate() method. It checks, with a regular expression, that the ISBN has the right
format. If not, it adds a message to the context and throws an exception. JSF will

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION348

automatically resume the life cycle of the page, recall the page, and display the error message.
You can employ this custom validator in your pages using the validator attribute or embed-
ding a <f:validator> tag:

<h:inputText value="#{book.isbn}" validator="isbnValidator"/>
// or
<h:inputText value="#{book.isbn}">
 <f:validator validatorId="isbnValidator" />
</h:inputText>

Ajax
The HTTP protocol is based on a request/response mechanism: a client needs something,
sends a request, and receives a response from the server, usually an entire web page. The com-
munication follows this direction: a client requests something from the server, and not the
other way around. However, web applications must provide rich and responsive interfaces
and must react to server events, update parts of the page, aggregate widgets, and so on. In a
normal request/response situation, the server would have to send the entire web page back
even if only a small portion had to change. If the page has a significant size, you’ll overload the
bandwidth and have poor responsiveness as the browser would need to load the entire page.
If you want to increase the browser’s responsiveness and improve the user’s browsing experi-
ence, you need to update only small portions of the page. And this can be done with Ajax.

Ajax (originally standing for Asynchronous JavaScript and XML) is a set of web develop-
ment techniques used to create interactive web applications. Ajax allows web applications to
retrieve portions of data from the server asynchronously without interfering with the display
and behavior of the existing page. Once the data is received by the client, only the portions
requiring updating using the Document Object Model (DOM) of the page and JavaScript are
needed. There is also a mechanism called Reverse Ajax (or Comet programming) for pushing
data from the server back to the browser. These mechanisms are used in most of our daily web
applications, and JSF 2.0 has introduced support for them.

General Concepts
The term Ajax was coined in 2005 as a set of alternative techniques for loading asynchronous
data into web pages. Back in 1999, Microsoft created the XMLHttpRequest object as an ActiveX
control in Internet Explorer 5. In 2006, the World Wide Web Consortium (W3C) released the
first specification draft for the XMLHttpRequest object, which is now supported by most brows-
ers. At the same time, several companies brainstormed about how to ensure that Ajax could be
the industry standard for a rich application platform based on open technologies. The result
of this work was the creation of the OpenAjax Alliance, which consists of vendors, open source
projects, and companies using Ajax-based technologies.

As shown in Figure 12-7, in traditional web applications, the browser has to ask for the
full HTML documents from the server. The user clicks a button to send or get the information,
waits for the server to respond, and then receives the entire page that the browser loads. Ajax,
on the other hand, uses asynchronous data transfer (HTTP requests) between the browser and
the server, allowing web pages to request small bits of information (JSON or XML data) from
the server instead of whole pages. The user stays on the same page while a piece of JavaScript

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION 349

requests or sends data to a server asynchronously, and only portions of the page are actually
refreshed, making web application faster and more user friendly.

Figure 12-7. Plain HTTP calls vs. Ajax HTTP calls

In principle, Ajax is based on the following:

	 •	 XHTML and CSS for presentation

	 •	 DOM for dynamic display and interaction with data

	 •	 XML and XSLT for the interchange, manipulation, and display of XML data

	 •	 The XMLHttpRequest object for asynchronous communication

	 •	 JavaScript to bring these technologies together

XMLHttpRequest is an important part of Ajax, as it’s a DOM API used by JavaScript to trans-
fer XML from the browser to the server. The data returned has to be fetched on the client side
to update portions of the page dynamically with JavaScript. The data can have several formats
such as XHTML, JSON, or even plain text.

Since JSF 2.0, Ajax is supported natively, so you don’t have to develop JavaScript to handle
the XMLHttpRequest, but you do need to use a JavaScript library that has been specified and
shipped with JSF implementations.

Support in JSF
Previous versions of JSF offered no native Ajax solution, so third-party libraries had to be used
to fill the gap. Sometimes this increased the complexity of the code at the expense of perfor-
mance. With JSF 2.0, things are much easier, as Ajax support has been specified and is built
into any JSF implementation.

First of all, there is a specified JavaScript library (jsf.js) for performing Ajax interaction,
which means you don’t have to develop your own scripts nor manipulate the XMLHttpRequest

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION350

objects directly. Without developing any JavaScript, you can use a set of standardized func-
tions to send asynchronous requests and receive data. In order to use this library in your
pages, you need to add the jsf.js resource with the following line of code:

<h:outputScript name="jsf.js" library="javax.faces" target="head"/>

The <h:outputScript> tag renders a <script> markup element referring to the jsf.js
JavaScript file in the javax.faces library. Note that the top-level javax namespace is registered
within the OpenAjax Alliance. This JavaScript API is used to initiate client-side interactions
with JSF including partial tree traversal and partial page update. The function that we will
be directly using in our pages is the request function, as it is responsible for sending an Ajax
request to the server. Its signature follows:

jsf.ajax.request(ELEMENT, |event|, { |OPTIONS| });

ELEMENT is any JSF component or XHTML element from which you trigger the event. Typi-
cally, for submitting a form, the element would be a button. EVENT is any JavaScript event
supported by that element, such as onmousedown, onclick, onblur, and so forth. The OPTIONS
argument is an array that may contain the following name/value pairs:

	 •	 execute: '<comma-separated list of UI component IDs>': Sends the list of compo-
nent IDs to the server in order to be processed during the execute phase of the request

	 •	 render:'<comma-separated list of UI component IDs>': Renders the list of compo-
nent IDs that have been processed during the render phase of the request

As an example, the following code shows a button that calls the jsf.ajax.request func-
tion when the user clicks the button (onclick event). The this argument refers to the element
itself (the button), and the options refer to components IDs:

<h:commandButton id="submit" value="Create a book"
 onclick="jsf.ajax.request(this, event,
 {execute:'isbn title price description nbOfPage illustrations',
 render:'booklist'}); return false;"
 actionListener="#{bookController.doCreateBook}" />

When the client makes an Ajax request, the page life cycle on the server side stays the
same (it goes through the same six phases). The key benefit is that the response is simply
the return of a small chunk of data rather than a large HTML page to the browser. The Apply
request phase determines whether the current request is a “partial request” or not, and the
PartialViewContext object is used throughout the page’s life cycle. It contains methods and
properties that pertain to partial request processing and partial response rendering. At the end
of the life cycle, the Ajax response (or, strictly speaking, partial response) is sent to the client
during the Render response phase. It usually consists of XHTML, XML, or JSON that the client-
side JavaScript will parse.

Putting It All Together
The example shown in Listing 12-13 illustrates how to use this general background on Ajax
and its support in JSF. The “Putting It All Together” section of Chapter 10 showed how to
insert new books into the database using a BookController managed bean. The navigation was
simple, as once the book was created, you were redirected to the page displaying the list of

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION 351

the books. By clicking a link, you would go from the list back to the book form. Let’s take this
example and add some Ajax capabilities.

Now, you only want a single page that has a form at the top to enter the book data, and a
list of books at the bottom (see Figure 12-8). Each time a new book is created by clicking the
button, the list is refreshed, showing the newly created book.

Figure 12-8. A single page to create and list books

The form at the top of the page doesn’t change, and only the list portion of the page needs
to be refreshed. The code in Listing 12-13 is the first part of the page and represents the form.
First, in order to integrate Ajax, the page needs to define the jsf.js JavaScript library using
the <h:outputScript> tag. Nothing really changes from the code in Chapter 10. The bookCtrl
variable refers to the BookController managed bean that is responsible for all the business
logic (invoking an EJB to persist and retrieve books). Book is the entity, and its attributes are
accessed using expression language (#{bookCtrl.book.isbn} binds to the ISBN). Each input
component has an identifier (id="isbn", id="title", etc.). This is very important because it
gives an identifier to each DOM node that needs to interact asynchronously with the server.
Identifiers must be unique for the whole page, because the application must be able to map
data to a specific component.

Listing 12-13. The Form Part of the newBook.xhtml Page

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION352

 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">

<h:head>
 <title>Create a new book</title>
</h:head>
<h:body>

 <h:outputScript name="jsf.js" library="javax.faces" target="head"/>

 <h1>Create a new book</h1>
 <hr/>

 <h:form id="form" prependId="false">
 <table border="0">

 <tr>
 <td><h:outputLabel value="ISBN : "/></td>
 <td><h:inputText id="isbn" value="#{bookCtrl.book.isbn}"/></td>
 </tr>

 <tr>
 <td><h:outputLabel value="Title :"/></td>
 <td><h:inputText id="title" value="#{bookCtrl.book.title}"/></td>
 </tr>

 <tr>
 <td><h:outputLabel value="Price : "/></td>
 <td><h:inputText id="price" value="#{bookCtrl.book.price}"/></td>
 </tr>

 <tr>
 <td><h:outputLabel value="Description : "/></td>
 <td><h:inputTextarea id="description" ➥

 value="#{bookCtrl.book.description}" cols="20" rows="5"/></td>
 </tr>

 <tr>
 <td><h:outputLabel value="Number of pages : "/></td>
 <td><h:inputText id="nbOfPage" ➥

 value="#{bookCtrl.book.nbOfPage}"/></td>
 </tr>

 <tr>
 <td><h:outputLabel value="Illustrations : "/></td>
 <td><h:selectBooleanCheckbox id="illustrations" ➥

 value="#{bookCtrl.book.illustrations}"/></td>

http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION 353

 </tr>

 </table>

 <h:commandButton id="submit" value="Create a book"
 onclick="jsf.ajax.request(this, event,
 {execute:'isbn title price description nbOfPage illustrations',
 render:'booklist'}); return false;"
 actionListener="#{bookCtrl.doCreateBook}" />

 </h:form>

The <h:commandButton> tag represents the button where the Ajax call is made. When the
user clicks the button (onclick event), the jsf.ajax.request function is invoked, passing
parameters that refer to component identifiers (isbn, title, etc.). Thanks to these identifiers,
the values of the UI components are then posted to the server. The doCreateBook() method of
the managed bean is invoked, the new book is created, and the list of books is retrieved. The
rendering of this list on the client side is made with Ajax, thanks to the JSF JS library and the
jsf.ajax.request provided on the onclick event. The render element refers to the booklist ID
as the identifier of the data table displaying all the books (see Listing 12-14).

Listing 12-14. The List Part of the newBook.xhtml Page

 <hr/>
 <h1>List of the books</h1>
 <hr/>
 <h:dataTable id="booklist" value="#{bookCtrl.bookList}" var="bk">
 <h:column>
 <f:facet name="header">
 <h:outputText value="ISBN"/>
 </f:facet>
 <h:outputText value="#{bk.isbn}"/>
 </h:column>

 <h:column>
 <f:facet name="header">
 <h:outputText value="Title"/>
 </f:facet>
 <h:outputText value="#{bk.title}"/>
 </h:column>

 <h:column>
 <f:facet name="header">
 <h:outputText value="Price dollar"/>
 </f:facet>
 <h:outputText value="#{bk.price}"/>
 </h:column>

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION354

 <h:column>
 <f:facet name="header">
 <h:outputText value="Description"/>
 </f:facet>
 <h:outputText value="#{bk.description}" />
 </h:column>

 <h:column>
 <f:facet name="header">
 <h:outputText value="Number Of Pages"/>
 </f:facet>
 <h:outputText value="#{bk.nbOfPage}"/>
 </h:column>

 <h:column>
 <f:facet name="header">
 <h:outputText value="Illustrations"/>
 </f:facet>
 <h:outputText value="#{bk.illustrations}"/>
 </h:column>

 </h:dataTable>

 <i>APress - Beginning Java EE 6</i>
</h:body>
</html>

The partial response from the server contains the XHTML portion of the page to be
updated. The JavaScript looks for the booklist element of the page and applies the changes
needed. The partial response on Listing 12-15 is self-explanatory; it specifies that an update
has to be made to the component identified by booklist (<update id="booklist">). The body
of the <update> element is the fragment of XHTML that has to override the actual data table.

Listing 12-15. The Partial Response Received by the Client

<partial-response>
 <changes>
 <update id="booklist">
 <table id="booklist" border="1">
 <tr>
 <th scope="col">ISBN</th>
 <th scope="col">Title</th>
 <th scope="col">Price</th>
 <th scope="col">Description</th>
 <th scope="col">Number Of Pages</th>
 <th scope="col">Illustrations</th>
 </tr>
 <tr>

Chapter 12  ■﻿  PR OCESSING AND NAVIGATION 355

 <td>1234-234</td>
 <td>H2G2</td>
 <td>12.0</td>
 <td>Scifi IT book</td>
 <td>241</td>
 <td>false</td>
 </tr>
 <tr>
 <td>564-694</td>
 <td>Robots</td>
 <td>18.5</td>
 <td>Best seller</td>
 <td>317</td>
 <td>true</td>
 </tr>
 </table>
 </update>
 </changes>
</partial-response>

Summary
The preceding chapter examined the graphical aspect of JSF, and this chapter focused on its
dynamic side. JSF follows the MVC design pattern, and its specification ranges from creating
user interfaces with components to processing data with managed beans.

Managed beans are at the heart of JSF as they are used to process business logic, call EJBs,
databases, and so on, as well as navigating between pages. They have a scope and a life cycle
(resembling stateless session beans), and they declare methods and properties that are bound
to UI components using expression language. Annotations and configuration by exception
have greatly simplified JSF 2.0, as most of the XML configuration is now optional.

I then showed how conversion and validation is handled on any input component. JSF
defines a set of converters and validators for most common cases, but it also allows you to
easily create and register custom ones.

While the Ajax technique has been around for some years, JSF 2.0 brings standard sup-
port, allowing web pages to invoke managed beans asynchronously. It defines a standard
JavaScript library, and the developer doesn’t need to write scripts but instead uses functions to
refresh portions of pages.

The next three chapters will focus on how to interoperate with systems through messag-
ing, SOAP web services, and RESTful web services.

C h a p t e r 1 3

Sending Messages

Most of the communications between components that you have seen so far are synchro-
nous: one class calls another, a managed bean invokes an EJB, which calls an entity, and so on.
In such cases, the invoker and the target have to be up and running for the communication
to succeed, and the invoker must wait for the target to complete before proceeding. With the
exception of asynchronous calls in EJB, most Java EE components use synchronous calls (local
or remote). When we talk about messaging, we mean loosely coupled, asynchronous commu-
nication between components.

Message-oriented middleware (MOM) is software (a provider) that enables asynchronous
messages between heterogeneous systems. It can be seen as a buffer between systems that
produce and consume messages at their own pace (e.g., one system is 24/7, the other runs
only at night). It is inherently and loosely coupled, as senders don’t know who at the other
end of the communication channel is going to receive the message and perform actions. The
sender and the receiver do not have to be available at the same time in order to communicate.
In fact, they do not even know about each other, as they use an intermediate buffer. In this
respect, MOM differs completely from technologies, such as remote method invocation (RMI),
which requires an application to know the signature of a remote application’s methods.

Today, the typical organization has many applications, often written in different
languages, that perform well-defined tasks. MOM allows these applications to work indepen-
dently and, at the same time, form part of an information workflow process. Messaging is a
good solution for integrating existing and new applications in a loosely coupled, asynchronous
way, as long as the sender and receiver agree on the message format and the intermediate
destination. This communication can be local within an organization or distributed among
several external services.

Understanding Messages
MOM, which has been around for a while, uses a special vocabulary. When a message is sent,
the software that stores the message and dispatches it is called a provider (or sometimes
a broker). The message sender is called a producer, and the location where the message is
stored is called a destination. The component receiving the message is called a consumer. Any
component interested in a message at that particular destination can consume it. Figure 13-1
illustrates these concepts.

357

Chapter 13  ■﻿   SENDING MESSAGES358

Figure 13-1. MOM architecture

In Java EE, the API that deals with these concepts is called Java Message Service (JMS). It
has a set of interfaces and classes that allow you to connect to a provider, create a message,
send it, and receive it. JMS doesn’t actually carry messages; it requires a provider that is in
charge of handling messages. When running in a container, Message-Driven Beans (MDBs)
can be used to receive messages in a container-managed way.

JMS
JMS is a standard Java API that allows applications to create, send, receive, and read messages
asynchronously. It defines a common set of interfaces and classes that allows programs to
communicate with other message providers. JMS is analogous to JDBC: the latter connects to
several databases (Derby, MySQL, Oracle, DB2, etc.), and JMS connects to several providers
(OpenMQ, MQSeries, SonicMQ, etc.).

The JMS API covers all the required functionality for messaging, that is, sending and
receiving a message through destinations. It provides

	 •	 Message producers: JMS provides the API for clients to generate the message (a.k.a.
senders and publishers).

	 •	 Message consumers: The API allows clients’ applications to consume messages (a.k.a.
receivers or subscribers).

	 •	 Messages: A message consists of a header, properties, and a body that contains different
information (text, objects, etc.).

	 •	 Connections and destinations: The API has several factories where connections to pro-
viders can be obtained, as well as destinations (queues and topics).

MDB
MDBs are asynchronous message consumers that are executed inside an EJB container. As
you’ve seen in Chapters 6 through 9, the container takes care of several services (transactions,
security, concurrency, message acknowledgement, etc.), while the MDB focuses on consum-
ing JMS messages. MDBs are stateless, meaning that the EJB container can have numerous
instances, executing concurrently, to process messages coming in from various JMS produc-
ers. Even if they look like stateless beans, client applications cannot access MDBs directly; the
only way to communicate with an MDB is to send a message to the destination that the MDB
is listening to.

In general, MDBs listen to a destination (queue or topic) and when a message arrives, they
consume and process it. They can also delegate business logic to other stateless session beans
in a safe, transactional manner. Because they are stateless, MDBs do not maintain state across
separate invocations from one message received to the next. MDBs respond to JMS messages

Chapter 13  ■﻿   SENDING MESSAGES 359

received from the container, whereas stateless session beans respond to client requests
through an appropriate interface (local, remote, or no-interface).

Messaging Specification Overview
Messaging in Java is mostly represented by JMS, which can be used in applications running in
a standard (Java SE) or an enterprise (Java EE) environment. MDB is the enterprise extension
of a JMS consumer and is bound to the EJB specification.

A Brief History of Messaging
Up until the late 1980s, companies did not have any easy way to link different applications.
Developers had to write separate software adapters for systems to translate data from source
applications into a format that the destination system could understand (and vice versa).
Because of the disparity of servers’ processing capabilities and availabilities, buffers were cre-
ated to temporize processing. A lack of homogeneous transport protocols created low-level
protocol adapters. Toward the end of the 1980s, middleware began to emerge, which solved
these integration issues. The first MOMs were created as separate pieces of software that could
sit in the middle of applications and manage the “plumbing” between systems. They were able
to manage different platforms, different programming languages, various network protocols,
and diverse hardware.

JMS 1.1
The JMS specification was first published in August 1998. It was created by the major middle-
ware vendors to bring messaging capabilities to Java. JSR 914 went through minor changes
(JMS 1.0.1, 1.0.2, and 1.0.2b) to finally reach the 1.1 version in April 2002. Since then, the speci-
fication hasn’t changed. JMS 1.1 was integrated into J2EE 1.2 and has been a part of Java EE
since. However, JMS and MDBs are not part of the Web Profile specification I described in the
first chapter. This means they will be available on application servers implementing the full
Java EE 6 platform.

Although JMS is a verbose and low-level API, it does a very good job. Unfortunately, it has
not been changed or improved in Java EE 5, nor in Java EE 6.

EJB 3.1
MDBs were introduced in EJB 2.0 and were improved with EJB 3.0 and the general Java EE 5
paradigm of “ease of use.” They were not internally modified as they continued to be message
consumers, but the introduction of annotations and configuration by exception made them
much easier to write. The new EJB 3.1 specification (JSR 318) has no notable changes to MDBs.

As you’ve seen in Chapter 7, asynchronous calls are now possible within stateless session
beans (using the @Asynchronous annotation), and threads are not allowed in EJBs. In previous
versions of Java EE, it was impossible to have asynchronous calls between EJBs. Therefore,
the only possible solution was to use JMS and MDBs—expensive, as many resources had to
be used (JMS destinations, connections, factories, etc.) just to call a method asynchronously.
Today, with EJB 3.1, asynchronous calls are possible between session beans, allowing MDBs to
be used for what they were initially created: integrating systems through messaging.

Chapter 13  ■﻿   SENDING MESSAGES360

Reference Implementation
Open Message Queue (OpenMQ) is the reference implementation of JMS. It has been open
source since 2006 and can be used in stand-alone JMS applications or embedded in an appli-
cation server. OpenMQ is the default messaging provider for GlassFish and, as this book is
being written, is reaching version 4.4. It follows the JMS specification and adds many more
features such as the Universal Message Service (UMS), wildcard topic destinations, XML
message validation, clustering, and more.

How to Send and Receive a Message
Let’s take a look at a simple example to get an idea of JMS. JMS employs producers, consum-
ers, and destinations. The producer sends a message to the destination, where the consumer is
waiting for the message to arrive. Destinations can be of two kinds: queues (for point-to-point
communication) and topics (for publish-subscribe communication). In Listing 13-1, a pro-
ducer sends a text message to a queue to which the consumer is listening.

Listing 13-1. The Sender Class Produces a Message into a Queue

public class Sender {

 public static void main(String[] args) {

 // Gets the JNDI context
 Context jndiContext = new InitialContext();

 // Looks up the administered objects
 ConnectionFactory connectionFactory = (ConnectionFactory)➥

 jndiContext.lookup("jms/javaee6/ConnectionFactory");
 Queue queue = (Queue) jndiContext.lookup("jms/javaee6/Queue");

 // Creates the needed artifacts to connect to the queue
 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false, ➥

 Session.AUTO_ACKNOWLEDGE);
 MessageProducer producer = session.createProducer(queue);

 // Sends a text message to the queue
 TextMessage message = session.createTextMessage();
 message.setText("This is a text message");
 producer.send(message);

 connection.close();
 }
}

The code in Listing 13-1 represents a Sender class that has a main() method only. In this
method, the first thing that occurs is that a JNDI context is instantiated and used to obtain a

Chapter 13  ■﻿   SENDING MESSAGES 361

ConnectionFactory and a Queue. Connection factories and destinations (queues and topics) are
called administered objects; they have to be created and declared in the message provider (in
this case, OpenMQ). They both have a JNDI name (e.g., the queue is called jms/javaee6/Queue)
and need to be looked up in the JNDI tree.

When the two administered objects are obtained, the Sender class uses the
ConnectionFactory to create a Connection from which a Session is obtained. With this ses-
sion, a MessageProducer and a message are created on the destination queue (session.
createProducer(queue)). The producer then sends this message (of type text). The code is
quite verbose, and in the example I’ve purposely omitted exception handling (catching JNDI
and JMS exceptions).

Fortunately, once you’ve written this code to send a message, the code to receive the
message looks almost the same. In fact, the first lines of the Receiver class in Listing 13-2 are
exactly the same: create a JNDI context, lookup for the connection factory and the queue,
and then connect. The only differences are that a MessageConsumer is used instead of a
MessageProducer, and that the receiver enters an infinite loop to listen to the queue (you’ll
later see that this loop can be avoided by using the more standard message listener). When the
message arrives, it is consumed and the content displayed.

Listing 13-2. The Receiver Class Consumes a Message from a Queue

public class Receiver {

 public static void main(String[] args) {

 // Gets the JNDI context
 Context jndiContext = new InitialContext();

 // Looks up the administered objects
 ConnectionFactory connectionFactory = (ConnectionFactory) ➥

 jndiContext.lookup("jms/javaee6/ConnectionFactory");
 Queue queue = (Queue) jndiContext.lookup("jms/javaee6/Queue");

 // Creates the needed artifacts to connect to the queue
 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false, ➥

 Session.AUTO_ACKNOWLEDGE);
 MessageConsumer consumer = session.createConsumer(queue);
 connection.start();

 // Loops to receive the messages
 while (true) {
 TextMessage message = (TextMessage) consumer.receive();
 System.out.println("Message received: " + message.getText());
 }

 }
}

Chapter 13  ■﻿   SENDING MESSAGES362

Next, it’s time to focus on the JMS API, define all the administered objects and classes that
are used, and see how this translates to an MDB.

Java Messaging Service
At a high level, the JMS architecture consists of the following components (see Figure 13-2):

	 •	 A provider: JMS is only a specification, so it needs an underlying implementation to
route messages, that is, the provider. The provider handles the buffering and delivery
of messages by providing an implementation of the JMS API.

	 •	 Clients: A client is any Java application or component that uses the JMS API to either
consume or produce a JMS message. Such a client is known as a JMS client because it
is a client of the underlying provider. “Client” is the generic term for producer, sender,
publisher, consumer, receiver, or subscriber.

	 •	 Messages: These are the objects that clients send to or receive from the JMS provider.

	 •	 Administered objects: For a provider to fully support JMS, administered objects (con-
nection factories and destinations) must be placed in a JNDI tree and made available
through JNDI lookups.

Figure 13-2. JMS architecture

The messaging provider enables asynchronous communication by providing a destina-
tion where messages can be held until they can be delivered to a client. There are two different
types of destination, each applying to a specific architectural model:

	 •	 The point-to-point (P2P) model: In this model, the destination used to hold messages is
called a queue. When using point-to-point messaging, one client puts a message on a
queue, and another client receives the message. Once the message acknowledged, the
message provider removes the message from the queue.

	 •	 The publish-subscribe (pub-sub) model: The destination is called a topic. When using
publish/subscribe messaging, a client publishes a message to a topic, and all subscrib-
ers to that topic receive the message.

The JMS specification provides a unified set of interfaces that can be used with both P2P
and pub-sub messaging. Table 13-1 shows the generic name of an interface (e.g., Session) and
the specific name for each model (QueueSession, TopicSession). Note also the different vocab-
ulary; a consumer is called a receiver in P2P and a subscriber in pub-sub.

Chapter 13  ■﻿   SENDING MESSAGES 363

Table 13-1. Interfaces Used Depending on the Destination Type

Generic	 Point-to-Point	 Publish-Subscribe

Destination	 Queue	 Topic

ConnectionFactory	 QueueConnectionFactory	 TopicConnectionFactory

Connection	 QueueConnection	 TopicConnection

Session	 QueueSession	 TopicSession

MessageConsumer	 QueueReceiver	 TopicSubscriber

MessageProducer	 QueueSender	 TopicPublisher

Point-to-Point
In the P2P model, a single message travels from a single producer (point A) to a single con-
sumer (point B). The model is built around the concept of message queues, senders, and
receivers (see Figure 13-3). A queue retains the messages sent by the sender until they are
consumed, and a sender and a receiver do not have timing dependencies. This means that the
sender can produce messages and send them in the queue whenever he likes, and a receiver
can consume them whenever he likes. Once the receiver is created, it will get all the messages
that were sent to the queue, even those sent before its creation.

Figure 13-3. P2P model

Each message is sent to a specific queue, and the receiver extracts the messages from the
queue. Queues retain all messages sent until they are consumed or until they expire.

The P2P model is used if there is only one receiver for each message. Note that a queue
can have multiple consumers, but once a receiver consumes a message from the queue, it is
taken out of the queue, and no other consumer can receive it. In Figure 13-4, you can see one
sender producing three messages. Two receivers consume a message that will not be available
to the other. JMS also ensures that a message is delivered only once.

Figure 13-4. Multiple receivers

Note that P2P doesn’t guarantee messages are delivered in any particular order, and if
more than one receiver exists for a message, a receiver is chosen randomly.

Chapter 13  ■﻿   SENDING MESSAGES364

Publish-Subscribe
In the pub-sub model, a single message is sent by a single producer to potentially several
consumers. The model is built around the concept of topics, publishers, and subscribers
(Figure 13-5). Consumers are called subscribers because they first need to subscribe to a topic.
The provider manages the subscribing/unsubscribing mechanism as it occurs dynamically.

Figure 13-5. Pub-sub model

The topic retains messages until they are distributed to all subscribers. Unlike the P2P
model, there is a timing dependency between publishers and subscribers; subscribers do not
receive messages sent prior to their subscription, and if the subscriber is inactive for a speci-
fied period, it will not receive past messages when it becomes active again. Note that this
can be avoided, because the JMS API supports the concept of a durable subscriber, as you’ll
later see.

Multiple subscribers can consume the same message. The pub-sub model can be used for
broadcast-type applications, in which a single message is delivered to several consumers. In
Figure 13-6, the publisher sends three messages that each subscriber will receive.

Figure 13-6. Multiple subscribers

JMS API
The JMS API is located under the javax.jms package and provides classes and interfaces for
applications that require a messaging system (see Figure 13-7). This API enables asynchronous
communication between clients by providing a connection to the provider, and a session
where messages can be created and sent or received. These messages can contain text or other
different kinds of objects.

Chapter 13  ■﻿   SENDING MESSAGES 365

Figure 13-7. JMS API (derived from Figure 2-1 of the JMS 1.1 specification)

Administered Objects
Administered objects are objects that are configured administratively, as opposed to pro-
grammatically. The message provider allows these objects to be configured, and makes them
available in the JNDI namespace. Like JDBC datasources, administered objects are created
only once. The two types of administered objects for JMS are

	 •	 Connection factories: Used by clients to create a connection to a destination.

	 •	 Destinations: Message distribution points that receive, hold, and distribute messages.
Destinations can be queues (P2P) or topics (pub-sub).

JMS clients access these objects through portable interfaces by looking them up in the
JNDI namespace. In GlassFish, there are several ways to create these objects: by using the
administration console, the asadmin command line, or the REST interface.

ConnectionFactory

Connection factories are administered objects that allow an application to connect to a pro-
vider by creating a Connection object programmatically. A connection factory encapsulates the
configuration parameters that have been defined by an administrator. There are three types of
connection factories:

	 •	 javax.jms.ConnectionFactory is an interface than can be used for both P2P and pub-
sub communications.

	 •	 javax.jms.QueueConnectionFactory is an interface that extends ConnectionFactory and
is used for P2P communication.

	 •	 javax.jms.TopicConnectionFactory is an interface that extends ConnectionFactory and
is used for pub-sub communication.

Chapter 13  ■﻿   SENDING MESSAGES366

The program first has to get the connection factory by performing a JNDI lookup. For
example, the following code fragment obtains the JNDI InitialContext object and uses it to
look up a QueueConnectionFactory and a TopicConnectionFactory by its JNDI name:

Context ctx = new InitialContext();
QueueConnectionFactory queueConnectionFactory = ➥

 (QueueConnectionFactory) ctx.lookup("QConnFactory");
TopicConnectionFactory topicConnectionFactory = ➥

 (TopicConnectionFactory) ctx.lookup("TConnFactory");

Queue/Topic factories are needed when you need to access details specific to those mes-
saging models. If not, you can also directly get a generic ConnectionFactory that can be used
for both cases:

Context ctx = new InitialContext();
ConnectionFactory ConnectionFactory = ➥

 (QueueConnectionFactory) ctx.lookup("GenericConnFactory");

The only methods available in these three interfaces are createConnection() methods that
return a Connection object. You can create a connection either with the default user identity or
by specifying a username and password (see Listing 13-3).

Listing 13-3. ConnectionFactory Interface

public interface ConnectionFactory {

 Connection createConnection() throws JMSException;
 Connection createConnection(String userName, String password) ➥

 throws JMSException;
}

Destination

A destination is an administered object that contains provider-specific configuration informa-
tion such as the destination address. But this configuration is hidden from the JMS client by
using the standard javax.jms.Destination interface. There are two kinds of destinations, both
interfaces that extend Destination:

	 •	 javax.jms.Queue objects used for P2P communication

	 •	 javax.jms.Topic objects used for pub-sub communication

These interfaces do not have any methods except one, which returns the name of the des-
tination. Like the connection factory, a JNDI lookup is needed to return such objects.

Injection

Connection factories and destinations are administered objects that reside in a message
provider and have to be declared in the JNDI namespace, which is why you use the JNDI API
to look them up. When the client code runs inside a container, dependency injection can be
used instead. Java EE 6 has several containers: EJB, servlet, and application client container

Chapter 13  ■﻿   SENDING MESSAGES 367

(ACC). If code runs in one of these containers, the @Resource annotation (see the section
“Dependency Injection” in Chapter 7) can be used to inject a reference to that resource by the
container. With Java EE 6, using resources is much easier, as you don’t have the complexity of
JNDI or are not required to configure resource references in deployment descriptors. You just
rely on the container injection capabilities.

Table 13-2 lists the elements that belong to the @Resource annotation.

Table 13-2. API of the @javax.annotation.Resource Annotation

Element	 Description

name	 The JNDI name of the resource

type	� The Java type of the resource (e.g., javax.sql.DataSource or javax.jms.
Topic)

authenticationType	� The authentication type to use for the resource (either the container or the
application)

shareable	 Whether the resource can be shared

mappedName	 A product-specific name that the resource should map to

description	 Description of the resource

To use this annotation, a Receiver class with a main() method receives text messages.
In Listing 13-2, both the connection factory and the queue are looked up using JNDI. In List-
ing 13-4, the JNDI name is on the @Resource annotation. When this Receiver class is run into a
container, it gets a reference of ConnectionFactory and Queue at initialization.

Listing 13-4. The Receiver Class Gets Injected References to JMS Resources

public class Receiver {

 @Resource(name = "jms/javaee6/ConnectionFactory")
 private static ConnectionFactory connectionFactory;
 @Resource(name = "jms/javaee6/Queue")
 private static Queue queue;

 public static void main(String[] args) {

 // Creates the needed artifacts to connect to the queue
 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false, ➥

 Session.AUTO_ACKNOWLEDGE);
 MessageConsumer consumer = session.createConsumer(queue);
 connection.start();

 // Loops to receive the messages
 while (true) {
 TextMessage message = (TextMessage) consumer.receive();
 System.out.println("Message received: " + message.getText());

mailto:@javax.annotation.Resource

Chapter 13  ■﻿   SENDING MESSAGES368

 }
 }
}

For clarity, the code for exception handling is omitted. Note that the @Resource annotation
appears on private attributes. Injection of resources occurs with different visibilities (private,
protected, package, or public).

Connection
The javax.jms.Connection object, which you create using the createConnection() method
of the connection factory, encapsulates a connection to the JMS provider. Connections are
thread-safe and designed to be shareable, as opening a new connection is resource intensive.
However, a session (javax.jms.Session) provides a single-threaded context for sending and
receiving messages, using a connection to create one or more sessions.

Like connection factories, connections come in three forms: the generic Connection
interface, the QueueConnection interface, and the TopicConnection interface that extends it.
Depending on the connection factory object that you have, you can use it to create a connec-
tion:

Connection connection = connFactory.createConnection();
QueueConnection connection = queueConnFactory.createQueueConnection();
TopicConnection connection = topicConnFactory.createTopicConnection();

In Listing 13-4, before the receiver can consume messages, it must call the start()
method. If you need to stop receiving messages temporarily without closing the connection,
you can call the stop() method.

connection.start();
connection.stop();

When the application completes, you need to close any connections created. Closing a
connection also closes its sessions and its producers or consumers.

connection.close();

Session
You create a session from the connection using the createSession() method. A session pro-
vides a transactional context in which a set of messages to be sent or received is grouped in an
atomic unit of work, meaning that if you send several messages during the same session, JMS
will ensure that they either all arrive in the order they’ve been sent at the destination or none
at all. This behavior is set at the creation of the session:

Session session = connection.createSession(true, Session.AUTO_ACKNOWLEDGE);

The first parameter of the method specifies whether or not the session is transactional.
In the preceding code, the parameter is set to true, meaning that the request for sending

Chapter 13  ■﻿   SENDING MESSAGES 369

messages won’t be realized until either the session’s commit() method is called or the session is
closed. If the parameter was set to false, the session would not be transactional, and messages
would be sent as soon as the send() method is invoked. The second parameter means that the
session automatically acknowledges messages when they have been received successfully.

A session is single-threaded and is used to create messages, producers, and consumers.
Like all the objects you’ve seen so far, sessions come in two different flavors: QueueSession and
TopicSession. The more generic Session allows you to use either one with a unified interface.

Messages
To communicate, clients exchange messages; one producer will send a message to a destina-
tion, and a consumer will receive it. Messages are objects that encapsulate information and
are divided in three parts (see Figure 13-8):

	 •	 A header contains standard information for identifying and routing the message.

	 •	 Properties are name-value pairs that the application can set or read. Properties also
allow destinations to filter messages based on property values.

	 •	 A body contains the actual message and can take several formats (text, bytes, object,
etc.).

Figure 13-8. Structure of a JMS message

Header

The header has predefined name-value pairs, common to all messages that both clients and
providers use to identify and route messages. They can be seen as message metadata as they
give information about the message. Each field has associated getter and setter methods
defined in the javax.jms.Message interface. Some header fields are intended to be set by a
client, but many are set automatically by the send() or the publish() method.

Table 13-3 describes each JMS message header field.

Chapter 13  ■﻿   SENDING MESSAGES370

Table 13-3. Fields Contained in the Header*

Field Description Set By

JMSDestination This indicates the destination to which
the message is being sent.

send() or publish() method

JMSDeliveryMode JMS supports two modes of message
delivery. PERSISTENT mode instructs
the provider to ensure the message
is not lost in transit due to a failure.
NON_PERSISTENT mode is the lowest-
overhead delivery mode because it does
not require the message to be logged to a
persistent storage.

send() or publish() method

JMSMessageID This provides a value that uniquely iden-
tifies each message sent by a provider.

send() or publish() method

JMSTimestamp This contains the time a message was
handed off to a provider to be sent.

send() or publish() method

JMSCorrelationID A client can use this field to link one mes-
sage with another such as linking a re-
sponse message with its request message.

Client

JMSReplyTo This contains the destination where a
reply to the message should be sent.

Client

JMSRedelivered This Boolean value is set by the provider
to indicate whether a message has been
redelivered.

Provider

JMSType This serves as a message type identifier. Client

JMSExpiration When a message is sent, its expiration
time is calculated and set based on
the time-to-live value specified on the
send() method.

send() or publish() method

JMSPriority JMS defines a ten-level priority value,
with 0 as the lowest priority and 9 as the
highest.

send() or publish() method

* JMS 1.1 Specification, “3.4: Message Header Fields,” (http://jcp.org/en/jsr/detail?id=914)

You can access these header fields through the Message interface as follows:

message.getJMSCorrelationID();
message.getJMSMessageID();
message.setJMSPriority(6);

Properties

In addition to the header fields, the javax.jms.Message interface supports property values,
which are just like headers, but explicitly created by the application, instead of being standard
across messages. This provides a mechanism for adding optional header fields to a message
that a client will choose to receive or not via selectors. Property values can be boolean, byte,
short, int, long, float, double, and String. The code to set and get properties looks like this:

http://jcp.org/en/jsr/detail?id=914

Chapter 13  ■﻿   SENDING MESSAGES 371

message.setFloatProperty("orderAmount", 1245.5f);
message.getFloatProperty("orderAmount");

Body

The body of a message is optional, and contains the data to send or receive. Depending on the
interface that you use, it can contain different formats of data, as listed in Table 13-4.

Table 13-4. Types of Messages

Interface	 Description

StreamMessage	� A message whose body contains a stream of Java primitive values. It is filled and
read sequentially.

MapMessage	� A message whose body contains a set of name-value pairs where names are
strings and values are Java primitive types.

TextMessage	 A message whose body contains a string (for example, it can contain XML).

ObjectMessage	� A message that contains a serializable object or a collection of serializable
objects.

BytesMessage	 A message that contains a stream of bytes.

It is possible to create your own message format, if you extend the javax.jms.Message
interface. Note that when a message is received, its body is read-only. Depending on the
message type, you have different methods to access its content. A text message will have a
getText() and setText() method, an object message will have a getObject() and setObject(),
and so forth.

textMessage.setText("This is a text message");
textMessage.getText();
bytesMessage.readByte();
objectMessage.getObject();

MessageProducer
A message producer is an object created by a session and used to send messages to a des-
tination. The generic javax.jms.MessageProducer interface can be used to get a specific
producer with a unified interface. For the P2P model, a message producer is called a sender
and implements the QueueSender interface. For the pub-sub model, it is called a publisher and
implements TopicPublisher. Once you have created a message, depending on the interface
you use, the producer can send it (P2P) or publish it (pub-sub):

messageProducer.send(message);
queueSender.send(message);
topicPublisher.publish(message);

A producer can specify a default delivery mode, priority, and time-to-live for messages
sent. The following steps explain how to create a publisher that sends a message to a topic (see
Listing 13-5):

Chapter 13  ■﻿   SENDING MESSAGES372

	 1.	 Obtain a connection factory and a topic using injection (or JNDI lookup).

	 2.	 Create a Connection object using the connection factory.

	 3.	 Create a Session object using the connection.

	 4.	 Create a MessageProducer (or in this case it could have been a TopicPublisher) using
the Session object.

	 5.	 Create one or more messages of any type (here I used a TextMessage) using the Session
object. After creation, populate the message with the required data (this is done with
the setText() method in this example).

	 6.	 Send one or more messages to the topic using the MessageProducer.send() method (or
the TopicPublisher.publish() method).

Listing 13-5. The Sender Class Sends a Message to a Topic

public class Sender {

 @Resource(mappedName = "jms/javaee6/ConnectionFactory")
 private static ConnectionFactory connectionFactory;
 @Resource(mappedName = "jms/javaee6/Topic")
 private static Topic topic;

 public static void main(String[] args) {

 // Creates the needed artifacts to connect to the queue
 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false, ➥

 Session.AUTO_ACKNOWLEDGE);
 MessageProducer producer = session.createProducer(topic);

 // Sends a text message to the topic
 TextMessage message = session.createTextMessage();
 message.setText("This is a text message");
 producer.send(message);

 connection.close();
 }
}

MessageConsumer
A client uses a MessageConsumer to receive messages from a destination. A MessageConsumer is
created by passing a Queue or Topic to the Session’s createConsumer() method. For the P2P
model, a message consumer can implement the QueueReceiver interface, and for the pub-sub
model, it can implement TopicSubscriber.

Chapter 13  ■﻿   SENDING MESSAGES 373

Messaging is inherently asynchronous, in that there is no timing dependency between
producers and consumers. However, the client itself can consume messages in two ways:

	 •	 Synchronously: A receiver explicitly fetches the message from the destination by call-
ing the receive() method. Previous examples use an infinite loop that blocks until the
message arrives.

	 •	 Asynchronously: A receiver decides to register to an event that is triggered when the
message arrives. It has to implement the MessageListener interface, and whenever a
message arrives, the provider delivers it by calling the onMessage() method.

Figure 13-9 illustrates these two types of consumer.

Figure 13-9. Synchronous and asynchronous consumers

Synchronous Delivery

A synchronous receiver needs to start a connection, loop to wait until a message arrives, and
request the arrived message, using one of its receive() methods. There are several varia-
tions of receive() that allow a client to poll or wait for the next message. The following steps
explain how you can create a synchronous receiver that consumes a message from a topic (see
Listing 13-6):

	 1.	 Obtain a connection factory and a topic using injection (or JNDI lookup).

	 2.	 Create a Connection object using the connection factory.

	 3.	 Create a Session object using the connection.

	 4.	 Create a MessageConsumer (or in this case it could have been a TopicSubscriber) using
the Session object.

	 5.	 Start the connection.

	 6.	 Loop and call the receive() method on the consumer object. The receive() method is
blocked if the queue is empty and waits for a message to arrive. Here, the infinite loop
waits for other messages to arrive.

	 7.	 Process the message returned by the receive() method using the TextMessage.
getText() method (if it’s a text message).

Chapter 13  ■﻿   SENDING MESSAGES374

Listing 13-6. The Receiver Consumes Messages in a Synchronous Manner

public class Receiver {

 @Resource(mappedName = "jms/javaee6/ConnectionFactory")
 private static ConnectionFactory connectionFactory;
 @Resource(mappedName = "jms/javaee6/Topic")
 private static Topic topic;

 public static void main(String[] args) {

 // Creates the needed artifacts to connect to the queue
 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false, ➥

 Session.AUTO_ACKNOWLEDGE);
 MessageConsumer consumer = session.createConsumer(topic);
 connection.start();

 // Loops to receive the messages
 while (true) {
 TextMessage message = (TextMessage) consumer.receive();
 System.out.println("Message received: " + message.getText());
 }

 }
}

Asynchronous Delivery

Asynchronous consumption is based on event handling. A client can register an object
(including itself) that implements the MessageListener interface. A message listener is an object
that acts as an asynchronous event handler for messages. As messages arrive, the provider
delivers them by calling the listener’s onMessage() method, which takes one argument of type
Message. With this event model, the consumer doesn’t need to loop indefinitely to receive a
message. MDBs use this event model.

The following steps describe the process used to create an asynchronous message listener
(see Listing 13-7):

	 1.	 The class implements the javax.jms.MessageListener interface, which defines a single
method called onMessage().

	 2.	 Obtain a connection factory and a destination using injection (or JNDI lookup).

	 3.	 Create a Connection object using the connection factory, create a Session object using
the connection, and create a MessageConsumer using the Session object.

	 4.	 Call the setMessageListener() method, passing an instance of a MessageListener
interface (in Listing 13-7, the Listener class itself implements the MessageListener
interface).

Chapter 13  ■﻿   SENDING MESSAGES 375

	 5.	 After registering the message listener, call the start() method to start listening for
message arrival. If you call start() before registering the listener, you are likely to miss
messages.

	 6.	 Implement the onMessage() method and process the received message. Each time a
message arrives, the provider will invoke this method, passing the message.

Listing 13-7. The Consumer Is a Message Listener

public class Listener implements MessageListener {

 @Resource(mappedName = "jms/javaee6/ConnectionFactory")
 private static ConnectionFactory connectionFactory;
 @Resource(mappedName = "jms/javaee6/Topic")
 private static Topic topic;

 public static void main(String[] args) {

 // Creates the needed artifacts to connect to the queue
 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false, ➥

 Session.AUTO_ACKNOWLEDGE);
 MessageConsumer consumer = session.createConsumer(topic);
 consumer.setMessageListener(new Listener());
 connection.start();
 }

 public void onMessage(Message message) {
 System.out.println("Message received: " + ➥

 ((TextMessage) message).getText());
 }
}

Selectors
Some messaging applications need to filter the messages they receive. When a message is
broadcast to many clients, it becomes useful to set criteria so that it is only consumed by
certain receivers. This eliminates both time and bandwidth the provider would waste trans-
porting messages to clients that don’t need them.

You’ve seen that messages are composed of three parts: header, properties, and body.
The header contains a fixed number of fields (the message metadata), and the properties are
a set of custom name-value pairs that the application can use to set any values. Selection can
be done on those two areas. Senders set one or several property values or header fields, and
the receiver specifies message selection criteria using selector expressions. Only messages that
match the selector are delivered. Message selectors assign the work of filtering messages to the
JMS provider, rather than to the application.

Chapter 13  ■﻿   SENDING MESSAGES376

A message selector is a string that contains an expression. The syntax of the expression is
based on a subset of the SQL92 conditional expression syntax and looks like this:

session.createConsumer(topic, "JMSPriority < 6");
session.createConsumer(topic, "JMSPriority < 6 AND orderAmount < 200");
session.createConsumer(topic, "orderAmount BETWEEN 1000 AND 2000");

In the preceding code, a consumer is created, passing a selector string. This string can use
header fields (JMSPriority < 6) or custom properties (orderAmount < 200). The producer sets
these properties into the message as follows:

message.setIntProperty("orderAmount", 1530);
message.setJMSPriority(5);

Selector expression can use logical operators (NOT, AND, OR), comparison operators (=, >,
>=, <, <=, <>), arithmetic operators (+, -, *, /), expressions ([NOT] BETWEEN, [NOT] IN, [NOT] LIKE, IS
[NOT] NULL), and so on.

Reliability Mechanisms
You’ve seen how to connect to a provider, create different types of messages, send them to
queues or topics, and receive them all or filter them with selectors. But what if you rely heav-
ily on JMS and need to ensure reliability? JMS defines several levels of reliability to ensure
your message is delivered, even if the provider crashes or is under load, or if destinations are
filled with messages that should have expired. The mechanisms for achieving reliable message
delivery are as follows:

	 •	 Setting message time-to-live: Set an expiration time on messages so they are not deliv-
ered if they are obsolete.

	 •	 Specifying message persistence: Specify that messages are persistent in the event of a
provider failure.

	 •	 Controlling acknowledgment: Specify various levels of message acknowledgment.

	 •	 Creating durable subscribers: Ensure messages are delivered to an unavailable sub-
scriber in a pub-sub model.

	 •	 Setting priorities: Set the priority for delivering a message.

Setting Message Time-to-Live
Under heavy load, a time-to-live can be set on messages to ensure that the provider
will remove them from the destination when they become obsolete, by either using the
MessageProducer API or setting the JMSExpiration header field.

The MessageProducer has a setTimeToLive() method that takes a number of milliseconds,
or use the send() method for each message:

MessageProducer producer = session.createProducer(topic);
producer.setTimeToLive(1000);
// or
producer.send(message, DeliveryMode.NON_PERSISTENT, 2, 1000);

Chapter 13  ■﻿   SENDING MESSAGES 377

The first call sets the TTL for the producer overall and all messages it delivers, while the
second call sets it for one message only. The second call sends a message specifying the deliv-
ery mode, the priority, and time-to-live (1000). When a message is sent, its expiration time is
calculated as the sum of the time-to-live value. Setting this value in the JMSExpiration header
field will cause obsolete messages not to be delivered.

message.setJMSExpiration(1000);

Specifying Message Persistence
JMS supports two modes of message delivery: persistent and nonpersistent. Persistent delivery
ensures that a message is delivered only once to a consumer, whereas nonpersistent delivery
requires a message be delivered once at most. Persistent delivery (which is the default) is more
reliable, but at a performance cost, as it prevents losing a message if a provider failure occurs.

The delivery mode can be specified in two ways: by using the setDeliveryMode() method
of the MessageProducer interface, or passing a parameter to the send() method:

MessageProducer producer = session.createProducer(topic);
producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);
// or
producer.send(message, DeliveryMode.NON_PERSISTENT, 2, 1000);

The first call sets the delivery mode for the producer overall and all messages it delivers,
while the second call sets it for one message only.

Controlling Acknowledgment
So far, the scenarios we’ve explored have assumed that a message is sent and received without
any acknowledgment. But sometimes, you will want a receiver to acknowledge the message
has been received (see Figure 13-10). An acknowledgment phase can be initiated either by the
JMS provider or by the client, depending on the acknowledgment mode.

Figure 13-10. A receiver acknowledging a message

In transactional sessions, acknowledgment happens automatically when a transaction is
committed. If a transaction is rolled back, all consumed messages are redelivered. But in non-
transactional sessions, an acknowledgment mode must be specified:

	 •	 AUTO_ACKNOWLEDGE: The session automatically acknowledges the reception of a message.

	 •	 CLIENT_ACKNOWLEDGE: A client acknowledges a message by explicitly calling the Message.
acknowledge() method.

Chapter 13  ■﻿   SENDING MESSAGES378

	 •	 DUPS_OK_ACKNOWLEDGE: This option instructs the session to lazily acknowledge the
delivery of messages. This is likely to result in the delivery of some duplicate mes-
sages if the JMS provider fails, so it should be used only by consumers that can tolerate
duplicate messages. If the message is redelivered, the provider sets the value of the
JMSRedelivered header field to true.

The following code uses the explicit client acknowledgment mode by calling the
acknowledge() method:

// Producer
connection.createSession(false, Session.CLIENT_ACKNOWLEDGE);
producer = session.createProducer(topic);
message = session.createTextMessage();
producer.send(message);
// Consumer
message.acknowledge();

Creating Durable Subscribers
The disadvantage of using the pub-sub model is that a message consumer must be running
when the messages are sent to the topic; otherwise it will not receive them. By using durable
subscribers, the JMS API provides a way to keep messages in the topic until all subscribed con-
sumers receive them. With durable subscription, the receiver can be offline for some time, but
when it reconnects, it receives the messages that arrived during its disconnection. To achieve
this, the client creates a durable subscriber using the session.

session.createDurableSubscriber(topic,"javaee6DurableSubscription");

At this point, the client program starts the connection and receives messages. The name
javaee6DurableSubscription is used as an identifier of the durable subscription. Each durable
subscriber must have a unique ID, resulting in the declaration of a unique connection factory
for each potential, durable subscriber.

Setting Priorities
You can use message priority levels to instruct the JMS provider to deliver urgent messages
first. JMS defines ten priority values, with 0 as the lowest and 9 as the highest. You can specify
the priority value by either using the setPriority() method or passing it as a parameter to the
send() method:

MessageProducer producer = session.createProducer(topic);
producer. setPriority(2);
// or
producer.send(message, DeliveryMode.NON_PERSISTENT, 2, 1000);

Chapter 13  ■﻿   SENDING MESSAGES 379

Message-Driven Beans
This chapter shows how asynchronous messaging provides loose coupling and increased flex-
ibility between systems, using the JMS API in a stand-alone environment with main classes,
JNDI lookup, or resource injection using the ACC. MDBs provide this standard asynchronous
messaging model for enterprise applications running in an EJB container.

An MDB is an asynchronous consumer that is invoked by the container as a result of the
arrival of a message. To a message producer, an MDB is simply a message consumer, hidden
behind a destination to which it listens.

MDBs are part of the EJB specification, and their model is close to stateless session beans
as they do not have any state and run inside an EJB container. The container listens to a desti-
nation and delegates the call to the MDB upon message arrival. Like any other EJB, MDBs can
access resources managed by the container (other EJBs, JDBC connections, JMS resources,
etc.).

Why use MDBs when you can use stand-alone JMS clients, as you’ve seen previously?
Because of the container, which manages multithreading, security, and transactions, thereby
greatly simplifying the code of your JMS consumer. It also manages incoming messages
among multiple instances of MDBs (available in a pool) that have no special multithread-
ing code themselves. As soon as a new message reaches the destination, an MDB instance is
retrieved from the pool to handle the message.

How to Write an MDB
MDBs can be transactional, multithreaded, and naturally consume JMS messages. With the
JMS API thus far, you might expect factories, connections, sessions, consumers, user transac-
tions, and so on. However, it is surprising to see that a simple MDB can look like Listing 13-8.

Listing 13-8. A Simple MDB

@MessageDriven(mappedName = "jms/javaee6/Topic")
public class BillingMDB implements MessageListener {

 public void onMessage(Message message) {
 TextMessage msg = (TextMessage)message;
 System.out.println("Message received: " + msg.getText());
 }
}

The code in Listing 13-8 (omitting exception handling for clarity) shows that MDBs relieve
the programmer of all mechanical aspects of processing the types of messages explained so
far. An MDB implements the MessageListener interface and the onMessage() method, but no
other code is needed to connect to the provider or start message consumption. MDBs also
rely on the configuration-by-exception mechanism, and only a few annotations are needed to
make it work (see the @MessageDriven annotation).

Chapter 13  ■﻿   SENDING MESSAGES380

MDB Model
MDBs are different from session beans as they do not implement a local or remote business
interface, instead implementing javax.jms.MessageListener. Clients cannot invoke methods
directly on MDBs; however, like session beans, MDBs have a rich programming model that
includes a life cycle, callback annotations, interceptors, injection, and transactions. Taking
advantage of this model provides applications with a high level of functionality.

It is important to be aware that MDBs are not part of the new EJB Lite model, meaning
they cannot be deployed in a simple web application (in a war file), but still need an enterprise
packaging (ear archive).

The requirements to develop an MDB class are as follows:

	 •	 The class must be annotated with @javax.ejb.MessageDriven or its XML equivalent in a
deployment descriptor.

	 •	 The class must implement, directly or indirectly, the MessageListener interface.

	 •	 The class must be defined as public, and must not be final or abstract.

	 •	 The class must have a public no-arg constructor that the container will use to create
instances of the MDB.

	 •	 The class must not define the finalize() method.

The MDB class is allowed to implement other methods, invoke other resources, and so
on. MDBs are deployed in a container and can be optionally packaged with an ejb-jar.xml
file. Following the “ease of use” model of Java EE 6, an MDB can be simply an annotated POJO,
eliminating most of the configuration. However, if you still need to customize the JMS con-
figuration, you can use the elements of the @MessageDriven and @ActivationConfigProperty
annotations (or XML equivalent).

@MessageDriven
MDBs are one of the simplest kinds of EJBs to develop, as they support the smallest number
of annotations. The @MessageDriven annotation (or XML equivalent) is mandatory, as it is the
piece of metadata the container requires to recognize that the Java class is actually an MDB.

The API of the @MessageDriven annotation, shown in Listing 13-9, is very simple, and all
elements are optional.

Listing 13-9. @MessageDriven Annotation API

@Target(TYPE) @Retention(RUNTIME)
public @interface MessageDriven {
 String name() default "";
 Class messageListenerInterface default Object.class;
 ActivationConfigProperty[] activationConfig() default {};
 String mappedName();
 String description();
}

mailto:@javax.ejb.MessageDriven

Chapter 13  ■﻿   SENDING MESSAGES 381

The name element specifies the name of the MDB (which by default is the name of the
class). messageListenerInterface specifies which message listener the MDB implements
(if the MDB implements multiple interfaces, it tells the EJB container which one is the
MessageListener interface). The mappedName element is the JNDI name of the destination that
the MDB should be listening to. description is just a string, used to give a description of the
MDB once deployed. The activationConfig element is used to specify configuration proper-
ties and takes an array of @ActivationConfigProperty annotations.

@ActivationConfigProperty
JMS allows configuration of certain properties such as message selectors, acknowledgement
mode, durable subscribers, and so on. In an MDB, these properties can be set using the
@ActivationConfigProperty annotation. This optional annotation can be provided as one of
the parameters for the @MessageDriven annotation, and compared to the JMS equivalent, the
@ActivationConfigProperty is very basic, consisting of a name-value pair (see Listing 13-10).

Listing 13-10. ActivationConfigProperty Annotation API

@Target({}) @Retention(RUNTIME)
public @interface ActivationConfigProperty {
 String propertyName();
 String propertyValue();
}

The activationConfig property allows you to provide messaging system–specific configu-
ration, meaning that properties are not portable across JMS providers. For OpenMQ, the code
in Listing 13-11 sets the acknowledge mode and the message selector.

Listing 13-11. Setting Properties on MDBs

@MessageDriven(mappedName = "jms/javaee6/Topic", activationConfig = {
 @ActivationConfigProperty(propertyName = "acknowledgeMode", ➥

 propertyValue = "Auto-acknowledge"),
 @ActivationConfigProperty(propertyName = "messageSelector", ➥

 propertyValue = "orderAmount < 3000")
})
public class BillingMDB implements MessageListener {

 public void onMessage(Message message) {
 TextMessage msg = (TextMessage)message;
 System.out.println("Message received: " + msg.getText());
 }
}

Each activation property is a name-value pair that the underlying messaging provider
understands and uses to set up the MDB. Table 13-5 lists some properties used by OpenMQ
(you should consult the documentation if you use a different JMS provider).

Chapter 13  ■﻿   SENDING MESSAGES382

Table 13-5. Activation Properties for OpenMQ

Property	 Description

destinationType	 The destination type, which can be TOPIC or QUEUE

destination	 The name of the destination

messageSelector	 The message selector string used by the MDB

acknowledgeMode	 The acknowledgement mode (default is AUTO_ACKNOWLEDGE)

subscriptionDurability	 The subscription durability (default is NON_DURABLE)

subscriptionName	 The subscription name of the consumer

As in the API of the javax.jms.Session class, acknowledgement can take three different
modes, but only two can be used with MDBs:

	 •	 AUTO_ACKNOWLEDGE: The session automatically acknowledges the reception of a message.

	 •	 DUPS_OK_ACKNOWLEDGE: This mode instructs the session to lazily acknowledge the deliv-
ery of messages (sometimes resulting in the delivery of duplicate messages).

	 •	CLIENT_ACKNOWLEDGE: This mode is not permitted, as MDBs should not attempt to use
the JMS API directly for message acknowledgment. Acknowledgment is handled auto-
matically by the container.

Dependencies Injection
Like all the other EJBs that you’ve seen in Chapter 6, MDBs can use dependency injection to
acquire references to resources such as JDBC datasources, EJBs, or other objects. Injection
is the means by which the container inserts an object reference automatically for annotated
attributes. These resources have to be available in the container or environment context, so
the following code is allowed in an MDB:

@PersistenceContext
private EntityManager em;
@EJB
private InvoiceBean invoice;
@Resource(name = "jms/javaee6/ConnectionFactory")
private ConnectionFactory connectionFactory;

The MDB context can also be injected using the @Resource annotation:

@Resource private MessageDrivenContext context;

MDB Context
The MessageDrivenContext interface provides access to the runtime context that the container
provides for an MDB instance. The container passes the MessageDrivenContext interface
to this instance, which remains associated for the lifetime of the MDB. This gives the MDB
the possibility to explicitly roll back a transaction, get the user principal, and so on. The

Chapter 13  ■﻿   SENDING MESSAGES 383

MessageDrivenContext interface extends the javax.ejb.EJBContext interface without adding
any extra methods.

If the MDB injects a reference to its context, it will be able to invoke the methods listed in
Table 13-6.

Table 13-6. Methods of the MessageDrivenContext Interface

Method	 Description

getCallerPrincipal	 Returns the java.security.Principal associated with the invocation.

getRollbackOnly	 Tests whether the current transaction has been marked for rollback.

getTimerService	 Returns the javax.ejb.TimerService interface.

getUserTransaction	� Returns the javax.transaction.UserTransaction interface to use to
demarcate transactions. Only MDBs with bean-managed transaction
(BMT) can use this method.

isCallerInRole	 Tests whether the caller has a given security role.

Lookup	� Enables the MDB to look up its environment entries in the JNDI naming
context.

setRollbackOnly	� Allows the instance to mark the current transaction as rollback. Only MDBs
with BMT can use this method.

Life Cycle and Callback Annotations
The MDB life cycle (see Figure 13-11) is identical to the stateless session bean: either the MDB
exists and is ready to consume messages or it doesn’t exist. Before exiting, the container first
creates an instance of the MDB and, if applicable, injects the necessary resources as specified
by metadata annotations (@Resource, @Ejb, etc.) or deployment descriptor. The container then
calls the bean’s @PostConstruct callback method, if any. After this, the MDB is in the ready
state and waits to consume any incoming message. The @PreDestroy callback occurs when the
MDB is removed from the pool or destroyed.

Figure 13-11. MDB life cycle

This behavior is identical to stateless session beans (see Chapter 8 for more details about
callback methods and interceptors), and with other EJBs you can add interceptors with the
@javax.ejb.AroundInvoke annotation.

mailto:@javax.ejb.AroundInvoke

Chapter 13  ■﻿   SENDING MESSAGES384

MDB As a Consumer
As explained in the “JMS API” section earlier in the chapter, consumers can receive a message
either synchronously, by looping and waiting for a message to arrive, or asynchronously, by
implementing the MessageListener interface. By nature, MDBs are designed to function as
asynchronous message consumers. MDBs implement a message listener interface, which is
triggered by the container when a message arrives.

Can an MDB do synchronous consuming? Yes, but this is not recommended. Synchro-
nous message consumers block and tie up server resources (the EJBs will be stuck looping
without performing any work, and the container will not be able to free them). MDBs, like
stateless session beans, live in a pool of a certain size. When the container needs an instance,
it takes one out of the pool and uses it. If each instance goes into an infinite loop, the pool will
eventually empty, and all the available instances will be busy looping. The EJB container can
also start generating more MDB instances, growing the pool and eating up more and more
memory. For this reason, session beans and MDBs should not be used as synchronous mes-
sage consumers. Table 13-7 shows you the different receiving modes for MDBs and session
beans.

Table 13-7. MDB Compared with Session Beans

Enterprise Beans	 Producer	 Synchronous Receiver	 Asynchronous Receiver

Session beans	 Yes	 Not recommended	 Not possible

MDB	 Yes	 Not recommended	 Yes

MDB As a Producer
MDBs are capable of becoming message producers, something that often occurs when they
are involved in a workflow, as they receive a message from one destination, process it, and
send it to another destination. To add this capability, the JMS API must be used.

A destination and a connection factory can be injected by using the @Resource annotation
or via JNDI lookup and then invoking methods on the javax.jms.Session object to create and
send a message. The code of the BillingMDB (see Listing 13-12) listens to a topic (jms/javaee6/
Topic), receives messages (onMessage() method), and sends a new message to a queue (jms/
javaee6/Queue).

Listing 13-12. A MDB Consuming and Producing Messages

@MessageDriven(mappedName = "jms/javaee6/Topic", activationConfig = {
 @ActivationConfigProperty(propertyName = "acknowledgeMode", ➥

 propertyValue = "Auto-acknowledge"),
 @ActivationConfigProperty(propertyName = "messageSelector", ➥

 propertyValue = "orderAmount < 3000")
})
public class BillingMDB implements MessageListener {

 @Resource(name = "jms/javaee6/Queue")
 private Destination printingQueue;

Chapter 13  ■﻿   SENDING MESSAGES 385

 @Resource(name = "jms/javaee6/ConnectionFactory")
 private ConnectionFactory connectionFactory;
 private Connection connection;

 @PostConstruct
 private void initConnection() {
 connection = connectionFactory.createConnection();
 }

 @PreDestroy
 private void closeConnection() {
 connection.close();
 }

 public void onMessage(Message message) {
 TextMessage msg = (TextMessage)message;
 System.out.println("Message received: " + msg.getText());
 sendPrintingMessage();
 }

 private void sendPrintingMessage() throws JMSException {
 Session session = connection.createSession(true, ➥

 Session.AUTO_ACKNOWLEDGE);
 MessageProducer producer = session.createProducer(printingQueue);
 TextMessage message = session.createTextMessage();
 message.setText("This message has been received and sent again");
 producer.send(message);
 session.close();
 }
}

This MDB uses most of the concepts introduced thus far. First, it uses the @MessageDriven
annotation to define the JNDI name of the topic it is listening to (mappedName = "jms/javaee6/
Topic"). In this same annotation, it defines a set of properties, such as the acknowledge mode
and a message selector using an array of @ActivationConfigProperty annotations, and it
implements MessageListener and its onMessage() method.

This MDB also needs to produce a message. Therefore it gets injected with the two
administered objects required: a connection factory and a destination (the queue named jms/
javaee6/Queue). It can then create and close a shared javax.jms.Connection instance using
life-cycle callbacks; although creating a connection is expensive, putting this code in the
@PostConstruct and @PreDestroy annotated methods will ensure that it will be done only at
creation and at destruction of the MDB.

Finally, the business method that sends messages (the sendPrintingMessage() method)
looks like what you’ve seen earlier: a JMS session gets created and used to create a text mes-
sage and a producer, and the message is then sent. For better readability, exception handling
has been omitted in the entire class.

Chapter 13  ■﻿   SENDING MESSAGES386

Transaction
MDBs are EJBs (see Chapter 9 for more information). MDBs can use BMTs or container-
managed transactions (CMTs), they can explicitly roll back a transaction by using the
MessageDrivenContext.setRollbackOnly() method, etc. There is some specificity about
MDBs that is worth explaining.

When we talk about transactions, we always think of relational databases. However,
other resources are also transactional, such as messaging systems. If two or more operations
have to succeed or fail together, they form a transaction. With messaging, if two or more mes-
sages are sent, they have to succeed (commit) or fail (roll back) together. How does this work
in practice? The answer is that messages are not released to consumers until the transaction
commits. The container will start a transaction before the onMessage() method is invoked and
will commit the transaction when the method returns (unless the transaction was marked for
rollback with setRollbackOnly()).

Even though MDBs are transactional, they cannot execute in the client’s transaction con-
text, as they don’t have a client. Nobody explicitly invokes methods on MDBs, they just listen
to a destination and consume messages. There is no context passed from a client to an MDB,
and client transaction context to the onMessage() method cannot be passed.

Table 13-8 compares CMTs with session beans and MDBs.

Table 13-8. MDB Transactions Compared with Session Beans

Transaction Attribute	 Session Beans	 MDB

NOT_SUPPORTED	 Yes	 Yes

REQUIRED	 Yes	 Yes

MANDATORY	 Yes	 No

REQUIRES_NEW	 Yes	 No

SUPPORTS	 Yes	 No

NEVER	 Yes	 No

In CMTs, MDBs can use the @javax.ejb.TransactionAttribute annotation on business
methods with the two following attributes:

	 •	 REQUIRED (the default): If the MDB invokes other enterprise beans, the container passes
the transaction context with the invocation. The container attempts to commit the
transaction when the message listener method has completed.

	 •	 NOT_SUPPORTED: If the MDB invokes other enterprise beans, the container passes no
transaction context with the invocation.

Handling Exceptions
In the snippets of code in this chapter, exception handling has been omitted as the JMS API is
very verbose in dealing with exceptions. The API defines 12 different exceptions, all inheriting
from javax.jms.JMSException. Any method invocation on connections, sessions, consumers,
messages, or producers will throw a JMSException or one of the subclasses.

mailto:@javax.ejb.TransactionAttribute

Chapter 13  ■﻿   SENDING MESSAGES 387

It is important to note that JMSException is a checked exception. The EJB specification
outlines two types of exceptions:

	 •	 Application exceptions: Checked exceptions that extend Exception do not cause the
container to roll back.

	 •	 System exceptions: Unchecked exceptions that extend RuntimeException cause the con-
tainer to roll back.

Throwing a JMSException will not cause the container to roll back. If a rollback is needed,
the setRollBackOnly() must be explicitly called or a system exception (such as EJBException)
rethrown:

public void onMessage(Message message) {
 TextMessage msg = (TextMessage)message;
 try {
 System.out.println("Message received: " + msg.getText());
 sendPrintingMessage();
 } catch (JMSException e) {
 context.setRollBackOnly();
 }
}

Putting It All Together
The most important concepts of messaging are P2P and pub-sub models, administered
objects (connection factories and destinations), how to connect to a provider and produce
or consume messages, some reliability mechanisms used by JMS, and how to use container-
managed components (MDBs) to listen to destinations. So now let’s see how these concepts
work together through an example, compile and package it with Maven, and deploy it in
GlassFish.

The example uses a stand-alone class (OrderSender) that sends messages to a queue
(called jms/javaee6/Queue). These messages are objects representing a customer order of
books and CDs. This object (OrderDTO) has several attributes, including the total amount of
the order. On the other side of the queue, an MDB (OrderMDB) consumes only orders that have
a total amount greater than $1,000. This amount is passed as a parameter to the OrderSender
class.

Because Maven needs to structure the code based on the final packaging artifacts, the
OrderSender will get deployed in one jar file, the OrderMDB in another one, and the OrderDTO
class will be common to both jar files.

Writing the OrderDTO
The object that will be sent in the JMS message is a POJO that needs to implement the
Serializable interface. The OrderDTO class, shown in Listing 13-13, gives some informa-
tion about the order, including its total amount; it is the object that will be set into a JMS
ObjectMessage and sent from the OrderSender to the OrderMDB.

Chapter 13  ■﻿   SENDING MESSAGES388

Listing 13-13. The OrderDTO Is Passed in a JMS ObjectMessage

public class OrderDTO implements Serializable {

 private Long orderId;
 private Date creationDate;
 private String customerName;
 private Float totalAmount;

 // Constructors, getters, setters
}

Writing the OrderSender
The OrderSender, shown in Listing 13-14, is a stand-alone client that uses the JMS API to send
an ObjectMessage to the jms/javaee6/Queue queue. It gets injected with the necessary con-
nection factory and destination, and in the main() method creates an instance of an OrderDTO
class. Note that the totalAmount of the order is an argument passed to the class (args[0]). An
ObjectMessage is created from the Session, and with the message.setObject(order) method,
the order is set into the body of the message. Note that the total amount is set into a property
(message.setFloatProperty()) for selection later.

Listing 13-14. The OrderSender Sends an OrderDTO in a Message

public class OrderSender {

 @Resource(mappedName = "jms/javaee6/ConnectionFactory")
 private static ConnectionFactory connectionFactory;
 @Resource(mappedName = "jms/javaee6/Queue")
 private static Queue queue;

 public static void main(String[] args) {

 // Creates an orderDto with a total amount parameter
 Float totalAmount = Float.valueOf(args[0]);
 OrderDTO order = new OrderDTO(1234l, new Date(), ➥

 "Serge Gainsbourg", totalAmount);

 try {
 // Creates the needed artifacts to connect to the queue
 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false, ➥

 Session.AUTO_ACKNOWLEDGE);
 MessageProducer producer = session.createProducer(queue);

 // Sends a text message to the queue
 ObjectMessage message = session.createObjectMessage();
 message.setObject(order);

Chapter 13  ■﻿   SENDING MESSAGES 389

 message.setFloatProperty("orderAmount", totalAmount);
 producer.send(message);
 connection.close();

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Writing the OrderMDB
The OrderMDB class (see Listing 13-15) is an MDB annotated with @MessageDriven that listens to
the jms/javaee6/Queue destination. This MDB is only interested in orders greater than $1,000,
using a message selector (orderAmount > 1000). At message arrival, the onMessage() method
consumes it, casts it to an ObjectMessage, and gets the body of the message (msg.getObject()).
For this example, only the message is displayed, but other processing could have also been
done.

Listing 13-15. The OrderMDB Receives an ObjectMessage

@MessageDriven(mappedName = "jms/javaee6/Queue", activationConfig = {
 @ActivationConfigProperty(propertyName = "acknowledgeMode", ➥

 propertyValue = "Auto-acknowledge"),
 @ActivationConfigProperty(propertyName = "messageSelector", ➥

 propertyValue = "orderAmount > 1000")
})
public class OrderMDB implements MessageListener {

 public void onMessage(Message message) {
 try {
 ObjectMessage msg = (ObjectMessage) message;
 OrderDTO order = (OrderDTO) msg.getObject();
 System.out.println("Order received: " + order.toString());
 } catch (JMSException e) {
 e.printStackTrace();
 }
 }
}

Compiling and Packaging with Maven
The sender and the MDB should be packaged in separate jar file and use different directory
structures and different pom.xml files. The pom.xml of the OrderMDB, shown in Listing 13-16, is
nearly the same as the OrderSender’s.

Because MDBs use annotations from the EJB package (@MessageDriven), the javax.ejb
dependency needs to be declared. The javax.jms dependency is for the JMS API (session,

Chapter 13  ■﻿   SENDING MESSAGES390

messages, etc.). Both dependencies have the scope provided because GlassFish, as an EJB con-
tainer and a JMS provider, provides these APIs at runtime. Maven should be informed that you
are using Java SE 6 by configuring the maven-compiler-plugin.

Listing 13-16. The pom.xml to Build and Package the MDB

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" ➥

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"➥

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 ➥

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.apress.javaee6</groupId>
 <artifactId>chapter13-MDB</artifactId>
 <version>1.0</version>
 <packaging>jar</packaging>

 <dependencies>
 <dependency>
 <groupId>org.glassfish</groupId>
 <artifactId>javax.ejb</artifactId>
 <version>3.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.glassfish</groupId>
 <artifactId>javax.jms</artifactId>
 <version>3.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <inherited>true</inherited>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
 </build>

</project>

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0%E2%9E%A5
http://maven.apache.org/POM/4.0.0%E2%9E%A5
http://maven.apache.org/xsd/maven-4.0.0.xsd

Chapter 13  ■﻿   SENDING MESSAGES 391

To compile and package the classes, open a command-line interpreter in the directory
that contains the pom.xml file, and enter the following Maven command:

mvn package

Go to the target directory, where you should see the file chapter13-MDB-1.0.jar. If you
open it, you will see that it contains the class file for the OrderMDB. For the OrderSender, you will
get another jar file where the class is packaged: chapter13-Sender-1.0.jar.

Creating the Administered Objects
The administered objects required to send and receive messages need to be created by JMS.
Each one has a JNDI name, allowing clients to obtain a reference of the object (injection is
used in the example):

	 •	 The connection factory is called jms/javaee6/ConnectionFactory.

	 •	 The queue is called jms/javaee6/Queue.

As these objects are created administratively, GlassFish needs to be up and running as
OpenMQ is running inside GlassFish. Once you’ve made sure that the asadmin command line
is in your path, execute the following command in the DOS console:

asadmin create-jms-resource --restype javax.jms.ConnectionFactory➥

 jms/javaee6/ConnectionFactory
asadmin create-jms-resource --restype javax.jms.Queue jms/javaee6/Queue

The GlassFish’s web console can be used to set up the connection factory and the queue.
Note, however, that in my experience the easiest and quickest way to administer GlassFish is
through the asadmin script. Use another command to list all the JMS resources and ensure that
the administered objects are created successfully.

asadmin list-jms-resources
jms/javaee6/Queue
jms/javaee6/ConnectionFactory

Deploying the MDB on GlassFish
Once the MDB is packaged in a jar, it needs to be deployed into GlassFish. This can be done
in several ways, including via the web administration console. However, the asadmin com-
mand line does the job simply: open a DOS console and go to the target directory where
the chapter13-MDB-1.0.jar file is, make sure that GlassFish is still running, and enter the
following:

asadmin deploy chapter13-MDB-1.0.jar

If the deployment is successful, the following command should return the name of the
deployed jar and its type (ejb-module in the example):

asadmin list-components
chapter13-MDB-1.0 <ejb-module>

Chapter 13  ■﻿   SENDING MESSAGES392

Running the Example
The MDB is deployed on GlassFish and is listening to the jms/javaee6/Queue destination,
waiting for a message to arrive. It’s time to run the OrderSender client. This is a stand-alone
application and executes outside GlassFish, yet resources need to be injected into it (connec-
tion factory and queue). The ACC can be used to execute it. The ACC wraps a jar file and gives
it access to the application server resources. To execute the ACC, use the appclient utility
that comes with GlassFish, and pass the jar file as a parameter along with the parameters of
our application (the order amount). Enter the following command to send a message with an
order of $2,000:

appclient -client chapter13-Sender-1.0.jar 2000

Because the amount is greater than $1,000 (the amount defined in the selector message),
the OrderMDB should receive and print the message. Check the GlassFish logs to confirm. If you
pass a parameter lower than $1,000, the MDB will not receive the message.

appclient -client chapter13-Sender-1.0.jar 500

Summary
This chapter showed that integration with messaging is a loosely coupled, asynchronous form
of communication between components. MOM can be seen as a buffer between systems that
need to produce and consume messages at their own pace. This is different from the RPC
architecture (such as RMI) where clients need to know the methods of an available service.

The first section of this chapter concentrated on the JMS API and its vocabulary. The asyn-
chronous model is a very powerful API that can be used in a Java SE or Java EE environment,
and is based on P2P and pub-sub, connection factories, destinations, connections, sessions,
messages (header, properties, body) of different types (text, object, map, stream, bytes), selec-
tors, and other reliability mechanisms such as acknowledgement or durability.

Java EE has a special enterprise component to consume messages: MDBs. The second
section of this chapter showed how MDBs could be used as asynchronous consumers and how
they rely on their container to take care of several services (life cycle, interceptors, transac-
tions, security, concurrency, message acknowledgement, etc.).

This section also showed how to put these pieces together with Maven, GlassFish, and
OpenMQ, and gave an example with a stand-alone sender and an MDB receiver.

The following chapters will demonstrate other technologies used to interoperate with
external systems: web services and RESTful services.

393

C h a p t e r 1 4

SOAP Web Services

Formerly considered a buzzword, Service-Oriented Architecture (SOA) today forms part of
day-to-day architectural life. However, sometimes it is confused with web services. SOA is an
architecture principally based upon service-oriented applications that can be implemented
with different technologies such as web services.

Web services are said to be “loosely coupled” because the client of a web service doesn’t
have to know its implementation details (such as the language used to develop it or the
method signature). The consumer is able to invoke a web service using a self-explanatory
interface describing the available business methods (parameters and return value). The
underlying implementation can be done in any language (Visual Basic, C#, C, C++, Java, etc.).
A consumer and a service will still be able to exchange data in a loosely coupled way: using
XML documents. A consumer sends a request to a web service in the form of an XML docu-
ment, and, optionally, receives a reply, also in XML.

Web services are also about distribution. Distributed software has been around for a long
time, but unlike existing distributed systems, web services are adapted to the Web. The default
network protocol is HTTP, a well-known and robust stateless protocol.

Web services are everywhere, and they can run on desktops or be used for business-to-
business (B2B) integration so that operations that previously required manual intervention
are performed automatically. Web services integrate applications run by various organizations
through the Internet or within the same company (which is known as Enterprise Application
Integration, or EAI). In all cases, web services provide a standard way to connect diverse pieces
of software.

Understanding Web Services
Simply put, web services constitute a kind of business logic exposed via a service interface to a
client application (i.e., a service consumer). However, unlike objects or EJBs, web services pro-
vide a loosely coupled interface using XML. Web service standards specify that the interface
to which a message is sent should define the format of the message request and response, and
mechanisms to publish and to discover web service interfaces (a registry).

In the Figure 14-1, you can see a high-level picture of a web service interaction. The web
service can optionally register its interface into a registry (UDDI) so a consumer can discover
it. Once the consumer knows the interface of the service and the message format, it can send a
request and receive a response.

Chapter 14  ■﻿   SOAP WEB SERVICES394

Figure 14-1. The consumer discovers the service through a registry.

Web services require several technologies and protocols to transport and to transform
data from a consumer to a service in a standard way. The ones that you will come across more
often are the following:

	 •	 Universal Description Discovery, and Integration (UDDI) is a registry and discovery
mechanism, similar to the Yellow Pages, that is used for storing and categorizing web
services interfaces.

	 •	 Web Services Description Language (WSDL) defines the web service interface, data and
message types, interactions, and protocols.

	 •	 Simple Object Access Protocol (SOAP) is a message-encoding protocol based on XML
technologies, defining an envelope for web services communication.

	 •	 Messages are exchanged using a transport protocol. Although Hypertext Transfer
Protocol (HTTP) is the most widely adopted transport protocol, others such as SMTP or
JMS can also be used.

	 •	 Extensible Markup Language (XML) is the basic foundation on which web services are
built and defined (SOAP, WSDL, and UDDI).

With these standard technologies, web services provide almost unlimited potential.
Clients can call a web service, which can be mapped to any program and accommodate any
data type and structure to exchange messages through XML.

UDDI
Programs that interact with one another over the Web need to be able to find information that
allows them to interconnect. UDDI provides this standard approach of locating information
about a web service and how to invoke it.

UDDI is an XML-based registry of web services, similar to a Yellow Pages directory, where
businesses can register their services. This registration includes the business type, geographi-
cal location, web site, phone number, and so on. Other businesses can then search the registry
and discover information about specific web services. This information provides additional
metadata about the service, describing its behavior and the actual location of the web service.
It is in the form of a WSDL document. The client can then consume the WSDL document,
which provides the information to bind and invoke the service.

Chapter 14  ■﻿   SOAP WEB SERVICES 395

WSDL
The UDDI registry points to a public WSDL file available on the Internet that can be down-
loaded by potential consumers. WSDL is the interface definition language (IDL) that defines
the interactions between consumers and web services (see Figure 14-2). It is central to a web
service as it describes the message type, port, communication protocol, supported operations,
location, and what the client should expect in return. It defines the contract to which the web
service guarantees it will conform. You can think of WSDL as a Java interface but written in
XML.

Figure 14-2. WSDL interface between the consumer and the web service

To ensure interoperability, a standard web service interface is needed for a consumer and
a producer to share and understand a message. That’s the role of WSDL. SOAP defines the way
in which the message will be sent from one computer to another.

SOAP
SOAP is the standard web services application protocol. It provides the communication mech-
anism to connect web services exchanging formatted XML data across a network protocol,
commonly HTTP. Like WSDL, SOAP heavily relies on XML because a SOAP message is an XML
document containing several elements (an envelope, a header, a body, etc.).

SOAP is designed to provide an independent, abstract communication protocol capable
of connecting distributed services. The connected services can be built using any combination
of hardware and software that supports a given transport protocol.

Transport Protocol
For a consumer to communicate with a web service, a way to send messages to each other is
needed. SOAP messages can be transported over a network using a protocol that both par-
ties can support. Given that web services are used mostly on the Web, they usually use HTTP,
but they can also use other network protocols such as HTTPS (Secure HTTP), TCP/IP, SMTP
(Simple Mail Transport Protocol), FTP (File Transfer Protocol), and so on.

XML
XML is used in the Java EE platform for deployment descriptors, metadata information, and
so on. For web services, XML is also used as an integration technology that solves the problem
of data independence and interoperability. It is used not only as the message format, but also
as the way the services are defined (WSDL) or exchanged (SOAP). Associated with these XML
documents, schemas are used to validate exchanged data.

Chapter 14  ■﻿   SOAP WEB SERVICES396

Web Services Specification Overview
Persistence is mostly covered by one specification: JPA. For web services, the situation is more
complex, as you have to deal with many specifications from different standards bodies. More-
over, because web services are used by other programming languages, these specifications are
not all directly related to the Java Community Process (JCP).

A Brief History of Web Services
Web services are a standard way for businesses to communicate over a network, and there
were precursors before them: Common Object Request Broker Architecture (CORBA), initially
used by Unix systems, and Distributed Component Object Model (DCOM), its Microsoft com-
petitor. On a lower level, there is Remote Procedure Call (RPC) and closer to our Java world,
Remote Method Invocation (RMI).

Before the Web, it was difficult to get all major software vendors to agree on a transport
protocol. When the HTTP protocol became a mature standard, it gradually became a universal
business medium of communication. At about the same time, XML officially became a stan-
dard when the World Wide Web Consortium (W3C) announced that XML 1.0 was suitable for
deployment in applications. By 1998, both ingredients, HTTP and XML, were ready to work
together.

SOAP 1.0, started in 1998 by Microsoft, was finally shipped at the end of 1999, and mod-
eled typed references and arrays in XML Schema. By 2000, IBM started working on SOAP 1.1,
and WSDL was submitted to the W3C in 2001. UDDI was written in 2000 by the Organization
for the Advancement of Structured Information Standards (OASIS) to allow businesses to pub-
lish and discover web services. With SOAP, WSDL, and UDDI in place, the de facto standards
to create web services had arrived with the support of major IT companies.

Java introduced web services capabilities with the Java API for XML-based RPC 1.0
(JAX-RPC 1.0) in June 2002 and added JAX-RPC 1.1 to J2EE 1.4 in 2003. This specification was
very verbose and not easy to use. With the arrival of Java EE 5, the brand-new Java API for
XML-based Web Services 2.0 (JAX-WS 2.0) specification was introduced as the preferred web
service model. Today Java EE 6 is shipped with JAX-WS 2.2.

Java EE Specifications
To master all web services standards, you would have to spend some time reading a bunch of
specifications coming from the W3C, the JCP, and OASIS.

The W3C is a consortium that develops and maintains web technologies such as HTML,
XHTML, RDF, CSS, and so forth and, more interestingly, for web services, XML, XML Schemas,
SOAP, and WSDL.

OASIS hosts several web service–related standards such as UDDI, WS-Addressing,
WS-Security, WS-Reliability, and many others.

Coming back to Java, the JCP has a set of specifications that are part of Java EE 6 and
Java SE 6. They include JAX-WS (JSR 224), Web Services 1.2 (JSR 109), JAXB 2.2 (JSR 222), Web
Services Metadata 2.0 (JSR 181), and JAXR 1.0 (JSR 93). Taken together, these specifications are
usually referred to by the informal term Java Web Services (JWS).

At first, these lists of specifications may make you think that writing a web service in Java
would be difficult, especially when it comes to getting your head around the APIs. However,

Chapter 14  ■﻿   SOAP WEB SERVICES 397

the beauty of it is that you don’t need to worry about the underlying technologies (XML,
WSDL, SOAP, HTTP, etc.), as just a few JWS standards will do the work for you.

JAX-WS 2.2
JAX-WS (JSR 224) is the new name of JAX-RPC. JAX-RPC has been pruned in Java EE 6, mean-
ing that it is proposed to be removed from Java EE 7.

JAX-WS 2.2 defines a set of APIs and annotations that allow you to build and consume
web services with Java. It provides the consumer and service facilities to send and receive
web service requests via SOAP, masking the complexity of the protocol. Therefore, neither the
consumer nor the service has to generate or parse SOAP messages, as JAX-WS deals with the
low-level processing. The JAX-WS specification depends on other specifications such as Java
Architecture for XML Binding (JAXB).

Web Services 1.2
JSR 109 (“Implementing Enterprise Web Services”) defines the programming model and run-
time behavior of web services in the Java EE container. It also defines packaging to ensure
portability of web services across application server implementations.

JAXB 2.2
Web services send requests and responses exchanging XML messages. In Java, there are sev-
eral low-level APIs to process XML documents and XML Schemas. The JAXB specification
provides a set of APIs and annotations for representing XML documents as Java artifacts,
allowing developers to work with Java objects representing XML documents. JAXB (JSR 222)
facilitates unmarshalling XML documents into objects and marshalling objects back into
XML documents. Even if JAXB can be used for any XML purpose, it is tightly integrated with
JAX-WS.

WS-Metadata 2.0
Web Services Metadata (WS-Metadata, specification JSR 181) provides annotations that facili-
tate the definition and deployment of web services. The primary goal of JSR 181 is to simplify
the development of web services. It provides mapping facilities between WSDL and Java inter-
faces, and vice versa, through annotations. These annotations can be used within simple Java
classes or EJBs.

JAXR 1.0
The Java API for XML Registries (JAXR) specification defines a standard set of APIs that allow
Java clients to access UDDI. Like JAX-RPC, JAXR is the second web service–related specifica-
tion to be pruned, with its removal proposed in the next version of Java EE. If the pruning is
accepted, JAXR will still keep on evolving, but outside Java EE.

Reference Implementation
Metro is not a Java EE specification, but rather the open source reference implementation
of the Java web service specifications. It consists of JAX-WS and JAXB, and also supports the

Chapter 14  ■﻿   SOAP WEB SERVICES398

legacy JAX-RPC APIs. It allows you to create and deploy secure, reliable, transactional, interop-
erable web services and consumers. The Metro stack is produced by the GlassFish community,
but it can also be used outside GlassFish in a Java EE or Java SE environment.

How to Invoke a Web Service
Despite all these specifications, concepts, standards, and organizations, writing and consum-
ing a web service is very easy. Listing 14-1 shows you the code of a web service that validates a
credit card.

Listing 14-1. The CardValidator Web Service

@WebService
public class CardValidator {

 public boolean validate(CreditCard creditCard) {
 String lastDigit = creditCard.getNumber().substring(➥

 creditCard.getNumber().length() - 1, ➥

 creditCard.getNumber().length());

 if (Integer.parseInt(lastDigit) % 2 != 0) {
 return true;
 } else {
 return false;
 }
 }
}

Like entities or EJBs, a web service uses the annotated POJO model with the configura-
tion-by-exception policy. This means that a web service can just be a Java class annotated with
@javax.jws.WebService if all the defaults suit you. This CardValidator web service has one
method to validate a credit card. It takes a credit card as a parameter and returns true or false
according to whether the card is valid or not. In this instance, it assumes that credit cards with
an odd number are valid, and those with an even number are not.

A CreditCard object (see Listing 14-2) is exchanged between the consumer and the web
service. When describing the web service architecture, the data exchanged needs to be an XML
document, so a method to transform a Java object into an XML document is needed. This is
where JAXB comes into play with its simple annotations and powerful API. The CreditCard
object just has to be annotated with @javax.xml.bind.annotation.XmlRootElement, and JAXB
will transform it back and forth from XML to Java.

Listing 14-2. The CreditCard Class with a JAXB Annotation

@XmlRootElement
public class CreditCard {

 private String number;
 private String expiryDate;

mailto:@javax.jws.WebService
mailto:@javax.xml.bind.annotation.XmlRootElement

Chapter 14  ■﻿   SOAP WEB SERVICES 399

 private Integer controlNumber;
 private String type;

 // Constructors, getters, setters
}

With JAXB annotations, you avoid developing all the low-level XML parsing, as it hap-
pens behind the scenes. The web service manipulates a Java object, and the same is true for
the consumer. The consumer can be a main class, as shown in Listing 14-3, that creates an
instance of CreditCard and then invokes the web service.

Listing 14-3. A Consumer Invoking the Web Service

public class Main {

 public static void main(String[] args) {

 CreditCard creditCard = new CreditCard();
 creditCard.setNumber("12341234");
 creditCard.setExpiryDate("10/10");
 creditCard.setType("VISA");
 creditCard.setControlNumber(1234);

 CardValidator cardValidator = ➥

 new CardValidatorService().getCardValidatorPort();

 cardValidator.validate(creditCard);

 }
}

The CardValidator web service is not directly invoked. The consumer uses a
CardValidatorService class and calls the getCardValidatorPort() method to get a reference to
a CardValidator. With this reference, the consumer can then call the validate() method and
pass a credit card.

Although this code is straightforward, there’s a lot of magic happening behind the scenes.
Several artifacts have been generated to make this work: a WSDL file and client stubs, which
contain all the information to connect to the URL where the web service is located, marshall
the CreditCard object into XML, invoke the web service, and obtain a result.

The visible part of web services in Java doesn’t deal directly with XML, SOAP, or WSDL
and is very easy to understand. However, there are some invisible parts that are very important
for interoperability.

Java Architecture for XML Binding
As you will understand by now, XML is used to exchange data and to define web services through
WSDL and SOAP envelopes. But in Listing 14-3, which shows a consumer invoking a web service,
there is no XML at all. That’s because the consumer only manipulates Java interfaces and stubs,

Chapter 14  ■﻿   SOAP WEB SERVICES400

which in turn deal with all the XML plumbing and network wiring. At one point in the chain, you
manipulate Java classes, and at another XML documents, with JAXB facilitating this bidirectional
correspondence.

Java offers various ways to manipulate XML, from common APIs (javax.xml.stream.
XmlStreamWriter and java.beans.XMLEncoder) to more complex and low-level models such as
Simple API for XML (SAX), Document Object Model (DOM), or Java API for XML Processing
(JAXP). JAXB provides a higher level of abstraction than SAX or DOM and is based on annota-
tions.

JAXB defines a standard to bind Java representations to XML and vice versa. It manages
XML documents and XML Schema Definitions (XSD) in a transparent, object-oriented way
that hides the complexity of the XSD language.

Except for the @XmlRootElement annotation, Listing 14-4 shows the code of a normal Java
class. With this annotation and a marshalling mechanism, JAXB is able to create an XML repre-
sentation of a CreditCard instance, as shown in Listing 14-5.

Listing 14-4. The CreditCard Class with a JAXB Annotation

@XmlRootElement
public class CreditCard {

 private String number;
 private String expiryDate;
 private Integer controlNumber;
 private String type;

 // Constructors, getters, setters
}

Listing 14-5. An XML Document Representing Credit Card Data

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<creditCard>
 <controlNumber>6398</controlNumber>
 <expiryDate>12/09</expiryDate>
 <number>1234</number>
 <type>Visa</type>
</creditCard>

Marshalling is the action of transforming an object into XML. The inverse is also possible
with JAXB. Unmarshalling would take this XML document as an input and instantiate a
CreditCard object with the values defined in the document. JAXB can also automatically gen-
erate the schema that would validate the credit card XML structure to ensure that it would
have the correct structure and data types. Listing 14-6 shows the XML Schema Definition
(XSD) of the CreditCard class.

Listing 14-6. XML Schema Validating the Previous XML Document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema">

http://www.w3.org/2001/XMLSchema

Chapter 14  ■﻿   SOAP WEB SERVICES 401

 <xs:element name="creditCard" type="creditCard"/>

 <xs:complexType name="creditCard">
 <xs:sequence>
 <xs:element name="controlNumber" type="xs:int" minOccurs="0"/>
 <xs:element name="expiryDate" type="xs:string" minOccurs="0"/>
 <xs:element name="number" type="xs:string" minOccurs="0"/>
 <xs:element name="type" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

This schema is made of simple elements (controlNumber, expiryDate, etc.) and a complex
type (creditCard). Complex types model element content, that is, they determine the possible
set of elements used in a document (here, a credit card).

Notice that all the tags use the xs prefix (xs:element, xs:string, etc.). This prefix is called a
namespace and is defined in the xmlns (XML namespace) header tag of the document.

<xs:schema version="1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema">

Namespaces create unique prefixes for elements in separate documents or applications
that are used together. They are used primarily to avoid conflict problems that may be caused
if the same element name appears in several documents (the <element> tag, for instance, could
appear in several documents and have different meanings). This is a significant issue for web
services, as they involve handling multiple documents at the same time (the SOAP envelope,
the WSDL document, etc.). Namespaces are very important in web services.

Binding
The JAXB API, defined in the javax.xml.bind package, provides a set of interfaces and classes
to produce XML documents and to generate Java classes; in other words, it binds the two
models. The JAXB runtime framework implements the marshall and unmarshall operations.
Marshalling is the process of converting instances of JAXB-annotated classes to XML represen-
tations. Likewise, unmarshalling is the process of converting an XML representation to a tree
of objects.

This marshalled XML data can be validated by an XML Schema, and JAXB is able to
automatically generate a schema from a set of classes and vice versa. Figure 14-3 shows the
possible interactions that an application can have with JAXB.

http://www.w3.org/2001/XMLSchema

Chapter 14  ■﻿   SOAP WEB SERVICES402

Figure 14-3. JAXB architecture

The center of the JAXB API is the javax.xml.bind.JAXBContext class. This abstract class
manages the binding between XML documents and Java objects as it provides

	 •	 An Unmarshaller class that transforms an XML document into an object graph and
optionally validates the XML

	 •	 A Marshaller class that takes an object graph and transforms it into an XML document

For example, to transform our CreditCard object into an XML document (see Listing 14-4),
the Marshaller.marshal() method must be used. This method takes an object as a parameter
and marshals it into several supports (StringWriter to have a string representation of the XML
document or FileOutputStream to store it in a file).

The code in Listing 14-7 creates an instance of JAXBContext by using the static method
newInstance(), to which it passes the root class that needs to be marshalled (CreditCard.
class). From the created Marshaller object, it then calls the marshal() method that gener-
ates the XML representation (shown previously in Listing 14-5) of the credit card object into a
StringWriter and displays it. The same approach could be used to unmarshall an XML docu-
ment into objects using the Unmarshaller.unmarshal() method.

Chapter 14  ■﻿   SOAP WEB SERVICES 403

Listing 14-7. A Main Class Marshalling a CreditCard Object

public class Main {

 public static void main(String[] args) {

 CreditCard creditCard = new CreditCard("1234", "12/09", 6398, "Visa");
 StringWriter writer = new StringWriter();

 JAXBContext context = JAXBContext.newInstance(CreditCard.class);
 Marshaller m = context.createMarshaller();
 m.marshal(creditCard, writer);

 System.out.println(writer.toString());
 }
}

JAXB has other tools, specifically the schema compiler (xjc) and the schema generator
(schemaGen); while marshalling/unmarshalling deals with objects and XML documents, the
schema compiler and the schema generator deal with classes and XML Schemas. These tools
can be used in the command line (they are bundled with Java SE 6) or as Maven goals.

With JAXB, you have two possible scenarios from which bindings arise:

	 •	 Start from Java classes: The Java classes exist and are used to generate an XML Schema.

	 •	 Start from an XML Schema: In this scenario, the schema exists, and the Java classes are
created using a schema compiler.

These two scenarios are very important for web services. A web service can generate its
WSDL files, and based on that WSDL, a consumer can generate a set of Java classes, all in a
transparent and portable way.

Annotations
JAXB is similar to JPA in many ways. However, instead of mapping objects to a database, JAXB
does the mapping to an XML document. Also, like JPA, JAXB defines a set of annotations (in
the javax.xml.bind.annotation package) to customize this mapping, and relies on configu-
ration by exception to minimize the work of the developer. If persistent objects have to be
annotated with @Entity, the correspondent in JAXB is @XmlRootElement (see Listing 14-8).

Listing 14-8. A Customized CreditCard Class

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class CreditCard {

 @XmlAttribute (required = true)
 private String number;
 @XmlElement(name = "expiry-date", defaultValue = "01/10")
 private String expiryDate;
 private String type;

Chapter 14  ■﻿   SOAP WEB SERVICES404

 @XmlElement(name = "control-number")
 private Integer controlNumber;

 // Constructors, getters, setters
}

The @XmlRootElement annotation notifies JAXB that the CreditCard class (shown earlier in
Listing 14-4) is the root element of the XML document. If this annotation is missing, JAXB will
throw an exception when trying to marshall it. This class is then mapped to the schema shown
in Listing 14-6 using all the JAXB default mapping rules (each attribute is mapped to an ele-
ment and has the same name).

With a Marshaller object, you can easily get an XML representation of a CreditCard object
(shown earlier in Listing 14-5). The root element <creditCard> represents the CreditCard
object, and it includes the value of each attribute.

JAXB provides a way to customize and control this XML structure. An XML document is
made of elements (<element>value</element>) and attributes (<element attribute="value"/>).
JAXB uses two annotations to differentiate them: @XmlAttribute and @XmlElement. Each anno-
tation has a set of parameters that allows you to rename an attribute, allow null values or not,
give default values, and so forth. Listing 14-8 uses these annotations to turn the credit card
number into an attribute (instead of an element) and to rename the expiry date and control
number.

This class will get mapped to a different schema in which the credit card number is repre-
sented as a required <xs:attribute>, and the expiry date renamed with a default value set to
01/10, as shown in Listing 14-9.

Listing 14-9. The Credit Card Schema with Attributes and Default Values

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="creditCard" type="creditCard"/>

 <xs:complexType name="creditCard">
 <xs:sequence>
 <xs:element name="expiry-date" type="xs:string" default="01/10"➥

 minOccurs="0"/>
 <xs:element name="type" type="xs:string" minOccurs="0"/>
 <xs:element name="control-number" type="xs:int" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="number" type="xs:string" use="required"/>
 </xs:complexType>
</xs:schema>

The XML representation will also change (see Listing 14-10).

Listing 14-10. An XML Document Representing a Customized CreditCard Object

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<creditCard number="1234">

http://www.w3.org/2001/XMLSchema

Chapter 14  ■﻿   SOAP WEB SERVICES 405

 <expiry-date>12/09</expiry-date>
 <type>Visa</type>
 <control-number>6398</control-number>
</creditCard>

Table 14-1 lists the main JAXB annotations, most with elements that can be used; some
can annotate attributes (or getters), others classes, and some can be used on an entire package
(such as @XmlSchema).

Table 14-1. JAXB Annotations

Annotation	 Description

@XmlAccessorType	� Controls whether attributes or getters should be mapped (FIELD, NONE,
PROPERTY, PUBLIC_MEMBER)

@XmlAttribute	� Maps an attribute or a getter to an XML attribute of simple type (String,
Boolean, Integer, and so on)

@XmlElement	� Maps a nonstatic and nontransient attribute or getter to an XML
element

@XmlElements	 Acts as a container for multiple @XmlElement annotations

@XmlEnum	 Maps an enum to an XML representation

@XmlEnumValue	 Identifies an enumerated constant

@XmlID	� Identifies the key field of an XML element (of type String), which can be
used when referring back to an element using the @XmlIDREF annotation
(XML Schema ID and IDREF concepts)

@XmlIDREF	 Maps a property to an Xml IDREF in the schema

@XmlList	 Maps a property to a list

@XmlMimeType	 Identifies a textual representation of the MIME type for a property

@XmlNs	 Identifies an XML namespace

@XmlRootElement	� Represents an annotation required by any class that is to be bound as
the root XML element

@XmlSchema	 Maps a package name to an XML namespace

@XmlTransient	� Informs JAXB not to bind an attribute (analogous to the Java transient
keyword or @Transient annotation in JPA)

@XmlType	 Annotates a class as being a complex type in XML Schema

@XmlValue	 Allows the mapping of a class to a simple schema content or type

When using these annotations, you can map objects to a specific XML Schema. And some-
times you need this flexibility with legacy web services. Referring to JPA, when you need to
map entities to a legacy database, there is a set of annotations that allows customizing every
part of the mapping (columns, table, foreign keys, etc.). With web services, it’s a bit the same:
web services are described in a WSDL file written in XML. If it’s a legacy web service, its WSDL
cannot change. Instead, a mechanism to map it to objects must be used, which is why JAXB is
used with web services.

Chapter 14  ■﻿   SOAP WEB SERVICES406

nNote  In this section, I’ve mentioned JPA several times because both JPA and JAXB technologies heavily
rely on annotations and are used to map objects to a different media (database or XML). In terms of archi-
tecture, entities should only be used to map data to a database, and JAXB classes to map data to XML. But
sometimes you may want the same object to have a database representation as well as an XML one. It is
technically possible to annotate the same class with @Entity and @XmlRootElement even if it’s not really
recommended.

The Invisible Part of the Iceberg
Even if you don’t explicitly manipulate SOAP and WSDL documents when you develop with
JAX-WS, it is important to have some understanding of their structure.

When developing web services, you can use WSDL to define their interface: the input and
output parameters of the web service in terms of XML Schema. SOAP messages are used to
carry the input and output parameters specified by the WSDL. Web services provide two key
ingredients: an interface definition language (WSDL) and a messaging standard (SOAP).

When a consumer wants to invoke the CardValidator web service (see Figure 14-4), it gets
its WSDL to know the interface it can use, asks to validate a credit card (the validate SOAP
message), and receives a response (the validateResponse SOAP message).

Figure 14-4. A consumer invoking a web service

WSDL
WSDL documents are hosted in the web service container and use XML to describe what a
service does, how to invoke its operations, and where to find it. The XML document follows a
fixed structure containing several parts (see Listing 14-11). The CardValidator web service is
the example used to introduce the elements listed here:

	 •	 <definitions> is the root element of the WSDL, and it specifies the global declarations
of namespaces that are visible through the document.

	 •	 <types> defines the data types to be used in the messages. In this example, it is the XML
Schema Definition (CardValidatorService?xsd=1) that describes the parameters passed
to the web service request (the CreditCard object) and the response (a Boolean).

	 •	 <message> defines the format of data exchanged between a web service consumer
and the web service itself. Here you have the request (the validate method) and the
response (validateResponse).

Chapter 14  ■﻿   SOAP WEB SERVICES 407

	 •	 <portType> specifies the operations of the web service (the validate method).

	 •	 <binding> describes the concrete protocol (here SOAP) and data formats for the opera-
tions and messages defined for a particular port type.

	 •	 <service> contains a collection of <port> elements, where each port is associated with
an endpoint (a network address location or URL).

The following WSDL file will help you to better understand the information described in
the CardValidator web service.

Listing 14-11. The WSDL File for the CardValidator Web Service

<definitions targetNamespace="http://chapter14.javaee6.org/" ➥

 name="CardValidatorService">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://chapter14.javaee6.org/" schemaLocation
 ="http://localhost:8080/chapter14/CardValidatorService?xsd=1"/>
 </xsd:schema>
 </types>
 <message name="validate">
 <part name="parameters" element="tns:validate"/>
 </message>
 <message name="validateResponse">
 <part name="parameters" element="tns:validateResponse"/>
 </message>
 <portType name="CardValidator">
 <operation name="validate">
 <input message="tns:validate"/>
 <output message="tns:validateResponse"/>
 </operation>
 </portType>
 <binding name="CardValidatorPortBinding" type="tns:CardValidator">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" ➥

 style="document"/>
 <operation name="validate">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="CardValidatorService">
 <port name="CardValidatorPort" binding="tns:CardValidatorPortBinding">
 <soap:address location = ➥

 "http://localhost:8080/chapter14/CardValidatorService"/>

http://chapter14.javaee6.org/
http://chapter14.javaee6.org/
http://localhost:8080/chapter14/CardValidatorService?xsd=1"/
http://schemas.xmlsoap.org/soap/http
http://localhost:8080/chapter14/CardValidatorService"/

Chapter 14  ■﻿   SOAP WEB SERVICES408

 </port>
 </service>
</definitions>

The <xsd:import namespace> element refers to an XML Schema that has to also be avail-
able on the network to the consumers of the WSDL. Listing 14-12 shows this schema defining
the types used in the web service (the structure of the CreditCard object with number, expiry
date, and so on).

Listing 14-12. The Schema Imported by the WSDL File

<xs:schema version="1.0" targetNamespace="http://chapter14.javaee6.org/">
 <xs:element name="creditCard" type="tns:creditCard"/>
 <xs:element name="validate" type="tns:validate"/>
 <xs:element name="validateResponse" type="tns:validateResponse"/>
 <xs:complexType name="validate">
 <xs:sequence>
 <xs:element name="arg0" type="tns:creditCard" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="creditCard">
 <xs:sequence>
 <xs:element name="controlNumber" type="xs:int" minOccurs="0"/>
 <xs:element name="expiryDate" type="xs:string" minOccurs="0"/>
 <xs:element name="number" type="xs:string" minOccurs="0"/>
 <xs:element name="type" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="validateResponse">
 <xs:sequence>
 <xs:element name="return" type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

This WSDL and schema are usually generated using tools that transform the web service
metadata into XML. JAX-WS comes with utilities that automatically generate these artifacts.

SOAP
WSDL describes an abstract interface of the web service, while SOAP provides a concrete
implementation, defining the XML structure of the messages exchanged. In relation to the
Web, SOAP is a web service message structure that can be delivered over HTTP (or other
communication protocols), and the HTTP binding of SOAP includes some standard HTTP
extension headers. This message structure is described in XML. Instead of using HTTP to
request a web page from a browser, SOAP sends an XML message via HTTP request and
receives a reply via HTTP response. A SOAP message is an XML document containing the
following elements:

http://chapter14.javaee6.org/

Chapter 14  ■﻿   SOAP WEB SERVICES 409

	 •	 <Envelope>: Defines the message and the namespace used in the document. This is a
required root element.

	 •	 <Header>: Contains any optional attributes of the message or application-specific infra-
structure such as security information or network routing.

	 •	 <Body>: Contains the message being exchanged between applications.

	 •	 <Fault>: Provides information about errors that occur while the message is processed.
This element is optional.

Only the envelope and the body are required. Using our example, a client application calls
the web service to validate a credit card (one SOAP envelope for the request) and receives a
Boolean informing whether the card is valid or not (another SOAP envelope for the response).
Listings 14-13 and 14-14 show the structure of these two SOAP messages.

Listing 14-13. The SOAP Envelope for the Request

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" ➥

 xmlns:cc="http://chapter14.javaee6.org/">
 <soap:Header/>
 <soap:Body>
 <cc:validate>
 <arg0>
 <controlNumber>1234</controlNumber>
 <expiryDate>10/10</expiryDate>
 <number>9999</number>
 <type>VISA</type>
 </arg0>
 </cc:validate>
 </soap:Body>
</soap:Envelope>

Listing 14-14. The SOAP Envelope for the Response

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns2:validateResponse xmlns:ns2="http://chapter14.javaee6.org/">
 <return>true</return>
 </ns2:validateResponse>
 </soap:Body>
</soap:Envelope>

Java API for XML-Based Web Services
We have reviewed a simple WSDL document, a SOAP request, and a SOAP response. When
web services have several operations with complex parameters, these XML documents can
look daunting to a Java developer. The good news is that JAX-WS makes life easier by hiding

http://schemas.xmlsoap.org/soap/envelope/
http://chapter14.javaee6.org/
http://schemas.xmlsoap.org/soap/envelope/
http://chapter14.javaee6.org/

Chapter 14  ■﻿   SOAP WEB SERVICES410

the complexity of these XML documents. Unfortunately, sometimes you need to dive into the
WSDL structure.

Because the WSDL document is the contract between the consumer and the service, it
can be used to write the Java code for the consumer and the service. This is the top-down
approach, also known as contract first. This approach starts with the contract (the WSDL) by
defining operations, messages, and so forth. When both the consumer and provider agree on
the contract, you can then implement the Java classes based on that contract. Metro provides
some tools that generate classes from a WSDL.

With the other approach, called bottom-up, the implementation class already exists, and
all that is needed is to create the WSDL. Again, Metro provides utilities to generate a WSDL
from existing classes. In both cases, at times the code has to be adjusted to fit the WSDL or
vice versa. That is when JAX-WS comes to your aid. With a simple development model and
a few annotations, Java-to-WSDL mapping can be adjusted. The bottom-up approach can
result in very inefficient applications, as the Java methods and classes have no bearing on the
ideal granularity of messages crossing the network. If latency is high and/or bandwidth low, it
pays to use the fewest, largest messages, and this can only be done by using the contract-first
approach.

This chapter presented the general web services concepts and specifications, and then
discussed JAXB, used for XML binding, and the surface of WSDL and SOAP documents. But
web services follow the “ease of development” paradigm of Java EE 6 and do not require you to
write any WSDL or SOAP. The web service is just an annotated POJO that needs to be deployed
in a web service container. However, there is more to the web service programming model.

JAX-WS Model
Like most of the Java EE 6 components, web services rely on the configuration-by-exception
paradigm, which specifies that configuring a component is the exception. Only one annota-
tion is actually needed to turn a POJO into a web service: @WebService. The requirements to
write a web service are as follows:

	 •	 The class must be annotated with @javax.jws.WebService or the XML equivalent in a
deployment descriptor.

	 •	 To turn a web service into an EJB endpoint, the class has to be annotated with @javax.
ejb.Stateless (as demonstrated in Chapter 7).

	 •	 The class must be defined as public, and it must not be final nor abstract.

	 •	 The class must have a default public constructor.

	 •	 The class must not define the finalize() method.

	 •	 A service must be a stateless object and should not save client-specific state across
method calls.

The WS-Metadata specification (JSR 181) says that, as long as it meets these requirements,
a POJO can be used to implement a web service deployed to the servlet container. This is com-
monly referred to as a servlet endpoint. A stateless session bean can also be used to implement
a web service that will be deployed in an EJB container (a.k.a. an EJB endpoint).

mailto:@javax.jws.WebService

Chapter 14  ■﻿   SOAP WEB SERVICES 411

Web Service Endpoints
JAX-WS 2.2 allows both regular Java classes and stateless EJBs to be exposed as web services.
Referring to the code for a POJO (Listing 14-1) and for an EJB web service (Listing 14-18)
reveals hardly any differences, with the exception that the EJB web service has the extra anno-
tation, @Stateless, although the packaging is different. A POJO web service is packaged in a
web module (in a war file) and is called a servlet endpoint, whereas an EJB web service is pack-
aged in a jar file and is called an EJB endpoint. One is deployed in a servlet container and the
other in an EJB container.

Both endpoints have almost identical behavior, but a few extra benefits are gained from
using EJB endpoints. As the web service is also an EJB, the benefits of transaction and security
managed by the container are automatic, and interceptors can be used, which is not possible
with servlet endpoints. The business code can be exposed as a web service and as an EJB at the
same time, meaning that the business logic can be exposed through SOAP and also through
RMI by adding a remote interface.

Annotations
At the service level, systems are defined in terms of XML messages, WSDL operations, and
SOAP messages. Meanwhile, at the Java level, applications are defined in terms of objects,
interfaces, and methods. A translation from Java objects to WSDL operations is needed. The
JAXB runtime uses annotations to determine how to marshall/unmarshall a class to/from
XML. These annotations are typically hidden from the web service developer. Analogously,
JWS uses annotations to determine how to marshall a method invocation to a SOAP request
message and unmarshall a SOAP response into an instance of the method’s return type.

The WS-Metadata specification (JSR 181) defines two different kinds of annotations:

	 •	 WSDL mapping annotations: These annotations belong to the javax.jws package and
allow you to change the WSDL/Java mapping. The @WebMethod, @WebResult, @WebParam,
and @OneWay annotations are used on the web service to customize the signature of the
exposed methods.

	 •	 SOAP binding annotations: These annotations belong to the javax.jws.soap package
and allow customizing of the SOAP binding (@SOAPBinding and @SOAPMessageHandler).

Like all the other Java EE 6 specifications, web services annotations can be overridden by
an XML deployment descriptor (webservices.xml), which is optional. Let’s take a closer look at
the WSDL mapping annotations.

@WebService

The @javax.jws.WebService annotation marks a Java class or interface as being a web service.
If used directly on the class (as in all examples so far), the annotation processor of the con-
tainer will generate the interface, so the following snippets of code are equivalent. Following is
the annotation on the class:

@WebService
public class CardValidator {

mailto:@javax.jws.WebService

Chapter 14  ■﻿   SOAP WEB SERVICES412

And this shows the annotation on an interface implemented by a class:

@WebService
public interface CCValidator {

public class CardValidator implements CCValidator {

The @WebService annotation has a set of attributes (see Listing 14-15) that allow
you to customize the name of the web service in the WSDL file (the <wsdl:portType> or
<wsdl:service> element) and its namespace, as well as change the location of the WSDL itself
(the wsdlLocation attribute).

Listing 14-15. The @WebService API

@Retention(RUNTIME) @Target(TYPE)
public @interface WebService {
 String name() default "";
 String targetNamespace() default "";
 String serviceName() default "";
 String portName() default "";
 String wsdlLocation() default "";
 String endpointInterface() default "";
}

When you use the @WebService annotation, all public methods of the web service are
exposed except when using the @WebMethod annotation.

@WebMethod

By default, all the public methods of a web service are exposed in the WSDL and use all the
default mapping rules. To customize some elements of this mapping, you can apply the
@javax.jws.WebMethod annotation on methods. The API of this annotation is quite simple
as it allows renaming a method or excluding it from the WSDL. Listing 14-16 shows how the
CardValidator web service renames the first method to ValidateCreditCard and excludes the
second one.

Listing 14-16. One Method Is Renamed, the Other Excluded

@WebService
public class CardValidator {

 @WebMethod(operationName = "ValidateCreditCard")
 public boolean validate(CreditCard creditCard) {
 // business logic
 }

 @WebMethod(exclude = true)
 public void validate(String ccNumber) {
 // business logic
 }
}

mailto:@javax.jws.WebMethod

Chapter 14  ■﻿   SOAP WEB SERVICES 413

@WebResult

The @javax.jws.WebResult annotation operates in conjunction with @WebMethod to control the
generated name of the message returned value in the WSDL. In Listing 14-17, the returned
result of the validate() method is renamed to IsValid.

Listing 14-17. The Return Result of the Method Is Renamed

@WebService
public class CardValidator {

 @WebMethod
 @WebResult(name = "IsValid")
 public boolean validate(CreditCard creditCard) {
 // business logic
 }
}

This annotation also has other elements to customize the XML namespace for the
returned value, for example, and looks like the @WebParam annotation.

@WebParam

The @javax.jws.WebParam annotation, shown in Listing 14-18, is similar to @WebResult as it
customizes the parameters for the web service methods. Its API permits changing of the name
of the parameter in the WSDL (see Listing 14-19), the namespace, and the type. Valid types are
IN, OUT, or INOUT (both), which determines how the parameter is flowing.

Listing 14-18. The @WebParam API

@Retention(RUNTIME) @Target(PARAMETER)
 public @interface WebParam {
 String name() default "";
 public enum Mode {IN, OUT, INOUT};
 String targetNamespace() default "";
 boolean header() default false;
 String partName() default "";
};

Listing 14-19. The Method Parameter Is Renamed

@WebService
public class CardValidator {

 @WebMethod
 public boolean validate(@WebParam(name = "Credit-Card") ➥

 CreditCard creditCard) {
 // business logic
 }
}

mailto:@javax.jws.WebResult
mailto:@javax.jws.WebParam

Chapter 14  ■﻿   SOAP WEB SERVICES414

@OneWay

The @OneWay annotation can be used on methods that do not have a return value such as meth-
ods returning void. This annotation has no elements and can be seen as a markup interface
that informs the container the invocation can be optimized, as there is no return (using an
asynchronous invocation, for example).

All Together

To have a better understanding of these annotations, I’ll use them on the CardValidator web
service (see Listing 14-20) and show you the impact they have on the WSDL document and the
accompanying schema. You can compare the original WSDL document in Listing 14-14 with
Listing 14-21, and the original schema in Listing 14-15 with Listing 14-22. The differences are
highlighted.

Listing 14-20. The CardValidator Web Service with Annotations

@WebService(name = "CreditCardValidator", portName = "ValidatorPort")
public class CardValidator {

 @WebMethod(operationName = "ValidateCreditCard")
 @WebResult(name = "IsValid")
 public boolean validate(➥

 @WebParam(name = "CreditCard") CreditCard creditCard) {

 String lastDigit = creditCard.getNumber().substring(➥

 creditCard.getNumber().length() - 1, ➥

 creditCard.getNumber().length());
 if (Integer.parseInt(lastDigit) % 2 != 0) {
 return true;
 } else {
 return false;
 }
 }

 @WebMethod(exclude = true)
 public void validate(String ccNumber) {
 // business logic
 }
}

The @WebService annotation renames the <portType name> and <port name> elements of
the WSDL. All the other annotations have an impact on the method, which is represented by
the <message> element in the WSDL.

Listing 14-21. The WSDL Document After Customization

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions targetNamespace="http://chapter14.javaee6.org/" ➥

 name="CardValidatorService" xmlns="http://schemas.xmlsoap.org/wsdl/"➥

http://chapter14.javaee6.org/
http://schemas.xmlsoap.org/wsdl/

Chapter 14  ■﻿   SOAP WEB SERVICES 415

 xmlns:tns="http://chapter14.javaee6.org/" ➥

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" ➥

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://chapter14.javaee6.org/" ➥

 schemaLocation="CardValidatorService_schema1.xsd"/>
 </xsd:schema>
 </types>
 <message name="ValidateCreditCard">
 <part name="parameters" element="tns:ValidateCreditCard"/>
 </message>
 <message name="ValidateCreditCardResponse">
 <part name="parameters" element="tns:ValidateCreditCardResponse"/>
 </message>
 <portType name="CreditCardValidator">
 <operation name="ValidateCreditCard">
 <input message="tns:ValidateCreditCard"/>
 <output message="tns:ValidateCreditCardResponse"/>
 </operation>
 </portType>
 <binding name="ValidatorPortBinding" type="tns:CreditCardValidator">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" ➥

 style="document"/>
 <operation name="ValidateCreditCard">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="CardValidatorService">
 <port name="ValidatorPort" binding="tns:ValidatorPortBinding">
 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>
 </port>
 </service>
</definitions>

The schema gets customized as both elements, the request and the response, are defined
in the <xs:complexType> element. The returned value of the method is called IsValid and is of
type Boolean.

Listing 14-22. The WSDL Schema After Customization

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" targetNamespace="http://chapter14.javaee6.org/"

http://chapter14.javaee6.org/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/soap/
http://chapter14.javaee6.org/
http://schemas.xmlsoap.org/soap/http
http://chapter14.javaee6.org/

Chapter 14  ■﻿   SOAP WEB SERVICES416

 xmlns:tns="http://chapter14.javaee6.org/" ➥

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="ValidateCreditCard" type="tns:ValidateCreditCard"/>

 <xs:element name="ValidateCreditCardResponse" ➥

 type="tns:ValidateCreditCardResponse"/>

 <xs:element name="creditCard" type="tns:creditCard"/>

 <xs:complexType name="ValidateCreditCard">
 <xs:sequence>
 <xs:element name="CreditCard" type="tns:creditCard" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="creditCard">
 <xs:sequence>
 <xs:element name="controlNumber" type="xs:int" minOccurs="0"/>
 <xs:element name="expiryDate" type="xs:string" minOccurs="0"/>
 <xs:element name="number" type="xs:string" minOccurs="0"/>
 <xs:element name="type" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="ValidateCreditCardResponse">
 <xs:sequence>
 <xs:element name="IsValid" type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Life Cycle and Callback
Web services also have a life cycle that resembles the stateless and message-driven bean, as
you can see in Figure 14-5. It is the same life cycle found for components that do not hold any
state: either they exist or they are ready to process a request. This life cycle is managed by the
container.

Figure 14-5. Web service life cycle

http://chapter14.javaee6.org/
http://www.w3.org/2001/XMLSchema

Chapter 14  ■﻿   SOAP WEB SERVICES 417

Both the servlet and EJB endpoint support dependency injection (because they run in
a container) and life-cycle methods such as @PostConstruct and @PreDestroy. The container
calls the @PostConstruct callback method, if any, when it creates an instance of a web service,
and calls the @PreDestroy callback when it destroys it.

One difference between servlet and EJB endpoints is that EJBs can use interceptors. Inter-
ceptors are the Java EE implementation of the Aspect-Oriented Programming (AOP) concept
described in Chapter 8.

Web Service Context
A web service has an environment context and can access it by injecting a reference of javax.
xml.ws.WebServiceContext with a @Resource annotation. Within this context, the web service
can obtain runtime information such as the endpoint implementation class, the message con-
text, and security information relative to a request being served.

@Resource
private WebServiceContext context;

Table 14-2 lists the methods defined in the javax.xml.ws.WebServiceContext interface.

Table 14-2. Methods of the WebServiceContext Interface

Method	 Description

getMessageContext	� Returns the MessageContext for the request being served at the time this
method is called. It can be used to access the SOAP message headers,
body, and so on.

getUserPrincipal	� Returns the Principal that identifies the sender of the request
currently being serviced.

isUserInRole	� Returns a Boolean indicating whether the authenticated user is in-
cluded in the specified logical role.

getEndpointReference	 Returns the EndpointReference associated with this endpoint.

Invoking a Web Service
With the WSDL and some tools to generate the Java stubs, you can invoke a web service.
Invoking a web service is similar to invoking a distributed object with RMI. Like RMI, JAX-WS
enables the programmer to use a local method call to invoke a service on another host. The
difference is that on the remote host, the web service can be written in another programming
language (note that you can invoke non-Java code using RMI-IIOP). The WSDL is the standard
contract between the consumer and the service. Metro provides a WSDL-to-Java utility tool
(wsimport) that generates Java interfaces and classes from a WSDL. Such interfaces are called
service endpoint interfaces (SEI) because it is a Java representation of a web service endpoint
(servlet or EJB). This SEI acts like a proxy that routes the local Java call to the remote web ser-
vice using HTTP.

When a method on this proxy is invoked (see Figure 14-6), it converts the parameters of
the method into a SOAP message (the request) and sends it to the web service endpoint. To
obtain the result, the SOAP response is converted back into an instance of the returned type.
You don’t need to understand the internal work of the proxy nor even look at the code. Before

Chapter 14  ■﻿   SOAP WEB SERVICES418

compiling your client consumer, you need to generate the SEI to get the proxy class to call it in
your code.

Figure 14-6. A consumer invoking a web service through a proxy

The consumer can get an instance of the proxy either through injection or by program-
matically creating it. To inject a web service, you need to use the @javax.xml.ws.WebServiceRef
annotation. It follows the @Resource or @EJB annotation pattern shown in previous chapters,
but for the web service. When this annotation is applied on an attribute (or a getter method),
the container will inject an instance of the web service when the application is initialized. The
code would look like this:

@WebServiceRef
private CardValidatorService cardValidatorService;
// ...
CardValidator cardValidator = cardValidatorService.getCardValidatorPort();
cardValidator.validate(creditCard);

Note that the CardValidatorService class is the SEI, not the web service itself. We then
have to get the proxy CardValidator class to invoke business methods locally. A local call is
made on the validate() method of the proxy, which in turn will invoke the remote web ser-
vice, create the SOAP request, marshall the messages, and so on.

For such injection to work, this code must be executed inside a container (servlet con-
tainer, EJB container, or application client container). If not running inside a container, the
@WebServiceRef annotation cannot be used. The classes generated by the wsimport tool can be
used directly as follows:

CardValidatorService cardValidatorService = new CardValidatorService();
CardValidator cardValidator = cardValidatorService.getCardValidatorPort();
cardValidator.validate(creditCard);

In this code, an instance of CardValidatorService is created with the new keyword, and the
rest of the code is similar.

nNote  The wsimport and wsgen tools are shipped with JDK 1.6 as well as GlassFish. wsimport takes a
WSDL in input and generates JAX-WS artifacts, such as an SEI. wsgen reads a web service endpoint class
and generates the WSDL. You can access these tools directly with a Java SE 6 installation, or through the
GlassFish command-line interface (CLI), an Ant task, or a Maven plug-in.

mailto:@javax.xml.ws.WebServiceRef

Chapter 14  ■﻿   SOAP WEB SERVICES 419

Putting It All Together
By putting these concepts together, you can write a web service and a web service consumer,
and deploy and test it all with GlassFish. You should use JAXB and JAX-WS annotations, as well
as generate a service endpoint interface with the wsimport Maven goal. To write a web service,
several steps are needed. I’ll demonstrate these steps by revisiting the CardValidator web
service.

The CardValidator web service checks that a credit card is valid. It has one method that
takes a CreditCard object as a parameter, applies some algorithm, and returns true if the card
is valid, false if not. Once this web service is deployed on GlassFish, wsimport is used to gener-
ate all the needed artifacts for the consumer. The consumer can then invoke the web service to
validate credit cards.

You will use two Maven projects: one to package the web service into a war file (chapter14-
service-1.0.war) and another to package the consumer into a jar file (chapter14-consumer-
1.0.jar).

Writing the CreditCard Class
The CreditCard class, shown in Listing 14-23, is the POJO used as a parameter to the web
service validate() method. Web services exchange XML messages, not Java objects. The
CreditCard class is annotated with the JAXB @XmlRootElement annotation to be marshalled
into XML so it can be sent in a SOAP request. The CreditCard object has some basic attributes
such as the credit card number, the expiry date (formatted as MM/YY), a credit card type (Visa,
Master Card, American Express, etc.), and a control number.

Listing 14-23. The CreditCard Class with a JAXB Annotation

@XmlRootElement
public class CreditCard {

 private String number;
 private String expiryDate;
 private Integer controlNumber;
 private String type;

 // Constructors, getters, setters
}

Writing the CardValidator Web Service
The CardValidator (see Listing 14-24) is also a POJO with a JAX-WS @WebService annotation.
It is not an EJB endpoint as it doesn’t have the @Stateless annotation. The CardValidator web
service is a servlet endpoint that will be deployed in a war file (chapter14-service-1.0.war).
It has a validate() method that takes a CreditCard object as a parameter. The algorithm to
check whether the card is valid or not is based on the card number: odd numbers are valid,
even numbers are not. The method returns a boolean.

Chapter 14  ■﻿   SOAP WEB SERVICES420

Listing 14-24. The CardValidator Web Service

@WebService
public class CardValidator {

 public boolean validate(CreditCard creditCard) {
 String lastDigit = creditCard.getNumber().substring(➥

 creditCard.getNumber().length() - 1, ➥

 creditCard.getNumber().length());

 if (Integer.parseInt(lastDigit) % 2 != 0) {
 return true;
 } else {
 return false;
 }
 }
}

For simplicity, no extra Java-to-WSDL mapping is used, so there are no @WebMethod,
@WebResult, or @WebParam annotations, allowing you to see how easy it is to write a web service
using all the default mapping rules.

Compiling and Packaging with Maven
The CardValidator web service (shown previously in Listing 14-24) needs to be compiled
and packaged in a war file (<packaging>war</packaging>). The pom.xml file (see Listing 14-25)
declares the jaxws-rt dependency to use the 2.2 version of JAX-WS. Java SE 6 comes with a
JAXB and JAX-WS implementation. Specifying the 1.6 version in the maven-compiler-plugin
should be enough as you explicitly specify you want to use Java SE 6 (<source>1.6</source>).
But if you want to control your dependency versions and absolutely want JAX-WS 2.2, it’s bet-
ter to explicitly add the jaxws-rt dependency to the project.

Listing 14-25. The pom.xml File to Compile and Package the Web Service

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" ➥

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"➥

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 ➥

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.apress.javaee6</groupId>
 <artifactId>chapter14-service</artifactId>
 <version>1.0</version>
 <packaging>war</packaging>

 <dependencies>
 <dependency>
 <groupId>com.sun.xml.ws</groupId>
 <artifactId>jaxws-rt</artifactId>

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0%E2%9E%A5
http://maven.apache.org/POM/4.0.0%E2%9E%A5
http://maven.apache.org/xsd/maven-4.0.0.xsd

Chapter 14  ■﻿   SOAP WEB SERVICES 421

 <version>2.2</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.1</version>
 <configuration>
 <failOnMissingWebXml>false</failOnMissingWebXml>
 </configuration>
 </plugin>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <inherited>true</inherited>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

With Java EE 6, deployment descriptors are optional, therefore you don’t need a web.xml
or webservices.xml file. However, as Maven still obliges you to add a web.xml file into a war,
you need to change the failOnMissingWebXml attribute of the maven-war-plugin to false; other-
wise Maven will fail the build.

To compile and package the web service, open a DOS command line in the root directory
containing the pom.xml file and enter the following Maven command:

mvn package

Go to the target directory, where you should see a file named chapter14-service-1.0.war.
If you open it, you will see that both CardValidator.class and CreditCard.class are under the
WEB-INF\classes directory. The war file doesn’t contain anything else, not even a WSDL file.

Deploying on GlassFish
Once the web service is packaged in the war file, it needs to be deployed into GlassFish. This
can be done using the asadmin command line. Open a DOS console and go to the target direc-
tory where the chapter14-service-1.0.war file is, make sure GlassFish is running, and enter
the following:

asadmin deploy chapter14-service-1.0.war

Chapter 14  ■﻿   SOAP WEB SERVICES422

If the deployment is successful, the following command should return the name of the
deployed components and their types:

asadmin list-components
chapter14-service-1.0 <web-module>
chapter14-service-1.0#CardValidator <webservice>

It’s interesting to note that GlassFish recognizes the web module (the war file could have
contained web pages, servlets, and so on) as being a web service. If you go to the GlassFish
administration console shown in Figure 14-7 (http://localhost:4848/), you will see that
chapter14-service-1.0 is deployed under the Applications ➤ Web Applications menu,
although the CardValidator web service is deployed under the Web Services node.

Figure 14-7. Web services deployed in the GlassFish administration console

On this page, if you click the View WSDL link, you will open a browser at the following
URL and show the WSDL of the web service (see Figure 14-8):

http://localhost:8080/chapter14-service-1.0/CardValidatorService?wsdl

http://localhost:4848/
http://localhost:8080/chapter14-service-1.0/CardValidatorService?wsdl

Chapter 14  ■﻿   SOAP WEB SERVICES 423

Figure 14-8. The WSDL has been generated by Metro

It is interesting to note that you didn’t create this WSDL nor deploy it in the war file. The
Metro stack automatically generates the WSDL based on the annotations contained in the web
service.

Writing the Web Service Consumer
The web service is now online, and you know where to find the WSDL. Thanks to this WSDL,
the consumer will be able to generate the artifacts necessary to invoke the web service with the
wsimport tool. First, write the code of the consumer as shown in Listing 14-26.

Listing 14-26. The Main Class Invokes the Web Service Using Injection

public class Main {

 @WebServiceRef
 private static CardValidatorService cardValidatorService;

 public static void main(String[] args) {

 CreditCard creditCard = new CreditCard();
 creditCard.setNumber("12341234");
 creditCard.setExpiryDate("10/10");
 creditCard.setType("VISA");

Chapter 14  ■﻿   SOAP WEB SERVICES424

 creditCard.setControlNumber(1234);

 CardValidator cardValidator = ➥

 cardValidatorService.getCardValidatorPort();

 System.out.println(cardValidator.validate(creditCard));
 }
}

This Main class creates an instance of the CreditCard object, sets some data, gets injected
a reference of the web service, invokes the validate() method, and displays the result (true
or false depending on whether the credit card is valid). The interesting thing is that the con-
sumer does not have any of these classes. The CardValidatorService, CardValidator, and
CreditCard are totally unknown to the consumer. This code will not compile until all these
classes are generated.

Generating Consumer’s Artifacts and Packaging with Maven
Before compiling the consumer Main class, you need to generate the artifacts with the wsimport
tool. The good news is that Maven has a wsimport goal, and this goal is executed automatically
during the generate-sources life-cycle phase. As described in Chapter 1, Maven uses a rich
life cycle to build applications. The generate-sources phase is used to generate code and is
executed before compilation. The only thing to do is tell this wsimport goal where to find the
WSDL document. You know this information because you’ve deployed the web service into
GlassFish, and you have displayed the content of the WSDL. Its location is at

http://localhost:8080/chapter14-service-1.0/CardValidatorService?wsdl

The pom.xml file in Listing 14-27 also specifies the needed dependencies, the jaxws-rt ver-
sion (2.2), as well as the JDK version (1.6). The Main class is packaged in a jar file, and like every
jar file, it has a META-INF\MANIFEST.MF file. This file can be used to define some metadata about
the jar, and that’s what you do when you use the maven-jar-plugin. You add a Main-Class
element to the MANIFEST pointing to the consumer Main class. This will allow execution of the
jar file.

Listing 14-27. The pom.xml File Generates the Consumer Artifacts and Packages

<project xmlns="http://maven.apache.org/POM/4.0.0" ➥

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"➥

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 ➥

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.apress.javaee6</groupId>
 <artifactId>chapter14-consumer</artifactId>
 <packaging>jar</packaging>
 <version>1.0</version>

 <dependencies>
 <dependency>
 <groupId>com.sun.xml.ws</groupId>

http://localhost:8080/chapter14-service-1.0/CardValidatorService?wsdl
http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0%E2%9E%A5
http://maven.apache.org/POM/4.0.0%E2%9E%A5
http://maven.apache.org/xsd/maven-4.0.0.xsd

Chapter 14  ■﻿   SOAP WEB SERVICES 425

 <artifactId>jaxws-rt</artifactId>
 <version>2.2</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.2</version>
 <configuration>
 <archive>
 <manifest>
 <mainClass>com.apress.javaee6.chapter14.Main</mainClass>
 </manifest>
 </archive>
 </configuration>
 </plugin>

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>jaxws-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>wsimport</goal>
 </goals>
 <configuration>
 <wsdlUrls>
 <wsdlUrl>
 http://localhost:8080/chapter14-service-1.0/CardValidatorService?wsdl
 </wsdlUrl>
 </wsdlUrls>
 <keep>true</keep>
 </configuration>
 </execution>
 </executions>
 </plugin>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <inherited>true</inherited>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>

http://localhost:8080/chapter14-service-1.0/CardValidatorService?wsdl

Chapter 14  ■﻿   SOAP WEB SERVICES426

 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

To have a better understanding of what happens behind the scenes, first generate the
artifacts by entering the following Maven command:

mvn clean generate-sources

This command executes the Maven generate-sources life-cycle phase, and thus the
wsimport goal that is defined with it. wsimport connects to the web service WSDL URL, down-
loads it, and generates all the artifacts. Here is the output of the Maven command:

[INFO] [clean:clean]
[INFO] [jaxws:wsimport {execution: default}]
[INFO] Processing: http://localhost:8080/chapter14-service-1.0/➥

 CardValidatorService?wsdl
[INFO] jaxws:wsimport args: [-s, D:\Chapter14-Consumer\target\jaxws\wsimport\➥

 java, -d, D:\Chapter14-Consumer\target\classes, -Xnocompile, ➥

 http://localhost:8080/chapter14-service-1.0/CardValidatorService?wsdl]

parsing WSDL...
generating code...

[INFO]--
[INFO] BUILD SUCCESSFUL
[INFO]--

If you are curious, you can go to the target\jaxws\wsimport\java directory and check the
classes that have been generated. You will find the CardValidator, CardValidatorService, and
CreditCard classes, of course, but also one class for the SOAP request (Validate) and another
one for the response (ValidateResponse). These classes are full of JAXB and JAXW annotations
as they marshall the CreditCard object and connect to the remote web service. You don’t have
to worry about the generated code. The jar file can be compiled and packaged:

mvn package

This creates the chapter14-consumer-1.0.jar file, which contains the Main class that you
wrote plus all the generated classes. This jar is self-contained and can now be run to invoke
the web service.

Running the Main Class
Remember that the consumer Main class uses the @WebServiceRef annotation to get a reference
of the web service endpoint interface injected. This means that the code needs to be executed
in the application client container (ACC). Also remember that the chapter14-consumer-1.0.jar

http://localhost:8080/chapter14-service-1.0/%E2%9E%A5
http://localhost:8080/chapter14-service-1.0/CardValidatorService?wsdl

Chapter 14  ■﻿   SOAP WEB SERVICES 427

file is executable, as you’ve added a Main-Class element to the MANIFEST.MF file. The only thing
that you have to do is to invoke the appclient utility that comes with GlassFish and pass it the
jar file as follows:

appclient -client chapter14-consumer-1.0.jar

This will invoke the web service through HTTP and get a response back telling you
whether the credit card is valid or not.

Summary
Web services are used for business-to-business (B2B) integration and are crucial technology
for SOA. Amazon, eBay, Google, Yahoo!, and many others provide web services for the use of
their customers. And many organizations use web services heavily in house. This chapter has
introduced some relevant standards (UDDI, WSDL, SOAP, XML, etc.) and focused on the Java
EE specifications that cover these standards (JAX-WS, JAXB, WS-Metadata, etc.).

Java Architecture for XML Binding (JAXB) defines a standard to bind Java representations
to XML and vice versa. It provides a high level of abstraction, as it is based on annotations.
Even if JAXB can be used in any kind of Java application, it fits well in the web service space
because any information exchanged is written in XML.

After JAXB, we looked at WSDL and SOAP. These specifications are vital to web services as
they describe the web service interface and the messages exchanged, respectively.

Leaving these specifications behind, JAX-WS follows a simple development model and
uses only a small set of annotations to adjust the Java-to-WSDL mapping. It is then easy to
write a web service (servlet or EJB endpoint) or a web service consumer as simple annotated
POJOs with optional deployment descriptors.

This chapter ended with an example of how to write a web service, compile and package it
with Maven, and generate the consumer’s artifact with the wsimport utility.

C h a p t e r 1 5

RESTful Web Services

The web services stack (SOAP, WSDL, WS-*) described in the previous chapter delivers
interoperability in both message integration and RPC style. With the rise of Web 2.0, new
web frameworks such as Rails have emerged, and a new kind of web service has gained in
popularity: the RESTful web service.

Many key web players like Amazon, Google, and Yahoo! have deprecated their SOAP serv-
ices in favor of RESTful resource-oriented services. Many factors must be taken into account
when making a choice between SOAP web services and RESTful web services.

Representational State Transfer (REST) is an architectural style created based on how the
web works. Applied to web services, it tries to put the Web back into web services. To design
a RESTful web service, you need to know Hypertext Transfer Protocol (HTTP) and Uniform
Resource Identifiers (URIs) and to observe a few design principles. You need to think in terms
of resources so as not to betray the principles of REST.

This chapter focuses on REST, its architecture, and the HTTP protocol. In Java EE 6, REST
has been specified through Java API for RESTful Web Services (JAX-RS), used in this chapter.

Understanding RESTful Web Services
In the REST architectural style, every piece of information is a resource, and these resources
are addressed using Uniform Resource Identifiers (URIs), typically links on the Web. The
resources are acted upon by using a set of simple, well-defined operations. The REST client-
server architectural style is designed to use a stateless communication protocol, typically
HTTP. In REST, clients and servers exchange representations of resources using a defined
interface and protocol. These principles encourage RESTful applications to be simple and
lightweight, and have high performance.

Resources
Resources are given a central role in RESTful architectures. A resource is anything the client
might want to reference or interact with, any piece of information that might be worthwhile
referencing in a hyperlink. It can be stored in a database, a file, and so forth. Avoid as much as
possible exposing abstract concepts as a resource; favor simple objects.

Some resources used in the CD-BookStore application could be

	 •	 A list of Apress Java books

	 •	 The book The Definitive Guide to Grails

	 •	 Ola Bini’s résumé
429

Chapter 15  ■﻿  RE STFUL WEB SERVICES430

Other examples of resources could be

	 •	 The weather records in Lisbon for 2008

	 •	 Your contact information

	 •	 The hundredth Fibonacci number

	 •	 A transaction currently running in a transaction manager

	 •	 The number of friends Joe and Bill have in common

	 •	 Interesting photos uploaded to Flickr in the last 24 hours

	 •	 Interesting photos uploaded to Flickr on 01/01/2009

URI
Resources on the Web are identified by a URI. A URI is a unique identifier for a resource, made
of a name and a structured address indicating where to find this resource. Various types of URIs
exist: WWW addresses, Universal Document Identifiers, Universal Resource Identifiers, and
finally the combination of Uniform Resource Locators (URLs) and Uniform Resource Names
(URNs). Examples of URIs are

	 •	 http://www.apress.com/book/catalog

	 •	 http://www.apress.com/book/catalog/beginning-javaee6-cover.jpg

	 •	 http://www.apress.com/info/jobs

	 •	 http://www.weather.com/weather/2008?location=Paris,France

	 •	 http://www.flickr.com/explore/interesting/2009/01/01

	 •	 http://www.flickr.com/explore/interesting/24hours

	 •	 http://www.movies.com/catalog/titles/movies/123456

	 •	 http://www.movies.com/categories/aventure

URIs should be as descriptive as possible and should target a unique resource. Note that
different URIs identifying different resources may lead to the same data. Actually, at some
point in time, the list of the interesting photos uploaded to Flickr on 01/01/2009 was the same
as the list of the uploaded photos in the last 24 hours, but the information conveyed by the two
corresponding URIs is not the same.

Representations
You might want to get the representation of an object as text, XML, a PDF document, or
another data format. When the client deals with a resource, it is always through its representa-
tion; the resource itself remains on the server. Representation is any useful information about
the state of a resource. For example, the list of Java books mentioned previously has at least
two representations:

http://www.apress.com/book/catalog
http://www.apress.com/book/catalog/beginning-javaee6-cover.jpg
http://www.apress.com/info/jobs
http://www.weather.com/weather/2008?location=Paris
http://www.flickr.com/explore/interesting/2009/01/01
http://www.flickr.com/explore/interesting/24hours
http://www.movies.com/catalog/titles/movies/123456
http://www.movies.com/categories/aventure

Chapter 15  ■﻿  RE STFUL WEB SERVICES 431

	 •	 The HTML page rendered by your browser: http://www.apress.com/book/
catalog?category=32

	 •	 The comma-separated value (CSV) file downloaded to compute the total number of
books: http://www.apress.com/resource/csv/bookcategory?cat=32

How do you choose between the different representations of a given resource? Two solu-
tions are possible. The service could expose one URI per representation. That’s what the
Apress web site does for the list of Java books. However, the two URIs are really different and
do not seem directly related. Following is a neater set of URIs:

	 •	 http://www.apress.com/book/catalog/java

	 •	 http://www.apress.com/book/catalog/java.csv

	 •	 http://www.apress.com/book/catalog/java.xml

The first URI is the default representation of the resource, and additional representations
append their format extension to it: .csv (for text/csv), .xml, .pdf, and so on.

Another solution is to expose one single URI for all representations (e.g., http://www.
apress.com/book/catalog/java) and to rely on the mechanism called content negotiation,
which I’ll discuss in more detail a little later in this chapter.

WADL
While SOAP-based services rely on WSDL to describe the format of possible requests for a
given web service, Web Application Description Language (WADL) is used to expose the possi-
ble interactions with a given RESTful web service. It eases client development, which can load
and interact directly with the resources. This book will not cover WADL, as it is not mandatory
for REST services and is not widely used.

HTTP
HTTP, a protocol for distributed, collaborative, hypermedia information systems, led to the
establishment of the World Wide Web together with URIs, HTML, and the first browsers.
Coordinated by the World Wide Web Consortium (W3C) and Internet Engineering Task Force
(IETF), HTTP is the result of several Requests For Comment (RFC), notably RFC 216, which
defines HTTP 1.1. HTTP is based on requests and responses exchanged between a client and a
server.

Request and Response
A client sends a request to a server, expecting an answer (see Figure 15-1). The message
exchanges are made of an envelope and a body, also called a document or representation.

Figure 15-1. HTTP request and response

http://www.apress.com/book/
http://www.apress.com/resource/csv/bookcategory?cat=32
http://www.apress.com/book/catalog/java
http://www.apress.com/book/catalog/java.csv
http://www.apress.com/book/catalog/java.xml
http://www

Chapter 15  ■﻿  RE STFUL WEB SERVICES432

For instance, here is a type of request sent to a server:

$> curl -v http://www.apress.com/book/catalog?category=32
> GET /book/catalog?category=32 HTTP/1.1
> User-Agent: curl/7.19.3 (i586-pc-mingw32msvc) libcurl/7.19.3 zlib/1.2.3
> Host: www.apress.com
> Accept: */*

This request has several pieces of information sent from the client:

	 •	 The HTTP method, here GET

	 •	 The path, here /book/catalog?category=32

	 •	 Several other request headers

Notice that there is no body as part of the request. Actually a GET never has a body. To the
request, the server will send the following response:

< HTTP/1.1 200 OK
< Date: Mon, 23 Feb 2009 07:28:09 GMT
< Server: Apache/2.0.63 (Unix) PHP/5.2.6
< X-Powered-By: PHP/5.2.6
< Set-Cookie: PHPSESSID=b9ae64b800781d9761670fcf6067a317; path=/
< Expires: Thu, 19 Nov 1981 08:52:00 GMT
< Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
< Pragma: no-cache
< Transfer-Encoding: chunked
< Content-Type: text/html
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <title>
...

This response is made up of the following:

	 •	 A response code: In this case, the response code is 200 OK.

	 •	 Several response headers: In the preceding code, the response headers are Date, Server,
Content-Type. Here the content type is text/html, but it could be any other media such
as XML (application/xml) or images (image/jpeg).

	 •	 Entity body, or representation: The content of the returned web page is the entity body
in this example (here I just showed a fragment of an HTML page).

http://www.apress.com/book/catalog?category=32
http://www.apress.com

Chapter 15  ■﻿  RE STFUL WEB SERVICES 433

nNote  Here I am using cURL (http://curl.haxx.se/) as a client, but I could have used Firefox or any
other web client that deals with HTTP requests. cURL is a command-line tool for transferring files with URL
syntax via protocols such as HTTP, FTP, Gopher, SFTP, FTPS, SCP, TFTP, and many more. You can send
HTTP commands, change HTTP headers, and so on. It is a good tool for simulating a user’s actions at a web
browser.

HTTP Methods
The Web consists of well-identified resources linked together and accessed through simple
HTTP requests. The main types of requests standardized in HTTP are GET, POST, PUT, DELETE.
These are called verbs, or methods. HTTP defines four other verbs that are less frequently
used: HEAD, TRACE, OPTIONS, CONNECT.

GET

GET is a simple read that requests a representation of a resource. GET should be implemented
in a safe way, meaning it shouldn’t change the state of the resource. In addition, GET must
be idempotent, which means it must leave the resource in the same state when called once,
twice, or more. Safety and idempotence bring greater stability. When a client does not get a
response (e.g., due to a network failure), it might renew its requests, and those new requests
will expect the same answer it should have received originally, without corrupting the resource
state on the server.

POST

Given a representation (text, XML, etc.), POST creates a new resource as a subordinate of a
main resource identified by the requested URI. Examples of POST could be appending a mes-
sage to a log file, a comment to a blog, a book to a booklist, and so on. Consequently, POST is
not safe (the resource state is updated) nor idempotent (sending the request twice will result
in two new subordinates). If a resource has been created on the origin server, the response
should be status 201 (Created). Most modern browsers generate only GET and POST.

PUT

A PUT request is intended to update the state of the resource stored under a given URI. If the
request URI refers to a nonexistent resource, the resource will be created under this same URI.
PUT is not safe (because the state of the resource gets updated), but it is idempotent: you can
send the same PUT request many times, and the final resource state will always be the same.

DELETE

A DELETE request deletes the resource. The response to a DELETE may be a status message as
part of the body or no status at all. DELETE is also idempotent but not safe.

http://curl.haxx.se/

Chapter 15  ■﻿  RE STFUL WEB SERVICES434

Others

As mentioned previously, other HTTP actions exist, even if they are less used:

	 •	 HEAD is identical to GET except that the server doesn’t return a message body in the
response. HEAD might be useful for checking the validity of a link or the size of an entity
without transferring it.

	 •	 TRACE echoes back the received request.

	 •	 OPTIONS represents a request for information about the communication options availa-
ble on the request/response chain identified by the URI. This method allows the client
to determine the options and/or requirements associated with a resource, or the capa-
bilities of a server, without implying a resource action or initiating resource retrieval.

	 •	 CONNECT is used in conjunction with a proxy that can dynamically switch to being a
tunnel (a technique by which the HTTP protocol acts as a wrapper for various network
protocols).

Content Negotiation
Content negotiation, described in section 12 of the HTTP standard, is defined as “the process
of selecting the best representation for a given response when there are multiple representa-
tions available.” Clients’ needs, desires, and capabilities vary; the best representation for a
mobile-device user in Japan might not be the best for a feed-reader application in the US.

Content negotiation is based on, but not limited to, the HTTP request headers Accept,
Accept-Charset, Accept-Encoding, Accept-Language, and User-Agent. For example, to get the
CSV representation of Apress Java books, the client application (the user agent) will request
http://www.apress.com/book/catalog/java with a header Accept set to text/csv. You could
also imagine that, based on the Accept-Language header, the content of the CSV document
might be translated by the server into the corresponding language.

Content Types
HTTP uses Internet media types (originally called MIME types) in the Content-Type and Accept
header fields in order to provide open and extensible data typing and type negotiation. Inter-
net media types are divided into five discrete, top-level categories: text, image, audio, video,
and application. These types are further divided into several subtypes (text/plain, text/xml,
text/xhtml, etc.). Some of the most common public content types are as follows:

	 •	 text/html: HTML has been in use in the World Wide Web information infrastructure
since 1990 and specified in various informal documents. The text/html media type was
first officially defined by the IETF HTML working group in 1995. For a complete defini-
tion of the media type, refer to RFC 2854.

	 •	 text/plain: This is the default content type, as it’s used for simple text messages.

	 •	 image/gif, image/jpeg, image/png: This image top-level media type requires a display
device (such as a graphical display, a graphics printer, etc.) to view the information.

http://www.apress.com/book/catalog/java

Chapter 15  ■﻿  RE STFUL WEB SERVICES 435

	 •	 text/xml, application/xml: The W3C issued Extensible Markup Language (XML) 1.0 in
February 1998. For a complete definition of the media type, refer to RFC 3023.

	 •	 application/json: JavaScript Object Notation (JSON) is a lightweight data-interchange
text format independent of the programming language.

Status Codes
Each time a response is received, an HTTP code is associated with it. The specification defines
around 60 status codes. The Status-Code element is a three-digit integer that describes the
context of a response and is part of the response envelope. The first digit specifies one of five
classes of response:

	 •	 1xx: Informational. The request was received, and the process is continuing.

	 •	 2xx: Success. The action was successfully received, understood, and accepted.

	 •	 3xx: Redirection. Further action must be taken in order to complete the request.

	 •	 4xx: Client Error. The request contains bad syntax or cannot be fulfilled.

	 •	 5xx: Server Error. The server failed to fulfill an apparently valid request.

Following are some status codes you might have already come across:

	 •	 200 OK: The request has succeeded. The entity body, if any, contains the representa-
tion of the resource.

	 •	 301 Moved Permanently: The requested resource has been assigned a new, permanent
URI and any future reference to this resource should use one of the returned URIs.

	 •	 404 Not Found: The server has not found anything matching the request URI.

	 •	 500 Internal Server Error: The server encountered an unexpected condition that
prevented it from fulfilling the request.

Caching and Conditional Requests
In most distributed systems, caching is crucial. Caching aims at improving performance by
avoiding unnecessary requests or by reducing the amount of data in responses. HTTP provides
mechanisms to allow caching and make sure cached data is correct. But if the client decides
not to use any caching mechanism, it will always need to request data even if it hasn’t been
modified since the last request.

When a response to a GET is sent, it could include a Last-Modified header indicating the
time that the resource was last modified. The next time the user agent requests this resource,
it will pass this date in the If-Modified-Since header. The web server (or a proxy) will compare
this date with the latest modification date. If the date sent by the user agent is equal or newer,
a 304 Not Modified status code with no response body is returned. Otherwise, the requested
operation is performed or forwarded.

Chapter 15  ■﻿  RE STFUL WEB SERVICES436

But dates can be difficult to manipulate and imply that all the interacting agents are, and
stay, synchronized. The ETag response header solves this issue. The easiest way to think of an
ETag is as an MD5 or SHA1 hash of all the bytes in a representation; if just one byte in the rep-
resentation changes, the ETag will change. The ETag value received in a GET response can be
set later, on an If-Match request header.

Figure 15-2 gives an example of how to use ETags. To get a book resource, you use the GET
action and give it the URI of the resource (GET /book/12345). The server will return a response
with the XML representation of the book, a 200 OK status code, and a generated ETag. The
second time you ask for the same resource, if you pass the ETag value in the request, the server
will not send the representation of the resource, returning instead a 304 Not Modified status
code informing the client that the resource hasn’t changed since last access.

Figure 15-2. Using caching and the 304 Not Modified status code

Requests using the HTTP headers If-Modified-Since, If-Unmodified-Since, If-Match,
If-None-Match, and If-Range are said to be conditional. Conditional requests can save band-
width and CPU (on both the server and client side) by avoiding unnecessary round-trips or
data transmissions. The If-* headers are most often used for GET and PUT requests.

RESTful Web Services Specification
Contrary to SOAP and the WS-* stack, which rely on W3C standards, REST has no standard and
is just a style of architecture with design criteria. REST applications rely heavily on many other
standards:

	 •	 HTTP

	 •	 URI, URL

	 •	 XML, JSON, HTML, GIF, JPEG, and so forth (resource representations)

The Java side has been specified through JAX-RS, but REST is like a design pattern: a
reusable solution to a common problem that can be implemented by several languages.

A Brief History of REST
The term REST was first introduced by Roy Thomas Fielding in Chapter 5 of his PhD thesis,
Architectural Styles and the Design of Network-based Software Architectures (University of
California, Irvine, 2000, http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm).
The dissertation is a retrospective explanation of the architecture chosen to develop the Web.

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Chapter 15  ■﻿  RE STFUL WEB SERVICES 437

In his thesis, Fielding takes a look at the parts of the World Wide Web that work very well and
extracts design principles that could make any other distributed hypermedia system—whether
related to the Web or not—as efficient.

The original motivation for developing REST was to create an architectural model of the
Web. Roy T. Fielding is also one of the authors of the HTTP specification, so it’s not surprising
that HTTP fits quite well the architectural design he described in his dissertation.

JAX-RS 1.1
To write RESTful web services, you only need a client and a server supporting HTTP. Any
browser and an HTTP servlet container will do the job at the cost of some XML configura-
tion and glue-code pain. At the end, this code may be barely readable and maintainable. This
is when JAX-RS comes to the rescue. The first version of the JAX-RS specification, finalized
in October 2008, defines a set of APIs that promotes the REST architecture style. It is the JCP
standard for RESTful web services (JSR 311). Through annotations, it simplifies the implemen-
tation of RESTful web services and brings about productivity. The specification only covers the
server-side aspect of REST.

What’s New in JAX-RS 1.1?
JAX-RS 1.1 is a maintenance release focusing on integration with Java EE 6 and its new fea-
tures. The major novelties of JAX-RS 1.1 are as follows:

	 •	 It provides support for stateless session beans as root resources.

	 •	 External resources (persistence manager, data sources, EJBs, etc.) are allowed to be
injected into a REST resource.

	 •	 JAX-RS annotations can be applied to a bean’s local interface or directly to a
no-interface bean.

Reference Implementation
Jersey is Sun’s official reference implementation of JAX-RS. It is an open source project under
dual CDDL and GPL licenses. Jersey is extensible through its API and also provides a client API
(which is not covered by the specification).

Other implementations of JAX-RS are also available such as CXF (Apache), RESTEasy
(JBoss), and Restlet (a senior project that existed even before JAX-RS was finalized).

The REST Approach
As I mentioned before, REST is a set of general design constraints based on HTTP. However,
this chapter focuses on web services, and since REST is derived from the Web, I’ll start with
a real-life web-browsing experience before going over the principles that drive the Web. The
Web has become a main source of information and is part of our everyday tool set. You are
probably very familiar with it, and this familiarity should help you in understanding REST
concepts and properties.

Chapter 15  ■﻿  RE STFUL WEB SERVICES438

From the Web to Web Services
We know how the Web works, so why should web services behave differently? After all, serv-
ices also often exchange uniquely identified resources, linked with others like hyperlinks. Web
architecture has proven its scalability for years; why reinvent the wheel?

To create, update, and delete a book resource, why not use the common HTTP verbs? For
example:

	 •	 Use POST on data (in XML, JSON, or text format) to create the book resource with the
URI http://www.apress.com/books/. Once created, the response sends back the URI of
the new resource: http://www.apress.com/books/123456.

	 •	 Use GET to read the resource (and possible links to other resources from the entity
body) at http://www.apress.com/books/123456.

	 •	 Use PUT on data to update the book resource at http://www.apress.com/books/123456.

	 •	 Use DELETE to delete the resource at http://www.apress.com/books/123456.

By using HTTP verbs, we have access to all possible Create, Read, Update, Delete (CRUD)
actions on a resource.

A Web-Browsing Experience
How would you proceed to reach the list of Java technology books at Apress? You point your
browser to the Apress web site: http://www.apress.com. Although it is likely that this page will
not contain the exact information you’re seeking, you’re expecting it to give you access in one
way or another to the Java book list. The home page offers a search engine on all Apress books,
but there is also a book directory sorted by technologies. Click the Java node, and the hyper-
media magic happens: here is the full list of Apress Java books. Quite a long list actually, and
although the number is not provided, the link to the CSV format and your command-line skills
will do the math in a few clock cycles (there are 144 books under the Java category):

curl http://www.apress.com/resource/csv/bookcategory?cat=32 | ➥

 sed -n 2~1p | wc -l
(..)
144

Say that you save the link in your favorite bookmark manager, and in going through the
book list, The Definitive Guide to Grails, Second Edition by Graeme Rocher and Jeff Brown cap-
tures your attention. The hyperlink on the book title takes you to the book page where you can
read the abstract, author biography, and so on, and you notice one of the books listed in the
Related titles section might be as valuable for your current project. You would like to compare
Graeme Rocher’s book with Practical JRuby on Rails Web 2.0 Projects: Bringing Ruby on Rails
to Java by Ola Bini. Apress book pages give you access to a more concrete representation of its
books in the form of online previews: open a preview, go through the table of contents, and
make your choice.

Here is what we do on a day-to-day basis with our browsers. REST applies the same prin-
ciples to your services where books, search results, a table of contents, or a book’s cover can be
defined as resources.

http://www.apress.com/books/
http://www.apress.com/books/123456
http://www.apress.com/books/123456
http://www.apress.com/books/123456
http://www.apress.com/books/123456
http://www.apress.com
http://www.apress.com/resource/csv/bookcategory?cat=32

Chapter 15  ■﻿  RE STFUL WEB SERVICES 439

Uniform Interface
One of the main constraints that makes an architecture RESTful is the use of a uniform inter-
face to manage your resources. Pick whatever interface suits you, but use it in the same way all
across the board, from resource to resource, from service to service. Never stray from it or alter
the original meaning. By using a uniform interface, “the overall system architecture is simpli-
fied and the visibility of interactions is improved” (Roy Thomas Fielding, Architectural Styles
and the Design of Network-based Software Architectures). Your services become part of a com-
munity of services using the exact same semantic.

The de facto web protocol is HTTP, which is a document-based standardized request/
response protocol between a client and a server. HTTP is the uniform interface of RESTful web
services. Web services built on SOAP, WSDL, and other WS-* standards also use HTTP as the
transport layer, but they leverage only a very few of its capabilities. You have to discover the
semantic of the service by analyzing the WSDL and then invoke the right methods. RESTful
web services have a uniform interface (HTTP verbs and URIs), so once you know where the
resource is (URI), you can invoke the HTTP verbs (GET, POST, etc.).

In addition to familiarity, a uniform interface promotes interoperability between applica-
tions; HTTP is widely supported, and the number of HTTP client libraries guarantees that you
won’t have to deal with communication issues.

Addressability
The second tenet to follow when designing RESTful web services is addressability. Your web
service should make your application as addressable as possible, which means that every
valuable piece of information of your application should be a resource and have a URI, mak-
ing that resource easily reachable. It is the only piece of data you need to publish to make the
resource accessible, so your business partner won’t have some guesswork to do in order to
reach the resource.

For example, you’re dealing with a bug in your application, and your investigations
lead you to line 42 of the class CreditCardValidator.java as the place where the bug occurs.
Because you’re not responsible for this domain of the application, you want to file an issue so
a qualified person will take care of it. How would you point her to the incriminating line? You
could say “Go to line 42 of the class CreditCardValidator,” or, if your source code is address-
able through a repository browser, you could save the URI of the line itself in the bug report.
This raises the issue of defining the granularity of your RESTful resources in your application:
it could be at the line, method, or class level, and so forth.

Unique URIs make your resources linkable, and because they are exposed through a uni-
form interface, everyone knows exactly how to interact with them, allowing people to use your
application in ways you would have never imagined.

Connectedness
In graph theory, a graph is called connected if every pair of distinct vertices in the graph can
be connected through some path. It is said to be strongly connected if it contains a direct path
from u to v and a direct path from v to u for every pair of vertices u,v. REST advocates that
resources should be as connected as possible. As the now famous formulation goes: “Hyper-
media as the engine of application state.”

Chapter 15  ■﻿  RE STFUL WEB SERVICES440

Once again, this daunting statement resulted from an examination of the success of the
Web. Web pages embed links to navigate through pages in a logical and smooth manner
and, as such, the Web is very well connected. If there is a strong relationship between two
resources, they should be connected. REST states that web services should also take advan-
tage of hypermedia to inform the client of what is available and where to go. It promotes the
discoverability of services. From a single URI, a user agent accessing a well-connected web
service could discover all available actions, resources, their various representations, and so
forth.

For instance, when a user agent looks up the representation of a CD (see Listing 15-1),
this representation could have not only the names of the artist, but also a link, or a URI, to the
biography. It’s up to the user agent to actually retrieve it or not. The representation could also
link to other representations of the resource or available actions.

Listing 15-1. A CD Representation Connected to Other Services

<cd>
 <title>Ella and Louis</title>
 <year ref='http://music.com/year/1956'>1956</year>
 <artist ref='http://music.com/artists/123'>Ella Fitzgerald</artist>
 <artist ref='http://music.com/artists/456'>Louis Armstrong</artist>
 <link rel="self" type="text/json"
 href="http://music.com/album/789"/>
 <link rel="self" type="text/xml"
 href="http://music.com/album/789"/>
 <link rel="http://music.com/album/comments" type="text/xml"
 href="http://music.com/album/789/comments"/>
</cd>

Another crucial aspect of the hypermedia principle is the state of the application, which
must be led by the hypermedia. In short, the fact that the web service provides a set of links
enables the client to move the application from one state to the next by simply following a link.

In the preceding XML snippet, the client could change the state of the application by com-
menting on the album. The list of comments on the album is a resource addressable with the
URI http://music.com/album/789/comments. Because this web service uses a uniform interface,
once the client knows the URI format, the available content types and the data format, it will
know exactly how to interact with it: a GET will retrieve the list of existing comments, a POST will
create a new comment, and so on. From this single initial request, the client can take many
actions: the hypermedia drives the state of the application.

Statelessness
The last feature of REST is statelessness, which means that every HTTP request happens in
complete isolation, as the server should never keep track of requests that were executed. For
the sake of clarity, resource state and application state are usually distinguished. The resource
state must live on the server and is shared by everybody, while the application state must
remain on the client and is its sole property. Going back to the example in Listing 15-1, the
application state is that the client has fetched a representation of the album Ella and Louis,

http://music.com/year/1956
http://music.com/artists/123
http://music.com/artists/456
http://music.com/album/789"/
http://music.com/album/789"/
http://music.com/album/comments
http://music.com/album/789/comments"/
http://music.com/album/789/comments

Chapter 15  ■﻿  RE STFUL WEB SERVICES 441

but the server should not hold onto this information. The resource state is the album informa-
tion itself; the server should obviously maintain this information. The client may change the
resource state. If the shopping cart is a resource with restricted access to just one client, the
application needs to keep track of the shopping cart ID in the client session.

Statelessness comes with many advantages such as better scalability: no session informa-
tion to handle, no need to route subsequent requests to the same server, failure handling, and
so on. If you need to keep state, the client has to do extra work to store it.

Java API for RESTful Web Services
Some of the low-level concepts (such as the HTTP protocol) might have you wondering how
the code would look when developing a resource; you don’t have to write plumbing code to
digest HTTP requests, nor create HTTP responses by hand. JAX-RS is a very elegant API allow-
ing you to describe a resource with only a few annotations. Resources are POJOs that have at
least one method annotated with @javax.ws.rs.Path. Listing 15-2 shows a typical resource.

Listing 15-2. A Simple Book Resource

@Path("/book")
public class BookResource {

 @GET
 @Produces("text/plain")
 public String getBookTitle() {
 return "H2G2";
 }
}

The BookResource is a Java class annotated with @Path, indicating that the resource will
be hosted at the URI path /book. The getBookTitle() method is marked to process HTTP GET
requests (using @GET annotation) and produces text (the content is identified by the MIME
Media text/plain). To access this resource, you need an HTTP client such as a browser and
an HTTP GET method to point to the URL http://www.myserver.com/book.

As writing a resource with JAX-RS is easy, let’s explore further the JAX-RS API.

The JAX-RS Model
From Listing 15-2, you can see that the REST service doesn’t implement any interface nor
extend any class; the only mandatory annotation to turn a POJO into a REST service is @Path.
JAX-RS relies on configuration by exception, so it has a set of annotations to configure the
default behavior. Following are the requirements to write a REST service:

	 •	 The class must be annotated with @javax.ws.rs.Path.

	 •	 To add EJB capabilities to a REST service, the class has to be annotated with @javax.
ejb.Stateless.

	 •	 The class must be defined as public, and it must not be final or abstract.

mailto:@javax.ws.rs.Path
http://www.myserver.com/book
mailto:@javax.ws.rs.Path

Chapter 15  ■﻿  RE STFUL WEB SERVICES442

	 •	 Root resource classes (classes with a @Path annotation) must have a default public con-
structor. Nonroot resource classes do not require such a constructor.

	 •	 The class must not define the finalize() method.

JAX-RS is HTTP-centric by nature and has a set of clearly defined classes and annotations
to deal with HTTP and URIs. A resource can have several representations, so the API provides
support for a variety of content types and uses JAXB to marshall and unmarshall XML and
JSON representations into objects. JAX-RS is also independent on the container, so resources
can be deployed in GlassFish, of course, but also in a variety of servlet containers.

How to Write a REST Service
REST services can be stateless session beans, allowing transactional access to a persistent layer
(JPA entities), as shown in Listing 15-3.

Listing 15-3. A Book Resource Creating and Retrieving Books from the Database

@Path("books")
@Stateless
@Produces({"application/xml", "application/json"})
@Consumes({"application/xml", "application/json"})
public class BookResource {

 @Context
 private UriInfo uriInfo;
 @PersistenceContext(unitName = "chapter15PU")
 private EntityManager em;

 @GET
 public List<Book> getAllBooks() {
 Query query = em.createNamedQuery("findAllBooks");
 List<Book> books = query.getResultList();
 return books;
 }

 @POST
 public Response createNewBook(JAXBElement<Book> bookJaxb) {
 Book book = bookJaxb.getValue();
 em.persist(book);
 URI bookUri = uriInfo.getAbsolutePathBuilder().path(➥

 book.getId().toString()).build();
 return Response.created(bookUri).build();
 }
}

The code in Listing 15-3 represents a REST service that can consume and produce XML
and JSON representations of a book. The getAllBooks() method retrieves the list of books
from the database and returns an XML or a JSON representation (using content negotiation)

Chapter 15  ■﻿  RE STFUL WEB SERVICES 443

of this list, accessible through a GET method. The createNewBook() method takes an XML or
a JSON representation of a book and persists it to the database. This method is invoked with
an HTTP POST and returns the URI of the newly created book, following a very simple JAX-RS
model and a set of powerful annotations.

URI Definition
The @Path annotation’s value is a relative URI path. When used on classes, these are referred to
as root resources, providing the roots of the resource tree and access to subresources.

@Path("/customers")
public class CustomersResource {

 @GET
 public List getCustomers() {
 // ...
 }
}

You can also use URI path templates with variables embedded within the URI syntax.
Those variables are evaluated at runtime. The Javadoc for the @Path annotation describes the
template syntax.

@Path("/customers/{customername}")

@Path may also be used on methods of root resources, which can be useful to group
together common functionalities for several resources as shown in Listing 15-4 (you may
ignore for the moment the @GET, @POST, and @DELETE annotations in the listing, as they will be
described later in the “Methods or the Uniform Interface” section).

Listing 15-4. An Item Resource with Several @Path Annotations

@Path("/items")
public class ItemsResource {

 @GET
 public List<Item> getListOfItems() {
 // ...
 }

 @GET
 @Path("{itemid}")
 public Item getItem(@PathParam("itemid") String itemid) {
 // ...
 }

 @PUT
 @Path("{itemid}")
 public void putItem(@PathParam("itemid") String itemid,➥

 Item item) {

Chapter 15  ■﻿  RE STFUL WEB SERVICES444

 // ...
 }

 @DELETE
 @Path("{itemid}")
 public void deleteItem(@PathParam("itemid") String itemid) {
 // ...
 }

 @GET
 @Path("/books/")
 public List<Book> getListOfBooks() {
 // ...
 }

 @GET
 @Path("/books/{bookid}")
 public Book getBook(@PathParam("bookid") String bookid) {
 // ...
 }
}

If @Path exists on both the class and method, the relative path to the resource method is a
concatenation of the class and method. For example, to get a book by its ID, the path will be
/items/books/1234. When requesting the root resource /items, the only method without @Path
will be selected (getListOfItems()). When requesting /items/books, the getListOfBooks()
method will be invoked. If @Path("/items") only existed on the class, and not on any methods,
the path to access each method would be the same. The only way to differentiate them would
be the HTTP verb (GET, PUT, etc.) and the content negotiation (text, XML, etc.).

Extracting Parameters
You need to extract information about URIs and requests when dealing with them. Listing 15-4
showed how to get a parameter out of the path with @javax.ws.rs.PathParam. JAX-RS provides
a rich set of annotations to extract the different parameters that a request could send
(@QueryParam, @MatrixParam, @CookieParam, @HeaderParam, and @FormParam).

The @PathParam annotation is used to extract the value of a URI template parameter; the
following code allows you to extract the customer ID (98342) out of the http://www.myserver.
com/customers/98342 URI:

@Path("/customers")
public class CustomersResource {
 @GET
 public Customer getCustomer(@PathParam("customerid") customerid) {
 // ...
 }
}

mailto:@javax.ws.rs.PathParam
http://www.myserver

Chapter 15  ■﻿  RE STFUL WEB SERVICES 445

The @QueryParam annotation extracts the value of a URI query parameter. For example,
the following code allows you to extract the ZIP code parameter (19870) out of the http://
www.myserver.com/customers?zip=19870 URI:

@Path("/customers")
public class CustomersResource {
 @GET
 public Customer getCustomerByZipCode(@QueryParam("zip") Long zip) {
 // ...
 }
}

The @MatrixParam annotation acts like @QueryParam, except it extracts the value of a
URI matrix parameter (; is used as a delimiter instead of ?). For example, you’ll be able to
extract the author’s name (Goncalves) out of this URI: http://www.myserver.com/products/
books;author=Goncalves.

Two other annotations are related to the innards of HTTP, things you don’t see directly
in URIs: cookies and HTTP headers. @CookieParam extracts the value of a cookie, while
@HeaderParam extracts the value of a header field. The following code extracts the session ID
from the cookie:

@Path("/products")
public class ItemsResource {
 @GET
 public Book getBook(@CookieParam("sessionid") int sessionid) {
 // ...
 }
}

The @FormParam annotation specifies that the value of a parameter is to be extracted from a
form in a request entity body. @FormParam is not required to be supported on fields or properties.

With all these annotations you can add a @DefaultValue annotation to define the default
value for a parameter you’re expecting. The default value is used if the corresponding meta-
data is not present in the request. In the following code, if the query parameter age is not in
the request, the default value 50 is set:

@Path("/customers")
public class CustomersResource {
 @GET
 public Response getCustomers(@DefaultValue("50") @QueryParam("age")➥

 int age) {
 // ...
 }
}

Consuming and Producing Content Types
With REST, a resource can have several representations; a book can be represented as a web
page, XML data, or an image showing the album cover. The @javax.ws.rs.Consumes and

http://www.myserver.com/customers?zip=19870
http://www.myserver.com/customers?zip=19870
http://www.myserver.com/products/
mailto:@javax.ws.rs.Consumes

Chapter 15  ■﻿  RE STFUL WEB SERVICES446

@javax.ws.rs.Produces annotations may be applied to a resource where several representa-
tions are possible. It defines the media types of the representation exchanged between the
client and the server. Use of these annotations on a resource method overrides any on the
resource class for a method argument or return type. In the absence of either of these annota-
tions, support for any media type (*/*) is assumed. By default, CustomerResource produces
plain text representations that are overridden in some methods (see Listing 15-5).

Listing 15-5. A Customer Resource with Several Representations

@Path("/customers")
@Produces("text/plain")
public class CustomersResource {

 @GET
 public String getAsPlainText() {
 // ...
 }

 @GET
 @Produces("text/html")
 public String getAsHtml() {
 // ...
 }

 @GET
 @Produces("application/json")
 public List<Customer> getAsJson() {
 // ...
 }

 @PUT
 @Consumes("text/plain")
 public void putBasic(String customer) {
 // ...
 }

 @POST
 @Consumes("application/xml")
 public Response createCustomer(InputStream is) {
 // ...
 }
}

If a resource is capable of producing more than one Internet media type, the resource
method chosen will correspond to the most acceptable media type, as declared by the client
in the Accept header of the HTTP request. For example, if the Accept header is

Accept: text/plain

mailto:@javax.ws.rs.Produces

Chapter 15  ■﻿  RE STFUL WEB SERVICES 447

and the URI is /customers, the getAsPlainText() method will be invoked. The client could
have used the following HTTP header:

Accept: text/plain; q=0.8, text/html

This header declares that the client can accept media types of text/plain and text/html
but prefers the latter using the quality factor of 0.8 (“I prefer text/html, but send me
text/plain if it is the best available after an 80% markdown in quality”). By including such
a header and pointing at the /customers URI, the getAsHtml() method will be invoked.

In Listing 15-5, the getAsJson() method returns a representation of type application/
json. JSON is a lightweight data-interchange format that is less verbose and more readable
than XML. Listing 15-6 shows a list of customers in JSON.

Listing 15-6. A JSON Representation of Customers

{"customers": {
 "id": "0",
 "version": "1",
 "customer": [
 {
 "firstName": "Alexis",
 "lastName": "Midon",
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "postalCode": 10021
 },
 "phoneNumbers": [
 "212 555-1234",
 "646 555-4567"
]
 },
 {
 "firstName": "Sebastien",
 "lastName": "Auvray",
 "address": {
 "streetAddress": "2 Rue des Acacias",
 "city": "Paris",
 "postalCode": 75015
 },
 "phoneNumbers": [
 "+33 555-1234",
]
 }
]
}}

Jersey will convert the list of customers into JSON for you, using the built-in
MessageBodyReader and MessageBodyWriter, which are entity providers.

Chapter 15  ■﻿  RE STFUL WEB SERVICES448

nNote  Jersey adds a BadgerFish mapping of JAXB XML to JSON. BadgerFish (http://
badgerfish.ning.com/) is a convention for translating an XML document into a JSON object so it’s easy to
manipulate within JavaScript.

Entity Provider
When entities are received in requests or sent in responses, the JAX-RS implementation needs
a way to convert the representations to a Java type and vice versa. This is the role of entity pro-
viders that supply mapping services between representations and their associated java types.
An example is JAXB, which maps an object to an XML representation and vice versa. Entity
providers come in two flavors: MessageBodyReader and MessageBodyWriter.

To map a request body to a Java type, a class must implement the javax.ws.rs.ext.
MessageBodyReader interface and be annotated with @Provider. By default, the implementa-
tion is assumed to consume all media types (*/*). The annotation @Consumes might be used to
restrict the supported media types. The code in Listing 15-7 takes an XML stream (represented
by a javax.xml.bind.Element object) and converts it into a Customer object.

Listing 15-7. A Provider Reading an XML Stream and Creating a Customer Entity

@Provider
@Consumes("application/xml")
public class CustomerReader implements MessageBodyReader<Element> {

 public boolean isReadable(Class<?> type) {
 return Element.class.isAssignableFrom(type);
 }

 public Element readFrom(Class<Element> customer, MediaType mediaType,
 MultivaluedMap<String, String> headers,
 InputStream inputStream) throws IOException {
 Document doc = getParser().parse(inputStream);
 Element node = doc.getDocumentElement();
 if (node.getLocalName().equals("customer")) {
 return el;
 } else {
 throw new IOException("Unexpected payload!");
 }
 }
}

In the same way, a Java type could be mapped to a response body. A class willing to do
that must implement the javax.ws.rs.ext.MessageBodyWriter interface and be annotated with
@Provider. The annotation @Produces specifies the supported media types. Listing 15-8 is a
snippet showing how to convert a Customer entity into a plain text HTTP body.

http://badgerfish.ning.com/
http://badgerfish.ning.com/

Chapter 15  ■﻿  RE STFUL WEB SERVICES 449

Listing 15-8. A Provider Producing a Text Representation of a Customer Entity

@Provider
@Produces("text/plain")
public class CustomerWriter implements MessageBodyWriter<Customer> {

 public boolean isWriteable(Class<?> type) {
 return Customer.class.isAssignableFrom(type);
 }

 public void writeTo(Customer customer, MediaType mediaType,
 MultivaluedMap<String, Object> headers,
 OutputStream outputStream) throws IOException {
 outputStream.write(customer.get(id).getBytes());
 // ...
 }
}

MessageBodyReader and MessageBodyWriter implementations may throw a
WebApplicationException if they can’t produce any representation. For common cases,
the JAX-RS implementation comes with a set of default entity providers (see Table 15-1).

Table 15-1. Default Providers of the JAX-RS Implementation

Type	 Description

byte[]	 All media types (*/*).

java.lang.String	 All media types (*/*).

java.io.InputStream	 All media types (*/*).

java.io.Reader	 All media types (*/*).

java.io.File	 All media types (*/*).

javax.activation.DataSource	 All media types (*/*).

javax.xml.transform.Source	� XML types (text/xml, application/xml, and
application/-*+xml).

javax.xml.bind.JAXBElement	� JAXB class XML media types (text/-xml, application/
xml, and application/*+xml).

MultivaluedMap<String,String>	 Form content (application/x-www-form-urlencoded).

javax.ws.rs.core StreamingOutput	 All media types (*/*), MessageBodyWriter only.

Methods or the Uniform Interface
You’ve seen how the HTTP protocol works with its requests, responses, and action methods
(GET, POST, PUT, etc.). JAX-RS defines these common HTTP methods using annotations: @GET,
@POST, @PUT, @DELETE, @HEAD, and @OPTIONS. Only public methods may be exposed as resource
methods. Listing 15-9 shows a customer resource exposing CRUD methods.

Chapter 15  ■﻿  RE STFUL WEB SERVICES450

Listing 15-9. A Customer Resource Exposing CRUD Operations

@Path("/customers")
public class CustomersResource {

 @GET
 public List<Customer> getListOfCustomers() {
 // ...
 }

 @POST
 @Consumes("application/xml")
 public Response createCustomer(InputStream is) {
 // ...
 }

 @PUT
 @Path("{customerid}")
 @Consumes("application/xml")
 public Response updateCustomer(@PathParam("customerid") String ➥

 customerId, InputStream is) {
 // ...
 }

 @DELETE
 @Path("{customerid}")
 public void deleteCustomer(@PathParam("customerid") String customerId) {
 // ...
 }
}

When a resource method is invoked, parameters annotated with one of the extractor
annotations seen previously are filled. The value of a nonannotated parameter (called an
entity parameter) is mapped from the request entity body and converted by an entity provider.

Methods may return void, Response, or another Java type. Response is used when addi-
tional metadata needs to be provided; for example, when you create a new customer, you
might need to send back the URI of this customer.

Contextual Information
When a request is being processed, the resource provider needs contextual information to
perform the request properly. The @javax.ws.rs.core.Context annotation is intended to inject
into an attribute or a method parameter the following classes: HttpHeaders, UriInfo, Request,
SecurityContext, and Providers. For example, Listing 15-10 shows the code that gets injected
a UriInfo so it can build URIs.

mailto:@javax.ws.rs.core.Context

Chapter 15  ■﻿  RE STFUL WEB SERVICES 451

Listing 15-10. A Customer Resource Getting a UriInfo

@Path("/customers")
public class CustomersResource {

 @Context
 UriInfo uriInfo;

 @GET
 @Produces("application/json")
 public JSONArray getListOfCustomers() {
 JSONArray uriArray = new JSONArray();
 for (Customer customer : customerDAO.findAll()) {
 UriBuilder ub = uriInfo.getAbsolutePathBuilder();
 URI userUri = ub.path(userEntity.getCustomerId()).build();
 uriArray.put(userUri.toASCIIString());
 }
 return uriArray;
 }
}

Headers
As you saw earlier with HTTP, information is transported between the client and the server
not only in the entity body, but also in the headers (Date, Server, Content-Type, etc.). HTTP
headers take part in the uniform interface, and RESTful web services use them in their original
meanings. As a resource developer, you may need to access HTTP headers; that’s what the
javax.ws.rs.core.HttpHeaders class serves. An instance of HttpHeaders can be injected into an
attribute or a method parameter using the @Context annotation, as the HttpHeaders class is a
map with helper methods to access the header values in a case-insensitive manner.

If the service provides localized resources, the Accept-Language header can be extracted as
follows:

@GET
@Produces{"text/plain"}
public String get(@Context HttpHeaders headers) {
 List<java.util.Locale> locales = headers.getAcceptableLanguages()
 // or headers.getRequestHeader("accept-language")
 ...
}

Building URIs
Hyperlinks are a central aspect of REST applications. In order to evolve through the applica-
tion states, RESTful web services need to be agile at managing transition and URI building.
JAX-RS provides a javax.ws.rs.core.UriBuilder that aims at replacing java.net.URI for mak-
ing it easier to build URI in a safe manner. UriBuilder has a set of methods that can be used to
build new URIs or build from existing URIs. The code in Listing 15-11 returns an array of URIs.

Chapter 15  ■﻿  RE STFUL WEB SERVICES452

Listing 15-11. A Method Returning an Array of URIs

@Path("/customers/")
public class CustomersResource {

 @Context UriInfo uriInfo;

 @GET
 @Produces("application/json")
 public JSONArray getCustomersAsJsonArray() {
 JSONArray uriArray = new JSONArray();
 for (UserEntity userEntity : getUsers()) {
 UriBuilder ub = uriInfo.getAbsolutePathBuilder();
 URI userUri = ub.path(userEntity.getUserid()).build();
 uriArray.put(userUri.toASCIIString());
 }
 return uriArray;
 }
}

UriBuilder can also be used to easily translate URI templates. For example, the URI
http://www.myserver.com/products/books?author=Goncalves can be obtained as follows:

UriBuilder.fromUri("http://www.myserver.com/")
 .path("{a}/{b}").queryParam("author", "{value}")
 .build("products", "books", "Goncalves");

Exception Handling
The code so far was executed in a happy world where everything goes fine and no exception
management has been necessary. Unfortunately, life is not that perfect, and sooner or later
you have to face a resource being blown up either because the data you receive is not valid or
because pieces of the network are not reliable.

In a resource provider, at any time you can throw a WebApplicationException or sub-
classes of it (see Listing 15-12). The exception will be caught by the JAX-RS implementation
and converted into an HTTP response. The default error is a 500 with a blank message, but the
class javax.ws.rs.WebApplicationException offers various constructors so you can pick a spe-
cific status code (defined in the enumeration javax.ws.rs.core.Response.Status) or an entity.

Listing 15-12. A Method Throwing Exceptions

@Path("customers/{id}")
public Customer getCustomer(@PathParam("id") int id) {
 if(id < 1)
 throw new WebApplicationException(

http://www.myserver.com/products/books?author=Goncalves
http://www.myserver.com/

Chapter 15  ■﻿  RE STFUL WEB SERVICES 453

 Response.status(400).entity("Id must be a positive integer!"));

 Item i = em.find(Item.class, id);
 if (i == null)
 throw new WebApplicationException(Response.Status.NOT_FOUND);
 return i;
}

To keep your code DRY (which stands for Don’t Repeat Yourself), you can supply excep-
tion mapping providers. An exception mapping provider maps an exception to a Response. If
this exception is thrown, the JAX-RS implementation will catch it and invoke the correspond-
ing exception mapping provider. An exception mapping provider is an implementation of
ExceptionMapper<E extends java.lang.Throwable>, annotated with @Provider (see Listing
15-13).

Listing 15-13. An Exception Mapping

@Provider
public class EntityNotFoundMapper implements
 ExceptionMapper<javax.persistence.EntityNotFoundException> {

 public Response toResponse(javax.persistence.EntityNotFoundException ex){
 return Response.status(404). entity(ex.getMessage()).➥

 type("text/plain").build();
 }
}

Unchecked exceptions and errors that do not fall into the two previous cases will be
rethrown like any other normal Java unchecked exception.

Life Cycle
When a request comes in, the targeted resource is resolved, and a new instance of the match-
ing root resource class is created. Thus the life cycle of a root resource class is per request. As
a result, a resource class does not have to worry about concurrency and can use instance vari-
ables safely.

If deployed in a Java EE container (servlet or EJB), JAX-RS resource classes and providers
may also make use of the JSR 250 life-cycle management and security annotations:
@PostConstruct, @PreDestroy, @RunAs, @RolesAllowed, @PermitAll, @DenyAll, and @DeclareRoles.
The life cycle of a resource can use @PostConstruct and @PreDestroy to add business logic after
the resource is created or before it is destroyed. Figure 15-3 shows the life cycle that is equiva-
lent to all stateless components in Java EE.

Chapter 15  ■﻿  RE STFUL WEB SERVICES454

Figure 15-3. Resource life cyle

Putting It All Together
Let’s put these concepts together and write a book resource, package and deploy it in
GlassFish, and test it with cURL. The idea is to have a Book entity that maps to a database and
a BookResource that gives a RESTful representation of the book. The BookResource is also a
stateless session bean that allows transactional demarcation with the entity manager for
CRUD operations. Once deployed, you will be able to create, retrieve, or delete books using
HTTP methods with cURL and have both XML and JSON representations.

The example follows the Maven directory structure and packages all the classes into a war
file (chapter15-resource-1.0.war). The classes have to be placed in the following directories:

	 •	 src/main/java: The directory for the Book entity and BookResource RESTful
web service

	 •	 src/main/resources: The persistence.xml file used by the resource that maps the Book
entity to the Derby database

	 •	 src/webapp/WEB-INF: The web.xml file used to declare the Jersey servlet

	 •	 pom.xml: The Maven Project Object Model (POM) describing the project and its
dependencies

Writing the Book Entity
By now you understand the code of the Book entity, but there is one very important element
to notice: this entity is also annotated with the JAXB @XmlRootElement annotation (see
Listing 15-14), which allows it to have an XML representation of a book.

Listing 15-14. A Book Entity with a JAXB Annotation

@Entity
@XmlRootElement
@NamedQuery(name = "findAllBooks", query = "SELECT b FROM Book b")
public class Book {

Chapter 15  ■﻿  RE STFUL WEB SERVICES 455

 @Id @GeneratedValue
 private Long id;
 @Column(nullable = false)
 private String title;
 private Float price;
 @Column(length = 2000)
 private String description;
 private String isbn;
 private Integer nbOfPage;
 private Boolean illustrations;

 // Constructors, getters, setters
}

This entity also has to be packaged with a persistence.xml file (not shown here for sim-
plicity).

Writing the BookResource
The BookResource is a RESTful web service, implemented as a stateless session bean, using an
entity manager to create, delete, and retrieve books.

Header
The header of the BookResource is important as it uses several metadata annotations. In JAX-
RS, users can access resources by publishing a URI. The @Path("books") annotation indicates
the path of the resource (the URL used to access it)—in this case, it’s something like http://
localhost:8080/books.

The @Produces and @Consumes annotations define the default content type that this
resource produces or consumes: XML and JSON. You can override this content type on a per-
method basis. Finally, we find the @Stateless annotation that you’ve seen in Chapter 7, which
informs the container that this resource should also be treated as an EJB and allows transac-
tion demarcation when accessing the database. This resource gets injected a reference to an
entity manager and a UriInfo.

@Path("books")
@Produces({"application/xml", "application/json"})
@Consumes({"application/xml", "application/json"})
@Stateless
public class BookResource {

 @PersistenceContext(unitName = "chapter15PU")
 private EntityManager em;
 @Context
 private UriInfo uriInfo;

Creating a New Book
Following the REST semantic, we used an HTTP POST method to create a new resource in XML
or JSON, as specified in the header with the @Consumes annotation. By default every method
consumes XML or JSON, and this is true for the createNewBook() method. As already seen in

http://localhost:8080/books
http://localhost:8080/books

Chapter 15  ■﻿  RE STFUL WEB SERVICES456

Listing 15-3, this method takes a JAXBElement as a parameter; remember that the Book entity
is also a JAXB object, and once the XML has been marshalled to a Book object (bookJaxb.
getValue()), the entity manager is used to persist the book.

This method returns a Response, which is the URI of the newly created book. We could
return a status code of 200 OK, indicating the creation of the book was successful, but follow-
ing the REST principals, the method should return a 201 (or 204), specifying the request has
been fulfilled and resulting in the creation of a new resource. The newly created resource can
be referenced by the URI returned in the response.

 @POST
 public Response createNewBook(JAXBElement<Book> bookJaxb) {
 Book book = bookJaxb.getValue();
 em.persist(book);
 URI bookUri = uriInfo.getAbsolutePathBuilder().➥

 path(book.getId().toString()).build();
 return Response.created(bookUri).build();
 }

To create a resource with the previous code, we have the choice of sending either XML or
JSON. JSON is less verbose. The cURL command line uses a POST method and passes data in a
JSON format that must follow the JSON/XML mapping used in Jersey (remember that the XML
in turn is mapped from the Book object using JAXB rules):

curl -X POST --data-binary ➥

"{ \"title\":\"H2G2\", \"description\":\"Scifi IT book\", ➥

\"illustrations\":\"false\",\"isbn\":\"134-234\",\"nbOfPage\":\"241\",➥

\"price\":\"24.0\" }" -H "Content-Type: application/json" ➥

http://localhost:8080/chapter15-resource-1.0/rs/books –v

The verbose mode of cURL (the -v argument) displays the HTTP request and response
(as shown in the following output). You can see in the response the URI of the created book
resource with an ID set to 601:

> POST /chapter15-resource-1.0/rs/books HTTP/1.1
> User-Agent: curl/7.19.0 (i586-pc-mingw32msvc) libcurl/7.19.0 zlib/1.2.3
> Host: localhost:8080
> Accept: */*
> Content-Type: application/json
> Content-Length: 127
>
< HTTP/1.1 201 Created
< X-Powered-By: Servlet/3.0
< Server: GlassFish/v3
< Location: http://localhost:8080/chapter15-resource-1.0/rs/books/601
< Content-Type: application/xml
< Content-Length: 0

http://localhost:8080/chapter15-resource-1.0/rs/books
http://localhost:8080/chapter15-resource-1.0/rs/books/601

Chapter 15  ■﻿  RE STFUL WEB SERVICES 457

Getting a Book by ID
To retrieve a book resource by its identifier, the request must have a URL of the form /books/
{id of the book}. The id is used as a parameter to find the book in the database. In an HTTP
GET request to /books/601, the getBookById() method will return an XML or a JSON representa-
tion of the book with ID 601.

 @GET
 @Path("{id}/")
 public Book getBookById(@PathParam("id") Long id) {
 Book book = em.find(Book.class, id);
 return book;
 }

The @Path annotation indicates the subpath within the already specified path at the class
level. The use of the {id} syntax binds the URL element to the method parameter. Let’s use
cURL to access resource 601 and get a JSON representation:

curl -X GET -H "Accept: application/json" ➥

 http://localhost:8080/chapter15-resource-1.0/rs/books/601

{"description":"Scifi IT book","illustrations":"false",➥

"isbn":"1234-234","nbOfPage":"241","price":"24.0","title":"H2G2"}

By just changing the Accept header property, the same code will return the XML represen-
tation of book 601:

curl -X GET -H "Accept: application/xml" ➥

 http://localhost:8080/chapter15-resource-1.0/rs/books/601

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<book><description>Scifi IT book</description>
<illustrations>false</illustrations><isbn>1234-234</isbn>
<nbOfPage>241</nbOfPage><price>24.0</price><title>H2G2</title></book>

Deleting a Book
The deleteBook() method follows the format of the getBookById() method because it uses a
subpath and an ID as a parameter, with the only difference being the HTTP request used. We
need an HTTP DELETE method that takes a URL and deletes the content associated with that
URL.

 @DELETE
 @Path("{id}/")
 public void deleteBook(@PathParam("id") Long id) {
 Book book = em.find(Book.class, id);
 em.remove(book);
 }

http://localhost:8080/chapter15-resource-1.0/rs/books/601
http://localhost:8080/chapter15-resource-1.0/rs/books/601

Chapter 15  ■﻿  RE STFUL WEB SERVICES458

If we use the verbose mode of cURL (-v argument), we’ll see the DELETE request is sent,
and the 204 No Content status code appears in the response to indicate that the resource
doesn’t exist anymore.

curl -X DELETE http://localhost:8080/chapter15-resource-1.0/rs/books/61 -v
	
> DELETE /chapter15-resource-1.0/rs/books/61 HTTP/1.1
> User-Agent: curl/7.19.0 (i586-pc-mingw32msvc) libcurl/7.19.0 zlib/1.2.3
> Host: localhost:8080
> Accept: */*
>
< HTTP/1.1 204 No Content
< X-Powered-By: Servlet/3.0
< Server: GlassFish/v3

Configuration with web.xml
Before deploying the BookResource and Book entity, we need to register Jersey in the web.xml
file (see Listing 15-15). This way the requests sent to the /rs path will get intercepted by Jersey.
It also tells Jersey where to look for annotated JAX-RS java classes via the com.sun.jersey.
config.property.packages parameter.

Listing 15-15. The web.xml File Declaring Jersey

<?xml version='1.0' encoding='UTF-8'?>
<web-app version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

 <servlet>
 <servlet-name>Jersey Web Application</servlet-name>
 <servlet-class>
 com.sun.jersey.spi.container.servlet.ServletContainer
 </servlet-class>
 <init-param>
 <param-name>com.sun.jersey.config.property.packages</param-name>
 <param-value>com.apress.javaee6.chapter15</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Jersey Web Application</servlet-name>
 <url-pattern>/rs/*</url-pattern>
 </servlet-mapping>
</web-app>

http://localhost:8080/chapter15-resource-1.0/rs/books/61
http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd

Chapter 15  ■﻿  RE STFUL WEB SERVICES 459

The deployment descriptor maps the requests to the /rs/* URL pattern. This means each
time a URL starts with /rs/, it will be handled by Jersey. And indeed, in the examples that I
have used with cURL, all the resource URLs start with /rs:

curl -X GET -H "Accept: application/json" ➥

 http://localhost:8080/chapter15-resource-1.0/rs/books

curl -X DELETE http://localhost:8080/chapter15-resource-1.0/rs/books/61

Compiling and Packaging with Maven
The web application needs to be compiled and packaged in a war file (<packaging>war</
packaging>). The pom.xml in Listing 15-16 declares all necessary dependencies to compile code
(jsr311-api, javax.ejb, and javax.persistence). Remember that JAXB is part of Java SE, so we
don’t need to add this dependency.

Listing 15-16. The Maven pom.xml File for Compiling and Packaging the Web Application

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" ➥

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"➥

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 ➥

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
 <groupId>com.apress.javaee6</groupId>
 <artifactId>chapter15-resource</artifactId>
 <packaging>war</packaging>
 <version>1.0</version>
 <name>Chapter 15 - REST Resource</name>

 <parent>
 <groupId>com.apress.javaee6</groupId>
 <artifactId>chapters</artifactId>
 <version>1.0</version>
 </parent>

 <dependency>
 <groupId>javax.ws.rs</groupId>
 <artifactId>jsr311-api</artifactId>
 <version>1.1</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.glassfish</groupId>
 <artifactId>javax.ejb</artifactId>
 <version3.0</version>
 <scope>provided</scope>
 </dependency>

http://localhost:8080/chapter15-resource-1.0/rs/books
http://localhost:8080/chapter15-resource-1.0/rs/books/61
http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0%E2%9E%A5
http://maven.apache.org/POM/4.0.0%E2%9E%A5
http://maven.apache.org/xsd/maven-4.0.0.xsd

Chapter 15  ■﻿  RE STFUL WEB SERVICES460

 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>javax.persistence</artifactId>
 <version>1.1</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <inherited>true</inherited>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

To compile and package the classes, open a DOS command line in the root directory con-
taining the pom.xml file and enter the following Maven command:

mvn package

Go to the target directory, look for a file named chapter15-resource-1.0.war, and open it.
Notice that both Book.class and BookResource.class are under the WEB-INF\classes directory.
The web.xml and persistence.xml files are also packaged in the war.

Deploying on GlassFish
Once the code is packaged, make sure GlassFish and Derby are up and running and deploy
the war file by issuing the asadmin command-line interface. Open a DOS console, go to the
target directory where the chapter15-resource-1.0.war file is located, and enter

asadmin deploy chapter15-resource-1.0.war

If the deployment is successful, the following command should return the name of the
deployed component and its type:

asadmin list-components
chapter15-resource-1.0 <ejb, web>

Chapter 15  ■﻿  RE STFUL WEB SERVICES 461

Running the Example
Once the application is deployed, you can use cURL in a command line to create book
resources by sending POST requests and get all or a specific resource with GET requests. DELETE
will remove book resources. Following are some commands you can use:

// Creates a book
curl -X POST --data-binary ➥

"{ \"title\":\"H2G2\", \"description\":\"Scifi IT book\", ➥

\"illustrations\":\"false\",\"isbn\":\"134-234\",\"nbOfPage\":\"241\",➥

\"price\":\"24.0\" }" -H "Content-Type: application/json" ➥

http://localhost:8080/chapter15-resource-1.0/rs/books

// Returns all the books
curl -X GET -H "Accept: application/json" ➥

 http://localhost:8080/chapter15-resource-1.0/rs/books

// Returns the book with ID 601 in JSON
curl -X GET -H "Accept: application/json" ➥

 http://localhost:8080/chapter15-resource-1.0/rs/books/601

{"description":"Scifi IT book","illustrations":"false",➥

"isbn":"1234-234","nbOfPage":"241","price":"24.0","title":"H2G2"}

// Returns the book with ID 601 in XML
curl -X GET -H "Accept: application/xml" ➥

 http://localhost:8080/chapter15-resource-1.0/rs/books/601

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<book><description>Scifi IT book</description>
<illustrations>false</illustrations><isbn>1234-234</isbn>
<nbOfPage>241</nbOfPage><price>24.0</price><title>H2G2</title></book>

// Deletes the book with ID 601
curl -X DELETE http://localhost:8080/chapter15-resource-1.0/rs/books/601

Summary
The previous chapter explained SOAP web services. They use a special envelope, are described
using WSDL, and can be invoked by several protocols, HTTP being one of them. In this chap-
ter, I’ve explained RESTful web services, and you should now know how different JAX-WS and
JAX-RS are to implement.

This chapter commenced with a general introduction to REST. With simple verbs (GET,
POST, PUT, etc.) and a unified interface, you learned how you can access any resource deployed
on the Web. The chapter then zoomed in on HTTP, a protocol based on a request/response
mechanism using content negotiation to choose appropriate content type from a request.

http://localhost:8080/chapter15-resource-1.0/rs/books
http://localhost:8080/chapter15-resource-1.0/rs/books
http://localhost:8080/chapter15-resource-1.0/rs/books/601
http://localhost:8080/chapter15-resource-1.0/rs/books/601
http://localhost:8080/chapter15-resource-1.0/rs/books/601

Chapter 15  ■﻿  RE STFUL WEB SERVICES462

Caching can be employed to optimize network traffic with conditional requests using dates
and ETags. This optimization can also be used with REST as it is based on HTTP.

JAX-RS is a Java API, shipped with Java EE 6, that simplifies RESTful web service devel-
opment. With a set of annotations, you can define the path and subpaths of your resource,
extract different kinds of parameters, or map to HTTP methods (@GET, @POST, etc.). When devel-
oping RESTful web services, you must think about resources, how they are linked together,
and how to manage their state using HTTP.

463

Symbols
<% %> in JSP syntax, 296
< > in XML syntax, 293
[] operator, EL statements and, 297
< operator, 140
<> operator, 140
<= operator, 140
> operator, 140
>= operator, 140
= operator, 140
% percent sign, 141
_ underscore, 141

A
abstract entities, 114
ACC (application client container), 6, 172

injection and, 366
Main classes and, 185, 426

@Access, 88
@AccessTimeout, 200
access types, 75–79, 86
ACID (Atomicity, Consistency, Isolation, and

Durability), 240, 241
acknowledge() method, 377
acknowledgeMode property, 382
acknowledgment, for messages, 377, 382
action elements, in JSP, 293
actionSource tag, 321
activation, 194, 225
activationConfig property, 381
@ActivationConfigProperty, 381, 385
addMessage() method, 330, 341
addressability, RESTful web services and, 439
addToCache() method, 201
Admin Console, for GlassFish, 35
administered objects, 361, 365–368, 391
@After, 28
@AfterClass, 28
Ajax, 266, 348–355
aliases, 140
AND operator, 140
annotations, 13, 44, 59–81

JAXB and, 403
security and, 254
unit testing and, 25

web services, 411–416
XML deployment descriptors as alterna-

tive to, 209
vs. XML mapping, 81

Ant (Apache), 19
AOP (Aspect-Oriented Programming), 229
Apache

Maven. See Maven
Tomcat, 32
Ant, 19

appclient utility, 427
applet containers, 6
applets, 5, 267
application (implicit object), 325
application client container. See ACC
application content type, 434
application errors, 341
application exceptions, 248, 387
application/json content type, 435, 447
application/xml content type, 435
@ApplicationException, 249
application-managed environments, 124
applications, 5. See also sample applications
@ApplicationScoped, 334
applicationScope (implicit object), 325
Apply request values phase, of life cycles, 308,

343, 350
ArithmeticException, 249
arithmetic operators
EL statements and, 296

message selectors and, 376
around-invoke interceptors, 230

@AroundInvoke, 230, 232, 383
artifacts, 20
asadmin CLI, for GlassFish, 36
Aspect-Oriented Programming (AOP), 229
assert methods, 28
associations between classes, 88
@Asynchronous, 213
Asynchronous JavaScript and XML (Ajax),

266, 348–355
asynchronous messaging, 373, 374, 384
asynchronous method invocation, EJBs and,

171
asynchronous processing, session beans and,

213

Index

nINDEX464

Atomicity, Consistency, Isolation, and
Durability (ACID), 240, 241

attribute JSP action element, 294
@AttributeOverrides, 113, 112
attributes, mapping and, 69–75
attribute tag, 321
audio content type, 434
authentication, 253
authorization, 253
AUTO_ACKNOWLEDGE, 377, 382

B
backing beans, 266
BadgerFish, 448
@Basic, 70
basic types, 79–81
bean classes, session beans and, 202–206
bean-managed concurrency (BMC), 199, 201
bean-managed transactions (BMT), 250
Beck, Kent, 24
@Before, 28
@BeforeClass, 28
begin() method, for transactions, 251
BETWEEN operator, 140
bidirectional relationships, 88, 91, 99
BigDecimalConverter, 344
BigIntegerConverter, 344
binary large objects (BLOBs), 65, 70, 80
binding, JAXB and, 401
BLOBs (binary large objects), 65, 70, 80
BMC (bean-managed concurrency), 199, 201
BMT (bean-managed transactions), 250
body, of a message, 371
body JSP action element, 294
body tag, 316
book/CD orders (sample application), 16,

387–392
news content and, 67, 103–105
user comments and, 103–105

book listing (sample application), 268–279
BookEJB and, 170, 177–187
BookEJBTest and, 185
compiling/packaging, 182, 277
database list and, 274
deploying via GlassFish, 278
form for, 271
single-page option for, via Ajax, 350–355

book resources (sample components),
454–461

compiling/packaging, 459
configuring, 458
creating, 455–458
deploying, 460

BookTest (sample class), 48–57
BooleanConverter, 344
bottom-up approach to web services, 410
brokers, messages and, 357
bulk delete operations, 142
bulk update operations, 143
business layers, 167
business method interceptors, 230, 232
buttons, command tag for, 309
ByteConverter, 344
BytesMessage interface, 371

C
CacheSingleton class, 196
caching systems, 136

HTTP and, 435
singleton session beans and, 196

calendar-based expressions, timer service
and, 217, 220

callback annotations, 226
callbacks, 47, 159–161, 223–237

EJBs and, 173
web services and, 416

cancel() method, asynchronous processing
and, 209, 214

cardinality, associations between classes
and, 89

cardinality-direction combinations, 90
CardValidator class, 418, 424
CardValidatorService class, 399, 418, 424
cascading events, 135, 161
Cascading Style Sheets (CSS), creating web

pages via, 285
CD-BookStore sample application. See book/

CD orders
CDATA, 293
CGI (Common Gateway Interface), 266
CharacterConverter, 344
checkboxes, select tags for, 312
ClassCastException, 249
clear event, cascading, 136
clear() method, 133, 158
CLIENT_ACKNOWLEDGE, 377, 382
clients, messages and, 362
closeContainer() method, 216
close() method

embeddable containers and, 216
for messaging, 368

Cloudscape. See Derby database
clusters, singleton session beans and, 197
CMC (container-managed concurrency), 199
CMP (Container Managed Persistence), 42

nINDEX 465

CMTs (container-managed transactions),
244–250

EJBs and, 177
vs. session beans and MDBs, 386

@CollectionTable, 79
@Column, 61, 64, 71, 81
Comet programming, 348
commands, for Maven, 24
command tags, 309
commit() method

for messaging, 368
for transactions, 251

Common Gateway Interface (CGI), 266
comparison operators, 140 376
component (implicit object), 325
component life cycle, EJBs and, 171
component tag, 306
components, 5

composite, 320–324
HTML, 309–320
types of, 5

composite components, 320–324
composite primary keys, 67–69
compositeComponent (implicit object), 325
composition tag, 306, 316
concurrency, 150–155, 199–202

disallowing, 201
support for, EJBs and, 171
types of, 199

@ConcurrencyManagement, 199, 201
ConcurrentAccessException, 201
ConcurrentAccessTimeoutException, 200
conditional requests, 436
configuration by exception, 44, 61

JAXB and, 403, 410
web services and, 398

connectedness, RESTful web services and,
439

connection factories, 361, 365
Connection interface, 368
Connection objects, 365, 368
ConnectionFactory interface, 365
CONNECT method, 434
Consistency ACID property, 240
consumers, messages and, 372–375

JMS and, 360
MDBs and, 384
publish-subscribe model and, 364
sending messages and, 357

@Consumes, 445, 448, 455
container-managed concurrency (CMC), 199
container-managed environments, 124
Container Managed Persistence (CMP), 42

container-managed transactions (CMTs),
244–250

EJBs and, 177
vs. session beans and MDBs, 386

containers, 4, 5
contains() method, 132
content negotiation, 434
content types, 434, 445
@Context, 450, 451
context-param tag, 329
contextual information, RESTful web services

and, 450
contract first approach to web services, 410
conversion of data, 342–348
convertDateTime tag, 344
Converter interface, 345
ConverterException, 345
converters, 264, 343–346
convertNumber tag, 344
convertPrice() method, 212
cookie (implicit object), 325
@CookieParam, 444, 445
CORBA, 2
core actions (JSTL), 298
createCalendarTimer() method, 220
createConnection() method, 366, 368
createConsumer() method, 372
createCustomer() method, 230, 232, 236
createEJBContainer() method, 216
createIntervalTimer() method, 220
createNamedQuery() method, 144, 148
createNativeQuery() method, 144, 149
createQuery() method, 144, 146
Create, Read, Update, Delete. See CRUD

operations
createSession() method, 368
createSingleActionTimer() method, 220
createTimer() method, 220
CreditCard (sample class), 398–405, 419, 424
credit card validator (sample web service),

398–427
compiling/packaging, 420
running main class for, 426
SOAP for, 408
using annotations with, 414
writing, 419–427
WSDL for, 406–408

criteria queries, 143, 150
CRUD operations (Create, Read, Update,

Delete), 42, 449
EntityManager interface and, 126
HTTP methods and, 438, 454
stateless beans and, 177

nINDEX466

CSS (Cascading Style Sheets), creating web
pages via, 285

cURL, 433, 454, 456–458
currencies

environment entries and, 211
JSTL formatting actions for, 299

D
database synchronization, 131
data definition language (DDL), 69
data integrity, conversion/validation for,

342–348
dates

conversion/validation for, 343
ETags and, 436
JSTL formatting actions for, 299

DateTimeConverter, 344
dblook utility, 30
DDL (data definition language), 69
DebugListener class, 165
debug tag, 306
declarations, in JSP, 292, 294
declarative security, 254–258
@DeclareRoles, 254, 255
decorate tag, 306, 316
@DefaultValue, 445
define tag, 306, 316
@DELETE, 449
DELETE method, 433, 438
DELETE statement, 138, 142
@DenyAll, 254, 255
dependency injection

connection factories and, 366
EJBs and, 171, 172, 206, 210
MDBs and, 382

@DependsOn, 198, 224
deployment descriptors, 209, 212
deployment services, 7
Derby database, 29

book listing sample application and, 185,
278

BookTest sample class and, 53, 56
deserialization, 158
Destination interface, 366
destination property, 382
destinations, messages and, 357, 360, 365,

366
destinationType property, 382
detach() method, 133
directive elements, in JSP, 291
@DiscriminatorColumn, 108
@DiscriminatorValue, 109
distributed transactions, 242
DOM (Document Object Model), 348

creating web pages via, 287
JavaScript and, 288
JAXB and, 400

dot notation, 46, 88, 137
. dot operator, EL statements and, 297
DoubleConverter, 344
DoubleRangeValidator, 346
DUPS_OK_ACKNOWLEDGE, 378, 382
Durability ACID property, 240
durable subscribers, 378
dynamic ordering, 103
dynamic queries, 143, 146

E
EAI (Enterprise Application Integration), 393
ear files (enterprise archive files), EJBs and,

173
EclipseLink, 43, 50–56
editableValueHolder tag, 321
EISs (Enterprise Information Systems), 1
EJB containers, 6, 168, 171

embeddable, 215
security and, 254
transactions and, 243–252

EJB endpoints, 411, 417
ejb-jar.xml file. See deployment descriptors
EJB Lite, 11, 176
EJBs (Enterprise Java Beans), 2, 5, 42, 167–187

anatomy of, 169–171
AOP and, 229
book listing sample application and, 270
dependency injection and, 210
Derby database and, 185
vs. EJB Lite (table), 176
Java EE and, 15
Main class and, 181
managed beans and, 271
MDBs and, 379
packaging, 173
security management and, 252–259
session bean references and, 206
specification for, 174–177, 359
transaction management and, 239–252
timer service for, 217–221
types of, 168
version 3.1 of, 168, 175

@ElementCollection, 79
element JSP action element, 294
EL (expression language), 296

JSF and, 307
JSTL functions and, 304

@Embeddable, 67, 84
embeddable containers, 215
embeddables, 84–88, 113

nINDEX 467

@Embedded, 84
embedded Derby, 56
embedded EJB containers, 172
@EmbeddedId, 67, 69, 84
empty operator, EL statements and, 296
enlistment, 241
Enterprise Application Integration (EAI), 393
enterprise archive files (ear files), EJBs and,

173
Enterprise Information Systems (EISs), 1
Enterprise Java Beans. See entries at EJB
entities, 44–48, 119–154

concurrent access and, 150–155
entity manager for, 122–137
identifier (ID), finding via, 129
life cycle of, 47, 157
managed, 122, 132
manipulating, 126–136
merging, 133
persisting, 128
primary key, finding via, 68
querying, 45, 119–122, 137–150
removing, 130, 132, 142
testing, 54
updating, 134, 143
@XmlRootElement and, 454

@Entity, 61, 62
entity beans, 169
entity body, 432
@EntityListeners, 162
entity manager, 45, 122–137

entity query example and, 119–122
manipulating entities and, 126–136
obtaining, 124
query types and, 144

entity parameters, 450
entity providers, 448
entity relationships, 90–101
EnumConverter, 344
@Enumerated, 74
environment context, web services and, 417
environment entries, 209, 211
error messages. See also exceptions

managed beans and, 341
message tags and, 315
severity levels of, 315

escape characters, 141
ETags, 436
event cascading, 135, 161
events, managed beans and, 265
exceptions, 248, 452. See also error messages

application, 248
ArithmeticException, 249

ClassCast, 249
ConcurrentAccessException, 201
ConcurrentAccessTimeoutException, 200
ConverterException, 345
exception handling for, 386
IllegalArgumentException, 249
InventoryLevelTooLowException, 249
NullPointerException, 27, 249
RemoteException, 249
RuntimeException, 248
system, 249
ValidatorException, 347
WebApplicationException, 449, 452

@ExcludeClassInterceptors, 233, 236
@ExcludeDefaultListeners, 166
@ExcludeSuperclassListeners, 164
executeUpdate() method, 145
expectedValue() method, 27
expression language. See EL
expressions, in JSP, 293, 294
Extensible Markup Language. See XML

F
Facelets, 306
Facelets pages, 263, 268
faces-config.xml file, 13, 263, 331, 335

declaring converters in, 345
EL statements and, 296
page flow navigation and, 339
registering validators in, 347

FacesConfig, 331
facesContext (implicit object), 325
FacesContext class, 330
@FacesConverter, 345
FacesMessage, 331, 341, 347
FacesServlet, 263, 276, 328, 333
@FacesValidator, 347
facet tag, 321
fetching relationships, 101
field-based access, 76–79, 86
finalize() method, 205, 410
findAll query, 147
findCustomerById() method, 230, 232, 235,

236
finding entities, by identifier, 129
find() method, 129, 151, 158
findWithParam query, 148
fixtures, 28
FloatConverter, 344
flush() method, 131
flush mode, 145
flushing data, 131

nINDEX468

foreign key columns, 89
foreign keys, 41, 45, 89
form tag, 316
formatting actions (JSTL), 299
@FormParam, 444, 445
forward JSP action element, 294
fragment tag, 306, 316
FROM statement, 138, 140
functions (JSTL), 304

G
Gamma, Erich, 24
Gang of Four design pattern, 195
@GeneratedValue, 66
generateReport() method, 219
@GET, 441, 449
GET method, 433, 438
get() method, 214
get methods, 76
getApplication() method, 330
getAsHtml() method, 447
getAsJson() method, 447
getAsObject() method, 345
getAsPlainText() method, 447
getAsString() method, 345
getAttributes() method, 323, 330
getCallerPrincipal() method, 209, 258, 383
getContextData() method, 231
getCurrentInstance() method, 330, 331
getElementById() method, 290
getEndpointReference() method, 417
getFromCache() method, 200
getInstance() method, 196
getMaximumSeverity() method, 331
getMessageContext() method, 417
getMessages() method, 331
getMethod() method, 231, 232
getObject() method, 371, 389
getParameters() method, 231
getProperty JSP action element, 293
getReference() method, 129
getResultList() method, 145, 146
getRollbackOnly() method, 209, 383
getSingleResult() method, 145, 146
getStatus() method, 251
getTarget() method, 231
getText() method, 371, 373
getTimer() method, 231
getTimerService() method, 209, 383
getUserPrincipal() method, 417
getUserTransaction() method, 209, 250, 383
GlassFish, 31–39, 177

administered objects and, 365
administration of, 35

architecture of, 32
book/CD orders sample application and,

391
book listing sample application deployed

via, 184, 278
book resources sample components and,

460
credit card validator sample web service

and, 419, 421
history of, 32
installing, 37
pools and, 184, 224
running, 38
subprojects of, 34
MDB deployment and, 391
OpenMQ and, 360

GlassFish Update Center, 33
graphicImage tag, 313
grid tags, 313
GROUP BY statement, 138, 142

H
HAVING statement, 138, 141, 142
@HEAD, 449
HEAD method, 434
head tag, 316
header, of a message, 369
header (implicit object), 325
header fields, messages and, 369
headers

book resources sample components and,
455

RESTful web services and, 451
@HeaderParam, 444, 445
headerValues (implicit object), 325
Hibernate, 42
.htm file extension, 282
.html file extension, 282
HTML (Hypertext Markup Language), 261,

282, 309–320
HttpHeaders class, 450, 451
HTTP (Hypertext Transfer Protocol), 8, 395,

396, 431–436
methods for, 433, 449
RESTful web services and, 429, 437
SOAP and, 408

Hypertext Markup Language. See entries at
HTML

Hypertext Transfer Protocol. See HTTP

I
@Id, 61–64, 66, 68
@IdClass, 67, 68

nINDEX 469

identification variables, 140
identifier (ID, finding via, 129
IDEs (integrated development environ-

ments), 24, 29
IETF (Internet Engineering Task Force), 431
@Ignore, 27
ij utility, 30
IllegalArgumentException, 231, 249
image content type, 434
image/gif content type, 434
image/jpeg content type, 434
Image Packaging System (IPS), 33
image/png content type, 434
implementation tag, 321
implicit objects, 325
IN operator, 140
include directive, in JSP, 292
include JSP action element, 293
include tag, 306
@Inheritance, 106

joined strategy and, 110
single-table strategy and, 107
table-per-class strategy and, 111

inheritance mapping, 45, 105–116
strategies for, 105–113
types of classes and, 114–116

initContainer() method, 216
initParam (implicit object), 325
injection, 366, 382
input errors, 341
input tags, 310
insert statement, 131
insert tag, 306, 316
insertChildren tag, 321
insertFacet tag, 321
IntegerConverter, 344
integers, conversion/validation for, 342–348
integrated development environments

(IDEs), 24, 29
IntelliJ IDEA (JetBrains), 24
interceptors, 223, 417, 229–237

chaining/excluding, 235
EJBs and, 171, 173
types of, 230

@Interceptors, 233, 235
interface tag, 321
interfaces

for messaging, 362
session beans and, 202–205

Internet Engineering Task Force (IETF), 431
Internet media types. See content types
InventoryLevelTooLowException, 249
inverseJoinColumns element, 98, 100
InvocationContext interface, 231, 232

Invoke applications phase, of JSF life cycle,
309

IPS (Image Packaging System), 33
IS EMPTY operator, 140
IS NULL operator, 140
isCallerInRole() method, 209, 258, 383
Isolation ACID property, 240
isUserInRole() method, 417
items, select tags for, 312

J
J2EE, 2
J2EE Connector Architecture (JCA), 3, 7
JAAS (Java Authentication and Authorization

Service), 7, 253
JACC (Java Authorization Service Provider

Contract for Containers), 7
JAF (JavaBeans Activation Framework), 6
jar files (Java archive files), 8, 173
Java, overview of web interface specifications

and, 266
Java API for RESTful Web Services. See JAX-RS
Java API for XML-based RPC (JAX-RPC), 11,

396
Java API for XML-Based Web Services. See

JAX-WS
Java API for XML Processing (JAXP), 7
Java Architecture for XML Binding (JAXB),

397–399, 406
Java archive files (jar files), 8, 173
Java Authentication and Authorization Ser-

vice (JAAS), 7, 253
Java Authorization Service Provider Contract

for Containers (JACC), 7
Java Community Process (JCP), 3, 396
Java Database Connectivity (JDBC), 41
Java Development Kit (JDK), 17
Java EE (Java Enterprise Edition), 1–16

architecture of, 4–9
history of, 2
new features with, 11–16
security and, 252–259
specifications of, 9, 396
standards governing, 4

Java EE Management, 12
Java EE Application Deployment, 12
Java EE Deployment Specification, 7
Java Management Extensions (JMX), 7
Java Message Service. See JMS
Java Naming and Directory Interface (JNDI),

6, 172
Java Persistence API. See JPA
Java Persistence Query Language. See JPQL
Java SE (Java Standard Edition), 1, 9

nINDEX470

Java Specification Requests (JSRs), 2, 4
Java Standard Edition (Java SE), 1, 9
Java Transaction API (JTA). See JTA
Java Transaction Service (JTS), 242, 243
Java Web Services (JWS), 396
Java XML Registries (JAXR), 12, 397
JavaBeans Activation Framework (JAF), 6
JavaMail, 6
JavaScript, 267, 288
JavaScript Object Notation (JSON), 435, 447,

456
JavaServer Faces. See JSF
JavaServer Pages. See JSP
JAXBContext class, 402
JAXB (Java Architecture for XML Binding),

397–399, 406
JAXP (Java API for XML Processing), 7
JAXR (Java XML Registries), 12, 397
JAX-RPC (Java API for XML-based RPC), 11,

396
JAX-RS (Java API for RESTful Web Services),

4, 7, 429, 441–454. See also RESTful
web services,

entity providers and, 449
new features with version 1.1 and, 437
Jersey and, 35

JAX-WS (Java API for XML-Based Web Ser-
vices), 3, 7, 397, 409–418

history of web services and, 396
invoking web services and, 417
Metro and, 35
programming model of, 410–417

JCA (J2EE Connector Architecture), 3, 7
JCP (Java Community Process), 3, 396
JDBC (Java Database Connectivity), 41
JDK (Java Development Kit), 17
Jersey, 35, 437, 447, 458
JetBrains4 IntelliJ IDEA, 24
JMS (Java Message Service), 1, 6, 358, 362–378

API for, 364–375
book/CD orders sample application illus-

trating, 387–392
OpenMQ and, 34, 360
point-to-point (P2P) model and, 363
publish-subscribe (pub-sub) model and,

364
reliability mechanisms for, 376–378
specification for, 359

JMSException, 386
JMSExpiration header field, 376
JMX (Java Management Extensions), 7
JNDI (Java Naming and Directory Interface),

6, 172

JNDI lookup, 207
join columns, 89
join tables, 41, 45, 89
@JoinColumn, 95, 97
joinColumns element, 98, 100
joined strategy, for inheritance mapping, 110
@JoinTable, 97
JPA (Java Persistence API), 1, 6, 42

Criteria API and, 150
JAXB annotation and, 406

JPQL (Java Persistence Query Language),
42–44, 119, 137–150

JSF (JavaServer Faces), 3, 13, 307–319. See
also entries at Faces,

Ajax, support for, 349
architecture of, 261–266
book listing sample web application and,

261–276
brief history of, 267
configuration parameters and, 329
EJBs and, 168
EL statements and, 296
Facelets and, 306
Mojarra and, 35, 268
new features with, 268
resource management for, 319, 323

JSON (JavaScript Object Notation), 435, 447,
456

.jsp file extension, 291
JSP (Java Server Pages), 2, 261–263, 290–296

brief history of, 267
EL statements and, 296
Facelets and, 306

JSP Standard Tag Library (JSTL), 296, 297–305
.jspx file extension, 291
JSRs (Java Specification Requests), 2, 4
JSTL (JSP Standard Tag Library), 296, 297–305
JTA (Java Transaction API), 1, 6, 42

bean-managed transactions and, 250
transactions and, 241

JTS (Java Transaction Service), 242, 243
JUnit, 24–29

history of, 24
running, 28

JUnit launcher, 28
JWS (Java Web Services), 396

L
labels, output tag for, 311
LDAP (Lightweight Directory Access Proto-

col), 254
LengthValidator, 346

nINDEX 471

life-cycle interceptors, 234
life cycles, 223

Ajax and, 350
conversion/validation of data and,

342–348
JAX-RS and, 453
JSF and, 306, 307, 308
JSP and, 290, 306, 307
of managed beans, 336
Maven and, 22
phases of, 343
of session beans, 223–229
web services and, 416

Lightweight Directory Access Protocol
(LDAP), 254

LIKE operator, 140
links

command tag for, 309
output tag for, 311

list boxes, select tags for, 312
listeners, 47, 162–166
@Lob, 71
@Local, 203
local interfaces, 203
local transactions, 240
@LocalBean, 207, 208
@Lock, 199, 201
lock() method, 151
locking mechanisms, 150
LoggingInterceptor class, 232
logical operators, 140

EL statements and, 296
message selectors and, 376

logMethod() method, 230, 232, 234
LongRangeValidator, 346
lookup() method, 209
Lookup() method, 383

M
main() method, 181, 216, 360
managed beans, 265, 332–342

automatic registration of, 333
book listing sample application and, 270
caution applying scope to, 335
error messages and, 341
navigation and, 337–341
writing, 332

managed entities, 122, 132
@ManagedBean, 265, 270, 333
@ManagedProperty, 333, 335
management services, 7
many-to-many relationships, 90, 99

@ManyToMany, 92, 99, 135
many-to-one relationships, 90
@ManyToOne, cascading events and, 135
@MapKeyColumn, 81
MapMessage interface, 371
mapped superclasses, 115
mappedBy element, 92, 99, 101
@MappedSuperclass, 115
marshal() method, 402
Marshaller class, 402
marshalling/unmarshalling, 401
@MatrixParam, 444, 445
Maven, 18–24

book/CD orders sample application and,
389

book listing sample application and, 182,
269, 277

book resources sample components and,
459

BookTest sample class and, 51, 54
commands of, 24
credit card validator sample web service

and, 420, 424–426
history of, 19
installing, 23

MDBs (Message-Driven Beans), 169, 358,
379–387

vs. CMTs, 386
as consumers, 384
creating, 379
deployed on GlassFish, 391
EJB specification and, 359
life cycle of, 383
as producers, 384
timer service and, 217

media types, 434, 445
MEMBER operator, 140
menus, select tags for, 312
merge event, cascading, 136
merge() method, 134, 158
merging entities, 133
message broker, 172
Message-Driven Beans. See MDBs
Message interface, 369, 371
message listeners, 374
message-oriented middleware (MOM), 357,

359
message producer objects, 371
message tags, 315
MessageBodyReader entity provider, 447, 448
MessageBodyWriter entity provider, 447, 448
MessageConsumer interface, 361, 372–375
@MessageDriven, 380, 389

nINDEX472

MessageDrivenContext interface, 382
MessageListener interface, 373, 374, 379, 385
MessageProducer interface, 361, 371

setDeliveryMode() method and, 377
setTimeToLive() method and, 376

messageSelector property, 382
messages, sending/receiving, 357–392

book/CD orders sample application illus-
trating, 387–392

brief history of, 359
creating your own message format and,

371
EJBs and, 171
how messaging works, 360, 357
JMS for, 362–378
managed beans for, 341
MDBs and, 379–387
parts of messages and, 369–371
types of messages and, 371

metadata, 44
method interceptors, 230, 232
Metro, 35, 397, 417
Model-View-Controller (MVC) design pat-

tern, 263, 327–332
modules

GlassFish and, 33
Java EE and, 8
JDK and, 17
Maven and, 22

Mojarra, 35, 268
MOM (message-oriented middleware), 357,

359
multiplicity, associations between classes

and, 89
MVC design pattern, 263, 327–332

N
named parameters, 141
named queries, 143, 147
@NamedNativeQuery, 149
@NamedQueries, 147
@NamedQuery, 147
namespaces, xs prefix and, 401
naming conventions

configuration by exception and, 63
JNDI names and, 207

native queries, 143, 149
navigation, managed beans and, 265,

337–341
network protocols, 8
new operator, 128, 158
newInstance() method, 402
nonentities, 114
NoneScoped, 335

NullPointerException, 27, 249
NumberConverter, 344
numbers, JSTL formatting actions for, 299

O
Object Management Group (OMG), 135, 243
object-relational mapping. See entries at

ORM, 41
Object Transaction Service (OTS), 243
ObjectMessage interface, 371
OMG (Object Management Group), 135, 243
one-to-many relationships, 90, 96
@OneToMany, 92, 96–99
one-to-one relationships, 89, 90, 93
@OneToOne, 92, 93–96, 135
@OneWay, 411, 414
onMessage() method, 379, 385

message arrival and, 374, 389
message delivery and, 373
transactions and, 386

Open Group, 242
OpenMQ (Open Message Queue), 360

activation properties for, 381
GlassFish and, 34

optimistic locking, 150, 153
OptimisticLockException, 153
@OPTIONS, 449
OPTIONS method, 434
ORDER BY statement, 138, 142
@OrderBy, 103
@OrderColumn, 104
ordering relationships, 102
ORM (object-relational mapping), 41, 42, 44,

59–117
default mapping and, 59
EclipseLink and, 43
elementary mapping and, 62–81
inheritance mapping and, 105–116
relationship mapping and, 88–105
XML mapping and, 81

OR operator, 140
orphans, removing, 130
OSGi, 32
OTS (Object Transaction Service), 243
output tags, 311
outputStylesheet tag, 316
outputScript tag, 316
ownership, relationships and, 89

P
P2P (point-to-point) model, for messaging,

362, 363
packaging components/modules, 8

nINDEX 473

page declaration languages. See PDLs
page directive, in JSP, 291
parameters

binding, 141
extracting, 444

param (implicit object), 325
param JSP action element, 294
params JSP action element, 294
param tag, 306, 316
paramValues (implicit object), 325
passivation, 194
@Path, 205, 441–444, 455, 457
PathParam, 444
PDLs (page declaration languages), 261, 263

JSF 2.0 and, 268, 307
JSF and, 306, 326

percent sign (%), escape characters and, 141
percentages, JSTL formatting actions for, 299
performance, pessimistic locking and, 154
@PermitAll, 254, 255
persist event, 135, 136
persist() method, 121, 128, 158
persistence, 15, 41–57

BookEJB and, 180
sample application illustrating, 48–57

persistence/nonpersistent modes, for mes-
sage delivery, 377

persistence provider. See EclipseLink
persistence units, 125
@PersistenceUnit, dependency injection and,

210
persisting entities, 128
persistToDatabase() method, 190
pessimistic locking, 150, 154
PessimisticLockException, 155
Plain Old Java Objects. See POJOs
plugin JSP action element, 294
point-to-point (P2P) model, for messaging,

362, 363
POJOs (Plain Old Java Objects), 47, 157

EJB containers and, 168
web services and, 398, 410

POM (Project Object Model), 19
pom.xml file, 19, 424

book resources sample components and,
459

credit card validator sample web service
and, 420

pooling, EJBs and, 171, 191
portability, 15
positional parameters, 141
@POST, 449
“Post” events, 159

POST method, 433, 438
@PostActivate, 226
@PostConstruct, 226, 227, 383, 385

managed beans and, 337
web services and, 417

@PostLoad, 160
@PostPassivate, 228
@PostRemove, 160
@PostUpdate, 160
“Pre” events, 159
@PreDestroy, 226, 228, 383, 385

managed beans and, 337
web services and, 417

@PrePassivate, 226, 228
@PrePersist, 160, 161
@PreRemove, 160
@PreUpdate, 160, 161
primary keys, 41, 65–69

composite, 67–69
finding entities via, 68

primary tables, 63
principals

declarative security and, 254–258
programmatic security and, 258
security and, 252

priority levels, for messages, 378
proceed() method, 231, 232
Process validations values phase, of life

cycles, 308, 343
producers, messages and, 357, 360,

MDBs and, 384
publish-subscribe messaging model and,

364
@Produces, 445, 448, 455
profile() method, 234
ProfileInterceptor class, 234
profiles, 12
programmatic security, 258
programming by exception. See configura-

tion by exception
programming languages, mixing in code, 296
project descriptors, 19
Project Object Model (POM), 19
properties

initializing for managed beans, 335
of a message, 370

property-based access, 76–79, 86
@Provider, 448, 453
Providers class, 450
providers, messages and, 357, 362
pruning process, for Java EE, 11
publish() method, for messaging, 369, 372

nINDEX474

publishers, in publish-subscribe messaging,
364, 371

publish-subscribe (pub-sub) model, for mes-
saging, 362, 364

@PUT, 449
PUT method, 433, 438

Q
Quartz, 217
queries, JSTL SQL actions for, 301
querying entities, 45, 137–150

example of, 119–122
types of queries and, 143–150

@QueryParam, 444, 445
Queue interface, 366
QueueConnectionFactory interface, 365
QueueConnection interface, 368
QueueReceiver interface, 372
QueueSender interface, 371
QueueSession, 369
queues, in P2P messaging, 360–366

R
radio buttons, select tags for, 312
Rails, 429
receive() method, messages and, 373
Receiver class, 361, 367
receivers, in P2P messaging, 363
refresh() method, 132, 151, 158
refresh event, cascading, 136
refreshCache() method, 219
refreshing entities, 132
RegexValidator, 346
relational databases, 41
relational operators, EL statements and, 296
relationship mapping, 88–105
relationships, 89–105

entity relationships and, 90–101
fetching relationships and, 101
ordering relationships and, 102

release() method, 331
reliability mechanisms, for JMS, 376–378
@Remote, 180, 203
remote client communication, EJBs and, 171
remote interfaces, 203
Remote Method Invocation–Internet Inter-

Orb Protocol (RMI-IIOP), 2, 8, 243
Remote Method Invocation (RMI), 203, 396,

417, 357
RemoteException, 249
@Remove, 195, 226, 228
remove event, cascading, 136

remove() method, 130, 132, 158
remove tag, 306
removing

attributes, from entities, 158
content, from pages, 306
entities, 130, 132, 142
orphans, 130

render kits, 264
renderers, 264
Render response values phase, of life cycles,

309, 343, 350
renderResponse() method, 331
repeat tag, 306
Representational State Transfer (REST), 429
representations, 430, 445
request (implicit object), 325
Request class, 450
requests, conditional, 436
requestScope (implicit object), 325
@RequestScoped, 270, 335
@Resource, 258, 367, 417

BMT beans and, 251
dependency injection and, 211
environment entries and, 209
MDBs and, 382, 384
timer service and, 221

resource (implicit object), 325
resource management, 319, 323
resource managers, 241, 242
resources, 241, 429, 445
resources for further reading

GlassFish, 32
Java SE, 9

response codes, HTTP and, 432
response headers, 432
responseComplete() method, 331
REST (Representational State Transfer), 429
RESTful web services, 7, 14, 429–462

book resources sample components and,
454–461

creating, 442
exception handling for, 452
history of, 436
JAX-RS and, 429, 437, 441–454
specification for, 436
vs. SOAP (Simple Object Access Protocol),

429
restore view phase, of JSF life cycle, 308
Reverse Ajax, 348
RMI-IIOP (Remote Method Invocation–

Internet Inter-Orb Protocol), 2, 8, 243
RMI (Remote Method Invocation), 203, 357,

396, 417

nINDEX 475

roles
declarative security and, 254–258
programmatic security and, 258
security and, 252

@RolesAllowed, 254, 255
rollback() method, for transactions, 251
root resources, 443
@RunAs, 254, 257
RuntimeException, 248

S
sample applications

book/CD orders, 16, 387–392
book listing, 177–187, 268–279
book resources, 454–461
BookTest class and, 48–57
credit card validator, 398–427
Maven commands and, 24
setting up your development environment

and, 17–39
shopping cart component and, 193

SAX (Simple API for XML), JAXB and, 400
@Schedule, timer service and, 217, 219
ScheduleExpression class, 220
@Schedules, timer service and, 219
scheduling tasks, timer service for, 169, 190,

217–221
schema compiler (xjc), 403
schemaGen (schema generator), 403
scope, 334
scripting elements, in JSP, 292, 294
scriptlets

EL statements and, 296
in JSP, 292

secondary tables, 63
@SecondaryTable, 63
security, 252–259
security services, 7
SEIs (service endpoint interfaces), 417
SELECT statement, 31, 138
select tags, 312
selectors, messages and, 375
send() method, for messaging, 369, 372

message persistence and, 377
priority levels and, 378
time-to-live setting and, 376

Sender class, 360
senders, in P2P messaging, 363, 371
sendPrintingMessage() method, 385
serialization, 41, 158
service endpoint interfaces (SEIs), 417
Service-Oriented Architecture (SOA), 393
services, 6
servlet container, 172

servlet endpoints, 411, 417
servlets, 267
session (implicit object), 325
session beans, 168, 189–216

asynchronous processing and, 213
environment entries and, 209
invoking, 206
JNDI lookup and, 207
programming model for, 202–213
types of, 189

Session objects, 368, 369
SessionContext interface, 208

getCallerPrincipal() method, 258
getUserTransaction() method, 250
isCallerInRole() method, 258
setRollbackOnly() method, 247

sessionScope (implicit object), 325
@SessionScoped, 334
setDeliveryMode() method, 377
setFirstResult() method, 145
setFloatProperty() method, 388
setLockMode() method, 145, 151
setMaxResults() method, 145, 146
setMessageListener() method, 374
setObject() method, 371, 388
setParameter() method, 146
setParameters method, 231
setPriority() method, 378
setProperty JSP action element, 293
setRollbackOnly() method, 209, 248, 383

exception handling and, 387
transactions and, 251, 386

setter methods, 158
setters, 76
setText() method, 371, 372
setTimeToLive() method, 376
setTransactionTimeout() method, 251
shopping cart (sample component), 193
ShortConverter, 344
Simple API for XML (SAX), JAXB and, 400
Simple Object Access Protocol. See SOAP;

web services
single-table strategy, for inheritance map-

ping, 107–110
@Singleton, 197, 202, 205, 225
singleton session beans, 15, 169, 190, 223

chaining, 198
concurrency for, 199–202
timer service and, 217

SOAP (Simple Object Access Protocol), 7, 395,
408. See also web services

annotations and, 411
history of, 396
vs. RESTful web services, 429

nINDEX476

@SOAPBinding, 411
@SOAPMessageHandler, 411
SOA (Service-Oriented Architecture), 393
SQL (Structured Query Language), 119, 137
SQL actions (JSTL), 301
start() method, for messaging, 368
@Startup, 198, 199, 224
state management, EJBs and, 171
@Stateful, 225

bean classes and, 202, 205
shopping cart sample component and, 195

stateful session beans, 169, 189, 225
initializing/releasing resources and, 228
shopping cart sample component and, 193

@StatefulTimeout, shopping cart sample
component and, 195

@Stateless, 170, 191, 441
bean classes and, 202, 205
book resources sample components and,

455
shopping cart sample component and, 195
web services endpoints and, 410

statelessness, RESTful web services and, 440
stateless session beans, 168, 169, 190, 223

bean classes and, 202–206
bean-managed transactions and, 251
BookEJB sample class and, 177–187
container-managed transactions and, 244,

248
exceptions and, 249
RESTful web services and, 442
security and, 255
timer service and, 217
web services interfaces and, 205, 206
writing BookEJB and, 179

status codes, HTTP and, 435
StAX (Streaming API for XML), 7
stop() method, for messaging, 368
Streaming API for XML (StAX), 7
StreamMessage interface, 371
strings

conversion/validation for, 342–348
string manipulation, JSTL functions and,

304
Structured Query Language (SQL), 119, 137
Struts, 267
subqueries, 141
subscribers, in publish-subscribe messaging,

364, 378
subscriptionDurability property, 382
subscriptionName property, 382
Sun Microsystems’ GlassFish. See GlassFish
Swing, 261, 266
synchronization, 131
synchronized keyword, 196

synchronous messaging, 373, 384
sysinfo utility, 29
system exceptions, 249, 387

T
@Table, 63, 112
table-per-class strategy, for inheritance map-

ping, 111
table tags, 313
tables, 63
tag clouds, 79
taglib directive, in JSP, 292
tags, 79
templating tags, 316
@Temporal, 72
@Test, 27
testing

entities, 54
JUnit for, 24–29

text, output tag for, 311
text content type, 434
text/html content type, 434, 447
text/plain content type, 434, 447
text/xml content type, 435
TextMessage interface, 371
time-to-live setting, for messages, 376
@Timeout, timer service and, 221
timer service, for scheduling tasks, 169, 190,

217–221
TimerService interface, 220
Tomcat (Apache), 32
top-down approach to web services, 410
Topic interface, 366
TopicConnection interface, 368
TopicConnectionFactory interface, 365
TopicPublisher interface, 371
topics, in publish-subscribe messaging, 360,

362, 365, 366
TopicSession, 369
TopicSubscriber interface, 372
TopLink, 42, 43
TRACE method, 434
Transaction interface, 242
transaction management, EJBs and, 171
transaction managers, 241
transactional sessions, 368, 377
TransactionAttribute, 254, 386
@TransactionManagement, 250, 254
transactions, 239

attributes for, 245
distributed, 242
EJB support for, 243–252
local, 240

nINDEX 477

managing, 239–252
messaging and, 386
XA, 242

@Transient, 73, 76
transport protocols, 395, 396

U
UDDI (Universal Description Discovery, and

Integration), 393, 394
UIComponent interface, 309, 320
UIViewRoot interface, 309
UML (Unified Modeling Language), associa-

tions between classes and, 88
UMS (Universal Message Service), 360
underscore (_), escape characters and, 141
unidirectional relationships, 88, 91–99
Unified Modeling Language (UML), associa-

tions between classes and, 88
uniform interfaces, RESTful web services

and, 439
Uniform Resource Identifiers. See URIs
Uniform Resource Locators (URLs), 430
Uniform Resource Names (URNs), 430
units of work. See transactions
unit testing, 24–29, 54, 185
Universal Description Discovery, and Inte-

gration (UDDI), 393, 394
Universal Document Identifiers, 430
Universal Message Service (UMS), 360
Universal Resource Identifiers, 430
Unix cron utility, 217
unmarshal() method, 402
Unmarshaller class, 402
Update model values phase, of life cycles,

309, 343
UPDATE statement, 138, 143
updateCustomer() method, 234, 236
updating entities, 134, 143
upperLimit variable, 298
UriInfo class, 450
URIs Uniform Resource Identifiers), 430

creating, 451
RESTful web services and, 429, 443

URLs (Uniform Resource Locators), 430
URNs (Uniform Resource Names), 430
useBean JSP action element, 293
users, security and, 252
UserTransaction interface, 241, 250

V
validate() method, 161, 162, 347
validateData() method, 161
validation of data, 161–164, 342–348

Validator interface, 347
ValidatorException, 347
validators, 264, 346–348
valueHolder tag, 321
verbs, 433
@Version, 152, 153
version property, 152
versioning

Java and, 152
Maven and, 20

video content type, 434
view (implicit object), 325
viewScope (implicit object), 325
@ViewScoped, 334

W
W3C (World Wide Web Consortium), 396, 431
WADL (Web Application Description Lan-

guage), 431
wasCancelCalled() method, 209, 214
Web Application Description Language

(WADL), 431
web applications, 5

Ajax support and, 266, 348–355
book listing (sample application), 268–279
JSF and, 261

web containers, 6
web interfaces, 261, 266–279

brief history of, 266
WADL and, 431

web pages, 281–290
components for, 309–324
JSP and. See JSP

Web Profile, 12
web services, 7, 393–427, 438

annotations for, 411–416
callbacks and, 416
consumer for, 423
environment context and, 417
history of, 396
interfaces and, 205, 206
invoking, 398, 417
life cycle of, 416
RESTful, 429–462
specifications for, 396–397
technologies/protocols for, 394
top-down/bottom-up approaches to, 410
writing, 410, 419–427

Web Services, version 1.2 of, 397
Web Services Description Language. See

WSDL
Web Services Metadata (WS-Metadata), 397,

411

nINDEX478

web.xml file
book listing sample application and, 276
book resources sample components and,

458
credit card validator sample web service

and, 421
FacesServlet and, 329

WebApplicationException, 449, 452
@WebMethod, 411, 412, 420
@WebParam, 411, 413, 420
@WebResult, 411, 413, 420
@WebService, 205, 398, 410–414, 419
WebServiceContext interface, 417
@WebServiceRef, 211, 418, 426
WHERE statement, 138, 140
World Wide Web Consortium (W3C), 396, 431
WSDL (Web Services Description Language),

395, 396, 406–408
annotations and, 411
JAX-WS and, 409–418

wsgen tool, 418
wsimport tool, 417, 419–426
WS-Metadata (Web Services Metadata), 397,

411
WWW addresses, 430

X
XA resource managers, 242
XA transactions, 242
XAResource interface, 242
XHTML

composite components and, 320
creating web pages via, 283
Facelets and, 306
JSP and, 291
JSTL and, 297–305

.xhtml file extension, 283
xjc (schema compiler), 403
XML (Extensible Markup Language), 7, 395,

396
JAXB and, 399
SOAP and, 408

XML actions (JSTL), 302
XML descriptors, 44, 171
XML mapping, 81

listeners and, 165
vs. mapping using annotations, 81

XML Schema Definitions (XSD), 400
@XmlAccessorType, 405
@XmlAttribute, 404, 405
@XmlElement, 404, 405
@XmlElements, 405
@XmlEnum, 405
@XmlEnumValue, 405
XMLHttpRequest, 348
@XmlID, 405
@XmlIDREF, 405
@XmlList, 405
@XmlMimeType, 405
@XmlNs, 405
xmlns namespace, 292, 401
@XmlRootElement, 398, 400, 403–406

Book sample entity and, 454
CreditCard sample class and, 419

@XmlSchema, 405
@XmlTransient, 405
@XmlType, 405
@XmlValue, 405
xs prefix, 401
XSD (XML Schema Definitions), 400

Offer valid through x/x/xx.Offer valid through 11/09.

	Prelims

	Contents at a Glance
	Contents
	Foreword
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	how Is this Book Structured?
	downloading and running the Code
	Contacting the Author

	Java ee 6 at a Glance
	Understanding Java EE
	A Bit of History
	Standards
	Architecture
	Components
	Containers
	Services
	Network protocols
	packaging
	Java Standard edition

	Java EE 6 Specifications

	What’s New in Java EE 6?
	Lighter
	pruning
	profiles

	Easier to Use
	Richer
	More Portable

	The CD-BookStore Application
	Setting Up Your Environment
	JDK 1.6
	Maven 2
	a Bit of history
	project Descriptor
	Managing artifacts
	project Modularity
	plug-ins and Life Cycle
	Installation
	Usage

	JUnit 4
	a Bit of history
	how Does It Work?
	test Methods
	assert Methods
	Fixtures
	Launching JUnit
	JUnit Integration

	Derby 10.4
	Installation
	Usage

	GlassFish v3
	a Bit of history
	GlassFish v3 architecture
	Update Center
	GlassFish Subprojects
	administration
	Installing GlassFish

	Summary

	Java persistence
	JPA Specification Overview
	A Brief History of the Specification
	What’s New in JPA 2.0?
	Reference Implementation

	Understanding Entities
	Object-Relational Mapping
	Querying Entities
	Callbacks and Listeners

	Putting It All Together
	Writing the Book Entity
	Writing the Main Class
	Persistence Unit for the Main Class
	Compiling with Maven
	Running the Main Class with Derby
	Writing the BookTest Class
	Persistence Unit for the BookTest Class
	Running the BookTest Class with Embedded Derby

	Summary

	Object-relational Mapping
	How to Map an Entity
	Configuration by Exception

	Elementary Mapping
	Tables
	@table
	@Secondarytable

	Primary Keys
	@Id and @GeneratedValue
	Composite primary Keys

	Attributes
	@Basic
	@Column
	@temporal
	@transient
	@enumerated

	Access Type
	Collection of Basic Types
	Map of Basic Types

	Mapping with XML
	Embeddables
	Access Type of an Embeddable Class

	Relationship Mapping
	Relationships in Relational Databases
	Entity Relationships
	Unidirectional and Bidirectional
	@OnetoOne Unidirectional
	@OnetoMany Unidirectional
	@ManytoMany Bidirectional

	Fetching Relationships
	Ordering Relationships
	@OrderBy
	@OrderColumn

	Inheritance Mapping
	Inheritance Strategies
	Single-table Strategy
	Joined Strategy
	table-per-Class Strategy

	Type of Classes in the Inheritance Hierarchy
	abstract entity
	Nonentity
	Mapped Superclass

	Summary

	Managing persistent Objects
	How to Query an Entity
	Entity Manager
	Obtaining an Entity Manager
	Persistence Context
	Manipulating Entities
	persisting an entity
	Finding by ID
	removing an entity
	Orphan removal
	Synchronizing with the Database
	Content of the persistence Context
	Merging an entity
	Updating an entity
	Cascading events

	Cache API

	JPQL
	Select
	From
	Where
	Binding parameters
	Subqueries

	Order By
	Group By and Having
	Bulk Delete
	Bulk Update

	Queries
	Dynamic Queries
	Named Queries
	Native Queries

	Concurrency
	Versioning
	Optimistic Locking
	Pessimistic Locking

	Summary

	Callbacks and Listeners
	Entity Life Cycle
	Callbacks
	Listeners
	Summary

	enterprise Java Beans
	Understanding EJBs
	Types of EJBs
	Anatomy of an EJB
	EJB Container
	Embedded Container
	Dependency Injection and JNDI
	Callback Methods and Interceptors
	Packaging

	EJB Specification Overview
	History of the Specification
	What’s New in EJB 3.1
	EJB Lite
	Reference Implementation

	Putting It All Together
	Writing the Book Entity
	Writing the BookEJB Stateless Session Bean
	Persistence Unit for the BookEJB
	Writing the Main Class
	Compiling and Packaging with Maven
	Deploying on GlassFish
	Running the Main Class with Derby
	Writing the BookEJBTest Class

	Summary

	Session Beans and the timer Service
	Session Beans
	Stateless Beans
	Stateful Beans
	Singletons
	Initialization
	Chaining Singletons
	Concurrency

	Session Bean Model
	Interfaces and Bean Class
	Client View
	Session Context
	Deployment Descriptor
	Dependency Injection
	environment Naming Context

	Asynchronous Calls
	Embeddable Usage

	The Timer Service
	Calendar-Based Expression
	Automatic Timer Creation
	Programmatic Timer Creation

	Summary

	Callbacks and Interceptors
	Session Beans Life Cycle
	Stateless and Singleton
	Stateful
	Callbacks

	Interceptors
	Around-Invoke Interceptors
	Method Interceptors
	Life-Cycle Interceptor
	Chaining and Excluding Interceptors

	Summary

	transactions and Security
	Transactions
	ACID
	Local Transactions
	XA and Distributed Transactions

	Transaction Support in EJB
	Container-Managed Transactions
	Marking a CMt for rollback
	exception handling

	Bean-Managed Transactions

	Security
	Principals and Roles
	Authentication and Authorization

	Security Support in EJB
	Declarative Security
	Programmatic Security

	Summary

	JavaServer Faces
	Understanding JSF
	FacesServlet and faces-config.xml
	Pages and Components
	Renderer
	Converters and Validators
	Managed Beans and Navigation
	Ajax Support

	Web Interface Specifications Overview
	A Brief History of Web Interfaces
	JSP 2.2, EL 2.2, and JSTL 1.2
	JSF 2.0
	What’s New in JSF 2.0
	Reference Implementation

	Putting It All Together
	Writing the Book Entity
	Writing the BookEJB
	Writing the BookController Managed Bean
	Writing the newBook.xhtml Page
	Writing the listBooks.xhtml Page
	Configuration with web.xml
	Compiling and Packaging with Maven
	Deploying on GlassFish
	Running the Example

	Summary

	pages and Components
	Web Pages
	HTML
	XHTML
	CSS
	DOM
	JavaScript

	Java Server Pages
	Directive Elements
	Scripting Elements
	Action Elements
	Putting It All Together

	Expression Language
	JSP Standard Tag Library
	Core Actions
	Formatting Actions
	SQL Actions
	XML Actions
	Functions

	Facelets
	JavaServer Faces
	Life Cycle
	Standard HTML Components
	Commands
	Inputs
	Outputs
	Selections
	Graphics
	Grid and tables
	error Messages
	Miscellaneous
	templating

	Resource Management
	Composite Components
	Implicit Objects

	Summary

	processing and Navigation
	The MVC Pattern
	FacesServlet
	FacesContext
	Faces Config

	Managed Beans
	How to Write a Managed Bean
	Managed Bean Model
	@ManagedBean
	Scopes
	@Managedproperty
	Life Cycle and Callback annotations

	Navigation
	Message Handling

	Conversion and Validation
	Converters
	Custom Converters
	Validators
	Custom Validators

	Ajax
	General Concepts
	Support in JSF
	Putting It All Together

	Summary

	Sending Messages
	Understanding Messages
	JMS
	MDB

	Messaging Specification Overview
	A Brief History of Messaging
	JMS 1.1
	EJB 3.1
	Reference Implementation

	How to Send and Receive a Message
	Java Messaging Service
	Point-to-Point
	Publish-Subscribe
	JMS API
	administered Objects
	Connection
	Session
	Messages
	Messageproducer
	MessageConsumer

	Selectors
	Reliability Mechanisms
	Setting Message time-to-Live
	Specifying Message persistence
	Controlling acknowledgment
	Creating Durable Subscribers
	Setting priorities

	Message-Driven Beans
	How to Write an MDB
	MDB Model
	@MessageDriven
	@activationConfigproperty
	Dependencies Injection
	MDB Context
	Life Cycle and Callback annotations

	MDB As a Consumer
	MDB As a Producer
	Transaction
	Handling Exceptions

	Putting It All Together
	Writing the OrderDTO
	Writing the OrderSender
	Writing the OrderMDB
	Compiling and Packaging with Maven
	Creating the Administered Objects
	Deploying the MDB on GlassFish
	Running the Example

	Summary

	SOap Web Services
	Understanding Web Services
	UDDI
	WSDL
	SOAP
	Transport Protocol
	XML

	Web Services Specification Overview
	A Brief History of Web Services
	Java EE Specifications
	JaX-WS 2.2
	Web Services 1.2
	JaXB 2.2
	WS-Metadata 2.0
	JaXr 1.0

	Reference Implementation

	How to Invoke a Web Service
	Java Architecture for XML Binding
	Binding
	Annotations

	The Invisible Part of the Iceberg
	WSDL
	SOAP

	Java API for XML-Based Web Services
	JAX-WS Model
	Web Service endpoints
	annotations
	Life Cycle and Callback
	Web Service Context

	Invoking a Web Service

	Putting It All Together
	Writing the CreditCard Class
	Writing the CardValidator Web Service
	Compiling and Packaging with Maven
	Deploying on GlassFish
	Writing the Web Service Consumer
	Generating Consumer’s Artifacts and Packaging with Maven
	Running the Main Class

	Summary

	reStful Web Services
	Understanding RESTful Web Services
	Resources
	URI
	Representations
	WADL
	HTTP
	request and response
	http Methods
	Content Negotiation
	Content types
	Status Codes
	Caching and Conditional requests

	RESTful Web Services Specification
	A Brief History of REST
	JAX-RS 1.1
	What’s New in JAX-RS 1.1?
	Reference Implementation

	The REST Approach
	From the Web to Web Services
	A Web-Browsing Experience
	Uniform Interface
	Addressability
	Connectedness
	Statelessness

	Java API for RESTful Web Services
	The JAX-RS Model
	How to Write a REST Service
	URI Definition
	Extracting Parameters
	Consuming and Producing Content Types
	Entity Provider
	Methods or the Uniform Interface
	Contextual Information
	headers
	Building UrIs

	Exception Handling
	Life Cycle

	Putting It All Together
	Writing the Book Entity
	Writing the BookResource
	header
	Creating a New Book
	Getting a Book by ID
	Deleting a Book

	Configuration with web.xml
	Compiling and Packaging with Maven
	Deploying on GlassFish
	Running the Example

	Summary

	Index

