
this print for content only—size & color not accurate spine = 1.205" 640 page count

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning PHP and PostgreSQL E-Commerce:
From Novice to Professional
Dear Reader,

The PHP language and the PostgreSQL database have long offered an ideal blend
of practicality and power for both the novice and experienced programmer alike.
This book shows you how to take advantage of this powerful duo to build a full-
featured e-commerce web site. Guiding you through the entire design and build
process, you’ll create a professionally developed application that allows for the
ongoing integration of new features in an organized manner.

With each chapter, you’ll learn how to develop and deploy an online product
catalog complete with a shopping cart, checkout mechanism, product search,
product recommendations, administrative features, customer accounts, an
order-management system, and more.

You’ll also learn how to process electronic payments by integrating several
popular payment services, including PayPal, DataCash, and Authorize.net.

With each new feature, you’ll be introduced to new challenges and theoretical
concepts, which are all thoroughly explained. Along the way, you will gain an
intimate understanding of every piece of code you write, which will enable you
to build your own powerful and flexible web sites efficiently and rapidly with
PHP and PostgreSQL.

Have fun reading this book!

Cristian, Emilian, and Mihai

US $49.99

Shelve in
PHP

User level:
Beginner–Intermediate

Darie,
Balanescu,

Bucica

PHP
and PostgreSQL

E-Com
m

erce

THE EXPERT’S VOICE® IN OPEN SOURCE

Cristian Darie, Emilian Balanescu,
and Mihai Bucica

Beginning

PHP and PostgreSQL
E-Commerce
From Novice to Professional

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

ISBN 1-59059-648-X

9 781590 596487

54999

6 89253 59648 7

Companion
eBook Available

Beginning

Learn how to use PHP, PostgreSQL, and sound
development practices to build high quality,
extensible e-commerce web sites in no time!

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details
on $10 eBook version

THE APRESS ROADMAP

Beginning PHP and
PostgreSQL E-Commerce

Essential PHP Tools: Modules,
Extensions, and Accelerators

PHP 5 Objects, Patterns,
and Practice

Beginning PostgreSQL,
Second Edition

Beginning PHP
and PostgreSQL 8

Pro PostgreSQL

Pro PHP

Cristian Darie

Mihai Bucica

Emilian Balanescu

Cristian Darie, Emilian Balanescu,
Mihai Bucica

Beginning PHP and
PostgreSQL
E-Commerce
From Novice to Professional

648XFM.qxd 11/22/06 4:43 PM Page i

Beginning PHP and PostgreSQL E-Commerce: From Novice to Professional

Copyright © 2006 by Cristian Darie, Emilian Balanescu, Mihai Bucica

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-648-7

ISBN-10 (pbk): 1-59059-648-X

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore
Technical Reviewer: Greg Sabino Mullane
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Kylie Johnston
Copy Edit Manager: Nicole Flores
Copy Editor: Julie McNamee
Assistant Production Director: Kari Brooks-Copony
Production Editor: Lori Bring
Compositor: Gina Rexrode
Proofreader: April Eddy
Indexer: John Collin
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any lia-
bility to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

648XFM.qxd 11/22/06 4:43 PM Page ii

Contents at a Glance

About the Authors . xiii

About the Technical Reviewer . xiv

Acknowledgments . xv

Introduction . xvii

PART 1 ■ ■ ■ Phase 1 of Development
■CHAPTER 1 Starting an E-Commerce Site . 3

■CHAPTER 2 Laying Out the Foundations . 13

■CHAPTER 3 Creating the Product Catalog: Part I . 57

■CHAPTER 4 Creating the Product Catalog: Part II . 107

■CHAPTER 5 Searching the Catalog . 169

■CHAPTER 6 Receiving Payments Using PayPal . 189

■CHAPTER 7 Catalog Administration . 199

PART 2 ■ ■ ■ Phase II of Development
■CHAPTER 8 The Shopping Cart . 267

■CHAPTER 9 Dealing with Customer Orders . 303

■CHAPTER 10 Product Recommendations . 335

PART 3 ■ ■ ■ Phase III of Development
■CHAPTER 11 Managing Customer Details . 353

■CHAPTER 12 Storing Customer Orders . 425

■CHAPTER 13 Implementing the Order Pipeline: Part I . 453

■CHAPTER 14 Implementing the Order Pipeline: Part II . 477

■CHAPTER 15 Credit Card Transactions . 505

■CHAPTER 16 Product Reviews. 537

■CHAPTER 17 Connecting to Web Services . 547

■APPENDIX A Installing Apache, PHP, and PostgreSQL. 571

■APPENDIX B Project Management Considerations . 583

■INDEX . 593
iii

648XFM.qxd 11/22/06 4:43 PM Page iii

648XFM.qxd 11/22/06 4:43 PM Page iv

Contents

About the Authors . xiii

About the Technical Reviewer . xiv

Acknowledgments . xv

Introduction . xvii

PART 1 ■ ■ ■ Phase 1 of Development

■CHAPTER 1 Starting an E-Commerce Site . 3

Deciding Whether to Go Online . 3

Get More Customers . 4

Make Customers Spend More . 4

Reduce the Costs of Fulfilling Orders . 5

Let’s Make Money . 5

Risks and Threats . 6

Designing for Business. 7

Phase I: Getting a Site Up . 7

Phase II: Creating Your Own Shopping Cart. 8
Phase III: Processing Orders and Adding Features. 8

HatShop. 9

Summary . 11

■CHAPTER 2 Laying Out the Foundations . 13

Designing for Growth . 14

Meeting Long-Term Requirements with Minimal Effort 14

The Magic of the Three-Tier Architecture . 15

Choosing Technologies and Tools . 20

Using PHP to Generate Dynamic Web Content 21

Using Smarty to Separate Layout from Code 21

Using PostgreSQL to Store Web Site Data . 23

PostgreSQL and the Three-Tier Architecture. 26

Choosing Naming and Coding Standards . 27
v

648XFM.qxd 11/22/06 4:43 PM Page v

Starting the HatShop Project . 28

Installing the Required Software . 28

Getting a Code Editor . 29

Preparing the hatshop Virtual Folder . 29

Installing Smarty . 32

Implementing the Site Skeleton . 34

Handling and Reporting Errors . 44

Preparing the Database . 52

Downloading the Code . 55

Summary . 55

■CHAPTER 3 Creating the Product Catalog: Part I . 57

Showing Your Visitors What You’ve Got . 57

What Does a Product Catalog Look Like? . 58

Previewing the Product Catalog . 58

Roadmap for This Chapter . 60

Storing Catalog Information. 62

Understanding Data Tables . 63

Creating the department Table . 70

Communicating with the Database . 74

The Structured Query Language (SQL) . 74

PostgreSQL Functions and Types . 78

Adding Logic to the Site . 81

Connecting to PostgreSQL . 82

Writing the Business Tier Code . 87

Displaying the List of Departments . 95

Using Smarty Plugins . 96

Planning Ahead for Secure Connections . 103

Summary . 106

■CHAPTER 4 Creating the Product Catalog: Part II . 107

Storing the New Data . 107

What Makes a Relational Database . 108

Enforcing Table Relationships with the FOREIGN KEY
Constraint. 112

Adding Categories . 113

Adding Products. 118

Relating Products to Categories . 120

Using Database Diagrams . 121

■CONTENTSvi

648XFM.qxd 11/22/06 4:43 PM Page vi

Querying the New Data . 122
Getting Short Descriptions . 122
Joining Data Tables . 123
Showing Products Page by Page. 125

Writing the New Database Functions. 126
Completing the Business Tier Code . 135
Implementing the Presentation Tier . 142

Displaying Department and Category Details 143
Displaying the List of Categories. 149
Displaying Product Lists . 153
Displaying Front Page Contents . 162
Showing Product Details . 163

Summary . 167

■CHAPTER 5 Searching the Catalog . 169

Choosing How to Search the Catalog. 169
Teaching the Database to Search Itself . 171

Searching Using WHERE and LIKE . 171
Searching Using the PostgreSQL tsearch2 Module 172

Implementing the Business Tier . 179
Implementing the Presentation Tier . 181

Creating the Search Box. 181
Displaying the Search Results . 184

Summary . 188

■CHAPTER 6 Receiving Payments Using PayPal . 189

Considering Internet Payment Service Providers . 190

Getting Started with PayPal . 190

Integrating the PayPal Shopping Cart and Checkout. 192

Using the PayPal Single Item Purchases Feature. 197

Summary . 198

■CHAPTER 7 Catalog Administration . 199

Previewing the Catalog Administration Page . 200

Setting Up the Catalog Administration Page . 202

Using Secure Connections . 203

Configuring HatShop for SSL . 205

Obtaining an SSL Certificate . 205

Enforcing SSL Connections . 206

Authenticating Administrators . 207

■CONTENTS vii

648XFM.qxd 11/22/06 4:43 PM Page vii

Administering Departments . 215

Implementing the Presentation Tier . 216

Implementing the Business Tier . 222

Implementing the Data Tier . 224

Administering Categories and Products . 226

Administering Product Details . 244

Implementing the Presentation Tier . 245

Implementing the Business Tier . 254

Implementing the Data Tier . 257

Summary . 263

PART 2 ■ ■ ■ Phase II of Development

■CHAPTER 8 The Shopping Cart . 267

Designing the Shopping Cart. 270

Storing Shopping Cart Information . 270

Implementing the Data Tier . 271

Implementing the Business Tier . 277

Implementing the Presentation Tier . 284

Administering the Shopping Cart . 296

Deleting Products Residing in the Shopping Cart. 296

Building the Shopping Cart Admin Page . 296

Summary . 301

■CHAPTER 9 Dealing with Customer Orders . 303

Implementing an Order Placement System . 303

Storing Orders in the Database . 305

Implementing the Data Tier . 308

Implementing the Business Tier . 312

Implementing the Presentation Tier . 312

Administering Orders . 314

Setting Up the Orders Administration Page . 316

Displaying Pending Orders . 316

Displaying Order Details . 325

Summary . 334

■CONTENTSviii

648XFM.qxd 11/22/06 4:43 PM Page viii

■CHAPTER 10 Product Recommendations. 335

Increasing Sales with Dynamic Recommendations. 335

Implementing the Data Tier . 337

Adding Product Recommendations. 342

Adding Shopping Cart Recommendations . 344

Implementing the Business Tier . 346

Implementing the Presentation Tier . 347

Summary . 350

PART 3 ■ ■ ■ Phase III of Development

■CHAPTER 11 Managing Customer Details . 353

Storing Customer Accounts . 354

The HatShop Customer Account Scheme . 354

Creating customer and shipping_region Tables 355

Implementing the Security Classes . 356

Implementing Hashing Functionality in the Business Tier 357

Implementing the Encryption Functionality in the Business Tier . . . 360

Storing Credit Cart Information Using the SecureCard Class 366

Adding Customer Accounts Functionality to HatShop 376

Implementing the Data Tier . 379

Implementing the Business Tier . 383

Implementing the Presentation Tier . 388

Creating the Checkout Page . 412

Enforcing SSL Connections . 421

Summary . 423

■CHAPTER 12 Storing Customer Orders . 425

Adding Orders to Customer Accounts . 425

Administering Customer Orders . 429

Handling Tax and Shipping Charges. 441

Tax Issues . 441

Shipping Issues . 442

Implementing Tax and Shipping Charges . 443

Summary . 452

■CONTENTS ix

648XFM.qxd 11/22/06 4:43 PM Page ix

■CHAPTER 13 Implementing the Order Pipeline: Part I 453

What Is an Order Pipeline? . 453

Designing the Order Pipeline. 454

Laying the Groundwork . 458

Adding More Functionality to OrderProcessor . 469

Updating the Status of an Order . 470

Setting Credit Card Authentication Details . 471

Setting the Order Shipment Date . 472

Sending Emails to Customers and Suppliers 473

Retrieving Order Details and the Customer Address 473

Summary . 475

■CHAPTER 14 Implementing the Order Pipeline: Part II 477

Implementing the Pipeline Sections . 477

Testing the Pipeline . 487

Updating the Checkout Page . 495

Updating the Orders Admin Page . 498

Implementing the Data Tier . 498

Implementing the Business Tier . 500

Implementing the Presentation Tier . 500

Summary . 504

■CHAPTER 15 Credit Card Transactions . 505

Credit Card Transaction Fundamentals . 505

Working with Credit Card Payment Gateways 506

Understanding Credit Card Transactions . 507

Working with DataCash . 508

Working with Authorize.net . 524

Integrating Authorize.net with HatShop . 532

Summary . 535

■CHAPTER 16 Product Reviews . 537

Implementing the Data Tier . 538

Implementing the Business Tier . 540

Implementing the User Interface. 541

Summary . 545

■CONTENTSx

648XFM.qxd 11/22/06 4:43 PM Page x

■CHAPTER 17 Connecting to Web Services . 547

Accessing the Amazon E-Commerce Service. 549

Creating Your Amazon E-Commerce Service Account 549

Obtaining an Amazon Associate ID . 550

Accessing Amazon E-Commerce Service Using REST 551

Accessing Amazon E-Commerce Service Using SOAP 556

Integrating Amazon E-Commerce Service with HatShop 558

Implementing the Business Tier . 559

Implementing the Presentation Tier . 564

Summary . 569

■APPENDIX A Installing Apache, PHP, and PostgreSQL 571

Preparing Your Windows Playground . 571

Installing SSL-Enabled Apache . 571

Installing Apache (No SSL) . 573

Installing PHP 5 . 574

Installing PostgreSQL . 576

Preparing Your Unix Playground . 577

Installing Apache 2 . 577

Installing PostgreSQL 8. 578

Installing PHP 5 . 580

■APPENDIX B Project Management Considerations . 583

Developing Software Solutions . 583

Considering the Theory Behind Project Management 584

The Waterfall (or Traditional) Method . 584

The Spiral Method . 586

The Rapid Application Development (RAD) Method 588

Extreme Programming (XP) Methodology . 588

Picking a Method. 589

Understanding the E-Commerce Project Cycle . 589

Maintaining Relationships with Your Customers . 591

Summary . 591

■INDEX . 593

■CONTENTS xi

648XFM.qxd 11/22/06 4:43 PM Page xi

648XFM.qxd 11/22/06 4:43 PM Page xii

0c8b62c78daaa2d101c6afa8a1dc3480

About the Authors

■CRISTIAN DARIE is a software engineer with experience in a wide range of
modern technologies, and he is the author of numerous technical books.
Cristian is studying distributed application architectures for his PhD and
is getting involved with various commercial and research projects. When
not planning to buy Google, he enjoys his bit of social life. If you want to
say “hi,” you can reach Cristian through his personal web site at
http://www.cristiandarie.ro.

■EMILIAN BALANESCU is a programmer experienced in many technologies,
such as PHP, Java, .NET, AJAX, PostgreSQL, MySQL, and MS SQL Server.
He currently works as a Fault Handling Engineer at AccessNET Interna-
tional. You can reach Emilian at http://www.emilianbalanescu.ro.

■MIHAI BUCICA started programming and competing in programming
contests (winning many of them) at age 12. With a bachelor's degree in
computer science from the Automatic Control and Computers Faculty of
the Politehnica University of Bucharest, Romania, Mihai works on build-
ing communication software with various electronic markets.

Even after working with a multitude of languages and technologies,
Mihai's programming language of choice remains C++, and he loves the

LGPL world. Mihai also co-authored Beginning PHP 5 and MySQL E-Commerce. He can be
contacted through his personal web site, http://www.valentinbucica.ro.

xiii

648XFM.qxd 11/22/06 4:43 PM Page xiii

About the Technical Reviewer

■GREG SABINO MULLANE has used many databases but believes that none compare to PostgreSQL
(and advocates calling it “Postgres”). He helps maintain the Postgres mailing lists and web
sites, has spoken at OSCon and other events on Postgres topics, and has contributed code to
the Postgres core. He is the primary developer of the DBD::Pg module, has ported MediaWiki
to Postgres, and has been recognized as a Postgres Major Developer for all of his Postgres
work. He has a strong interest in PGP and cryptography, and he attends keysignings as often
as possible.

His PGP fingerprint is 2529 DF6A B8F7 9407 E944 45B4 BC9B 9067 1496 4AC8, and he has
been known to sneak it into code he has written. He currently works as a software developer
for End Point, primarily doing Postgres, Perl, and PHP work. He and his wife Joy enjoy travel-
ing and try to make at least one overseas trip a year.

xiv

648XFM.qxd 11/22/06 4:43 PM Page xiv

Acknowledgments

We would like to thank Kylie, our project manager, for guiding everyone through the process
of building this book; Julie, for her constantly wonderful edits; Lori and April, for the final
magic touch; and Greg and Jason, for giving us excellent technical feedback that contributed
decisively to the quality of this book.

xv

648XFM.qxd 11/22/06 4:43 PM Page xv

648XFM.qxd 11/22/06 4:43 PM Page xvi

Introduction

Welcome to Beginning PHP and PostgreSQL E-Commerce: From Novice to Professional! The
explosive growth of retail over the Internet is encouraging more small- to medium-sized busi-
nesses to consider the benefits of setting up e-commerce web sites. Although there are great
and obvious advantages to online retail, there are also many hidden pitfalls that you might
encounter when developing a retail web site. This book provides you with a practical,
step-by-step guide to setting up an e-commerce web site. Guiding you through every step
of the design and build process, this book will have you building high quality, extendable
e-commerce web sites quickly and easily.

Over the course of the book, you will develop all the skills necessary to get your business
up on the web and available to a worldwide audience. We present this information in a book-
long case study, the complexity of which develops as your knowledge increases through the
book.

The case study is presented in three phases. The first phase focuses on getting the site up
and running as quickly as possible and at a low cost. Although not yet full-featured, at the
conclusion of this phase, your site will be capable of accepting PayPal payments, enabling you
to begin generating revenue immediately.

The second phase concentrates on increasing revenue by improving the shopping experi-
ence. In this phase, you’ll learn how to proactively encourage customers to buy more by
implementing product recommendations. We’ll also begin laying the groundwork for handling
credit card transactions by developing and integrating custom shopping cart functionality.

In the third phase, we’ll show you how to increase your profit margins by reducing costs
through automating and streamlining order processing and administration and by handling
credit card transactions yourself. You also learn how to integrate external functionality
through Web Services and how to improve your customer’s shopping experience by adding
product reviews functionality.

Who This Book Is For
Beginning PHP and PostgreSQL E-Commerce: From Novice to Professional is aimed at develop-
ers looking for a tutorial approach to building a full e-commerce web site from design to
deployment. However, it’s assumed that you have some knowledge of building web sites with
PHP and PostgreSQL. Beginning PHP and PostgreSQL 8: From Novice to Professional (Apress,
2006), authored by W. Jason Gilmore and Robert Treat, can provide this foundation knowledge
for you.

This book will also prove valuable for PHP 4 developers who learn best by example and
want to experience PHP 5 development techniques first hand.

xvii

648XFM.qxd 11/22/06 4:43 PM Page xvii

How This Book Is Structured
This book is divided into three parts consisting of 17 chapters and 2 appendixes. We cover a
wide variety of topics, showing you how to

• Build an online product catalog that can be browsed and searched

• Implement the catalog administration pages that allow adding, modifying, and remov-
ing products, categories, and departments

• Create your own shopping basket and checkout in PHP

• Increase sales by implementing product recommendations and product reviews

• Handle payments using PayPal, DataCash, and Authorize.net

• Implement a customer accounts system

• Integrate external functionality through Web Services

The following brief roadmap highlights how we’ll take you from novice to professional
regarding each of the topics in the previous list.

Part 1: Phase I of Development

Chapter 1: Starting an E-Commerce Site
In this chapter, we’ll introduce some of the principles of e-commerce in the real world. You see
the importance of focusing on short-term revenue and keeping risks down. We look at the
three basic ways in which an e-commerce site can make money. We then apply those princi-
ples to a three-phase plan that provides a deliverable, usable site at each phase of this book.

Chapter 2: Laying Out the Foundations
The first chapter offered an overview of e-commerce in the real world. Now that you’ve
decided to develop a web site, we start to look in more detail at laying down the foundations
for its future. We’ll talk about what technologies and tools you’ll use, and even more impor-
tantly, how you’ll use them.

Chapter 3: Creating the Product Catalog: Part I
After learning about the three-tier architecture and implementing a bit of your web site’s
main page, it’s time to continue your work by starting to create the HatShop product catalog.
Because the product catalog is composed of many components, you’ll create it over two
chapters. In Chapter 3, you’ll create the first database table and implement the data access
code. By the end of this chapter, you’ll have something dynamically generated on your web
page.

■INTRODUCTIONxviii

648XFM.qxd 11/22/06 4:43 PM Page xviii

Chapter 4: Creating the Product Catalog: Part II
The fun isn’t over yet! In the previous chapter, you created a selectable list of departments for
HatShop. However, a product catalog is much more than a list of departments. In Chapter 4,
you’ll add the rest of the product catalog features.

Chapter 5: Searching the Catalog
In the preceding two chapters, you will have implemented a functional product catalog for
HatShop. However, the site still lacks the all-important search feature. The goal in this chapter
is to allow the visitor to search the site for products by entering one or more keywords. You’ll
learn how to implement search results rankings and how to browse through the search results
page by page. You’ll see how easy it is to add new functionality to a working site by integrating
the new components into the existing architecture.

Chapter 6: Receiving Payments Using PayPal
Let’s make some money! Your e-commerce web site needs a way to receive payments from
customers. The preferred solution for established companies is to open a merchant account,
but many small businesses choose to start with a solution that’s simpler to implement, where
they don’t have to process credit card or payment information themselves.

A number of companies and web sites exist to help individuals or small businesses that
don’t have the resources to process credit card and wire transactions. These companies can be
used to process the payment between companies and their customers. In this chapter, we’ll
demonstrate some of the functionality provided by one such company, PayPal, as we use it on
the HatShop web site in the first two stages of development.

Chapter 7: Catalog Administration
The final detail to take care of before launching a web site is to create its administrative inter-
face. Although this is a part visitors will never see, it’s still key to delivering a quality web site to
your client.

Part 2: Phase II of Development

Chapter 8: The Shopping Cart
With this chapter, you enter the second phase of development, where you start improving and
adding new features to the already existing, fully functional e-commerce site. In Chapter 8,
you’ll implement the custom shopping cart, which stores its data in the local database. This
provides you with more flexibility than the PayPal shopping basket, over which you have no
control and which you can’t save into your database for further processing and analysis.

■INTRODUCTION xix

648XFM.qxd 11/22/06 4:43 PM Page xix

Chapter 9: Dealing with Customer Orders
The good news is that the brand new shopping cart implemented in Chapter 8 looks good and
is fully functional. The bad news is that it doesn’t allow the visitor to actually place an order,
making it totally useless in the context of a production system. As you have probably already
guessed, you’ll deal with that problem in this chapter, in two separate stages. In the first part
of the chapter, you’ll implement the client-side part of the order-placing mechanism. In the
second part of the chapter, you’ll implement a simple orders administration page where the
site administrator can view and handle pending orders.

Chapter 10: Product Recommendations
One of the best advantages of an Internet store compared to a brick-and-mortar store is the
capability to customize the web site for each visitor based on his or her preferences, or based
on data gathered from other visitors with similar preferences. If your web site knows how to
suggest additional products to your visitor in a clever way, he or she might end up buying
more than initially planned. In Chapter 10, you’ll learn how to implement a dynamic product
recommendation system.

Part 3: Phase III of Development

Chapter 11: Managing Customer Details
In the first two stages of development, you’ve built a basic (but functional) site and have
hooked it into PayPal for taking payments and confirming orders. In the third section of the
book, you’ll take things a little further. By cutting out PayPal from the ordering process, you
can gain better control as well as reduce overhead. This isn’t as complicated as you might
think, but you must be careful to do things right. Chapter 11 lays the groundwork by imple-
menting a customer account system, as well as looking into the security aspects of exchanging
and storing customer and credit card details.

Chapter 12: Storing Customer Orders
In this chapter, you’ll make the modifications required for customers to place orders that are
associated with their user profiles. The main modification here is that the customer associated
with an order will be identified by a new piece of information in the orders table, and much
of the rest of the modifications will be made to use this information.

Also in this chapter, you’ll take a look at dealing with another common feature of
e-commerce sites: tax and shipping charges. Many options are available for implementing
this functionality, but we’ll just examine a simple way of doing things and lay the groundwork
for your own further development.

Chapter 13: Implementing the Order Pipeline: Part I
The HatShop e-commerce application is shaping up nicely. You’ve added customer account
functionality, and you’re keeping track of customer addresses and credit card information,
which is stored in a secure way. However, you’re not currently using this information—you’re
delegating responsibility for this to PayPal. In this and the next chapter, you’ll build your own

■INTRODUCTIONxx

648XFM.qxd 11/22/06 4:43 PM Page xx

order-processing pipeline that deals with authorizing credit cards, stock checking, shipping,
providing email notifications, and so on. We’ll leave the credit card processing specifics until
Chapter 15, but we’ll show you where this process fits in before then.

Chapter 14: Implementing the Order Pipeline: Part II
In this chapter, you’ll add the required pipeline sections so that you can process orders from
start to finish, although you won’t be adding full credit card transaction functionality until the
next chapter. We’ll also look at the web administration of orders by modifying the order admin
pages added earlier in the book to take into account the new order-processing system.

Chapter 15: Credit Card Transactions
The last thing you need to do before launching the e-commerce site is enable credit card
processing. In this chapter, we’ll look at how you can build this into the pipeline you created
in Chapters 13 and 14. You’ll see how to use two popular credit card gateways to do this: Data-
Cash and Authorize.net. By the end of this chapter, HatShop will be a fully functioning, secure,
and usable e-commerce application.

Chapter 16: Product Reviews
At this point, you have a complete and functional e-commerce web site. However, this doesn’t
stop you from adding even more features to it, making it more useful and pleasant for visitors.
By adding a product reviews system to your web site, you increase the chances that visitors
will get back to your site, either to write a review for a product they bought or to see what
other people think about that product.

Chapter 17: Connecting to Web Services
In the dynamic world of the Internet, sometimes it isn’t enough to just have an important web
presence; you also need to interact with functionality provided by third parties to achieve your
goals. So far in this book, you already saw how to integrate external functionality to process
payments from your customers. In Chapter 17, you’ll learn how to use Amazon.com function-
ality from and through Web Services. A Web Service is exposed through a web interface using
standard Internet protocols such as HTTP. The messages exchanged by the client and the
server are encoded using an XML-based protocol named SOAP (Simple Object Access Proto-
col), or by using REST (Representational State Transfer). These messages are sent over HTTP.
You’ll learn more about these technologies in this chapter.

Prerequisites
The code in this book has been built and tested with PHP 5 and PostgreSQL 8. It will not work
with PHP 4 or older versions. You’ll find detailed information about the required software in
Appendix A.

■INTRODUCTION xxi

648XFM.qxd 11/22/06 4:43 PM Page xxi

Downloading the Code
The code for this book can be downloaded in zip file format from the Source Code/Downloads
section of the Apress web site (http://www.apress.com). You also can find the code, errata, and
other resources related to the book on Cristian’s web site at http://www.cristiandarie.ro/
php-postgresql-ecommerce/, or on Emilian’s web site at http://www.emilianbalanescu.ro/
beginning-php-postgresql-ecommerce/.

Contacting the Authors
You can contact the authors through their web sites, as follows:

• Cristian Darie, http://www.cristiandarie.ro

• Emilian Balanescu, http://www.emilianbalanescu.ro

• Mihai Valentin Bucica, http://www.valentinbucica.ro

■INTRODUCTIONxxii

648XFM.qxd 11/22/06 4:43 PM Page xxii

P h a s e 1 of Development

P A R T 1

648XCH01.qxd 10/4/06 6:16 PM Page 1

648XCH01.qxd 10/4/06 6:16 PM Page 2

Starting an E-Commerce Site

The word “e-commerce” has had a remarkable fall from grace in the past few years. Just the
idea of having an e-commerce web site was enough to get many businessmen salivating with
anticipation. But now, it’s no longer enough to say, “e-commerce is the future—get online or
get out of business.” You now need compelling, realistic, and specific reasons to take your
business online.

This book focuses on programming and associated disciplines, such as creating, access-
ing, and manipulating databases. But before we jump into that, we need to understand the
business decisions that lead to the creation of an e-commerce site in the first place.

If you want to build an e-commerce site today, you must answer some tough questions.
The good news is that these questions do have answers, and we’re going to have a go at
answering them in this chapter:

• So many big e-commerce sites have failed. What can e-commerce possibly offer me in
today’s tougher environment?

• Most e-commerce companies seemed to need massive investment. How can I produce
a site on my limited budget?

• Even successful e-commerce sites expect to take years before they turn a profit. My
business can’t wait that long. How can I make money now?

Deciding Whether to Go Online
Although there are hundreds of possible reasons to go online, they tend to fall into the follow-
ing groups:

• Get more customers

• Make existing customers spend more

• Reduce the costs of fulfilling orders

We’ll look at each of these in the following sections.

3

C H A P T E R 1

648XCH01.qxd 10/4/06 6:16 PM Page 3

Get More Customers
Getting more customers is immediately the most attractive reason. With an e-commerce site,
even small businesses can reach customers all over the world. This reason can also be the
most dangerous, however, because many people set up e-commerce sites assuming that the
site will reach customers immediately. It won’t. In the offline world, you need to know a shop
exists before you can go into it. This is still true in the world of e-commerce—people must
know your site exists before you can hope to get a single order.

Addressing this issue is largely a question of advertising, rather than the site itself. Popular
methods of getting more customers include registering the web site with the popular search
engines and directory listings, optimizing the site for search-engine ranking, creating forums,
sending newsletters, and so on.

We don’t cover many of these aspects of e-commerce in this book, as we try to stay
focused on e-commerce development. A simple web search for “web site advertising tutorial”
will point you to many useful resources.

Make Customers Spend More
Assuming your company already has customers, you probably wish that they bought more.
What stops them? If the customers don’t want any more of a certain product, there’s not a lot
that e-commerce can do, but chances are there are other reasons, too:

• Getting to the shop/placing an order by mail is a hassle.

• Some of the things you sell can be bought from more convenient places.

• You’re mostly open while your customers are at work.

• It’s harder to implement an efficient product recommendations system in a physical
s t o re.

A quality e-commerce site (because there are so many buggy, insecure, or hard-to-use
web sites out there) can fix those problems. People with Internet access will find placing an
order online far easier than any other method—meaning that when the temptation to buy
strikes, it’s much easier for them to give in. Of course, the convenience of being online also
means that people are more likely to choose you over other local suppliers.

Because your site is online 24 hours a day, rather than the usual 9 to 5, your customers
can shop with you outside of their working hours. Having an online store brings a double
blessing to you if your customers work in offices because they can indulge in retail therapy
directly from their desks.

Skillful e-commerce design can encourage your customers to buy things they wouldn’t
usually think of. You can easily update your site to suggest items of particular seasonal inter-
est, to announce interesting new products, or to recommend products similar to what that
specific customer has already bought.

Many of the large e-commerce sites encourage customers to buy useful accessories along
with the main product or to buy a more expensive alternative to the one they’re considering.
Others give special offers to regular shoppers or suggest impulse purchases during checkout.
You’ll learn how to use some of these methods in later chapters; by the end of the book, you’ll
have a good idea of how to add more features for yourself.

Finally, it’s much easier to learn about your customers via e-commerce than in face-to-
face shops, or even mail order. Even if you just gather email addresses, you can use these to

CHAPTER 1 ■ S TA RTING AN E -COMMERCE SITE4

648XCH01.qxd 10/4/06 6:16 PM Page 4

send out updates and news. More sophisticated sites can automatically analyze a customer’s
buying habits to make suggestions on other products the customer might like to buy.

Another related benefit of e-commerce is that there’s no real cost in having people browse
without buying. In fact, getting people to visit the site as often as possible can be valuable. You
should consider building features into the site that are designed purely to make people visit
regularly; for example, you might include community features such as forums or free content
related to the products you’re selling.

Reduce the Costs of Fulfilling Orders
A well-built e-commerce site will be much cheaper to run than a comparable offline business.
Under conventional business models, a staff member must feed an order into the company’s
order-processing system. With e-commerce, the customer can do this for you—the gateway
between the site and the order processing can be seamless.

Of course, after your e-commerce site is up and running, the cost of actually taking orders
gets close to zero—you don’t need to pay for checkout staff, assistants, security guards, or rent
in a busy shopping mall.

If you have a sound business idea, and you execute the site well, you can receive these
benefits without a massive investment. What’s important is to always focus on the almighty
dollar: Will your site, or any particular feature of it, really help you get more customers, get
customers to spend more, or reduce the costs and therefore increase your margins?

Now it’s time to introduce the site we’ll be using as the example in this book, and see just
how all of these principles relate to our own shop.

L e t ’s Make Money
We’re going to build an e-commerce store that sells hats. On all the e-commerce sites we’ve
worked on, there’s always been a trade-off to make between building an amazing site that
everybody will love and creating a site on a limited budget that will make money. Usually, I’m
on the trigger-happy, really amazing site side, but I’m always grateful that my ambitions are
reined in by the actual business demands. If you’re designing and building the site for yourself
and you are the client, then you have a challenge—keeping your view realistic while maintain-
ing your enthusiasm for the project.

This book shows you a logical way to build an e-commerce site that will deliver what it
needs to be profitable. However, when designing your own site, you need to think carefully
about exactly who your customers are, what they need, how they want to place orders, and
what they are most likely to buy. Most important, you need to think about how they will come
to your site in the first place. You should consider the following points before you start to visu-
alize or design the site and certainly before you start programming:

Getting customers: How will you get visitors to the site in the first place?

Offering products: What will you offer, and how will you expect customers to buy? Will
they buy in bulk? Will they make a lot of repeat orders? Will they know what they want
before they visit, or will they want to be inspired? These factors will influence how you
arrange your catalog and searching as well as what order process you use. A shopping
basket is great if people want to browse. If people know exactly what they want, then they
might prefer something more like an order form.

CHAPTER 1 ■ S TA RT ING AN E-COMMERCE SITE 5

648XCH01.qxd 10/4/06 6:16 PM Page 5

Processing orders: How will you turn a customer order into a parcel ready for mailing?
Your main consideration here is finding an efficient way to process payments and deliver
orders to whoever manages your stock or warehouse. How will you give your customers
confidence in your ability to protect their data and deliver their purchases on time?

Serving customers: Will customers require additional help with products that they buy
from you? Do you need to offer warranties, service contracts, or other support services?

Bringing customers back: How will you entice customers back to the site? Are they
likely to only visit the site to make a purchase, or will there be e-window shoppers?
Are your products consumables, and can you predict when your customers will need
something new?

After you’ve answered these questions, you can start designing your site, knowing that
you’re designing for your customers—not just doing what seems like a good idea at the time.
Determining the answers to these questions will also help ensure that your design covers all
the important areas, without massive omissions that will be a nightmare to fix later.

The example site presented in this book has taken a deliberate generic approach to show
you the most common e-commerce techniques. To really lift yourself above the competition,
however, you don’t need fancy features or Flash movies—you just need to understand, attract,
and serve your customers better than anybody else. Think about this before you launch into
designing and building the site itself.

Risks and Threats
All this might make it sound as if your e-commerce business can’t possibly fail. Well, it’s time
to take a cold shower and realize that even the best-laid plans often go wrong. Some risks are
particularly relevant to e-commerce companies, such as

• Hacking

• Credit card scams

• Hardware failures

• Unreliable shipping services

• Software errors

• Changing laws

You can’t get rid of these risks, but you can try to understand them and defend yourself
from them. The software developed in this book goes some way to meeting these issues, but
many of the risks have little to do with the site itself.

An important way to defend your site from many risks is to maintain backups. You already
know backups are important. But if you’re anything like me, when it gets to the end of the day,
saving five minutes and going home earlier seems even more important. When you have a live
web site, this simply isn’t an option.

We haven’t talked much about the legal side of e-commerce in this book because we are
programmers, not lawyers. However if you are setting up an e-commerce site that goes much
beyond an online garage sale, you’ll need to look into these issues before putting your busi-
ness online.

CHAPTER 1 ■ S TA RTING AN E -COMMERCE SITE6

648XCH01.qxd 10/4/06 6:16 PM Page 6

While we’re on the subject of risks and threats, one issue that can really damage your
e-commerce site is unreliable order fulfillment. This is a programming book, which focuses
on offering products to customers and communicating their orders to the site’s owner. An
essential part of the processes is delivering the products, and to do this, you need a good
logistics network set up before launching your shop. If your store doesn’t deliver the goods,
customers won’t come back or refer their friends.

■Ti p Webmonkey provides an excellent general e-commerce tutorial, which covers taxation, shipping, and

many of the issues you’ll face when designing your site, at http://www.webmonkey.com/webmonkey/
e-business/building/tutorials/tutorial3.html. Check this out before you start designing your site.

Designing for Business
Building an e-commerce site requires a significant investment. If you design the site in phases,
you can reduce the initial investment and therefore cut your losses if the idea proves unsuc-
cessful. You can use the results from an early phase to assess whether it’s worthwhile to add
extra features, and even use revenue from the site to fund future development. If nothing else,
planning to build the site in phases means that you can get your site online and receiving
orders much earlier than if you build every possible feature into the first release.

Even after you’ve completed your initial planned phases, things might not end there.
Whenever planning a large software project, it’s important to design in a way that makes
unplanned future growth easy. In Chapter 2, where we’ll start dealing with the technical
details of building e-commerce sites, you’ll learn how to design the web site architecture to
allow for long-term development flexibility.

If you’re building sites for clients, they will like to think their options are open. Planning
the site, or any other software, in phases will help your clients feel comfortable doing business
with you. They will be able to see that you are getting the job done and can decide to end the
project at the end of any phase if they feel—for whatever reason—that they don’t want to
continue to invest in development.

Phase I: Getting a Site Up
Chapters 2 through 7 concentrate on establishing the basic framework for the site and putting
a product catalog online. We’ll start by putting together the basic site architecture and decid-
ing how the different parts of the application will work together. We’ll then build the product
catalog into this architecture. You’ll learn how to

• Design a database for storing the product catalog, containing departments, categories,
and products

• Write the SQL (Structured Query Language) and PHP (Hypertext Preprocessor) code for
accessing that data and making the product catalog functional

• Provide a product search engine

CHAPTER 1 ■ S TA RT ING AN E-COMMERCE SITE 7

648XCH01.qxd 10/4/06 6:16 PM Page 7

• Receive payments through PayPal Website Payments Standard

• Give the site’s administrators a private section of the site where they can administer the
catalog online

After you’ve built this catalog, you’ll see how to offer the products for sale by integrating it
with PayPal’s shopping cart and order-processing system, which will handle credit card trans-
actions for you and email you with details of orders. These orders will be processed manually,
but in the early stages of an e-commerce site, the time you lose processing orders will be less
than the time it would have taken to develop an automated system.

Phase II: Creating Your Own Shopping Cart
Using PayPal’s shopping cart is okay and really easy, but it does mean you miss out on a lot
of advantages. For example, you can't control the look and feel of PayPal’s shopping cart,
whereas if you use your own, you can make it an integral part of the site.

This is a significant advantage, but it’s superficial compared to some of the others. For
example, with your own shopping cart, you can store complete orders in the database as part
of the order process and then use that data to learn about the customers. With additional
work, you also can use the shopping basket and checkout as a platform for selling more prod-
ucts. How often have you been tempted by impulse purchases near the checkout of your local
store? Well, impulse shopping also works with e-commerce. Having your own shopping cart
and checkout gives you the option of offering low-cost special offers from the shopping cart at
checkout. You can even analyze the contents of the cart and make suggestions based on this.

Chapters 8 through 10 show you how to

• Build your own shopping cart

• Pass a complete order through to PayPal for credit card processing

• Create an orders administration page

• Implement a product recommendations system

Once again, at the end of Phase II, our site will be fully operational. If you want, you can
leave it as it is or add features within the existing PayPal-based payment system. But when the
site gets serious, you’ll want to start processing orders and credit cards yourself. This is the
part where things get complicated, and you need to be serious and careful about your site’s
security.

Phase III: Processing Orders and Adding Features
The core of e-commerce—and the bit that really separates it from other web-development
projects—is handling orders and credit cards. PayPal has helped us put this off, but there are
many good reasons why—eventually—you’ll want to part company with PayPal:

Cost: PayPal is not expensive, but the extra services it offers must be paid for somehow.
Moving to a simpler credit card processing service can mean lower transaction costs (this
is not a rule though), although developing your own system will obviously incur upfront
costs.

CHAPTER 1 ■ S TA RTING AN E -COMMERCE SITE8

648XCH01.qxd 10/4/06 6:16 PM Page 8

Freedom: PayPal has a fairly strict set of terms and conditions and is designed for resi-
dents of a limited number of countries. By taking on more of the credit card processing
responsibility yourself, you can better control the way your site works. As an obvious
example, you can accept payment using regional methods such as the Switch debit cards
common in the United Kingdom.

Integration: If you deal with transactions and orders using your own system, you can
integrate your store and your warehouse to whatever extent you require. You could even
automatically contact a third-party supplier and have the supplier ship the goods straight
to the customer.

Information: When you handle the whole order yourself, you can record and collate all
the information involved in the transaction—and then use it for marketing and research
purposes.

By integrating the order processing with the warehouse, fulfillment center, or suppliers,
you can reduce costs significantly. This might reduce the need for staff in the fulfillment center
or allow the business to grow without requiring additional staff.

Acquiring information about customers can feed back into the whole process, giving you
valuable information about how to sell more. At its simplest, you could email customers with
special offers or just keep in touch with a newsletter. You also could analyze buying patterns
and use that data to formulate targeted marketing campaigns.

During Phase III, you will learn how to

• Build a customer accounts module so that customers can log in and retrieve their
details every time they make an order

• Allow customers to add product reviews

• Integrate Amazon.com products into your web site using XML Web Services

• Establish secure connections using SSL (Secure Socket Layer) so that data sent by users
is encrypted on its travels across the Internet

• Charge credit cards using DataCash and Authorize.net

• Store credit card numbers securely in a database

This third phase is the most involved of all of them and requires some hard and careful
work. By the end of Phase III, however, you will have an e-commerce site with a searchable
product catalog, shopping cart, secure check out, and complete order-processing system.

H a t S h o p
As we said earlier, we’re going to build an online shop called HatShop (which will sell, surpris-
ingly enough, hats). Figure 1-1 shows how HatShop will look at some point during the second
stage of development.

CHAPTER 1 ■ S TA RT ING AN E-COMMERCE SITE 9

648XCH01.qxd 10/4/06 6:16 PM Page 9

Figure 1-1. HatShop during Phase II of development

■Ti p You can find a link to an online version of HatShop at http://www.cristiandarie.ro/
php-postgresql-ecommerce/. Many thanks go to the folks at Hats in the Belfry (http://www.
hatsinthebelfry.com) who allowed us to use some of their products to populate

our virtual HatShop store.

For the purposes of this book, we’ll assume that the client already exists as a mail-order
company and has a good network of customers. The company is not completely new to the
business, and wants the site to make it easier and more enjoyable for its existing customers to
buy—with the goal that they’ll end up buying more.

Knowing this, I suggest the phased development because

• The company is unlikely to get massive orders initially—we should keep the initial cost
of building the web site down as much as possible.

• The company is accustomed to manually processing mail orders, so manually process-
ing orders emailed by PayPal will not introduce many new problems.

CHAPTER 1 ■ S TA RTING AN E -COMMERCE SITE10

648XCH01.qxd 10/4/06 6:16 PM Page 10

• The company doesn’t want to invest all of its money in a massive e-commerce site, only
to find that people actually prefer mail order after all! Or it might find that, after Phase I,
the site does exactly what it wants, and there’s no point in expanding it further. Either
way, I hope that offering a lower initial cost gives my bid the edge. (It might also mean I
can get away with a higher total price.)

Because this company is already a mail-order business, it probably already has a mer-
chant account and can process credit cards. Therefore, moving on to Phase III as soon
as possible would be best for this company so it can benefit from the preferential card-
processing rates.

S u m m a ry
In this chapter, we’ve seen some of the principles of e-commerce in the real, hostile world
where it’s important to focus on short-term revenue and keeping risks down. We’ve looked at
the three basic reasons an e-commerce site can make money:

• Acquiring more customers

• Making customers spend more

• Reducing the costs of fulfilling orders

We’ve applied those principles to a three-phase plan that provides a deliverable, usable
site at each stage and continues to expand throughout the book.

At this point, you’ve presented your plan to the owners of the hat shop. In the next chap-
ter, you’ll put on your programming hat and start to design and build the web site (assuming
you get the contract, of course).

CHAPTER 1 ■ S TA RT ING AN E-COMMERCE SITE 11

648XCH01.qxd 10/4/06 6:16 PM Page 11

648XCH01.qxd 10/4/06 6:16 PM Page 12

Laying Out the Foundations

Now that you’ve convinced the client that you can create a cool web site to complement his
or her activity, it’s time to stop celebrating and start thinking about how to put into practice all
the promises you’ve made. As usual, when you lay down on paper the technical requirements
you must meet, everything starts to seem a bit more complicated than initially anticipated.

■Note Be warned that this and the next are dense chapters, and you may found them pretty challenging if
you don’t have much experience with PHP or PostgreSQL. Books such as Beginning PHP and PostgreSQL 8:
From Novice to Professional (Apress, 2006) do a good job at preparing you to build your first e-commerce
web site. We strongly recommend that you consistently follow an efficient project-management methodology
to maximize the chances of the project’s success, on budget and on time. Most project-management theo-
ries imply that you and your client have signed an initial requirements/specifications document containing
the details of the project you’re about to create. You can use this document as a guide while creating the
solution; it also allows you to charge extra in case the client brings new requirements or requests changes
after development has started. See Appendix B for more details.

To ensure this project’s success, you need to come up with a smart way to implement
what you have signed the contract for. You want to develop the project smoothly and quickly,
but the ultimate goal is to make sure the client is satisfied with your work. Consequently, you
should aim to provide your site’s increasing number of visitors with a positive web experience
by creating a pleasant, functional, and responsive web site.

The requirements are high, but this is normal for an e-commerce site today. To maximize
the chances of success, we’ll analyze and anticipate as many of the technical requirements as
possible, and implement solutions in a way that supports changes and additions with mini-
mal effort.

This chapter lays down the foundations for the future HatShop web site. We will talk
about the technologies and tools you’ll use, and even more importantly, how you’ll use them.
Your goals for this chapter are to

• Analyze the project from a technical point of view

• Analyze and choose an architecture for your application

13

C H A P T E R 2

648XCH02.qxd 11/8/06 9:33 AM Page 13

14 CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS

• Decide which technologies, programming languages, and tools to use

• Consider naming and coding conventions

• Create the basic structure of the web site and set up the database

• Implement an error-handling routine and a reporting routine in the site skeleton

Designing for Growth
The word design in the context of a web application can mean many things. Its most popular
usage probably refers to the visual and user interface design of a web site.

This aspect is crucial because, let’s face it, the visitor is often more impressed with how a
site looks and how easy it is to use than about which technologies and techniques are used
behind the scenes or what operating system the web server is running. If the site is slow, hard
to use, or easy to forget, it just doesn’t matter what rocket science was used to create it.

Unfortunately, this truth makes many inexperienced programmers underestimate the
importance of the way the invisible part of the site is implemented—the code, the database,
and so on. The visual part of a site gets visitors interested to begin with, but its functionality
makes them come back. A web site can sometimes be implemented very quickly based on
certain initial requirements, but if not properly architected, it can become difficult, if not
impossible, to change.

For any project of any size, some preparation must be done before starting to code. Still, no
matter how much preparation and design work is done, the unexpected does happen, and hid-
den catches, new requirements, and changing rules always seem to work against deadlines.
Even without these unexpected factors, site designers are often asked to change or add new
functionality many times after the project is finished and deployed. This will also be the case for
HatShop, which will be implemented in three separate stages, as discussed in Chapter 1.

You will learn how to create the web site so that the site (or you) will not fall apart when
functionality is extended or updates are made. Because this is a programming book, instead
of focusing on how to design the user interface or on marketing techniques, we’ll pay close
attention to designing the code that makes them work.

The phrase, designing the code, can have different meanings; for example, we’ll need to
have a short talk about naming conventions. Still, the most important aspect that we need to
take a look at is the application architecture. The architecture refers to the way you split the
code for a simple piece of functionality (for example, the product search feature) into smaller
components. Although it might be easier to implement that functionality as quickly and as
simply as possible in a single component, you gain great long-term advantages by creating
more components that work together to achieve the desired result.

Before talking about the architecture itself, you must determine what you want from this
architecture.

Meeting Long-Term Requirements with Minimal Effort
Apart from the fact that you want a fast web site, each of the phases of development we talked
about in Chapter 1 brings new requirements that must be met.

648XCH02.qxd 11/8/06 9:33 AM Page 14

15CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS

Every time you proceed to a new stage, you want to be able to reuse most of the already
existing solution. It would be very inefficient to redesign the whole site (not just the visual part
but the code as well!) just because you need to add a new feature. You can make it easier to
reuse the solution by planning ahead, so any new functionality that needs to be added can
slot in with ease, rather than each change causing a new headache.

When building the web site, implementing a flexible architecture composed of pluggable
components allows you to add new features—such as the shopping cart, the departments list,
or the product search feature—by coding them as separate components and plugging them
into the existing application. Achieving a good level of flexibility is one of the goals regarding
the application’s architecture, and this chapter shows how you can put this into practice.
You’ll see that the flexibility level is proportional to the amount of time required to design
and implement it, so we’ll try to find a compromise that will provide the best gains without
complicating the code too much.

Another major requirement that is common to all online applications is having a scalable
architecture. Scalability is defined as the capability to increase resources to yield a linear
increase in service capacity. In other words, ideally, in a scalable system, the ratio (proportion)
between the number of client requests and the hardware resources required to handle those
requests is constant, even when the number of clients increases. An unscalable system can’t
deal with an increasing number of clients, no matter how many hardware resources are pro-
vided. Because we’re optimistic about the number of customers, we must be sure that the site
will be capable of delivering its functionality to a large number of clients without throwing out
errors or performing sluggishly.

Reliability is also a critical aspect for an e-commerce application. With the help of a
coherent error-handling strategy and a powerful relational database, you can ensure data
integrity and ensure that noncritical errors are properly handled without bringing the site to
its knees.

The Magic of the Three-Tier Architecture
Generally, the architecture refers to splitting each piece of the application’s functionality into
separate components based on what they do and grouping each kind of component into a
single logical tier.

Almost every module that you’ll create for your site will have components in these three
tiers from the application server:

• The presentation tier

• The business tier

• The data tier

The presentation tier contains the user interface elements of the site and includes all the
logic that manages the interaction between the visitor and the client’s business. This tier
makes the whole site feel alive, and the way you design it has a crucial importance for the site’s
success. Because your application is a web site, its presentation tier is composed of dynamic
web pages.

The business tier (also called the middle tier) receives requests from the presentation tier
and returns a result to the presentation tier depending on the business logic it contains.
Almost any event that happens in the presentation tier usually results in the business tier

648XCH02.qxd 11/8/06 9:33 AM Page 15

being called (except events that can be handled locally by the presentation tier, such as simple
input data validation, and so on). For example, if the visitor is doing a product search, the
presentation tier calls the business tier and says, “Please send me back the products that
match this search criterion.” Almost always, the business tier needs to call the data tier for
information to be able to respond to the presentation tier’s request.

The data tier (sometimes referred to as the database tier) is responsible for managing
the application’s data and sending it to the business tier when requested. For the HatShop
e-commerce site, you’ll need to store data about products (including their categories and their
departments), users, shopping carts, and so on. Almost every client request finally results in
the data tier being interrogated for information (except when previously retrieved data has
been cached at the business tier or presentation tier levels), so it’s important to have a fast
database system. In Chapters 3 and 4, you’ll learn how to design the database for optimum
performance.

These tiers are purely logical—there is no constraint on the physical location of each tier.
In theory, you are free to place all of the application, and implicitly all of its tiers, on a single
server machine, or you can place each tier on a separate machine if the application permits
this. Chapter 17 explains how to integrate functionality from other web sites using XML Web
Services. XML Web Services permit easy integration of functionality across multiple servers.

An important constraint in the three-layered architecture model is that information must
flow in sequential order between tiers. The presentation tier is only allowed to access the busi-
ness tier, and it can never directly access the data tier. The business tier is the “brain” in the
middle that communicates with the other tiers and processes and coordinates all the informa-
tion flow. If the presentation tier directly accessed the data tier, the rules of three-tier
architecture programming would be broken. When you implement a three-tier architecture,
you must be consistent and obey its rules to reap the benefits.

Figure 2-1 is a simple representation of the way data is passed in an application that
implements the three-tier architecture.

Figure 2-1. Simple representation of the three-tier architecture

Presentation Tier

Business Tier

Data Tier

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS16

648XCH02.qxd 11/8/06 9:33 AM Page 16

A Simple Example
It’s easier to understand how data is passed and transformed between tiers if you take a closer
look at a simple example. To make the example even more relevant to our project, let’s analyze a
situation that will actually happen in HatShop. This scenario is typical for three-tier applications.

Like most e-commerce sites, HatShop will have a shopping cart, which we will discuss
later in the book. For now, it’s enough to know that the visitor will add products to the shop-
ping cart by clicking an Add to Cart button. Figure 2-2 shows how the information flows
through the application when that button is clicked.

When the user clicks on the Add to Cart button for a specific product (step 1), the presen-
tation tier (which contains the button) forwards the request to the business tier—“Hey, I want
this product added to my shopping cart!” (step 2). The business tier receives the request,
understands that the user wants a specific product added to the shopping cart, and handles
the request by telling the data tier to update the visitor’s shopping cart by adding the selected
product (step 3). The data tier needs to be called because it stores and manages the entire web
site’s data, including users’ shopping cart information.

The data tier updates the database (step 4) and eventually returns a success code to the
business tier. The business tier (step 5) handles the return code and any errors that might have
occurred in the data tier while updating the database and then returns the output to the pres-
entation tier.

Figure 2-2. Internet visitor interacting with a three-tier application

Presentation Tier

Business Tier

Data Tier

Three Tier Web Application
Hosted on Web Server

Internet Visitor Using Web Browser

Internet

1 7

2 6

3 5

4

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 17

648XCH02.qxd 11/8/06 9:33 AM Page 17

Finally, the presentation tier generates an updated view of the shopping cart (step 6).
The results of the execution are wrapped up by generating an HTML (Hypertext Markup
Language) web page that is returned to the visitor (step 7), where the updated shopping cart
can be seen in the visitor’s web browser.

Note that in this simple example, the business tier doesn’t do a lot of processing, and its
business logic isn’t very complex. However, if new business rules appear for your application,
you would change the business tier. If, for example, the business logic specified that a product
could only be added to the shopping cart if its quantity in stock was greater than zero, an addi-
tional data tier call would have been made to determine the quantity. The data tier would only
be requested to update the shopping cart if products are in stock. In any case, the presenta-
tion tier is informed about the status and provides human-readable feedback to the visitor.

What's in a Number?
It’s interesting to note how each tier interprets the same piece of information differently. For
the data tier, the numbers and information it stores have no significance because this tier is an
engine that saves, manages, and retrieves numbers, strings, or other data types—not product
quantities or product names. In the context of the previous example, a product quantity of 0
represents a simple, plain number without any meaning to the data tier (it is simply 0, a 32-bit
integer).

The data gains significance when the business tier reads it. When the business tier asks
the data tier for a product quantity and gets a “0” result, this is interpreted by the business tier
as “Hey, no products in stock!” This data is finally wrapped in a nice, visual form by the pres-
entation tier, such as a label reading, “Sorry, at the moment the product cannot be ordered.”

Even if it’s unlikely that you want to forbid a customer from adding a product to the shop-
ping cart if the product is not in stock, the example (described in Figure 2-3) is good enough to
present in yet another way how each of the three tiers has a different purpose.

Figure 2-3. Internet visitor interacting with a three-tier application

Presentation Tier

Business Tier

Data Tier

User is informed
that the product
can't be added to
the shopping cart.

The product
is unavailable.

User clicks on
Add to Cart button.

0

Add this product
to shopping cart.

How many units
do we have in stock?

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS18

648XCH02.qxd 11/8/06 9:33 AM Page 18

The Right Logic for the Right Tier
Because each layer contains its own logic, sometimes it can be tricky to decide where exactly
to draw the line between the tiers. In the previous scenario, instead of reading the product’s
quantity in the business tier and deciding whether the product is available based on that
number (resulting in two data tier, and implicitly, database, calls), you could have a single
data tier method named add_product_if_available that adds the product to the shopping cart
only if it’s available in stock.

In this scenario, some logic is transferred from the business tier to the data tier. In many
other circumstances, you might have the option to place some logic in one tier or another or
maybe in both. In most cases, there is no single best way to implement the three-tier architec-
ture, and you’ll need to make a compromise or a choice based on personal preference or
external constraints.

Furthermore, there are occasions in which even though you know the right way (in
respect to the architecture) to implement something, you might choose to break the rules to
get a performance gain. As a general rule, if performance can be improved this way, it is okay
to break the strict limits between tiers just a little bit (for example, add some of the business
rules to the data tier or vice versa), if these rules are not likely to change in time. Otherwise,
keeping all the business rules in the middle tier is preferable because it generates a “cleaner”
application that is easier to maintain.

Finally, don’t be tempted to access the data tier directly from the presentation tier. This is
a common mistake that is the shortest path to a complicated, hard-to-maintain, and inflexible
system. In many data access tutorials or introductory materials, you’ll be shown how to per-
form simple database operations using a simple user interface application. In these kinds of
programs, all the logic is probably written in a short, single file, instead of separate tiers.
Although the materials might be very good, keep in mind that most of these texts are meant to
teach you how to do different individual tasks (for example, access a database), and not how
to correctly create a flexible and scalable application.

A Three-Tier Architecture for HatShop
Implementing a three-tiered architecture for the HatShop web site will help achieve the goals
listed at the beginning of the chapter. The coding discipline imposed by a system that might
seem rigid at first sight allows for excellent levels of flexibility and extensibility in the long run.

Splitting major parts of the application into separate smaller components encourages
reusability. More than once when adding new features to the site, you’ll see that you can reuse
some of the already existing bits. Adding a new feature without needing to change much of
what already exists is, in itself, a good example of reusability.

Another advantage of the three-tiered architecture is that, if properly implemented, the
overall system is resistant to changes. When bits in one of the tiers change, the other tiers usu-
ally remain unaffected, sometimes even in extreme cases. For example, if for some reason the
backend database system is changed (say, the manager decides to use Oracle instead of Post-
greSQL), you only need to update the data tier and maybe just a little bit of the business tier.

Why Not Use More Tiers?
The three-tier architecture we’ve been talking about so far is a particular (and the most popu-
lar) version of the n-Tier Architecture. n-Tier Architecture refers to splitting the solution into a

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 19

648XCH02.qxd 11/8/06 9:33 AM Page 19

number (n) of logical tiers. In complex projects, sometimes it makes sense to split the busi-
ness layer into more than one layer, thus resulting in architecture with more than three layers.
However, for our web site, it makes the most sense to stick with the three-layered design,
which offers most of the benefits while not requiring too many hours of design or a complex
hierarchy of framework code to support the architecture.

Maybe with a more involved and complex architecture, you could achieve even higher
levels of flexibility and scalability for the application, but you would need much more time for
design before starting to implement anything. As with any programming project, you must
find a fair balance between the time required to design the architecture and the time spent to
implement it. The three-tier architecture is best suited to projects with average complexity,
such as the HatShop web site.

You also might be asking the opposite question, “Why not use fewer tiers?” A two-tier archi-
tecture, also called client-server architecture, can be appropriate for less complex projects. In
short, a two-tier architecture requires less time for planning and allows quicker development in
the beginning, although it generates an application that’s harder to maintain and extend in the
long run. Because we’re expecting to have to extend the application in the future, the client-
server architecture is not appropriate for our application, so it won’t be discussed further in this
book.

Now that the general architecture is known, let’s see what technologies and tools you will
use to implement it. After a brief discussion of the technologies, you’ll create the foundation
of the presentation and data tiers by creating the first page of the site and the backend data-
base. You’ll start implementing some real functionality in each of the three tiers in Chapter 3
when you start creating the web site’s product catalog.

Choosing Technologies and Tools
No matter which architecture is chosen, a major question that arises in every development
project is which technologies, programming languages, and tools are going to be used, bear-
ing in mind that external requirements can seriously limit your options.

■Note In this book, we’re creating a web site using PHP, PostgreSQL, and related technologies. We really
like these technologies, but it doesn’t necessarily mean they’re the best choice for any kind of project, in any
circumstances. Additionally, there are many situations in which you must use specific technologies because
of client requirements. The System Requirements and Software Requirements stages in the software devel-
opment process will determine which technologies you must use for creating the application. See Appendix B
for more details.

Although the book assumes some previous experience with PHP and PostgreSQL, we’ll take
a quick look at them and see how they fit into our project and into the three-tier architecture.

■Note We included complete environment installation instructions (including Apache, PHP, and
PostgreSQL) in Appendix A.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS20

648XCH02.qxd 11/8/06 9:33 AM Page 20

Using PHP to Generate Dynamic Web Content
PHP is an open source technology for building dynamic, interactive web content. Its short
description (on the official PHP web site, http://www.php.net) is “PHP is a widely-used
general-purpose scripting language that is especially suited for Web development and can be
embedded into HTML.”

PHP stands for PHP: Hypertext Preprocessor (yes, it’s a recursive acronym), and is available
for free download at its official web site. We included complete installation instructions for
PHP in Appendix A. Because we’re using PHP to build a dynamic web site, you’ll also learn
how to install Apache and how to integrate PHP with it in Appendix A.

The story of PHP, having its roots somewhere in 1994, is a successful one. Among the
factors that led to its success are the following:

• PHP is free; especially when combined with Linux server software, PHP can prove to
be a very cost-efficient technology to build dynamic web content.

• PHP has a shorter learning curve than other scripting languages.

• The PHP community is agile, many useful helper libraries or new versions of the exist-
ing libraries are being developed (such as those you can find in the PEAR repository or
at http://www.phpclasses.org), and new features are added frequently.

• PHP works very well on a variety of web servers and operating systems (Unix-like
platforms, Windows, Mac OS X).

However, PHP is not the only server-side scripting language around for creating dynamic
web pages. Among its most popular competitors are JSP (Java Server Pages), Perl, ColdFusion,
and ASP.NET. Among these technologies are many differences but also some fundamental
similarities. For example, pages written with any of these technologies are composed of basic
HTML, which draws the static part of the page (the template), and code that generates the
dynamic part.

■Note You might want to check out Beginning ASP.NET 2.0 E-Commerce in C# 2005 (Apress, 2005), which
explains how to build e-commerce web sites with ASP.NET 2.0, C#, and SQL Server 2005.

Using Smarty to Separate Layout from Code
Because PHP is simple and easy to start with, it has always been tempting to start coding
without properly designing an architecture and framework that would be beneficial in the
long run.

What makes things even worse is that the straightforward method of building PHP pages
is to mix PHP instructions with HTML because PHP doesn’t have by default an obvious tech-
nique of separating the PHP code from the HTML layout information.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 21

648XCH02.qxd 11/8/06 9:33 AM Page 21

Mixing the PHP logic with HTML has two important disadvantages:

• This technique often leads to long, complicated, and hard-to-manage code. Maybe you
have seen those kilometric source files with an unpleasant mixture of PHP and HTML,
which are hard to read and impossible to understand after a week.

• These mixed files are the subject of both designers’ and programmers’ work, which
complicates the collaboration more than necessary. This also increases the chances of
the designer creating bugs in the code logic while working on cosmetic changes.

These kinds of problems led to the development of template engines, which offer frame-
works separating the presentation logic from the static HTML layout. Smarty (http://smarty.
php.net) is the most popular and powerful template engine for PHP. Its main purpose is to
offer you a simple way to separate application logic (PHP code) from its presentation code
(HTML).

This separation permits the programmer and the template designer to work independ-
ently on the same application. The programmer can change the PHP logic without needing to
change the template files, and the designer can change the templates without caring how the
code that makes them alive works.

Figure 2-4 shows the relationship between the Smarty Design Template file and its Smarty
plugin file.

Figure 2-4. Smarty Componentized Template

The Smarty Design Template (a .tpl file containing the HTML layout and Smarty-specific
tags and code) and its Smarty plugin file (a .php file containing the associated code for the
template) form a Smarty Componentized Template. You’ll learn more about how Smarty
works while you’re building the e-commerce web site. For a comprehensive Smarty tutorial,
read Smarty PHP Template Programming and Applications (Packt, 2006).

Assign variables
used in the template

Smarty Componentized Template

Smarty Design Template
(.tpl file containing HTML and Smarty Tags)

Smarty Plugin File
(.php file containing presentation tier logic)

($
va

ria
bl

e1
)

($
va

ria
bl

e2
)

...
...

...

($
va

ria
bl

eN
)

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS22

648XCH02.qxd 11/8/06 9:33 AM Page 22

■Note Adding Smarty or another template engine to a web application’s architecture adds some initial
coding effort and also implies a learning curve. However, you should try it anyway because the advantages
of using such a modern development technique will prove to be significant later in the process.

What About the Alternatives?
Smarty is not the only template engine available for PHP. Other popular template engines are

• Yapter (http://yapter.sourceforge.net/)

• EasyTemplate (http://www.onlinetools.org/tools/easytemplate/index.php)

• phpLib (http://phplib.sourceforge.net/)

• TemplatePower (http://templatepower.codocad.com/)

Although all template engines follow the same basic principles, we chose to use Smarty in
the PHP e-commerce project for this book because of its very good performance results, pow-
erful features (such as template compilation and caching), and wide acceptance in the
industry.

Using PostgreSQL to Store Web Site Data
Most of the data your visitors will see while browsing the web site will be retrieved from a rela-
tional database. A Relational Database Management System (RDBMS) is a complex software
program, the purpose of which is to store, manage, and retrieve data as quickly and reliably
as possible. For the HatShop web site, it will store all data regarding the products, depart-
ments, users, shopping carts, and so on.

Many RDBMSs are available for you to use with PHP, including PostgreSQL, MySQL,
Oracle, and so on. PostgreSQL is arguably the world’s most advanced open source database,
and it’s a free, fast, and reliable database. Another important advantage is that many web host-
ing providers offer access to a PostgreSQL database, which makes your life easier when going
live with your newly created e-commerce web site. We’ll use PostgreSQL as the backend data-
base when developing the HatShop e-commerce web site.

The language used to communicate with a relational database is SQL (Structured Query
Language). However, each database engine recognizes a particular dialect of this language. If
you decide to use a different RDBMS than PostgreSQL, you’ll probably need to update some of
the SQL queries.

Getting in Touch with PostgreSQL
You talk with the database server by formulating an SQL query, sending it to the database
engine, and retrieving the results. The SQL query can say anything related to the web site data,
or its data structures, such as “give me the list of departments,” “remove product no. 223,”
“create a data table,” or “search the catalog for yellow hats.”

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 23

648XCH02.qxd 11/8/06 9:33 AM Page 23

No matter what the SQL query says, we need a way to send it to PostgreSQL. PostgreSQL
ships with a simple, text-based interface (named “psql”) that permits executing SQL queries
and getting back the results. The command-line interface isn’t particularly easy to use, but it is
functional. However, there are alternatives.

Several free, third-party database administration tools allow you to manipulate data
structures and execute SQL queries via an easy-to-use graphical interface. In this book, we’ll
show you how to use pgAdmin III, which is an admin tool that ships together with PostgreSQL.

Apart from needing to interact with PostgreSQL with a direct interface to its engine, you
also need to learn how to access PostgreSQL programmatically, from PHP code. This require-
ment is obvious, because the e-commerce web site will need to query the database to retrieve
catalog information (departments, categories, products, and so on) when building pages for
the visitors.

As for querying PostgreSQL databases through PHP code, the tool you’ll rely on here is
PDO (PHP Data Objects).

Implementing Database Integration Using PDO
PDO (PHP Data Objects) is a native data-access abstraction library that ships with PHP 5.1
and is offered as a PECL extension for PHP 5.0. (PECL is a repository of PHP extensions,
located at http://pecl.php.net/.) The official PDO manual, together with installation
instructions (which can also be found in Appendix A), is available at http://php.net/pdo.

PDO offers a uniform way to access a variety of data sources. Using PDO increases your
application’s portability and flexibility because if the backend database changes, the effects
on your data access code are kept to a minimum (in many cases, all that needs to change is
the connection string for the new database).

After you become familiar with the PDO data-access abstraction layer, you can use the
same programming techniques on other projects that might require a different database
solution.

To demonstrate the difference between accessing the database using the old PHP func-
tions and PDO, let’s take a quick look at two short PHP code snippets.

■Note If you aren’t familiar with how the code works, don’t worry—we’ll analyze everything in greater
detail in the following chapters.

The following shows database access using PHP native (PostgreSQL-specific) functions:

// Connecting to PostgreSQL
$link = pg_connect('host=localhost dbname=hatshop' .

'user=' . $username . ' password=' . $password)
or die('Could not connect: ' . pg_last_error($link));

// Execute SQL query
$queryString = 'SELECT * FROM product';

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS24

648XCH02.qxd 11/8/06 9:33 AM Page 24

$result = pg_query($link, $queryString)
or die('Query failed : ' . pg_last_error($link));

// Close connection
pg_close($link);

Next, the same action is shown, this time using PDO:

try
{
// Create a new PDO instance
$database_handler =
new PDO('pgsql:host=localhost;dbname=hatshop',

$username, $password);

// Prepare the SQL query
$statement_handler =
$database_handler->prepare('SELECT * FROM product');

// Execute SQL query
$statement_handler->execute();

// Retrieve result
$result = $statement_handler->fetchAll();

// Clear the PDO object instance
$database_handler = null;

}
catch (PDOException $e)
{
/* If something goes wrong we catch the exception thrown by

the object, print the message and stop the execution of
script */

print 'Error!
' . $e->getMessage() . '
';

exit;
}

The version of the code that uses PDO is longer, but it includes a powerful error-handling
mechanism and prepared statements (which protect you from injection-based attacks). If
these concepts sound foreign, once again, wait until the later chapters where we’ll put PDO
to work, and you’ll learn more about it there.

Also, when using PDO, you won’t need to change the data access code if, for example, you
decide to use MySQL instead of PostgreSQL. On the other hand, the first code snippet, which
uses PostgreSQL-specific functions, would need to change completely (use mysql_connect
and mysql_query instead of pg_connect and pg_query, and so on). In addition, some MySQL-
specific functions have different parameters than the similar PostgreSQL functions.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 25

648XCH02.qxd 11/8/06 9:33 AM Page 25

When using a database abstraction layer (such as PDO), you’ll probably only need to
change the connection string when changing the database backend. Note that here we’re only
talking about the PHP code that interacts with the database. In practice, you might also need
to update some SQL queries if the database engines support different dialects of SQL.

■Note To keep your SQL queries as portable as possible, keep their syntax as close as possible to the
SQL-92 standard. You’ll learn more about SQL details in Chapter 3.

PostgreSQL and the Three-Tier Architecture
It is clear by now that PostgreSQL is somehow related to the data tier. However, if you haven’t
worked with databases until now, it might be less than obvious that PostgreSQL is more than
a simple store of data. Apart from the actual data stored inside, PostgreSQL is also capable of
storing logic in the form of stored procedures, maintaining table relationships, ensuring vari-
ous data integrity rules are obeyed, and so on.

You can communicate with PostgreSQL through SQL (Structured Query Language), which
is a language used to interact with the database. SQL is used to transmit to the database
instructions such as “Send me the last 10 orders” or “Delete product #123.”

Although it’s possible to compose SQL statements in your PHP code and then submit
them for execution, this is generally a bad practice, because it incurs security, consistency, and
performance penalties. In our solution, we’ll store all data tier logic using database functions.

The code presented in this book was designed to work with PostgreSQL 8.1 (the most
recent stable version at the time of writing). PostgreSQL consists of the data store in the
e-commerce software project, as shown in Figure 2-5.

Figure 2-5. The technologies you’ll use to develop HatShop

Presentation Tier

Business Tier

Web Server

Smarty Componentized Templates

PHP 5 Classes Containing Business Logic

PostgreSQL Stored Procedures

PostgreSQL

Data

PostgreSQL
Data Store

DataTier

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS26

648XCH02.qxd 11/8/06 9:33 AM Page 26

Choosing Naming and Coding Standards
Although coding and naming standards might not seem that important at first, they definitely
shouldn’t be overlooked. Not following a set of rules for your code will almost always result in
code that’s hard to read, understand, and maintain. On the other hand, when you follow a
consistent way of coding, you can almost say your code is already half documented, which is
an important contribution toward the project’s maintainability, especially when more people
are working on the same project at the same time.

■Tip Some companies have their own policies regarding coding and naming standards, whereas in other
cases, you'll have the flexibility to use your own preferences. In either case, the golden rule to follow is be
consistent in the way you code. Commenting your code is another good practice that improves the long-term
maintainability of your code.

Naming conventions refer to many elements within a project, simply because almost all
of a project’s elements have names: the project itself, files, classes, variables, methods, method
parameters, database tables, database columns, and so on. Without some discipline when
naming all those elements, after a week of coding you won’t understand a single line of what
you’ve written.

When developing HatShop, we followed a set of naming conventions that are popular
among PHP developers. Some of the most important rules are summarized here and in the
following piece of code:

class WarZone
{
public $mSomeSoldier;
private $_mSomeOtherSoldier;

function SearchAndDestroy($someEnemy, $someOtherEnemy)
{
$master_of_war = 'Soldier';
$this->mSomeSoldier = $someEnemy;
$this->_mSomeOtherSoldier = $someOtherEnemy;

}
}

• Class names and method names should be written using Pascal casing (uppercase
letters for the first letter in every word), such as in WarZone or IsDataValid.

• Public class attribute names follow the same rules as class names but should be
prepended with the character “m”. So, valid public attribute names look like this:
$mSomeSoldier.

• Private class attribute names follow the same rules as public class attribute names,
except they’re also prepended with an underscore, such as in $_mSomeOtherSoldier.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 27

648XCH02.qxd 11/8/06 9:33 AM Page 27

• Method argument names should use camel casing (uppercase letters for the first letter
in every word except the first one), such as $someEnemy, $someOtherEnemy.

• Variable names should be written in lowercase, with an underscore as the word
separator, such as $master_of_war.

• Database objects use the same conventions as variable names (the
department_id column).

• Try to indent your code using a fixed number of spaces (say, four) for each level.
(The code in this book uses two spaces because of physical space limitations.)

Among the decisions that need to be made is whether to use quotes for strings. JavaScript,
HTML, and PHP allow using both single quotes and double quotes. For the code in this book,
we’ll use double quotes in HTML and JavaScript code, and we’ll use single quotes in PHP.
Although for JavaScript it’s a matter of taste (you can use single quotes, as long as you use
them consistently), in PHP, the single quotes are processed faster, they are more secure,
and they are less likely to cause programming errors. Learn more about PHP strings at
http://php.net/types.string. You can find two useful articles on PHP strings at
http://www.sitepoint.com/print/quick-php-tips and http://www.jeroenmulder.com/
weblog/2005/04/php_single_and_double_quotes.php.

Starting the HatShop Project
So far, we have dealt with theory regarding the application you’re going to create. It was
fun, but it’s going to be even more interesting to put into practice what you’ve learned up
until now.

Start your engines!

Installing the Required Software
The code in this book has been tested with

• PHP 5.1

• Apache 2.2

• PostgreSQL 8.1

■Caution The code is most likely to be compatible with newer versions of the mentioned software, but it
won’t work with versions of PHP older than PHP 5.

The project should work with other web servers as well, as long as they’re compatible with
PHP 5.1 (see http://www.php.net/manual/en/installation.php). However, Apache is the web
server of choice for the vast majority of PHP projects.

See Appendix A for detailed installation instructions for PHP, Apache, and PostgreSQL.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS28

648XCH02.qxd 11/8/06 9:33 AM Page 28

Getting a Code Editor
Before writing the first line of code, you’ll need to install a code editor, if you don’t already
have a favorite. Many free editors are available, and there is an ever longer list of commercial
editors. It’s a matter of taste and money. You can find a list of PHP editors at
http://www.php-editors.com. Here are a few of the more popular:

• Zend Studio (http://www.zend.com/products/zend_studio) is perhaps the most power-
ful IDE (Integrated Development Environment) available for developing PHP web
applications.

• phpEclipse (http://www.phpeclipse.net) is an increasingly popular environment for
developing PHP web applications. Zend is a member of the Eclipse foundation.

• Emacs (http://www.gnu.org/software/emacs/) is, as defined on its web site, an “extensi-
ble, customizable, self-documenting real-time display editor.” Emacs is a very powerful,
free, and cross-platform editor.

• SciTe (http://scintilla.sourceforge.net/SciTEDownload.html) is a free and cross-
platform editor.

• PSPad (http://www.pspad.com/) is a freeware editor popular among Windows develop-
ers. The editor knows how to highlight the syntax for many existing file formats.
Additional plugins can add integrated CSS editing functionality and spell checking.

• PHP Designer 2006 (http://www.mpsoftware.dk) is a Windows editor that contains an
integrated debugger.

Preparing the hatshop Virtual Folder
One of the advantages of working with open source, platform-independent technologies is
that you can choose the operating system to use for development. You should be able to
develop and run HatShop on Windows, Unix, Linux, Mac, and others. However, this also
means that you may struggle a little bit to set up your initial environment, especially if you’re
a beginner.

When setting up the project’s virtual folder, a few details differ depending on the operat-
ing system (mostly because of the different file paths), so we’ll cover them separately for
Windows and for Unix systems in the following pages. However, the main steps are the same:

1. Create a folder in the file system named hatshop (we use lowercase for folder names),
which will contain the HatShop project’s files (such as PHP code, image files, and so on).

2. Edit Apache’s configuration file (httpd.conf) to create a virtual folder named hatshop
that points to the hatshop physical folder created earlier. This way, when pointing a
web browser to http://localhost/hatshop, the project in the hatshop physical folder
will be loaded. This functionality is implemented in Apache using aliases, which are
configured through the httpd.conf configuration file. The syntax of an alias entry is as
follows:

Alias virtual_folder_name real_folder_name

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 29

648XCH02.qxd 11/8/06 9:33 AM Page 29

■Tip The httpd.conf configuration file is well documented, but you can also check the Apache 2 docu-
mentation available at http://httpd.apache.org/docs-2.0/.

If you’re working on Windows, follow the steps in the following exercise. The steps for
Unix systems will follow after this exercise.

Exercise: Preparing the hatshop Virtual Folder on Windows

1. Create a new folder named hatshop, which will be used for all the work you’ll do in this book. You might
find it easiest to create it in the root folder (C:\), but because we’ll use relative paths in the project, feel free
to create it in any location.

2. The default place used by Apache to serve client requests from is usually something like C:\Program
Files\Apache Software Foundation\ApacheX.Y\htdocs. This location is defined by the
DocumentRoot directive in the Apache configuration file, which is located in the
APACHE_BASE/conf/httpd.conf file (where APACHE_BASE is the Apache installation folder).

Because we want to use our folder instead of the default folder mentioned by DocumentRoot, we need to
create a virtual folder named hatshop that points to the hatshop physical folder you created in step 1.
Open the Apache configuration file (httpd.conf), and add the following lines:

<IfModule alias_module>
...
Alias /hatshop/ "C:/hatshop/"
Alias /hatshop "C:/hatshop"

</IfModule>
<Directory "C:/hatshop">
Allow from all

</Directory>

After adding these lines and restarting the Apache web server, a request for http://localhost/hatshop
or http://localhost/hatshop/ will result in the application in the hatshop folder (if it existed) being
executed.

3. Create a file named test.php in the hatshop folder, with the following line inside:

<?php phpinfo(); ?>

4. Restart the Apache web server, and load http://localhost/hatshop/test.php (or http://
localhost:8080/hatshop/test.php if Apache works on port 8080) in a web browser.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS30

648XCH02.qxd 11/8/06 9:33 AM Page 30

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 31

Exercise: Preparing the hatshop Virtual Folder on Unix Systems

1. Create a new folder named hatshop, which will be used for all the work you’ll do in this book. You might
find it easiest to create it in your home directory (in which case the complete path to your hatshop folder
will be something like /home/username/hatshop), but because we’ll use relative paths in the project,
feel free to create it in any location.

2. The default place used by Apache to serve client requests from is usually something like
/usr/local/apache2/htdocs/. This location is defined by the DocumentRoot directive in the Apache
configuration file, whose complete path is usually /usr/local/apache/conf/httpd.conf.

Because we want to use our folder instead of the default folder mentioned by DocumentRoot, we need to
create a virtual folder named hatshop that points to the hatshop physical folder you created in step 1.
Open the Apache configuration file (httpd.conf), find the Aliases section, and add the following lines:

<IfModule alias_module>
...
Alias /hatshop/ "/home/username/hatshop/"
Alias /hatshop "/home/username/hatshop"

</IfModule>
<Directory "/home/username/hatshop">
Allow from all

</Directory>

After adding these lines, a request for http://localhost/hatshop or http://localhost/hatshop/
will result in the application in the hatshop folder (if it existed) being executed.

3. Create a file named test.php in the hatshop folder, with the following line inside:

<?php phpinfo(); ?>

4. Restart the Apache web server, and load http://localhost/hatshop/test.php (or http://
localhost:8080/hatshop/test.php if Apache works on port 8080) in a web browser.

How It Works: The Virtual Folder

This first step toward building the HatShop e-commerce site is a small, but important, one because it allows you to
test that Apache, PHP, and the hatshop alias work okay. If you have problems running the test page, make sure
you followed the installation steps in Appendix A correctly.

No matter whether you’re working on Windows or a Unix flavor, loading test.php in a web browser should give
you the PHP information returned by the phpinfo function as shown in Figure 2-6.

648XCH02.qxd 11/8/06 9:33 AM Page 31

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS32

Figure 2-6. Testing PHP and the hatshop virtual folder

You also ensured that the hatshop directory and all its contents can be accessed properly by the web server.

Installing Smarty
Installing Smarty implies simply copying the Smarty PHP classes to your project’s folder. Many
web-hosting companies provide these classes for you, but it’s better to have your own installa-
tion for two reasons:

• It’s always preferable to make your project independent of the server’s settings, when
possible.

• Even if the hosting system has Smarty installed, that company’s version might be
changed in time, perhaps without notice, possibly affecting your web site’s
functionality.

648XCH02.qxd 11/8/06 9:33 AM Page 32

You’ll install Smarty into a subfolder of the hatshop folder named libs in the following
exercise. The steps should work the same no matter what operating system you’re running on.

Exercise: Installing Smarty

1. Create a folder named libs inside the hatshop folder, and then create a folder named smarty inside the
libs folder.

2. Download the latest version of Smarty from http://smarty.php.net/download.php, and download
the latest stable release. The archive is a .tar.gz file. To open it under Windows, you’ll need a program such
as WinZip (http://www.winzip.com) or WinRar (http://www.rarlabs.com). Open the archive, and
copy the contents of the Smarty-2.X.Y/libs directory from the archive to the folder you created earlier
(hatshop/libs/smarty). You only need to copy the contents of the mentioned libs folder, nothing more.

3. To operate correctly, Smarty needs three folders, which you need to create: templates, templates_c,
and configs. Create a folder named presentation inside the hatshop directory, and in this
folder create two folders named templates and templates_c. The presentation folder will contain
all the presentation files.

4. Create a folder named include in the hatshop folder. This will have all the config files of the application.
Inside this folder create a folder named configs.

5. If you’re using a Unix operating system, you’ll also need to set some security options. You need to ensure
that Apache has write access to the templates_c directory, where the Smarty engine needs to save its
compiled template files (you’ll learn more about this a bit later).

If you’re building your project under a Unix system, you should execute the following command to ensure
that your Apache server can access your project’s files and has write permissions to the templates_c
directory:

chmod a+w /home/username/hatshop/presentation/templates_c

■Note Setting permissions on Unix systems as shown here allows any user with a shell account on
your Unix box to view the source code of any files in your folder, including PHP code and other data (which
might include sensitive information such as database passwords, keys used to encrypt/decrypt credit card
information, and so on). To fine-tune the security settings, consult your system administrator.

How It Works: The Smarty Installation

In this exercise, you created these three folders used by Smarty:

• The templates folder will contain the Smarty templates for your web site (.tpl files).

• The templates_c folder will contain the compiled Smarty templates; these are files generated
automatically by the Smarty engine.

• The configs folder will contain configuration files you might need for templates.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 33

648XCH02.qxd 11/8/06 9:33 AM Page 33

After adding these folders, your folder structure should look like this:

hatshop/
include/
configs/

libs/
smarty/
internals/
plugins/

presentation/
templates/
templates_c/

Implementing the Site Skeleton
The visual design of the site is usually agreed upon after a discussion with the client, and in
collaboration with a professional web designer. Alternatively, you can buy a web site template
from one of the many companies that offer this kind of service for a reasonable price.

This is a programming book, so we won’t focus on web design issues. We will implement a
simple, yet friendly and usable design, which will allow for easy customization (if you’ll need
to apply your layout on top of the one we’re creating here) and will allow you to focus on the
technical details of the site.

All pages in HatShop, including the first page, will have the structure shown in Figure 2-7.
Although the detailed structure of the product catalog is covered in the next chapter, right

now we know that a main list of departments needs to be displayed on every page of the site.
When the visitor clicks on a department, the list of categories for that department will appear
below the departments list. The site also has the search box that will allow visitors to perform
product searches. At the top of the page, the site header will be visible in any page the visitor
browses.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS34

648XCH02.qxd 11/8/06 9:33 AM Page 34

Figure 2-7. Structure of web pages in HatShop

To implement this structure as simply as possible, we’ll use Smarty Componentized Tem-
plates (or simple Smarty Design Templates) to create the separate parts of the page as shown
in Figure 2-8.

As Figure 2-8 suggests, you will create a Smarty componentized template named depart-
ments_list and a simple Smarty design template file named header.tpl, which will help you
populate the first page.

Using Smarty templates to implement different pieces of functionality provides benefits
discussed earlier in the chapter. Having different, unrelated pieces of functionality logically
separated from one another gives you the flexibility to modify them independently and even
reuse them in other pages without having to write their code again. It’s also extremely easy to
change the place in the parent web page of a feature implemented as a Smarty template.

SITE CONTENTS HERE
This cell should have different

content depending on which page
of the site the visitor is browsing.

SITE HEADER HERE
LIST OF

DEPARTMENTS
HERE

LIST OF
CATEGORIES

HERE
(for the selected

department)

SEARCH BOX

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 35

648XCH02.qxd 11/8/06 9:33 AM Page 35

Figure 2-8. Using Smarty to generate content

■Note We call Smarty Componentized Template the combination of a Smarty Design Template (the
.tpl file) and its associated Smarty Plugin file, which contains the presentation tier logic (a .php file). In
cases of simple pages that don’t need an associated .php code file, such as the header, we’ll use just a
Smarty Design Template file. You'll meet Smarty plugins in Chapter 3, and you can learn more about them at
http://smarty.php.net/manual/en/plugins.php.

The list of departments, the search box, and the site header are elements that will be pres-
ent in every page of the site. The list of categories appears only when the visitor selects a
department from the list. The most dynamic part of the web site that changes while browsing
through the site will be the contents cell, which will update itself depending on the site loca-
tion requested by the visitor. There are two main options for implementing that cell: add a
componentized template that changes itself depending on the location or use different com-
ponentized templates to populate the cell depending on the location being browsed. There is
no rule of thumb about which method to use because it mainly depends on the specifics of
the project. For HatShop, you will create a number of componentized templates that will fill
that location.

SITE CONTENTS HERE
This cell should have different

content depending on which page
of the site the visitor is browsing.

SITE HEADER HERE
LIST OF

DEPARTMENTS
HERE

LIST OF
CATEGORIES

HERE
(for the selected

department)

SEARCH BOX

departments_list
(Smarty Componentized Template)

categories_list
(Smarty Componentized Template)

search_box
(Smarty Componentized Template)

header
(Smarty Design Template)

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS36

648XCH02.qxd 11/8/06 9:33 AM Page 36

In the remainder of this chapter, you will

• Create the main web page and the header template.

• Implement the foundations of the error-handling system in HatShop.

• Create the HatShop database.

Building the First Page
The main page in HatShop will be generated by the files index.php and index.tpl.

You’ll write the index.tpl Smarty template with placeholders for the three major parts of
the site—the header, the table of departments, and the page contents cell. Implement the
main page in the following exercise, and we’ll discuss the details in the “How It Works” section
thereafter.

Exercise: Implementing the First Page and Its Header

1. Create a new folder named images inside the hatshop folder.

2. Copy the files in images_folder/images from the Source Code/Download of the book (which you can
find at the book details page on http://www.apress.com or http://www.cristiandarie.ro) to
hatshop/images (the folder you just created).

3. Create a file named site.conf in the hatshop/include/configs folder (used by the Smarty templates
engine), and add the following line to it:

site_title = "HatShop : Demo Site for Beginning PHP and PosgreSQL E-Commerce"

4. Create a file named index.tpl in hatshop/presentation/templates, and add the following code to
it:

{* smarty *}
{config_load file="site.conf"}
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
<head>
<title>{#site_title#}</title>
<link href="hatshop.css" type="text/css" rel="stylesheet" />

</head>
<body>
<div>
<div class="left_box">
Place list of departments here

</div>
{include file="header.tpl"}
<div id="content">
Place contents here

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 37

648XCH02.qxd 11/8/06 9:33 AM Page 37

</div>
</div>

</body>
</html>

5. Create a template file named header.tpl in hatshop/presentation/templates, and add the
following contents to it:

<div id="header">

</div>

6. Create a file named hatshop.css in the root folder of your project (hatshop), and write this code:

body
{
font-family: tahoma, verdana, arial;
font-size: 11px;
margin: 0px;
padding: 5px;
text-align: center;

}
body div
{
margin: 0px;
padding: 5px;
text-align: left;

}
.left_box
{
margin: 0px 15px 15px 0px;
padding: 2px;
width: 170px;

}
img
{
border: 0;

}
#header
{
left: 194px;
margin: 0px;
padding: 0px;
position: absolute;
text-align: right;
top: 10px;
width: 570px;

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS38

648XCH02.qxd 11/8/06 9:33 AM Page 38

}
#content
{
left: 194px;
margin: 0px;
padding: 0px 0px 10px 10px;
position: absolute;
top: 110px;
width: 558px;

}

7. Add a file named config.php to the hatshop/include folder, with the following contents:

<?php
// SITE_ROOT contains the full path to the hatshop folder
define('SITE_ROOT', dirname(dirname(__FILE__)));

// Application directories
define('PRESENTATION_DIR', SITE_ROOT . '/presentation/');
define('BUSINESS_DIR', SITE_ROOT . '/business/');

// Settings needed to configure the Smarty template engine
define('SMARTY_DIR', SITE_ROOT . '/libs/smarty/');
define('TEMPLATE_DIR', PRESENTATION_DIR . '/templates');
define('COMPILE_DIR', PRESENTATION_DIR . '/templates_c');
define('CONFIG_DIR', SITE_ROOT . '/include/configs');
?>

Before moving on, let’s see what happens here. dirname(__FILE__) returns the parent directory of the
current file; naturally, dirname(dirname(__FILE__)) returns the parent of the current file’s directory.
This way our SITE_ROOT constant will be set to the full path of hatshop. With the help of the SITE_ROOT
constant, we set up absolute paths of Smarty folders.

8. Create a file named app_top.php in the hatshop/include folder, and add the following contents to it:

<?php
// Include utility files
require_once 'include/config.php';

// Load the page template
require_once PRESENTATION_DIR . 'page.php';
?>

This file (app_top.php) will be included at the top of the main web pages to perform the necessary
initializations.

9. Create a file named page.php in the hatshop/presentation folder, and add the following contents to it:

<?php
// Reference Smarty library
require_once SMARTY_DIR . 'Smarty.class.php';

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 39

648XCH02.qxd 11/8/06 9:33 AM Page 39

/* Class that extends Smarty, used to process and display Smarty
files */

class Page extends Smarty
{
// Class constructor
public function __construct()
{
// Call Smarty's constructor
parent::Smarty();

// Change the default template directories
$this->template_dir = TEMPLATE_DIR;
$this->compile_dir = COMPILE_DIR;
$this->config_dir = CONFIG_DIR;

}
}
?>

In page.php, you extend the Smarty class with a wrapper class named Page, which changes Smarty’s
default behavior. The Page class configures in its constructor the Smarty folders you created earlier.

■Tip As mentioned earlier, Smarty requires three folders to operate: templates, templates_c, and
configs. In the constructor of the Page class, we set a separate set of these directories for our application.
If you want to turn on caching, then Smarty also needs a directory named cache. We will not be using
Smarty caching for HatShop, but you can read more details about this in the Smarty manual at
http://smarty.php.net/manual/en/caching.php.

10. Add the index.php file to the hatshop folder. The role of this file is to load the index.tpl template by
using the Page class you created earlier. Here’s the code for index.php:

<?php
// Load Smarty library and config files
require_once 'include/app_top.php';

// Load Smarty template file
$page = new Page();

// Display the page
$page->display('index.tpl');
?>

11. Now it’s time to see some output from this thing. Load http://localhost/hatshop/ in your favorite
web browser, and admire the results as shown in Figure 2-9.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS40

648XCH02.qxd 11/8/06 9:33 AM Page 40

Figure 2-9. Running HatShop

How It Works: The First Page of HatShop

The main web page contains three major sections. There are two table cells that you’ll fill with componentized
templates—one for the list of departments and one for the page contents—in the following chapters.

Notice the departments list placed on the left side, the header at the top, and the contents cell filled with
information regarding the first page. As previously mentioned, this contents cell is the only one that changes
while browsing the site; the other two cells will look exactly the same no matter what page is visited. This
implementation eases your life as a programmer and keeps a consistent look and feel for the web site.

Before you move on, it’s important to understand how the Smarty template works. Everything starts from
index.php, so you need to take a close look at it. Here’s the code again:

<?php
// Load Smarty library and config files
require_once 'include/app_top.php';

// Load Smarty template file
$page = new Page();

// Display the page
$page->display('index.tpl');
?>

At this moment, this file has very simple functionality. First, it loads app_top.php, which sets some global
variables, and then it loads the Smarty template file, which will generate the actual HTML content when a client
requests index.php.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 41

648XCH02.qxd 11/8/06 9:33 AM Page 41

The standard way to create and configure a Smarty page is shown in the following code snippet:

<?php
// Load the Smarty library
require_once SMARTY_DIR . 'Smarty.class.php';

// Create a new instance of the Smarty class
$smarty = new Smarty();
$smarty->template_dir = TEMPLATE_DIR;
$smarty->compile_dir = COMPILE_DIR;
$smarty->config_dir = CONFIG_DIR;
?>

In HatShop, we created a class named Page that inherits from Smarty, which contains the initialization procedure
in its constructor. This makes working with Smarty templates easier. Here’s again the code of the Page class:

class Page extends Smarty
{
// Class constructor
public function __construct()
{
// Call Smarty's constructor
parent::Smarty();

// Change the default template directories
$this->template_dir = TEMPLATE_DIR;
$this->compile_dir = COMPILE_DIR;
$this->config_dir = CONFIG_DIR;

}
}

■Note The notion of constructor is specific to object-oriented programming terminology. The constructor
of a class is a special method that executes automatically when an instance of that class is created. In PHP,
the constructor of a class is called __construct(). Writing that code in the constructor of the Page class
guarantees that it gets executed automatically when a new instance of Page is created.

The Smarty template file (index.tpl), except for a few details, contains simple HTML code. Those details are
worth analyzing. In index.tpl, before the HTML code begins, the configuration file site.conf is loaded.

{* smarty *}
{config_load file="site.conf"}

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS42

648XCH02.qxd 11/8/06 9:33 AM Page 42

■Tip Smarty comments are enclosed between {* and *} marks.

At this moment, the only variable set inside the site.conf file is site_title, which contains the name of the
web site. The value of this variable is used to generate the title of the page in the HTML code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
<head>
<title>{#site_title#}</title>
<link href="hatshop.css" type="text/css" rel="stylesheet" />

</head>

Variables that are loaded from the config files are referenced by enclosing them within hash marks (#), or with the
smarty variable $smarty.config, as in:

<head>
<title>{$smarty.config.site_title}</title>

</head>

We loaded the site.conf config file using {config_load file="site.conf"} and accessed the
site_title variable with {#site_title#}, which you’ll use whenever you need to obtain the site title.
If you want to change the site title, all you have to do is edit site.conf.

Finally, it’s important to notice how to include a Smarty template in another Smarty template. index.tpl
references header.tpl, which will also be reused in a number of other pages:

<body>
<div>
<div class="left_box">
Place list of departments here

</div>
{include file="header.tpl"}
<div id="content">
Place contents here

</div>
</div>

</body>
</html>

Last, it’s worth noting that we’re using CSS (Cascading Style Sheets). CSS allows setting formatting options
in a centralized document that is referenced from HTML files. If the job is done right, and CSS is
used consistently in a web site, CSS will allow you to make visual changes to the entire site (or parts of
the site) with very little effort, just by editing the CSS file. There are many books and tutorials on CSS,
including the free ones you can find at http://www.w3.org/Style/CSS/ and
http://www.w3schools.com/css/default.asp. Many useful CSS-related resources can be found
at http://www.csszengarden.com/. Using CSS is highly recommended because of the significant
benefits it brings. You’ll see much more action with CSS in Chapter 3.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 43

648XCH02.qxd 11/8/06 9:33 AM Page 43

Handling and Reporting Errors
Although the code will be written to run without any unpleasant surprises, there’s always a
possibility that something might go wrong when processing client requests. The best strategy
to deal with these unexpected problems is to find a centralized way to handle these errors and
perform certain actions when they do happen.

PHP is known for its confusing error messages. If you’ve worked with other programming
languages, you probably appreciate the information you can get from displaying the stack
trace when you have an error. Tracing information is not displayed by default when you have
a PHP error, so you’ll want to change this behavior. In the development stage, tracing informa-
tion will help you debug the application, and in a release version, the error message must be
reported to the site administrator. Another problem is the tricky E_WARNING error message type
because it’s hard to tell whether it’s fatal or not for the application.

■Tip If you don't remember or don’t know what a PHP error message looks like, try adding the following
line in your include/app_top.php file:

require_once 'inexistent_file.php';

Load the web site in your favorite browser, and notice the error message you get. If you do this test, make
sure to remove the problematic line afterwards!

In the context of a live web application, errors can happen unexpectedly for various rea-
sons, such as software failures (operating system or database server crashes, viruses, and so
on) and hardware failures. It’s important to be able to log these errors and eventually inform
the web site administrator (perhaps by sending an email message), so the error can be taken
care of as fast as possible.

For these reasons, we’ll start establishing an efficient error-handling and reporting
strategy. You’ll create a class named ErrorHandler that will manage the error handling. In this
class, you’ll create a static user-defined error handler method named Handler, which will get
executed anytime a PHP error happens during runtime. In PHP, you define a custom error
handler using the set_error_handler() function.

■Caution As you’ll see, the second parameter of set_error_handler() is used to specify the error
types that the specified handler function should handle. However, this second parameter is supported
only since PHP 5. Read more details at http://www.php.net/set_error_handler. You can also find
more info about PHP errors and logging in the PHP manual at http://www.php.net/manual/en/
ref.errorfunc.php.

Serious error types (E_ERROR, E_PARSE, E_CORE_ERROR, E_CORE_WARNING, E_COMPILE_ERROR,
and E_COMPILE_WARNING) cannot be intercepted and handled by ErrorHandler::Handler, but
the other types of PHP errors (E_WARNING for example) can be.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS44

648XCH02.qxd 11/8/06 9:33 AM Page 44

The error-handling method, Handler, will behave like this:

• It creates a detailed error message.

• If configured to do so, the error is emailed to the site administrator.

• If configured to do so, the error is logged to an errors log file.

• If configured to do so, the error is shown in the response web page.

• Serious errors will halt the execution of the page. The other ones will allow the page to
continue processing normally.

Let’s implement the ErrorHandler class in the next exercise.

Exercise: Implementing the ErrorHandler Class

1. Add the following error-handling related configuration variables to include/config.php:

<?php
// SITE_ROOT contains the full path to the hatshop folder
define('SITE_ROOT', dirname(dirname(__FILE__)));

// Application directories
define('PRESENTATION_DIR', SITE_ROOT . '/presentation/');
define('BUSINESS_DIR', SITE_ROOT . '/business/');

// Settings needed to configure the Smarty template engine
define('SMARTY_DIR', SITE_ROOT . '/libs/smarty/');
define('TEMPLATE_DIR', PRESENTATION_DIR . '/templates');
define('COMPILE_DIR', PRESENTATION_DIR . '/templates_c');
define('CONFIG_DIR', SITE_ROOT . '/include/configs');

// These should be true while developing the web site
define('IS_WARNING_FATAL', true);
define('DEBUGGING', true);

// The error types to be reported
define('ERROR_TYPES', E_ALL);

// Settings about mailing the error messages to admin
define('SEND_ERROR_MAIL', false);
define('ADMIN_ERROR_MAIL', 'admin@example.com');
define('SENDMAIL_FROM', 'errors@example.com');
ini_set('sendmail_from', SENDMAIL_FROM);

// By default we don't log errors to a file
define('LOG_ERRORS', false);
define('LOG_ERRORS_FILE', 'c:\\hatshop\\errors_log.txt'); // Windows
// define('LOG_ERRORS_FILE', '/var/tmp/hatshop_errors.log'); // Unix

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 45

648XCH02.qxd 11/8/06 9:33 AM Page 45

/* Generic error message to be displayed instead of debug info
(when DEBUGGING is false) */

define('SITE_GENERIC_ERROR_MESSAGE', '<h2>HatShop Error!</h2>');
?>

2. In the hatshop folder, create a subfolder named business.

3. In the business folder, create a file named error_handler.php file, and write the following code:

<?php
class ErrorHandler
{
// Private constructor to prevent direct creation of object
private function __construct()
{
}

/* Set user error handler method to ErrorHandler::Handler method */
public static function SetHandler($errTypes = ERROR_TYPES)
{
return set_error_handler(array ('ErrorHandler', 'Handler'), $errTypes);

}

// Error handler method
public static function Handler($errNo, $errStr, $errFile, $errLine)
{
/* The first two elements of the backtrace array are irrelevant:

- ErrorHandler.GetBacktrace
- ErrorHandler.Handler */

$backtrace = ErrorHandler::GetBacktrace(2);

// Error message to be displayed, logged, or mailed
$error_message = "\nERRNO: $errNo\nTEXT: $errStr" .

"\nLOCATION: $errFile, line " .
"$errLine, at " . date('F j, Y, g:i a') .
"\nShowing backtrace:\n$backtrace\n\n";

// Email the error details, in case SEND_ERROR_MAIL is true
if (SEND_ERROR_MAIL == true)
error_log($error_message, 1, ADMIN_ERROR_MAIL, "From: " .

SENDMAIL_FROM . "\r\nTo: " . ADMIN_ERROR_MAIL);

// Log the error, in case LOG_ERRORS is true
if (LOG_ERRORS == true)
error_log($error_message, 3, LOG_ERRORS_FILE);

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS46

648XCH02.qxd 11/8/06 9:33 AM Page 46

/* Warnings don't abort execution if IS_WARNING_FATAL is false
E_NOTICE and E_USER_NOTICE errors don't abort execution */

if (($errNo == E_WARNING && IS_WARNING_FATAL == false) ||
($errNo == E_NOTICE || $errNo == E_USER_NOTICE))

// If the error is nonfatal ...
{
// Show message only if DEBUGGING is true
if (DEBUGGING == true)
echo '<pre>' . $error_message . '</pre>';

}
else
// If error is fatal ...
{
// Show error message
if (DEBUGGING == true)
echo '<pre>' . $error_message . '</pre>';

else
echo SITE_GENERIC_ERROR_MESSAGE;

// Stop processing the request
exit;

}
}

// Builds backtrace message
public static function GetBacktrace($irrelevantFirstEntries)
{
$s = '';
$MAXSTRLEN = 64;
$trace_array = debug_backtrace();

for ($i = 0; $i < $irrelevantFirstEntries; $i++)
array_shift($trace_array);

$tabs = sizeof($trace_array) - 1;

foreach ($trace_array as $arr)
{
$tabs -= 1;
if (isset ($arr['class']))
$s .= $arr['class'] . '.';

$args = array ();

if (!empty ($arr['args']))

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 47

648XCH02.qxd 11/8/06 9:33 AM Page 47

foreach ($arr['args']as $v)
{
if (is_null($v))
$args[] = 'null';

elseif (is_array($v))
$args[] = 'Array[' . sizeof($v) . ']';

elseif (is_object($v))
$args[] = 'Object: ' . get_class($v);

elseif (is_bool($v))
$args[] = $v ? 'true' : 'false';

else
{
$v = (string)@$v;
$str = htmlspecialchars(substr($v, 0, $MAXSTRLEN));
if (strlen($v) > $MAXSTRLEN)
$str .= '...';

$args[] = '"' . $str . '"';
}

}

$s .= $arr['function'] . '(' . implode(', ', $args) . ')';
$line = (isset ($arr['line']) ? $arr['line']: 'unknown');
$file = (isset ($arr['file']) ? $arr['file']: 'unknown');
$s .= sprintf(' # line %4d, file: %s', $line, $file);
$s .= "\n";

}

return $s;
}

}
?>

4. Modify the include/app_top.php file to include the newly created error_handler.php file, and set
the error handler:

<?php
// Include utility files
require_once 'include/config.php';
require_once BUSINESS_DIR . 'error_handler.php';

// Sets the error handler
ErrorHandler::SetHandler();

// Load the page template
require_once PRESENTATION_DIR . 'page.php';
?>

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS48

648XCH02.qxd 11/8/06 9:33 AM Page 48

5. Great! You just finished writing the new error-handling code. Let’s test it. First, load the web site in your
browser to see that you typed in everything correctly. If you get no errors, test the new error-handling sys-
tem by adding the following line to include/app_top.php:

<?php
// Include utility files
require_once 'include/config.php';
require_once BUSINESS_DIR . 'error_handler.php';

// Sets the error handler
ErrorHandler::SetHandler();

// Load the page template
require_once PRESENTATION_DIR . 'page.php';

// Try to load inexistent file
require_once 'inexistent_file.php';
?>

Now load again index.php in your browser, and admire your brand new error message as shown in
Figure 2-10.

Figure 2-10. Error message showing backtrace information

Don’t forget to remove the buggy line from app_top.php before moving on.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 49

648XCH02.qxd 11/8/06 9:33 AM Page 49

How It Works: Error Handling

The method that intercepts web site errors and deals with them is ErrorHandler::Handler (located in
error_handler.php). The code that registers the ErrorHandler::Handler function to be the one that
handles errors in your site is in the ErrorHandler::SetHandler method that is invoked in app_top.php:

/* Set user error handler method to ErrorHandler::Handler method */
public static function SetHandler($errTypes = ERROR_TYPES)
{
return set_error_handler(array ('ErrorHandler', 'Handler'), $errTypes);

}

■Note The second parameter of set_error_handler specifies the range of errors that should be inter-
cepted. E_ALL specifies all types of errors, including E_NOTICE errors, which should be reported during web
site development.

When called, ErrorHandler::Handler constructs the error message with the help of a method named
ErrorHandler::GetBacktrace, and forwards the error message to the client’s browser, a log file, the
administrator (by email), or a combination of these, which can be configured by editing config.php.

GetBacktrace gets the backtrace information from the debug_backtrace function (which was introduced in
PHP 4.3.0) and changes its output format to generate an HTML error message similar to a Java error. It isn’t
important to understand every line in GetBacktrace unless you want to personalize the backtrace displayed in
case of an error. The 2 parameter sent to GetBacktrace specifies that the backtrace results should omit the first
two entries (the calls to ErrorHandler::Handler and ErrorHandler::GetBacktrace).

You build the detailed error string in ErrorHandler::Handler, including the backtrace information:

$backtrace = ErrorHandler::GetBacktrace(2);

// Error message to be displayed, logged or mailed
$error_message = "\nERRNO: $errNo\nTEXT: $errStr" .

"\nLOCATION: $errFile, line " .
"$errLine, at " . date('F j, Y, g:i a') .
"\nShowing backtrace:\n$backtrace\n\n";

Depending on the configuration options from the config.php file, you decide whether to display, log, and/or
email the error. Here we use PHP’s error_log method, which knows how to email or write the error’s details
to a log file:

// Email the error details, in case SEND_ERROR_MAIL is true
if (SEND_ERROR_MAIL == true)
error_log($error_message, 1, ADMIN_ERROR_MAIL, "From: " .

SENDMAIL_FROM . "\r\nTo: " . ADMIN_ERROR_MAIL);

// Log the error, in case LOG_ERRORS is true
if (LOG_ERRORS == true)
error_log($error_message, 3, LOG_ERRORS_FILE);

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS50

648XCH02.qxd 11/8/06 9:33 AM Page 50

■Note If you want to be able to send an error email to a localhost mail account (your_name@
locahost), then you should have an SMTP (Simple Mail Transfer Protocol) server started on your machine.
On a Red Hat (or Fedora) Linux distribution, you can start an SMTP server with the following command:

service sendmail start

■Note On Windows systems, you should check in IIS (Internet Information Services) Manager for Default
SMTP Virtual Server and make sure it’s started.

While you are developing the site, the DEBUGGING constant should be set to true, but after launching the site in
the “wild,” you should make it false, causing a user-friendly error message to be displayed instead of the
debugging information in case of serious errors, and no message shown at all in case of
nonfatal errors.

The errors of type E_WARNING are pretty tricky because you don't know which of them should stop the execution
of the request. The IS_WARNING_FATAL constant set in config.php decides whether this type of error should
be considered fatal for the project. Also, errors of type E_NOTICE and E_USER_NOTICE are not considered fatal:

/* Warnings don't abort execution if IS_WARNING_FATAL is false
E_NOTICE and E_USER_NOTICE errors don't abort execution */

if (($errNo == E_WARNING && IS_WARNING_FATAL == false) ||
($errNo == E_NOTICE || $errNo == E_USER_NOTICE))

// If the error is nonfatal ...
{
// Show message only if DEBUGGING is true
if (DEBUGGING == true)
echo '<pre>' . $error_message . '</pre>';

}
else
// If error is fatal ...
{
// Show error message
if (DEBUGGING == true)
echo '<pre>' . $error_message . '</pre>';

else
echo SITE_GENERIC_ERROR_MESSAGE;

// Stop processing the request
exit;

}

In the following chapters, you’ll need to manually trigger errors using the trigger_error PHP function, which
lets you specify the kind of error to generate. By default, it generates E_USER_NOTICE errors, which are not
considered fatal but are logged and reported by ErrorHandler::Handler code.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 51

648XCH02.qxd 11/8/06 9:33 AM Page 51

Preparing the Database
The final step in this chapter is to create the PostgreSQL database, although you won’t use it
until the next chapter. We will show you the steps to create your database and create a user
with full privileges to it using the pgAdmin III utility that ships with PostgreSQL. If you’re
working with a database hosted by a hosting service, the service may give you access to
your database through a web-based utility such as phpPgAdmin. See http://phppgadmin.
sourceforge.net/ for more details about using phpPgAdmin.

Before moving on, make sure you have PostgreSQL 8 installed. Consult Appendix A for
installation instructions. Follow the steps in the exercise to create the database and a new user
account.

Exercise: Creating the hatshop Database and a New User Account

1. Start the pgAdmin III utility, and select your database server from the left pane (in Windows, you start
pgAdmin III by choosing Start ➤ Programs ➤ PostgreSQL ➤ pgAdmin III). The window should then look
like the one in Figure 2-11.

Figure 2-11. The main pgAdmin III page

2. While the database server is selected, choose Tools ➤ Connect. Alternatively, you can right-click the
database server entry, and select Connect from the context menu. If asked, enter the root password
and click OK.

3. You connected to the database server using the superuser account. For our project, we want to create
a regular user account that will have access just to the hatshop database. Extend the database server
node, right-click the Login Roles node, and select New Login Role from the context menu. Type
hatshopadmin for the role name and for its password, and check the Superuser check box, as shown
in Figure 2-12. Then click OK.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS52

648XCH02.qxd 11/8/06 9:33 AM Page 52

Figure 2-12. Creating a new database role

4. Now create the hatshop database. Right-click the Databases node, and choose New Database from
the context menu. Type hatshop for its name, and select hatshopadmin from the Owner drop-down
list. If you intend to store non-ASCII data, you should also choose the UTF-8 encoding, as shown in
Figure 2-13. Click OK, and wait until the process completes and the New Database dialog box closes.

Figure 2-13. Creating a new database

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 53

648XCH02.qxd 11/8/06 9:33 AM Page 53

■Note All operations performed with the pgAmin III utility can be also done by executing SQL code. SQL is
the language used to interact with the database, and pgAdmin III can be used as an interface for executing
SQL commands into your database. You’ll learn more about SQL while following the exercises in this book.

5. In the end, select the hatshop node. You can browse the tree to see how an empty database looks, but don’t
worry, you’ll start filling it with data in the next chapter. pgAdmin III is nice enough to even show you the SQL
query it used to create your database (see Figure 2-14).

Figure 2-14. Your brand new database

6. From now on, when connecting to the hatshop database, you won’t use the PostgreSQL superuser
any more, but you’ll use the hatshopadmin account instead. For a quick test, select the database server,
and then choose Tools ➤ Disconnect. Right-click the database server, choose Properties, and type
hatshopadmin in the Username text box, as shown in Figure 2-15. Click OK. On the next attempt to connect
to the server, you’ll be asked for the password of the hatshopadmin user. After logging in, you’ll have access
only to the hatshop database and to the public objects of any other databases.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS54

648XCH02.qxd 11/8/06 9:33 AM Page 54

Figure 2-15. Logging in as hatshopadmin

Downloading the Code
You can find the latest code downloads and a link to an online version of HatShop at the
authors’ web sites, at http://www.emilianbalanescu.ro or http://www.cristiandarie.ro, or in
the Source Code/Download section of the Apress web site at http://www.apress.com. It should
be easy to read through this book and build your solution as you go; however, if you want to
check something from our working version, you can. Instructions on loading the chapters are
available in the welcome.html document in the download.

Summary
Hey, we covered a lot of ground in this chapter, didn’t we? We talked about the three-tier archi-
tecture and how it helps you create great flexible and scalable applications. We also saw how
each of the technologies used in this book fits into the three-tier architecture.

So far, we have a very flexible and scalable application because it doesn’t have much
functionality, but you’ll feel the real advantages of using a disciplined way of coding in the
next chapters. In this chapter, you have only coded the basic, static part of the presentation
tier, implemented a bit of error-handling code, and created the hatshop database, which is
the support for the data tier. In the next chapter, you’ll start implementing the product catalog
and learn a lot about how to dynamically generate visual content using data stored in the
database with the help of the middle tier and with smart and fast controls and components
in the presentation tier.

CHAPTER 2 ■ LAYING OUT THE FOUNDATIONS 55

648XCH02.qxd 11/8/06 9:33 AM Page 55

648XCH02.qxd 11/8/06 9:33 AM Page 56

Creating the Product Catalog:
Part I

After learning about the three-tier architecture and implementing a bit of your web site’s
main page, it’s time to continue your work by starting to create the HatShop product catalog.

Because the product catalog is composed of many components, you’ll create it over two
chapters. In this chapter, you’ll create the first data table, implement access methods in the
middle tier, and learn how to deal with the data tier. By the end of this chapter, you’ll finally
have something dynamically generated on your web page. In Chapter 4, you’ll finish building
the product catalog by adding support for categories, product lists, a product details page,
and more!

The main topics we’ll touch on in this chapter are

• Analyzing the structure of the product catalog and the functionality it should support

• Creating the database structures for the catalog and the data tier of the catalog

• Implementing the business tier objects required to make the catalog run

• Implementing a functional user interface for the product catalog

Showing Your Visitors What You’ve Got
One of the essential features required in any e-store is to allow the visitor to easily browse
through the products. Just imagine what Amazon.com would be like without its excellent
product catalog!

Whether your visitors are looking for something specific or just browsing, it’s important to
make sure their experience with your site is a pleasant one. After all, you want your visitors to
find what they are looking for as easily and painlessly as possible. This is why you’ll want to
add search functionality to the site and also find a clever way of structuring products into
categories so they can be quickly and intuitively accessed.

Depending on the size of the store, it might be enough to group products under a
number of categories, but if there are a lot of products, you’ll need to find even more ways
to categorize and structure the product catalog.

Determining the structure of the catalog is one of the first tasks to accomplish in this
chapter. Keep in mind that in a professional approach, these details would have been

57

C H A P T E R 3

648XCH03.qxd 11/8/06 9:44 AM Page 57

58 CHAPTER 3 ■ CREATING THE PRODUCT CATALOG: PART I

established before starting to code when building the requirements document for the project,
as explained in Appendix B. However, for the purposes of this book, we prefer to deal with
things one at a time.

After the structure of the catalog is established, you’ll start writing the code that makes
the catalog work as planned.

What Does a Product Catalog Look Like?
Today’s web surfers are more demanding than they used to be. They expect to find informa-
tion quickly on whatever product or service they have in mind, and if they don’t find it, they
are likely to go to the competition before giving the site a second chance. Of course, you don’t
want this to happen to your visitors, so you need to structure the catalog to make it as intuitive
and helpful as possible.

Because the e-store will start with around 100 products and will probably have many
more in the future, it’s not enough to just group them in categories. The store also has a num-
ber of departments and each department will contain a number of categories. Each category
can then have any number of products attached to it.

■Note Later in the book, you’ll also create the administrative part of the web site, often referred to as the
Control Panel, which allows the client to update department, category, and product data. Until then, you’ll
manually fill in the database with data (or you can “cheat” by using the SQL scripts provided as part of the
Source Code/Download section of the Apress web site at http://www.apress.com, as you’ll see).

Another particularly important detail that you need to think about is whether a category
can exist in more than one department and whether a product can exist in more than one
category. As you might suspect, this is the kind of decision that has implications on the way
you code the product catalog, so you need to consult your client on this matter.

For the HatShop product catalog, each category can exist in only one department, but a
product can exist in more than one category. For example, the product “Military Beret” will
appear in both “Berets” and “Military Hats” categories. This decision will have implications in
the way you’ll design the database, and we’ll highlight those implications when we get there.

Finally, apart from having the products grouped in categories, you also want to have
featured products. For this web site, a product can be featured either on the front page or in
the department pages. The next section shows a few screenshots that explain this.

Previewing the Product Catalog
Although you’ll have the fully functional product catalog finished by the end of Chapter 4,
taking a look at it right now will give you a better idea about where you’re heading. In Figure 3-1,
you can see the HatShop front page and two of its featured products.

Note the departments list in the upper-left corner of the page. The list of departments is
dynamically generated with data gathered from the database; you’ll implement the list of
departments in this chapter.

When site visitors click a department in the departments list, they go to the main page of
the specified department. This replaces the store’s list of catalog-featured products with a page

648XCH03.qxd 11/8/06 9:44 AM Page 58

59CHAPTER 3 ■ CREATING THE PRODUCT CATALOG: PART I

containing information specific to the selected department—including the list of featured
products for that department. In Figure 3-2, you see the page that will appear when the Holi-
day department is clicked.

Figure 3-1. HatShop front page and two of its featured products

Figure 3-2. Visiting the Holiday department

648XCH03.qxd 11/8/06 9:44 AM Page 59

Under the list of departments, you can now see the list of categories that belong to the
selected department. In the right side of the screen, you can see the name of the selected
department, its description, and its featured products. We decided to list only the featured
products in the department page, in part because the complete list would be too long. The
text above the list of featured products is the description for the selected department,
which means you’ll need to store both a name and a description for each department in the
database.

In this page, when a particular category from the categories list is selected, all of its
products are listed, along with updated title and description text.

Clicking a product’s image in any of the products lists takes you to a product details page,
which you can see in Figure 3-3.

Figure 3-3. Visiting the Halloween Hats category

When a category is selected, all its products are listed—you no longer see featured
products. Note that the description text also changes. This time, this is the description of
the selected category.

Roadmap for This Chapter
As you can see, the product catalog, although not very complicated, has more parts that need
to be covered. In this chapter, you’ll only create the departments list (see Figure 3-4).

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG: PART I60

648XCH03.qxd 11/8/06 9:44 AM Page 60

Figure 3-4. The departments list

The departments list will be the first dynamically generated data in your site (the names
of the departments will be extracted from the database).

In this chapter, you’ll implement just the departments list part of the web site. After you
understand what happens behind the list of departments, you’ll quickly implement the other
components of the product catalog in Chapter 4.

In Chapter 2, we discussed the three-tiered architecture that you’ll use to implement the
web application. The product catalog part of the site makes no exception to the rule, and its
components (including the departments list) will be spread over the three logical layers.
Figure 3-5 previews what you’ll create at each tier in this chapter to achieve a functional
departments list.

Figure 3-5. The components of the departments list

So far, you’ve only played a bit with the presentation and business tiers in Chapter 2. Now,
when building the catalog, you’ll finally meet the final tier and work further with the hatshop

Presentation Tier

Web Server

Smarty Componentized Template:
departments_list.tpl (Smarty Design Template)

function.load_departments_list.php (Smarty function plugin
and DepartmentsList helper class)

Business Tier
PHP Code:

catalog.php (contains the Catalog class and its GetDepartments method)
database_handler.php (contains the DatabaseHandler class)

error_handler.php (contains the ErrorHandler class)

Data Tier
PostgreSQL function: catalog_get_departments_list()

Department
(data table)

PostgreSQL Server

Data

PostgreSQL
Data Store

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 61

648XCH03.qxd 11/8/06 9:44 AM Page 61

database. (Depending on whom you ask, the data store may or may not be considered an
integral part of the three-tiered architecture.)

These are the main steps you’ll take toward having your own dynamically generated depart-
ments list. Note that you start with the database and make your way to the presentation tier:

1. Create the department table in the database. This table will store data regarding the
store’s departments. Before adding this table, you’ll learn the basic concepts of working
with relational databases.

2. Write a PostgreSQL function named catalog_get_departments_list, which returns the
IDs and names of the departments from the department table. PHP scripts will call this
function to generate the departments list for your visitor. PostgreSQL functions are
logically located in the data tier of your application. At this step, you’ll learn how to
speak to your relational database using SQL.

3. Create the DatabaseHandler class, which will be your helper class that performs com-
mon database interaction operations. DatabaseHandler is a wrapper class for some
PDO functions and includes consistent error-handling techniques that deal with data-
base-related errors.

4. Create the business tier components of the departments list (the Catalog class and its
GetDepartments method). You’ll see how to communicate with the database, through
the DatabaseHandler helper class, to retrieve the necessary data.

5. Implement the departments_list Smarty template and its Smarty plugin function,
which build on the lower layers to generate a good-looking list of departments for
your visitor. The Smarty plugin function file will also contain a helper class named
DepartmentsList.

So, let’s start by creating the department table.

Storing Catalog Information
The vast majority of web applications, e-commerce web sites being no exception, live around
the data they manage. Analyzing and understanding the data you need to store and process is
an essential step in successfully completing your project.

The typical data storage solution for this kind of application is a relational database. How-
ever, this is not a requirement—you have the freedom to create your own data access layer
and have whatever kind of data structures you want to support your application.

■Note In some particular cases, it may be preferable to store your data in plain text files or XML files
instead of databases, but these solutions are generally not suited for applications such as HatShop, so we
won’t cover them in this book. However, it’s good to know your options.

Although this is not a book about databases or relational database design, you’ll learn all
you need to know to understand the product catalog and make it work.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I62

648XCH03.qxd 11/8/06 9:44 AM Page 62

Essentially, a relational database is made up of data tables and the relationships that
exist between them. Because you’ll work with a single data table in this chapter, we’ll cover
only the database theory that applies to the table as a separate, individual database item. In
the next chapter, when you’ll add the other tables to the picture, we’ll take a closer look at the
theory behind relational databases by analyzing how the tables relate to each other and how
PostgreSQL helps you deal with these relationships.

■Note In a real-world situation, you would probably design the whole database (or at least all the tables
relevant to the feature you build) from the start. In this book, we chose to split the development over two
chapters to maintain a better balance of theory and practice.

So, let’s start with a little bit of theory, after which you’ll create the department data table
and the rest of the required components:

Understanding Data Tables
This section provides a quick database lesson covering the essential information you need to
know to design simple data tables. We’ll briefly discuss the main parts that make up a data-
base table:

• Primary keys

• PostgreSQL data types

• UNIQUE columns

• NOT NULL columns and default values

• Serial columns and sequences

• Indexes

■Note If you have enough experience with PostgreSQL, you might want to skip this section and go directly
to the “Creating the department Table” section.

A data table is made up of columns and rows. Columns are also referred to as fields, and
rows are sometimes also called records.

Because this chapter only covers the departments list, you’ll only need to create one data
table: the department table. This table will store your departments’ data and is one of the sim-
plest tables you’ll work with.

With the help of tools such as pgAdmin III, it’s easy to create a data table in the database if
you know for sure what kind of data it will store. When designing a table, you must consider

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 63

648XCH03.qxd 11/8/06 9:44 AM Page 63

which fields it should contain and which data types should be used for those fields. Besides a
field’s data type, there are a few more properties to consider, which you’ll learn about in the
following pages.

To determine which fields you need for the department table, write down a few examples
of records that would be stored in that table. Remember from the previous figures that there
isn’t much information to store about a department—just the name and description for each
department. The table containing the departments’ data might look like Figure 3-6 (you’ll
implement the table in the database later, after we discuss the theory).

Figure 3-6. Data from the department table

From a table like this, the names would be extracted to populate the list in the upper-left
part of the web page, and the descriptions would be used as headers for the featured products
list.

Primary Keys
The way you work with data tables in a relational database is a bit different from the way you
usually work on paper. A fundamental requirement in relational databases is that each data
row in a table must be uniquely identifiable. This makes sense because you usually save
records into a database so that you can retrieve them later; however, you can’t always do that if
each table row doesn’t have something that makes it unique. For example, suppose you add
another record to the department table shown previously in Figure 3-6, making it look like the
table shown in Figure 3-7.

Figure 3-7. Two departments with the same name

Look at this table, and then find the description of the “Costume Hats” department. Yep,
we have a problem—two departments with the same name “Costume Hats” (the name isn’t
unique). If you queried the table using the name column, you would get two results.

To solve this problem, you use a primary key, which allows you to uniquely identify a
specific row out of many rows. Technically, the primary key is not a column itself. Instead, the
PRIMARY KEY is a constraint that when applied on a column guarantees that the column will
have unique values across the table.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I64

648XCH03.qxd 11/8/06 9:45 AM Page 64

■Note Applying a PRIMARY KEY constraint on a field also generates a unique index created on it by
default. Indexes are objects that improve performance of many database operations, dramatically speeding
up your web application (you’ll learn more about this later in the “Indexes” section of this chapter).

Constraints are rules that apply to data tables and make up part of the data integrity rules
of the database. The database takes care of its own integrity and makes sure these rules aren’t
broken. If, for example, you try to add two identical values for a column that has a PRIMARY KEY
constraint, the database refuses the operation and generates an error. We’ll do some experi-
ments later in this chapter to show this.

■Note A primary key is not a column but a constraint that applies to that column; however, from now
on and for convenience, when referring to the primary key, we’ll be talking about the column that has the
PRIMARY KEY constraint applied to it.

Back to the example, setting the name column as the primary key of the department table
would solve the problem because two departments would not be allowed to have the same
name. If name is the primary key of the department table, searching for a product with a specific
name will always produce exactly one result if the name exists, or no results if no records have
the specified name.

■Tip This is common sense, but it has to be said: a primary key column will never allow NULL values.

An alternative solution, and usually the preferred one, is to have an additional column in
the table, called an ID column, to act as its primary key. With an ID column, the department
table would look like Figure 3-8.

Figure 3-8. Adding an ID column as the primary key of department

The primary key column is named department_id. We’ll use this naming convention for
primary key columns in all data tables we’ll create.

There are two main reasons it’s better to create a separate numerical primary key column
than to use the name (or another existing column) as the primary key:

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 65

648XCH03.qxd 11/8/06 9:45 AM Page 65

Performance: The database engine handles sorting and searching operations much faster
with numerical values than with strings. This becomes even more relevant in the context
of working with multiple related tables that need to be frequently joined (you’ll learn
more about this in Chapter 4).

Department name changes: If you need to rely on the ID value being stable in time,
creating an artificial key solves the problem because it’s unlikely you’ll ever want to
change the ID.

In Figure 3-8, the primary key is composed of a single column, but this is not a require-
ment. If the primary key is set on more than one column, the group of primary key columns
(taken as a unit) is guaranteed to be unique, but the individual columns that form the primary
key can have repeating values in the table. In Chapter 4, you’ll see an example of a multivalued
primary key. For now, it’s enough to know that they exist.

Unique Columns
UNIQUE is yet another kind of constraint that can be applied to table columns. This constraint is
similar to the PRIMARY KEY constraint in that it doesn’t allow duplicate data in a column. Still,
there are differences. Although there is only one PRIMARY KEY constraint per table, you are
allowed to have as many UNIQUE constraints as you like.

Columns that have the UNIQUE constraint are useful when you already have a primary key
but still have columns (or groups of columns) for which you want to have unique values. You
can set name to be unique in the department table if you want to forbid repeating values.

We won’t use the UNIQUE constraint in this book, but we mention it here for completeness.
We decided to allow identical department names because only site administrators will have
the privilege to modify or change department data.

The facts that you need to remember about UNIQUE constraints are

• The UNIQUE constraint forbids having identical values on the field.

• You can have more that one UNIQUE field in a data table.

• A UNIQUE field is allowed to accept NULL values, in which case, it will accept any number
of them.

• Indexes are automatically created on UNIQUE and PRIMARY KEY columns.

Columns and Data Types
Each column in a table has a particular data type. By looking at the previously shown
Figure 3-8 with the department table, department_id has a numeric data type, whereas name
and description contain text.

It’s important to consider the many data types that PostgreSQL Server supports so that
you’ll be able to make correct decisions about how to create your tables. Table 3-1 isn’t an
exhaustive list of PostgreSQL data types, but it focuses on the main types you might come
across in your project. Refer to the PostgreSQL documentation for a more detailed list at
http://www.postgresql.org/docs/current/interactive/datatype.html.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I66

648XCH03.qxd 11/8/06 9:45 AM Page 66

■Tip For more information about any specific detail regarding PostgreSQL or PHP, including PostgreSQL
data types, you can always refer to W. Jason Gilmore’s Beginning PHP and PostgreSQL 8: From Novice to
Professional (Apress, 2006), which is an excellent reference.

To keep the table short, under the “Data Type” heading, we have listed the used types in
this project, while similar data types are explained under the “Description and Notes” head-
ing. You don’t need to memorize the list, but you should get an idea of which data types are
available.

Table 3-1. PostgreSQL Server Data Types for Use in HatShop

Data Type Size in Bytes Description and Notes

integer 4 bytes Signed 4-byte integer that stores numbers from
-2,147,483,648 to 2,147,483,647. You can also refer to it
using the int and int4 aliases. Related types are
bigint(8 bytes) and smallint (2 bytes).

numeric variable Stores numbers with exact precision. The
(precision, scale) precision specifies the total number of digits the

number can have (including the digits to the right of
the decimal point). The scale specifies the number of
digits for the fractional part of the number. An integer
number has a scale of 0. The PostgreSQL
documentation gives as an example the number
23.5141, which has a precision of 6 and a scale of 4.
You’ll use the numeric type to store monetary
information because it has exact precision.

timestamp 8 bytes Stores date and time data from 4713 BC to 5874897 AD.

character variable Stores fixed-length character data. Strings shorter than
the maximum value are completed with spaces, and
longer strings are truncated. The trailing spaces aren’t
taken into account when comparing values of this
type. A commonly used alias of this data type is char.

character varying variable Stores variable-length character data. A commonly
used alias of this data type is varchar. The dimension
you set represents the maximum length of strings it
can accept (longer strings are truncated).

text unlimited Stores strings of unlimited value. The PostgreSQL
documentation states that there are no performance
differences between the text and character varying
string data types.

serial 4 bytes This is not a “true” data type, but a convention used to
define an autonumbered integer column, similar to
the AUTO_INCREMENT in MySQL or IDENTITY in SQL
Server. In PostgreSQL 7.3 or newer, serial doesn’t
imply UNIQUE, and you must (and should) specify this
explicitly if you want the column to store unique val-
ues. A variation of serial is the bigserial type, which
implements the autonumbering feature over bigint.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 67

648XCH03.qxd 11/8/06 9:45 AM Page 67

Keep in mind that data type names are case insensitive, so you might see them capitalized
differently depending on the database console program you’re using.

Now let’s get back to the department table and determine which data types to use. Don’t
worry that you don’t have the table yet in your database; you’ll create it a bit later. Figure 3-9
shows the design of department in pgAdmin III. department_id is a serial data type, and name
and description are varchar data types.

Figure 3-9. Designing the department table

For character varying, the associated dimension—such as in character varying(50)—
represents the maximum length of the stored strings. We’ll choose to have 50 characters
available for the department’s name and 1,000 for the description. An integer record, as
shown in the table, always occupies 4 bytes.

NOT NULL Columns and Default Values
For each column of the table, you can specify whether it is allowed to be NULL. The best and
shortest definition for NULL is “undefined.” For example, in your department table, only
department_id and name are really required, whereas description is optional—meaning that
you are allowed to add a new department without supplying a description for it. If you add a
new row of data without supplying a value for columns that allow nulls, NULL is automatically
supplied for them.

Especially for character data, there is a subtle difference between the NULL value and an
“empty” value. If you add a product with an empty string for its description, this means that
you actually set a value for its description; it’s an empty string, not an undefined (NULL) value.

The primary key field never allows NULL values. For the other columns, it’s up to you to
decide which fields are required and which are not.

In some cases, instead of allowing NULLs, you’ll prefer to specify default values. This way,
if the value is unspecified when creating a new row, it will be supplied with the default value.
The default value can be a literal value (such as 0 for a salary column or "unknown" for a
description column), a system value, or a function.

Serial Columns and Sequences
Serial columns are “autonumbered” columns. When a column is declared a serial column,
PostgreSQL automatically provides values for it when inserting new records into the table.
Usually if max is the largest value currently in the table for that column, then the next gener-
ated value will be max+1.

This way, the generated values are always unique, which makes them especially useful
when used in conjunction with the PRIMARY KEY constraint. You already know that primary keys

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I68

648XCH03.qxd 11/8/06 9:45 AM Page 68

are used on columns that uniquely identify each row of a table. If you set a primary key column
to also be a serial column, PostgreSQL Server automatically fills that column with values when
adding new rows (in other words, it generates new IDs),ensuring that the values are unique.

Serial columns are defined using the serial data type. This data type is not a “real” data
type but a notation that automatically defines a SEQUENCE structure over the integer data type.
The following SQL code creates a table named department with a serial column that is also the
primary key:

CREATE TABLE department
(
department_id SERIAL NOT NULL,
name VARCHAR(50) NOT NULL,
description VARCHAR(1000),
CONSTRAINT pk_department_id PRIMARY KEY (department_id)

);

This is in fact a shorter form of

CREATE SEQUENCE department_department_id_seq;

CREATE TABLE department
(
department_id INTEGER NOT NULL DEFAULT nextval('department_department_id_seq'),
name VARCHAR(50) NOT NULL,
description VARCHAR(1000),
CONSTRAINT pk_department PRIMARY KEY (department_id)

);

When setting a serial column, the first value that PostgreSQL Server provides for that col-
umn is 1, but you can change this before adding data to your table with an SQL statement like
the following:

ALTER SEQUENCE department_department_id_seq RESTART WITH 123;

This way, your PostgreSQL server will start generating values with 123. Now you under-
stand that the default value shown in Figure 3-9 for department_id uses the sequence to
generate new values for the column.

For more details about the serial data type, see its official documentation at
http://www.postgresql.org/docs/current/interactive/datatype.html#DATATYPE-SERIAL.
The documentation for updating the sequence can be found at http://www.postgresql.org/
docs/current/interactive/sql-altersequence.html.

■Note Unlike other database servers, PostgreSQL still allows you to manually specify for an autonumbered
field when adding new rows, if you want.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 69

648XCH03.qxd 11/8/06 9:45 AM Page 69

Indexes
Indexes are related to PostgreSQL performance tuning, so we’ll mention them only briefly
here.

Indexes are database objects meant to increase the overall speed of database operations.
Indexes work on the presumption that the vast majority of database operations are read oper-
ations. Indexes increase the speed of search operations but slow down insert, delete, and
update operations. Usually, the gains of using indexes considerably outweigh the drawbacks.

On a table, you can create one or more indexes, with each index working on one column
or on a set of columns. When a table is indexed on a specific column, its rows are either
indexed or physically arranged based on the values of that column and the type of index. This
makes search operations on that column very fast. If, for example, an index exists on depart-
ment_id and then you do a search for the department with the ID value 934, the search would
be performed very quickly.

The drawback of indexes is that they can slow down database operations that add new
rows or update existing ones because the index must be actualized (or the table rows
rearranged) each time these operations occur.

You should keep the following in mind about indexes:

• Indexes greatly increase search operations on the database, but they slow down opera-
tions that change the database (delete, update, and insert operations).

• Having too many indexes can slow down the general performance of the database. The
general rule is to set indexes on columns frequently used in WHERE, ORDER BY, and GROUP
BY clauses or used in table joins.

• By default, unique indexes are automatically created on primary key table columns.

You can use dedicated tools to test the performance of a database under stress conditions
with and without particular indexes; in fact, a serious database administrator will want to run
some of these tests before deciding on a winning combination for indexes.

Creating the department Table
You created the hatshop database in Chapter 2. In the following exercise, you’ll add the
department table to it using pgAdmin III. Alternatively, you can use the SQL scripts from the
Source Code/Download to create and populate the department table (you can also execute
them through pgAdmin III).

■Note You can find the database creation scripts in the Source Code/Download section for this book,
which you can find on the Apress web site (http://www.apress.com). You can find the files on the authors’
web sites as well, at http://www.cristiandarie.ro and http://www.emilianbalanescu.ro.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I70

648XCH03.qxd 11/8/06 9:45 AM Page 70

Exercise: Creating the department Table

1. Start pgAdmin III, and log into your database server using the hatshopadmin username, as you did in the
last exercise of Chapter 2.

2. Expand the hatshop database node, expand Schemas, expand public, and then select the Tables node.
Right-click this node, and choose New Table from the context menu.

3. Type department in the Name text box, and then click the Columns tab.

4. In the Columns window, click Add. Complete the details as shown in Figure 3-10, and then click OK.

Figure 3-10. Adding the department_id field

5. Click Add again to add the name field, as shown in Figure 3-11.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 71

648XCH03.qxd 11/8/06 9:45 AM Page 71

Figure 3-11. Adding the name field

6. Click Add again to add the description field. This should also be a varchar field, with a maximum length of
1000. Let the Not NULL check box stay unchecked, and click OK.

7. The final step for creating the table is to specify a primary key. Click the Constraints tab, make sure Primary
Key is selected in the combo box, and click Add.

8. Type pk_department for the key’s name, then switch to the Columns tab, and add department_id to the
list. Click OK to close the dialog box.

9. Click OK again to create the table. Your new table should now appear in the Tables list of your database
(see Figure 3-12). As you can see, apart from your new table, there are a few tables created by default by
PostgreSQL—it’s safe to ignore them. If you select the department table from the list, pgAdmin III shows
you the SQL code that creates the structure you’ve just built using the visual interface. You can check that
you see the same code on your computer to ensure you’ve followed the steps of the exercise correctly.

■Note You’ll learn more about SQL in the following chapters, but for now it’s enough to know that SQL is
a language that can be used to interact with the database, to create data tables, to read data from these
tables, and so on.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I72

648XCH03.qxd 11/8/06 9:45 AM Page 72

Figure 3-12. The department table in pgAdmin III

10. Let’s populate the table with some sample data. Right-click on the department table, and select View Data.

11. Using the form that shows up, add the records mentioned in Table 3-2.

Table 3-2. Three Records for the department Table

department_id name description

1 Holiday Prepare for the holidays with our special collection
of seasonal hats!

2 Caps and Berets The perfect hats to wear at work and costume
parties!

3 Costume Hats Find the matching hat for your new costume!

■Caution Because you have a sequence in place, it’s better to let it generate the department IDs, rather
than typing the values yourself. You just need to type in the names and descriptions. If you write the
department_id value manually instead of letting the sequence generate it, you’ll also need to update the
sequence because this doesn’t happen automatically. If you don’t update the sequence, it will generate
values that already exist in the database.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 73

648XCH03.qxd 11/8/06 9:45 AM Page 73

How It Works: Creating PostgreSQL Data Tables

You have just created your first database table! You also set a primary key, set a serial column, and filled the
table with some data.

As you can see, as soon as you have a clear idea about the structure of a table, it’s relatively easy to use pgAdmin
III to create it into your database. Let’s move on!

Communicating with the Database
Now that you have a table filled with data, let’s do something useful with it! The ultimate goal
with this table is to get the list of department names from a PHP page and populate the
Smarty template with that list.

To get data from a database, you first need to know how to communicate with the data-
base. Relational databases understand dialects and variants of SQL. The usual way of
communicating with PostgreSQL is to write an SQL command, send it to the PostgreSQL
server, and get the results back.

In practice, as you’ll see later, we prefer to centralize the data access code using Post-
greSQL functions, but before you can learn about them, you need to know the basics of SQL.

The Structured Query Language (SQL)
SQL is the language used to communicate with modern Relational Database Management
Systems (RDBMS). However, we haven’t seen a database system yet that supports exactly the
SQL 99 and SQL 2003 standards. This means that in many cases, the SQL code that works with
one database will not work with the other. Currently, PostgreSQL supports most of SQL 92 and
SQL 99.

The most commonly used SQL commands are SELECT, INSERT, UPDATE, and DELETE. These
commands allow you to perform the most basic operations on the database.

The basic syntax of these commands is very simple, as you’ll see in the following pages.
However, keep in mind that SQL is a very flexible and powerful language that can be used to
create much more complicated and powerful queries than what you see here. You’ll learn more
while building the web site, but for now let’s take a quick look at the basic syntax. For more
details about any of these commands, you can always refer to the official documentation at

• http://www.postgresql.org/docs/current/interactive/sql-select.html

• http://www.postgresql.org/docs/current/interactive/sql-insert.html

• http://www.postgresql.org/docs/current/interactive/sql-update.html

• http://www.postgresql.org/docs/current/interactive/sql-delete.html

SELECT
The SELECT statement is used to query the database and retrieve selected data that match the
criteria you specify. Its basic structure is

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I74

648XCH03.qxd 11/8/06 9:45 AM Page 74

SELECT <column list>
[FROM <table name(s)>]
[WHERE <restrictive condition(s)>]

■Note In this book, the SQL commands and queries appear in uppercase for consistency and clarity
although SQL is not case sensitive. The WHERE and FROM clauses appear in brackets because they are
optional.

The following command returns the name of the department that has the department_id
of 1. In your case, the returned value is Holiday, but you would receive no results if there was
no department with an ID of 1.

SELECT name FROM department WHERE department_id = 1;

■Tip You can easily test these queries to make sure they actually work by using the Query tool, accessible
from the Tools menu of pgAdmin III.

If you want more columns to be returned, you simply list them, separated by commas.
Alternatively, you can use *, which means “all columns.” However, for performance reasons, if
you need only certain columns, you should list them separately instead of asking for them all.
Using * is not advisable even if at a particular moment you do want all the columns for a query
because in future you may add even more columns to the table, and your query would end up
asking for more data than is needed. Finally, using * doesn’t guarantee the order in which the
columns are returned, as one may change the order of the columns in a table (although this is
not likely to happen). For these reasons, we don’t use * in this book.

With your current department table, the following two statements return the same
results:

SELECT department_id, name, description
FROM department
WHERE department_id = 1;

SELECT * FROM department WHERE department_id = 1;

■Tip You can split an SQL query on more lines, if you prefer—PostgreSQL won’t mind.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 75

648XCH03.qxd 11/8/06 9:45 AM Page 75

If you don’t want to place any condition on the query, simply remove the WHERE clause,
and you’ll get all the rows. The following SELECT statement returns all rows and all columns
from the product table:

SELECT * FROM product;

■Tip If you are impatient and can’t wait until later in the chapter, you can test the SQL queries right now by
using the pgAdmin III tool! After connecting to the hatshop database, choose Tools ➤ Query tool. This will
open a window where you can type and execute SQL queries on your database. Be careful, though, because
in the rest of the book we’ll assume the data in your department table is the same as shown previously in
the chapter.

Unless a sorting order is specified, the order in which the rows are returned by a SELECT
clause can’t be determined. Moreover, executing the same query twice could generate differ-
ent results! To sort the results, you use ORDER BY. The following query will return the list of
departments sorted alphabetically by the department name:

SELECT department_id, name, description
FROM department
ORDER BY department_id;

INSERT
The INSERT statement is used to insert a row of data into the table. Its syntax is as follows:

INSERT INTO <table name> [(column list)] VALUES (column values)

■Tip Although the column list is optional (in case you don’t include it, column values are assigned to
columns in the order in which they appear in the table’s definition), you should always include it. This
ensures that changing the table definition doesn’t break the existing INSERT statements.

The following INSERT statement adds a department named Seasonal Hats Department to
the department table:

INSERT INTO department (name) VALUES ('Seasonal Hats Department');

No value was specified for the description field because it was marked to allow NULLs in
the department table. This is why you can omit specifying a value, if you want to. Also, you’re
allowed to omit specifying a department ID because the department_id column was created
with the serial option, which means the database takes care of automatically generating a
value for it when adding new records. However, you’re allowed to manually specify a value,
if you prefer.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I76

648XCH03.qxd 11/8/06 9:45 AM Page 76

■Tip Because department_id is the primary key column, trying to add more records with the same ID
would cause the database to generate an error. The database doesn’t permit having duplicate values in the
primary key field.

When letting PostgreSQL generate values for serial columns, you can obtain the last
generated value using the currval function. Here’s an example of how this works:

INSERT INTO department (name) VALUES ('Some New Department');
SELECT currval('department_department_id_seq');

■Tip In PostgreSQL, “;” is the delimiter between SQL commands.

UPDATE
The UPDATE statement is used to modify existing data and has the following syntax:

UPDATE <table name>
SET <column name> = <new value> [, <column name> = <new value> ...]
[WHERE <restrictive condition>]

The following query changes the name of the department with the ID of 43 to “Cool
Department.” If there were more departments with that ID, all of them would have been modi-
fied, but because department_id is the primary key, you can’t have more departments with the
same ID.

UPDATE department SET name='Cool Department' WHERE department_id = 43;

Be careful with the UPDATE statement because it makes it easy to mess up an entire table.
If the WHERE clause is omitted, the change is applied to every record of the table, which you
usually don’t want to happen. PostgreSQL will be happy to change all of your records; even if
all departments in the table would have the same name and description, they would still be
perceived as different entities because they have different department_id values.

DELETE
The syntax of the DELETE command is actually very simple:

DELETE FROM <table name>
[WHERE <restrictive condition>]

Most of the time, you’ll want to use the WHERE clause to delete a single row:

DELETE FROM department WHERE department_id = 43;

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 77

648XCH03.qxd 11/8/06 9:45 AM Page 77

As with UPDATE, be careful with this command because if you forget to specify a WHERE
clause, you’ll end up deleting all of the rows in the table. The following query deletes all the
records in department. The table itself isn’t deleted by the DELETE command.

DELETE FROM department;

PostgreSQL Functions and Types
Database functions are objects that store programs written in a language that PostgreSQL
understands. PostgreSQL knows how to deal with functions written in more languages, such
as Perl or Python, but we’ll stick to the standard, which is an SQL-based language called
PL/pgSQL. You can find an introduction to the language at http://www.postgresql.org/docs/
current/interactive/plpgsql.html#PLPGSQL-OVERVIEW.

You don’t need to use database functions if you want to perform database operations. You
can directly send SQL commands from an external application (such as a PHP script of your
HatShop application) to your PostgreSQL database. When using functions, instead of passing
the SQL code you want executed, you just call the function and the values for any parameters
it might have. Using functions for data operations has the following advantages:

• The performance can be better because PostgreSQL generates and caches the func-
tion’s execution plan when it’s first executed.

• Using functions allows for better maintainability of the data access and manipulation
code, which is stored in a central place, and permits easier implementation of the
three-tier architecture (the database functions forming the data tier).

• Security can be better controlled because PostgreSQL permits setting different security
permissions for each individual function.

• SQL queries created ad hoc in PHP code are more vulnerable to SQL injection attacks,
which is a major security threat. (Many Internet resources cover this security subject,
such as the article at http://www.sitepoint.com/article/
sql-injection-attacks-safe.)

• This might be a matter of taste, but separating the SQL logic from the PHP code keeps
the PHP code cleaner and easier to manage; it looks better to just query a function,
than to join strings to build SQL queries to pass to the database.

When developing HatShop, we’ll save all the data access code as PostgreSQL functions
inside the hatshop database. These functions, as functions in any respectable language, have
input parameters and return types. In some of our examples, we’ll define custom types for
returning the results.

The syntax for creating functions is

CREATE FUNCTION <name>(<param1 type>, <param2 type> ...)
RETURNS [SETOF] <return type> LANGUAGE plpgsql AS $$
<code>

$$

Alternatively, you can specify the language (LANGUAGE plpgsql) at the end of the function
code, after the closing $$.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I78

648XCH03.qxd 11/8/06 9:45 AM Page 78

Note that you can’t create a function if your database already has a function with the same
name and parameter number and types. You can, however, have multiple functions with the
same name but different parameters (this method is called overloading in OOP [Object Ori-
ented Programming] terminology). The key is that when calling the function, PostgreSQL must
know which version of the function to call, and it can do that if the parameters are different.

To change an existing function, you should use CREATE OR REPLACE FUNCTION instead of
CREATE FUNCTION, which creates the function if it doesn’t already exist or updates the function
if it does exist.

We’ll use types to specify what kind of data the function returns. A type is defined like this:

CREATE TYPE name AS
(attribute_name data_type [, ...])

For the data tier of the departments list, you need to create a type called department_list
and a function called catalog_get_departments_list. Let’s do this in the following exercise.

Exercise: Creating PostgreSQL Types and Functions

1. Start pgAdmin III, and connect to the hatshop database using the hatshopadmin username.

2. pgAdmin III has the interface elements that you can use to create types without writing code (you can check
by right-clicking on Types, and selecting New Type). However, because the interface is not particularly
friendly, we prefer to write and execute the code that performs the same actions. Choose Tools ➤ Query
Tool, and write this code:

CREATE TYPE department_list AS
(
department_id INTEGER,
name VARCHAR(50)

);

3. Press F5 to execute the command. The output should be similar to “Query returned successfully with no
result in 30 ms.”

4. Choose Edit ➤ Clear Window to clear the current contents, and write the following code that creates the
catalog_get_departments_list function:

CREATE FUNCTION catalog_get_departments_list()
RETURNS SETOF department_list LANGUAGE plpgsql AS $$
DECLARE
outDepartmentListRow department_list;

BEGIN
FOR outDepartmentListRow IN
SELECT department_id, name
FROM department
ORDER BY department_id

LOOP
RETURN NEXT outDepartmentListRow;

END LOOP;
END;

$$;

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 79

648XCH03.qxd 11/8/06 9:45 AM Page 79

5. Press F5 to execute the command. The output should once again say that the command executed
successfully with no result.

6. To test that the new function returns what it’s supposed to, clear again the contents of the window, and
type the following query. The list of departments should be retrieved (see Figure 3-13).

SELECT * FROM catalog_get_departments_list();

Figure 3-13. Executing a function using pgAdmin III

7. Close the Query tool window. If asked to save the changes, click No.

How It Works: PostgreSQL Types and Functions

Let’s break down in parts the catalog_get_departments_list function. The first line is the one that defines
the function name. Remember that you could use CREATE OR REPLACE FUNCTION if you have already created
the function and want to change it.

CREATE FUNCTION catalog_get_departments_list()

The next line defines the return type and the language used in the function. The language we’re using for this
function, and for all the others in this book, is PL/pgSQL (LANGUAGE plpgsql).

RETURNS SETOF department_list LANGUAGE plpgsql AS $$

The return type is SETOF department_list, which means the function is supposed to return one or more
records that have the structure defined by the department_list type. The department_list type is a simple
type composed of DepartmentID and Description, defined like this:

CREATE TYPE department_list AS
(
department_id INTEGER,

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I80

648XCH03.qxd 11/8/06 9:45 AM Page 80

name VARCHAR(50)
);

The body of the function is between the beginning and ending $$. The following code snippet represents the typi-
cal way we’ll code our functions that return data. The bold line executes the query we’re interested in, and the rest
is auxiliary code required to return the results of that query.

DECLARE
outDepartmentListRow department_list;

BEGIN
FOR outDepartmentListRow IN
SELECT department_id, name FROM department

LOOP
RETURN NEXT outDepartmentListRow;

END LOOP;
END;

So what happens here? The body of the function starts with the DECLARE section, which declares the
variables that will be used by the function. Unlike with functions in other languages, a PL/pgSQL function has a
special place where you can declare variables. In this case, the name of the variable is outDepartmentListRow,
and its type is department_list.

The code that performs the actual functionality is written between BEGIN and END. The syntax may look weird at
first, but what it does is pretty straightforward. If you remember, the function is declared to return a set of values of
the department_list type, and this is what it does.

The function executes the SELECT statement, fetches each row of the results into the outDepartmentListRow
variable (which is of the department_list type), and returns this variable. When this function finishes executing,
it will have returned a set of department_list values.

Adding Logic to the Site
The business tier (or middle tier) is said to be the brains of the application because it manages
the application’s business logic. However, for simple tasks such as getting a list of departments
from the data tier, the business tier doesn’t have much logic to implement. It just requests the
data from the database and passes it to the presentation tier.

In this chapter, we’re building the foundation of the business layer, which includes the
functionality to open and close database connections, store SQL logic as PostgreSQL func-
tions, and access these functions from PHP.

For the business tier of the departments list, you’ll implement two classes:

• DatabaseHandler will store the common functionality that you’ll reuse whenever you
need to access the database. Having this kind of generic functionality packed in a sepa-
rate class saves keystrokes and avoids bugs in the long run.

• Catalog contains product catalog-specific functionality, such as the GetDepartments
method that will retrieve the list of departments from the database.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 81

648XCH03.qxd 11/8/06 9:45 AM Page 81

Connecting to PostgreSQL
The SQL queries you write must be sent somehow to the database engine for execution. As
you learned in Chapter 2, you’ll use PHP PDO to access the PostgreSQL server.

Before writing the business tier code, you need to analyze and understand the possibili-
ties for implementation. The important questions to answer before writing any code include
the following:

• What strategy should you adopt for opening and closing database connections, when
you need to execute an SQL query?

• Which methods of PHP PDO should you use for executing database functions and
returning the results?

• How should you handle possible errors and integrate the error-handling solution with
the error-handling code you wrote in Chapter 2?

Let’s have a look at each of these questions one by one, and then we’ll start writing some
code.

Opening and Closing Connections to the PostgreSQL Server
There are two main possible approaches you can take for this. The first is illustrated by the
following sequence of actions, which needs to be executed each time the database needs to
be accessed.

1. Open a connection to the database exactly before you need to execute a command on
the database.

2. Execute the SQL query (or the database function) using the open connection, and get
back the results. At this stage, you also need to handle any possible errors.

3. Close the database connection immediately after executing the command.

This method has the advantage that you don’t keep database connections for a long time
(which is good because database connections consume server resources) and is also encour-
aged for servers that don’t allow many simultaneous database connections. The disadvantage
is the overhead implied by opening and closing the database connection all the time, which
can be partially reduced by using persistent connections.

■Note Persistent connections refers to a technology that attempts to improve the efficiency of opening
and closing database connections with no impact on functionality. You can learn more about this technology
at http://www.php.net/manual/en/features.persistent-connections.php.

The alternative solution, and the one you’ll use when implementing HatShop, can be
described like this:

1. Open a connection to the database the first time you need to access the database
during a request.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I82

648XCH03.qxd 11/8/06 9:45 AM Page 82

2. Execute all database functions (or SQL queries) through that connection without clos-
ing it. Here you also need to handle any possible errors.

3. Close the database connection when the client request finishes processing.

Using this method, all database operations that happen for a single client request (which
happens each time a user visits a new page of our site) will go through a single database con-
nection, avoiding opening and closing the connection each time you need something from
the database. You’ll still use persistent connections to improve the efficiency of opening a new
database connection for each client request.

This solution is the one you will use for data access in the HatShop project.

Using PHP PDO for Database Operations
Now you should learn the theory about how to put this in practice using PHP PDO. You’ll
effectively write the code a bit later, when building the added functionality into the web site.

As explained in Chapter 2, you won’t access PostgreSQL through PHP’s PostgreSQL-
specific database functions but through a database abstraction layer (PHP PDO). The PDO
classes permit accessing various data sources using the same API (Application Programming
Interface), so you won’t need to change the PHP data access code or learn different data-
access techniques when working with database systems other than PostgreSQL (but you
might need to change the SQL code itself if the database you migrate to uses a different
dialect). Using PHP PDO makes your life as a programmer easier in the long run.

The important PHP PDO class you’ll work with is PDO, which provides methods for
performing various database operations.

■Note In this book, you’ll learn about the PHP PDO functionality as used in HatShop. For more details
about PHP PDO, see the PHP Manual documentation at http://www.php.net/manual/en/ref.pdo.php.

The PDO class provides the functionality to connect to the PostgreSQL server and execute
SQL queries. The function that opens a database connection is PDO’s constructor, which receives
as parameters the connection string to the database server and an optional parameter that spec-
ifies whether the connection is a persistent connection. The connection string contains the data
required to connect to the database server. You create a new PDO object like this:

$dbh = new PDO('pgsql:dbname=' . $db_name . ';host=' . $db_host,
$db_user,
$db_pass,
array(PDO::ATTR_PERSISTENT => $persistent));

■Note The constructor of the PDO class returns an initialized database connection object (which is specific
to the type of database you’re connecting to, such as pgsql) if the connection is successful; otherwise, an
exception is thrown.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 83

648XCH03.qxd 11/8/06 9:45 AM Page 83

The previous code snippet shows the standard data you need to supply when connecting
to a PostgreSQL server and uses five variables:

• $db_user represents the username.

• $db_pass represents the user’s password.

• $db_host is the hostname of your PostgreSQL server.

• $db_name is the name of the database you’re connecting to.

• $persistent is true if we want to create a persistent database connection or false other-
wise.

To disconnect from the database, you need to make $dbh = null.
The following code snippet demonstrates how to create, open, and then close a Post-

greSQL database connection and also catch any exceptions that are thrown:

try
{
// Open connection
$dbh = new PDO('pgsql:dbname=' . $db_name . ';host=' . $db_host,

$db_user, $db_pass);

// Close connection
$dbh = null;

}
catch (PDOException $e)
{
echo 'Connection failed: ' . $e->getMessage();

}

The try and catch keywords are used to handle exceptions.

PHP 5 EXCEPTION HANDLING

In Chapter 2, you implemented the code that intercepts and handles (and eventually reports) errors that hap-
pen in the HatShop site. PHP errors are the standard mechanism that you can use to react with an error
happening in your PHP code. When a PHP error occurs, the execution stops; you can, however, define an
error-handling function that is called just before the execution is terminated. You added such a function in
Chapter 2, where you obtain as many details as possible about the error and log them for future reference.
Having those details, a programmer can fix the code to avoid the same error happening in the future.

PHP 5 introduced, along with other OOP features, a new way to handle runtime errors: enter exceptions.
Exceptions represent the modern way of managing runtime errors in your code and are much more powerful
and flexible than PHP errors. Exceptions are a very important part of the OO (Object Oriented) model, and PHP
5 introduces an exception model resembling that of other OOP languages such as Java and C#. However,
exceptions in PHP coexist with the standard PHP errors in a strange combination, and you can’t solely rely on
exceptions for dealing with runtime problems. Some PHP extensions, such as PDO, can be configured to gen-
erate exceptions to signal problems that happen at runtime, whereas in other cases, your only option is to
deal with standard PHP errors.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I84

648XCH03.qxd 11/8/06 9:45 AM Page 84

The advantages of exceptions over errors lies in the flexibility you’re offered in handling them. When an
exception is generated, you can handle it locally and let your script continue executing normally, or you can
pass the exception to another class for further processing. With exceptions, your script isn’t terminated like
what happens when a PHP error appears. When using exceptions, you place the code that you suspect could
throw an exception inside a try block and handle potential exceptions in an associated catch block:

try
{
// Code that could generate an exception that you want to handle

}
catch (Exception $e)
{
// Code that is executed when an exception is generated
// (exception details are accessible through the $e object)

}

When an exception is generated by any of the code in the try block, the execution is passed directly to
the catch block. Unless the code in the catch block rethrows the exception, it is assumed that it handled
the exception, and the execution of your script continues normally. This kind of flexibility allows you to pre-
vent many causes that could make your pages stop working, and you’ll appreciate the power exceptions give
you when writing PHP code!

A PHP 5 exception is represented by the Exception class, which contains the exception’s details. You
can generate (throw) an exception yourself using the throw keyword. The Exception object that you throw
is propagated through the call stack until it is intercepted using the catch keyword. The call stack is the list
of methods being executed. So if a function A() calls a function B(), which in turn calls a function C(), then
the call stack will be formed of these three methods. In this scenario, an exception that is raised in function
C() can be handled in the same function, provided the offending code is inside a try-catch block. If this is
not the case, the exception propagates to method B(), which has a chance to handle the exception, and so
on. If no method handles the exception, the exception is finally intercepted by the PHP interpreter, which
transforms the exception into a PHP fatal error.

In our database handling code, we’ll catch the potential exceptions that could be generated by PDO.
Although it doesn’t do it by default, PDO can be instructed to generate exceptions in case something goes
wrong when executing an SQL command or opening a database connection, like this:

// Create a new PDO class instance
$handler = new PDO(...);

// Configure PDO to throw exceptions
self::$_mHandler->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 85

648XCH03.qxd 11/8/06 9:45 AM Page 85

We catch these exceptions, and we pass the error details to the error-handling code you
wrote in Chapter 2. The following code snippet shows a short function with this functionality
implemented:

// Wrapper method for PDOStatement::fetch
public static function GetRow($statementHandler, $params = null,

$fetchStyle = PDO::FETCH_ASSOC)
{
// Initialize the return value to null
$result = null;

// Try executing the prepared statement received as parameter
try
{
self::Execute($statementHandler, $params);

$result = $statementHandler->fetch($fetchStyle);
}
catch(PDOException $e)
{
// Close the database handler and trigger an error
self::Close();
trigger_error($e->getMessage(), E_USER_ERROR);

}

// Return the query results
return $result;

}

Issuing Commands Using the Connection
After opening the connection, you’re now at the stage we’ve been aiming for from the start:
executing SQL commands through the connection.

You can execute the command in many ways, depending on the specifics. Does the SQL
query you want to execute return any data? If so, what kind of data, and in which format? The
PDO methods that we’ll use to execute SQL queries are

• PDOStatement::execute is used to execute an INSERT, an UPDATE, or DELETE query.

• PDOStatement::fetch is used to retrieve one row of data from the database.

• PDOStatement::fetchAll is used to retrieve multiple rows of data from the database.

• PDO::prepare prepares an SQL query to be executed, creating a so-called prepared state-
ment.

A prepared statement is a parameterized SQL query whose parameter values are replaced
by either parameter markers (?) or named variables (:variable_name), like in these examples:

$query1 = "SELECT name FROM department WHERE department_id = ?"
$query1 = "SELECT name FROM department WHERE department_id = :dept_id"

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I86

648XCH03.qxd 11/8/06 9:45 AM Page 86

To execute a prepared statement, you supply the parameter values to the functions that
execute your query, which take care to build the complete SQL query for you. To implement
the list of departments, you won’t need to work with parameters, but you’ll learn how to han-
dle them in Chapter 4.

Nonprepared statements can be executed with PDO using the PDO::exec, in which case,
you need to create the string of the SQL query, including its parameters. In this book, we’ll
always use prepared statements because they bring two important benefits:

• Parameter values are checked to prevent injection attacks.

• The query will likely execute faster with prepared statements because the database
server can reuse the access plan it builds for a prepared statement.

To be able to reuse more of the database handling code and to have a centralized error-
handling mechanism for the database code, we won’t be using the PDO methods directly from
the business tier of our application. Instead, we’ll wrap the PDO functionality into a class
named DatabaseHandler, and we’ll use this class from the other classes of the business tier.

Writing the Business Tier Code
Okay, let’s write some code! You’ll start by writing the DatabaseHandler class, which will be a
support class that contains generic functionality needed in the other business tier methods.
Then you’ll create a business tier class named Catalog, which uses the DatabaseHandler class
to provide the functionality required by the presentation tier. The Catalog class will contain
methods such as GetDepartments (which will be used to generate the list of departments),
GetCategories, and so on. The only method we’ll need to add to the Catalog class in this
chapter is GetDepartments.

Although in this chapter we won’t need all this functionality, we’ll write the complete code
of the DatabaseHandler class. DatabaseHandler will have the following methods:

• Prepare is a wrapper for the PDO::prepare method, which is used to create a prepared
statement.

• Execute executes an SQL command that doesn’t return records from the database, such
as INSERT, DELETE, or UPDATE statements.

• GetOne returns a single value from the database. We can use this method to call data-
base functions that return a single value, such as one that returns the subtotal of a
shopping cart.

* GetRow is used to execute queries that return a single row of data.

• GetAll is used to execute queries that return more rows of data, such as when request-
ing the list of departments.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 87

648XCH03.qxd 11/8/06 9:45 AM Page 87

Exercise: Creating and Using the DatabaseHandler Class

1. Add the database login information at the end of hatshop/include/config.php, modifying the con-
stants’ values to fit your server’s configuration. The following code assumes you created the admin user
account as instructed in Chapter 2:

// Database login info
define('DB_PERSISTENCY', 'true');
define('DB_SERVER', 'localhost');
define('DB_USERNAME', 'hatshopadmin');
define('DB_PASSWORD', 'hatshopadmin');
define('DB_DATABASE', 'hatshop');
define('PDO_DSN', 'pgsql:host=' . DB_SERVER . ';dbname=' . DB_DATABASE);

2. Create a new file named database_handler.php in the hatshop/business folder, and create the
DatabaseHandler class as shown in the following code listing. At this moment, we only included its con-
structor (which is private, so the class can’t be instantiated), and the static GetHandler method, which
creates a new database connection, saves it into the $_mHandler member, and then returns this object.
(Find more explanations about the process in the upcoming “How It Works” section.)

<?php
// Class providing generic data access functionality
class DatabaseHandler
{
// Hold an instance of the PDO class
private static $_mHandler;

// Private constructor to prevent direct creation of object
private function __construct()
{
}

// Return an initialized database handler
private static function GetHandler()
{
// Create a database connection only if one doesn’t already exist
if (!isset(self::$_mHandler))
{
// Execute code catching potential exceptions
try
{
// Create a new PDO class instance
self::$_mHandler =
new PDO(PDO_DSN, DB_USERNAME, DB_PASSWORD,

array(PDO::ATTR_PERSISTENT => DB_PERSISTENCY));

// Configure PDO to throw exceptions
self::$_mHandler->setAttribute(PDO::ATTR_ERRMODE,

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I88

648XCH03.qxd 11/8/06 9:45 AM Page 88

PDO::ERRMODE_EXCEPTION);
}
catch (PDOException $e)
{
// Close the database handler and trigger an error
self::Close();
trigger_error($e->getMessage(), E_USER_ERROR);

}
}

// Return the database handler
return self::$_mHandler;

}
}
?>

3. Add the Close method to the DatabaseHandler class. This method will be called to close the database
connection:

// Clear the PDO class instance
public static function Close()
{
self::$_mHandler = null;

}

4. Add the Prepare method to DatabaseHandler. This method uses PDO’s prepare method, and you’ll use
it for preparing SQL statements for execution.

// Wrapper method for PDO::prepare
public static function Prepare($queryString)
{
// Execute code catching potential exceptions
try
{
// Get the database handler and prepare the query
$database_handler = self::GetHandler();
$statement_handler = $database_handler->prepare($queryString);

// Return the prepared statement
return $statement_handler;

}
catch (PDOException $e)
{
// Close the database handler and trigger an error
self::Close();
trigger_error($e->getMessage(), E_USER_ERROR);

}
}

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 89

648XCH03.qxd 11/8/06 9:45 AM Page 89

5. Add the Execute method to DatabaseHandler. This method uses the PDOStatement::execute
method to run queries that don’t return records (INSERT, DELETE, or UPDATE queries):

// Wrapper method for PDOStatement::execute
public static function Execute($statementHandler, $params = null)
{
try
{
// Try to execute the query
$statementHandler->execute($params);

}
catch(PDOException $e)
{
// Close the database handler and trigger an error
self::Close();
trigger_error($e->getMessage(), E_USER_ERROR);

}
}

6. Add the GetAll function, which is the wrapper method for fetchAll. You’ll call this function for retrieving
a complete result set from a SELECT query.

// Wrapper method for PDOStatement::fetchAll
public static function GetAll($statementHandler, $params = null,

$fetchStyle = PDO::FETCH_ASSOC)
{
// Initialize the return value to null
$result = null;

// Try executing the prepared statement received as parameter
try
{
self::Execute($statementHandler, $params);

$result = $statementHandler->fetchAll($fetchStyle);
}
catch(PDOException $e)
{
// Close the database handler and trigger an error
self::Close();
trigger_error($e->getMessage(), E_USER_ERROR);

}

// Return the query results
return $result;

}

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I90

648XCH03.qxd 11/8/06 9:45 AM Page 90

7. Add the GetRow function, which is the wrapper class for fetchRow, as shown. This will be used to get a
row of data resulted from a SELECT query.

// Wrapper method for PDOStatement::fetch
public static function GetRow($statementHandler, $params = null,

$fetchStyle = PDO::FETCH_ASSOC)
{
// Initialize the return value to null
$result = null;

// Try executing the prepared statement received as parameter
try
{
self::Execute($statementHandler, $params);

$result = $statementHandler->fetch($fetchStyle);
}
catch(PDOException $e)
{
// Close the database handler and trigger an error
self::Close();
trigger_error($e->getMessage(), E_USER_ERROR);

}

// Return the query results
return $result;

}

8. Add the GetOne function, which is the wrapper class for fetch, as shown. This will be used to get a single
value resulted from a SELECT query.

// Return the first column value from a row
public static function GetOne($statementHandler, $params = null)
{
// Initialize the return value to null
$result = null;

// Try executing the prepared statement received as parameter
try
{
/* Execute the query, and save the first value of the result set

(first column of the first row) to $result */
self::Execute($statementHandler, $params);

$result = $statementHandler->fetch(PDO::FETCH_NUM);
$result = $result[0];

}
catch(PDOException $e)
{

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 91

648XCH03.qxd 11/8/06 9:45 AM Page 91

// Close the database handler and trigger an error
self::Close();
trigger_error($e->getMessage(), E_USER_ERROR);

}

// Return the query results
return $result;

}

9. Create a file named catalog.php inside the business folder. Add the following code into this file:

<?php
// Business tier class for reading product catalog information
class Catalog
{
// Retrieves all departments
public static function GetDepartments()
{
// Build SQL query
$sql = 'SELECT * FROM catalog_get_departments_list();';

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result);

}
}
?>

10. You need to include the newly created database_handler.php in app_top.php so you can make the
class available for the application. To do this, add the highlighted code to the include/app_top.php file:

<?php
// Include utility files
require_once 'include/config.php';
require_once BUSINESS_DIR . 'error_handler.php';

// Sets the error handler
ErrorHandler::SetHandler();

// Load the page template
require_once PRESENTATION_DIR . 'page.php';

// Load the database handler
require_once BUSINESS_DIR . 'database_handler.php';
?>

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I92

648XCH03.qxd 11/8/06 9:45 AM Page 92

11. Create a new file named hatshop/include/app_bottom.php, and add the following in it:

<?php
DatabaseHandler::Close();
?>

12. This file must be included at the end of the main page index.php to close the connection. Modify your
index.php file as follows:

<?php
// Load Smarty library and config files
require_once 'include/app_top.php';

// Load Smarty template file
$page = new Page();

// Display the page
$page->display('index.tpl');

// Load app_bottom which closes the database connection
require_once 'include/app_bottom.php';
?>

How It Works: The Business Tier Code

After adding the database connection data to config.php, you created the DatabaseHandler class. This class
contains a number of wrapper methods that access PDO functions and provide the functionality needed for the
rest of the business tier methods.

The DatabaseHandler class has a private constructor, meaning that it can’t be instantiated; you can’t create
DatabaseHandler objects, but you can execute the static methods for the class. Static class members and
methods, as opposed to instance members and methods, are called directly using the class name, instead of an
object of the class. For example, this is how you would call the instance method myMethod of a hypothetical class
named MyClass:

$myObject = new MyClass;
$myObject->myMethod();

If myMethod was a static method, you would call it like this:

MyClass::MyMethod();

■Note Static members are OOP-specific features that aren’t supported by PHP 4 and older versions.
You can find a very good introduction to the OOP features in PHP 5 at http://php.net/manual/en/
language.oop5.php.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 93

648XCH03.qxd 11/8/06 9:45 AM Page 93

The database functions themselves have a standard structure, taking advantage of the fact that PDO has been
configured to throw exceptions. Let’s take a closer look at the GetRow method.

// Wrapper method for PDOStatement::fetch
public static function GetRow($statementHandler, $params = null,

$fetchStyle = PDO::FETCH_ASSOC)
{
// Initialize the return value to null
$result = null;

// Try executing the prepared statement received as parameter
try
{
self::Execute($statementHandler, $params);

$result = $statementHandler->fetch($fetchStyle);
}
catch(PDOException $e)
{
// Close the database handler and trigger an error
self::Close();
trigger_error($e->getMessage(), E_USER_ERROR);

}

// Return the query results
return $result;

}

This method generates an error (using the trigger_error function) if the database command didn’t
execute successfully. The error is captured by the error-handling mechanism you implemented in Chapter 2.

Because of the way you implemented the error-handling code in Chapter 2, generating an E_USER_ERROR
error freezes the execution of the request, eventually logging and/or emailing the error data, and showing the
visitor a nice “Please come back later” message (if there is such thing as a nice “Please come back later”
message, anyway).

Note that before the error is generated, we also close the database connection to ensure that we’re not leaving
any database resources occupied by the script.

By default, if you don’t specify to trigger_error the kind of error to generate, an E_USER_NOTICE message
is generated, which doesn’t interfere with the normal execution of the request (the error is eventually logged, but
execution continues normally afterwards).

The functionality in the DatabaseHandler class is meant to be used in the other business tier classes, such as
Catalog. At this moment, Catalog contains a single method: GetDepartments.

// Business tier class for reading product catalog information
class Catalog
{
// Retrieves all departments
public static function GetDepartments()

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I94

648XCH03.qxd 11/8/06 9:45 AM Page 94

{
// Build SQL query
$sql = 'SELECT * FROM catalog_get_departments_list();';

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result);

}
}

Because it relies on the functionality you’ve already included in the DatabaseHandler class and in the database
functions in place, the code in Catalog is very simple and straightforward. The GetDepartments method will
be called from the presentation tier, which will display the returned data to the visitor. It starts by preparing the
SQL query (you learned earlier about the advantages of preparing SQL statements), and then calling the appropri-
ate DatabaseHandler method to execute the query. In this case, we’re calling GetAll to retrieve the list of
departments.

Right now, the database connection is opened when index.php starts processing and is closed at the end. All
database operations that happen in one iteration of this file will be done through this connection.

Displaying the List of Departments
Now that everything is in place in the other tiers, all you have to do is create the presentation
tier part—this is the final goal that we’ve been aiming toward from the beginning. As shown at
the beginning of this chapter, the departments list needs to look something like Figure 3-14,
when the site is loaded in the browser.

Figure 3-14. HatShop with a dynamically generated list of departments

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 95

648XCH03.qxd 11/8/06 9:45 AM Page 95

You implement this as a separate componentized template named departments_list
made up of two files: the Smarty design template (templates/departments_list.tpl) and the
Smarty plugin file (smarty_plugins/function.load_departments_list.php). An additional
helper class called DepartmentsList will also be used. You’ll then just include this componen-
tized template in the main Smarty template (templates/index.tpl).

Using Smarty Plugins
The Smarty plugin is the Smarty technology we’ll use to implement the logic behind Smarty
design template files (with the .tpl extension). This is not the only way to store the logic
behind a Smarty design template, but it’s the way the Smarty documentation recommends at
http://smarty.php.net/manual/en/tips.componentized.templates.php.

For the departments list, the Smarty plugin file is function.load_departments_list.php,
which contains the smarty_function_load_departments_list function that loads the list of
departments from the database. The list is loaded into Smarty variables that are read from the
Smarty design template file (departments_list.tpl) that generates the HTML output.

Smarty plugin files and functions must follow strict naming conventions to be located by
Smarty. Smarty plugin files must be named as type.name.php (in our case, function.
load_departments_list.php), and the functions inside them must be named as
smarty_type_name (in our case, smarty_function_load_departments_list). The official page
for Smarty plugins naming conventions is http://smarty.php.net/manual/en/plugins.naming.
conventions.php. You can learn more about Smarty plugins at http://smarty.php.
net/manual/en/plugins.php.

After the Smarty plugin file is in place, you can reference it from the Smarty design
template file (departments_list.tpl) with a line like this:

{load_departments_list assign="departments_list"}

Given the correct naming conventions where used, this line is enough to get Smarty to
load the plugin file and execute the function that loads the departments list. The Smarty
design template file can then access the variables populated by the plugin function like this:

{$departments_list->mDepartments[i].name}

Before actually writing the componentized template, there’s one more little detail to learn
about.

Exercise: Creating the departments_list Componentized Template

1. Open the hatshop.css file in the hatshop folder, and add the styles shown in the following code listing.
These styles refer to the way department names should look inside the departments list when they are
unselected, unselected but with the mouse hovering over them, or selected.

.left_box p
{
color: #ffffff;
font-family: arial, tahoma, verdana;
font-size: 12px;
font-weight: bold;

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I96

648XCH03.qxd 11/8/06 9:45 AM Page 96

margin: 0px 0px 5px 0px;
padding: 2px 0px 2px 12px;

}
#departments_box
{
position: relative;
border: 1px solid #30b86e;

}
#departments_box p
{
background: #30b86e;

}
a
{
color: #a6a6a6;
font-family: verdana, arial, tahoma;
font-size: 10px;
font-weight: bold;
line-height: 20px;
text-decoration: none;

}
a:hover
{
color: #000000;

}
a.selected
{
color: #000000;
text-decoration: underline;

}
ol
{
list-style-type: none;
margin: 0px 5px;
padding: 0px;

}

2. Edit the presentation/page.php file, and add the following two lines to the constructor of the page
class. These lines configure the plugin folders used by Smarty. The first one is for the internal Smarty plug-
ins, and the second specifies the smarty_plugins folder you’ll create to hold the plugins you’ll write for
HatShop.

/* Class that extends Smarty, used to process and display Smarty
files */

class Page extends Smarty
{
// Class constructor
public function __construct()

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 97

648XCH03.qxd 11/8/06 9:45 AM Page 97

{
// Call Smarty's constructor
parent::Smarty();

// Change the default template directories
$this->template_dir = TEMPLATE_DIR;
$this->compile_dir = COMPILE_DIR;
$this->config_dir = CONFIG_DIR;
$this->plugins_dir[0] = SMARTY_DIR . 'plugins';
$this->plugins_dir[1] = PRESENTATION_DIR . 'smarty_plugins';

}
}

3. Now create the Smarty template file for the departments_list componentized template.Write the follow-
ing lines in presentation/templates/departments_list.tpl:

{* departments_list.tpl *}
{load_departments_list assign="departments_list"}
{* Start departments list *}
<div class="left_box" id="departments_box">
<p>Choose a Department</p>

{* Loop through the list of departments *}
{section name=i loop=$departments_list->mDepartments}
{assign var=selected_d value=""}
{* Verify if the department is selected to decide what CSS style

to use *}
{if ($departments_list->mSelectedDepartment ==

$departments_list->mDepartments[i].department_id)}
{assign var=selected_d value="class=\"selected\""}

{/if}

{* Generate a link for a new department in the list *}
<a {$selected_d}
href="{$departments_list->mDepartments[i].link|escape:"html"}">
» {$departments_list->mDepartments[i].name}

{/section}

</div>
{* End departments list *}

4. Create a folder named smarty_plugins in the presentation folder. This will contain the Smarty plugin
files.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I98

648XCH03.qxd 11/8/06 9:45 AM Page 98

5. Inside the smarty_plugins folder, create a file named function.load_departments_list.php, and
add the following code to it:

<?php
// Plugin functions inside plugin files must be named: smarty_type_name
function smarty_function_load_departments_list($params, $smarty)
{
// Create DepartmentsList object
$departments_list = new DepartmentsList();
$departments_list->init();

// Assign template variable
$smarty->assign($params['assign'], $departments_list);

}

// Manages the departments list
class DepartmentsList
{
/* Public variables available in departments_list.tpl Smarty template */
public $mDepartments;
public $mSelectedDepartment;

// Constructor reads query string parameter
public function __construct()
{
/* If DepartmentID exists in the query string, we're visiting a

department */
if (isset ($_GET['DepartmentID']))
$this->mSelectedDepartment = (int)$_GET['DepartmentID'];

else
$this->mSelectedDepartment = -1;

}

/* Calls business tier method to read departments list and create
their links */

public function init()
{
// Get the list of departments from the business tier
$this->mDepartments = Catalog::GetDepartments();

// Create the department links
for ($i = 0; $i < count($this->mDepartments); $i++)
$this->mDepartments[$i]['link'] =
'index.php?DepartmentID=' .
$this->mDepartments[$i]['department_id'];

}
}
?>

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 99

648XCH03.qxd 11/8/06 9:45 AM Page 99

6. Modify the include/app_top.php file to include a reference to the Catalog business tier class:

<?php
// Include utility files
require_once 'include/config.php';
require_once BUSINESS_DIR . 'error_handler.php';

// Sets the error handler
ErrorHandler::SetHandler();

// Load the page template
require_once PRESENTATION_DIR . 'page.php';

// Load the database handler
require_once BUSINESS_DIR . 'database_handler.php';

// Load Business Tier
require_once BUSINESS_DIR . 'catalog.php';
?>

7. Make the following modification in presentation/templates/index.tpl to load the newly created
departments_list componentized template. Search for the following code:

<div class="left_box">
Place list of departments here

</div>

and replace it with this:

{include file="departments_list.tpl"}

8. Examine the result of your work with your favorite browser by loading http://localhost/hatshop/
index.php (refer to Figure 3-14). Play a little with the page to see what happens when you click on a
department or place the mouse over a link.

■Note If you don’t get the expected output, make sure your machine is configured correctly and all PHP
required modules, such as PDO, were loaded successfully. Many errors will be reported in the Apache error
log file (by default, Apache2/logs/error.log).

How It Works: The departments_list Smarty Template

If the page worked as expected from the start, you’re certainly one lucky programmer! Most of the time, errors
happen because of typos, so watch out for them! Database access problems are also common, so make sure you
correctly configured the hatshop database and the hatshopadmin user, as shown in Chapter 2. In any case, we’re
lucky to have a good error-reporting mechanism, which shows a detailed error report if something goes wrong.
Figure 3-15 shows the error message I received when mistyping the database password in config.php.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I100

648XCH03.qxd 11/8/06 9:45 AM Page 100

Figure 3-15. The error-handling code you’ve written in Chapter 2 is helpful for debugging.

If everything goes right, however, you’ll get the neat page containing a list of departments generated using a
Smarty template. Each department name in the list is a link to the department’s page, which in fact is a link to
the index.php page with a DepartmentID parameter in the query string that specifies which department was
selected. Here’s an example of such a link:

http://localhost/hatshop/index.php?DepartmentID=3

When clicking a department’s link, the selected department will be displayed using a different CSS style in the list
(see Figure 3-16).

Figure 3-16. Selecting a department

It is important to understand how the Smarty template file (presentation/templates/
departments_list.tpl) and its associated plugin file (presentation/smarty_plugins/

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 101

648XCH03.qxd 11/8/06 9:45 AM Page 101

function.load_departments_list.php) work together to generate the list of departments, and use the
correct style for the currently selected one.

The processing starts at function.load_departments_list.php, which is included in the index.tpl file.
The first line in departments_list.tpl loads the plugin:

{load_departments_list assign="departments_list"}

The load_departments_list plugin function creates and initializes a DepartmentsList object (this class is
included in function.load_departments_list.php), which is then assigned to a variable accessible from
the Smarty design template file:

function smarty_function_load_departments_list($params, $smarty)
{
// Create DepartmentsList object
$departments_list = new DepartmentsList();
$departments_list->init();

// Assign template variable
$smarty->assign($params['assign'], $departments_list);

}

The init() method in DepartmentsList populates a public member of the class ($mDepartments) with an
array containing the list of departments and another public member containing the index of the currently selected
department ($mSelectedDepartment).

Back to the Smarty code now. Inside the HTML code that forms the layout of the Smarty template
(presentation/templates/departments_list.tpl), you can see the Smarty tags that do the magic:

{section name=i loop=$departments_list->mDepartments}
{assign var=selected_d value=""}
{* Verify if the department is selected to decide what CSS style

to use *}
{if ($departments_list->mSelectedDepartment ==

$departments_list->mDepartments[i].department_id)}
{assign var=selected_d value="class=\"selected\""}

{/if}
{* Generate a link for a new department in the list *}

<a {$selected_d}
href="{$departments_list->mDepartments[i].link|escape:"html"}">
» {$departments_list->mDepartments[i].name}

{/section}

Smarty template sections are used for looping over arrays of data. In this case, you want to loop over the depart-
ments array kept in $departmentsList->mDepartments:

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I102

648XCH03.qxd 11/8/06 9:45 AM Page 102

{section name=i loop=$departments_list->mDepartments}
...

{/section}

Inside the loop, you verify whether the current department in the loop ($departments_
list->mDepartments[i].department_id) has the ID that was mentioned in the query string
($departments_list->mSelectedDepartment). Depending on this, you decide what style to apply
to the name by saving the style name (selected or default style) to a variable named selected_d.

This variable is then used to generate the link:

<a {$selected_d}
href="{$departments_list->mDepartments[i].link|escape:"html"}">
» {$departments_list->mDepartments[i].name}

Planning Ahead for Secure Connections
At some point in the development process, you’ll want certain pages of your site to be accessi-
ble only through secure HTTPS connections to ensure the confidentiality of the data passed
from the client to the server and back. Such sensitive pages include user login forms, pages
where the user enters credit card data, and so on.

We don’t get into much detail here because you’ll learn much more later in the book.
However, what you do need to know is that pages accessed through HTTPS occupy much of a
server’s resources, and we only want to use a secure connection when visiting secure pages.

Implementing this is a bit trickier than it appears. Most of the time, it’s more comfortable
to use relative links inside the web site. For example, it’s typical for the header image of a
site to contain a link to index.php rather than http://www.example.com/index.php. In this
case, clicking on the header image from a secure page would redirect the user to https://www.
example.com/index.php, so the visitor would end up accessing through a secure connection a
page that isn’t supposed to be accessed like that (and in effect consumes much more server
resources than necessary).

To avoid this problem and other similar ones, we’ll write a bit of code that makes sure all
the links in the web site are absolute links.

Exercise: Preparing Links

1. Create a new file named presentation/smarty_plugins/modifier.prepare_link.php, and add
the following code to it:

<?php
// Plugin functions inside plugin files must be named: smarty_type_name
function smarty_modifier_prepare_link($string, $link_type = 'http')
{

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 103

648XCH03.qxd 11/8/06 9:45 AM Page 103

// Use SSL?
if ($link_type == 'https' && USE_SSL == 'no')
$link_type = 'http';

switch ($link_type)
{
case 'http':
$link = 'http://' . getenv('SERVER_NAME');

// If HTTP_SERVER_PORT is defined and different than default
if (defined('HTTP_SERVER_PORT') && HTTP_SERVER_PORT != '80')
{
// Append server port
$link .= ':' . HTTP_SERVER_PORT;

}

$link .= VIRTUAL_LOCATION . $string;

// Escape html
return htmlspecialchars($link, ENT_QUOTES);

case 'https':
$link = 'https://' . getenv('SERVER_NAME') .

VIRTUAL_LOCATION . $string;

// Escape html
return htmlspecialchars($link, ENT_QUOTES);

default:
return htmlspecialchars($string, ENT_QUOTES);

}
}
?>

2. Add two new constants to include/config.php:

// Server HTTP port (can omit if the default 80 is used)
define('HTTP_SERVER_PORT', '80');
/* Name of the virtual directory the site runs in, for example:

'/hatshop/' if the site runs at http://www.example.com/hatshop/
'/' if the site runs at http://www.example.com/ */

define('VIRTUAL_LOCATION', '/hatshop/');
// We enable and enforce SSL when this is set to anything else than 'no'
define('USE_SSL', 'yes');

3. Modify presentation/templates/header.tpl like this:

<div id="header">

</div>

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I104

648XCH03.qxd 11/8/06 9:45 AM Page 104

4. Modify presentation/templates/departments_list.tpl like this:

<a {$selected_d}
href="{$departments_list->mDepartments[i].link|prepare_link:"http"}">
» {$departments_list->mDepartments[i].name}

How It Works: Preparing Links

First of all, make sure the new entry you added to config.php is configured correctly. If you’re running
your web site on a different port than the default of 80 (say, if you’re using port 8080), make sure you specify the
correct port in the HTTP_SERVER_PORT constant.

We also defined a constant named USE_SSL, which specifies whether the site is supposed to generate HTTPS
URLs. If the constant is set to no, your site won’t generate any HTTPS links even for the places that should
normally be secured. Let’s see how this works.

The code you’ve just added to the presentation tier is a Smarty modifier. The Smarty modifier is used as shown
by the modifications you’ve implemented in header.tpl and departments_list.tpl, and it transforms the
relative links received as parameters to absolute links. The prepare_link Smarty modifier takes as parameter
the name of the protocol that should be used to generate the links; if http is passed, an HTTP URL
will be generated; if https is passed, an HTTPS URL will be generated.

Take the example of the link in the header:

This link will be transformed to an absolute link by our Smarty modifier, which will arrive to the client like this:

If you wanted that particular link to be accessed only through HTTPS, then you could use the Smarty modifier like
this:

This modifier would transform the link to

Note that if the USE_SSL constant is set to no, then HTTP will be used even if the parameter is https.

You can reload the web site to ensure that nothing’s broken.

■Note In case you aren’t using the hatshop alias as explained in Chapter 2, you’ll need to modify the
VIRTUAL_LOCATION constant in config.php to reflect the real location of your web application.

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I 105

648XCH03.qxd 11/8/06 9:45 AM Page 105

Note that the Smarty modifier doesn’t add the port if the HTTP_SERVER_PORT constant isn’t defined or if it
contains the default port 80:

// If HTTP_SERVER_PORT is defined and different than default
if (defined('HTTP_SERVER_PORT') && HTTP_SERVER_PORT != '80')
{
// Append server port
$link .= ':' . HTTP_SERVER_PORT;

}

However, you should add the HTTP_SERVER_PORT to config.php anyway to make it easier to modify in case
you move the application to a server that runs on another port. If HTTP_SERVER_PORT would be, for example,
8080, the links to index.php specified earlier would be transformed to

Summary
This long chapter was well worth the effort when you consider how much theory you’ve
learned and applied to the HatShop project! In this chapter, you accomplished the following:

• You created the department table and populated it with data.

• You learned how to access this data from the data tier using PDO, and then how to
access the data tier method from the business tier.

• You learned how to use PHP 5 exceptions.

• You implemented the user interface using a Smarty template.

In the next chapter, you will finish creating the product catalog by displaying the site’s
categories and products!

CHAPTER 3 ■ CREATING THE PRODUCT CATALOG : PART I106

648XCH03.qxd 11/8/06 9:45 AM Page 106

C H A P T E R 4

Creating the Product Catalog:
Part II

In the previous chapter, you implemented a selectable list of departments for the HatShop
web site. However, a product catalog means much more than that list of departments. In this
chapter, you’ll add many new product catalog features. This chapter has a similar structure to
the last chapter, but there’s a lot of new functionality to add, which involves quite a bit of code.

Review Figures 3-1, 3-2, and 3-3 from Chapter 3 to get a visual feeling of the new function-
ality you’ll implement in this chapter.

In this chapter, you will

• Learn about relational data and the types of relationships that occur between data
tables, and then create the new data structures in your database.

• Understand how to join related data tables, how to use subqueries, how to implement
paging at the data tier level, and even more theory about PL/pgSQLl functions and
techniques.

• Complete the business tier to work with the new PL/pgSQL functions, send parameters,
and pass requested data to the presentation tier.

• Complete the presentation tier to show your visitor details about the catalog’s
categories, products, and more.

Storing the New Data
Given the new functionality you are adding in this chapter, it’s not surprising that you need
to add more data tables to the database. However, this isn’t just about adding new data tables.
You also need to learn about relational data and the relationships that you can implement
between the data tables, so that you can obtain more significant information from your
database.

107

648XCH04.qxd 10/31/06 10:01 PM Page 107

108 CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I

What Makes a Relational Database
It’s no mystery that a database is something that stores data. However, today’s modern
Relational Database Management Systems (RDBMS), such as PostgreSQL, MySQL, SQL
Server, Oracle, DB2, and others, have extended this basic role by adding the capability to
store and manage relational data. This is a concept that deserves some attention.

So what does relational data mean? It’s easy to see that every piece of data ever written in
a real-world database is somehow related to some already existing information. Products are
related to categories and departments, orders are related to products and customers, and so
on. A relational database keeps its information stored in data tables but is also aware of the
relations between them.

These related tables form the relational database, which becomes an object with a signifi-
cance of its own, rather than simply being a group of unrelated data tables. It is said that data
becomes information only when we give significance to it, and establishing relations with
other pieces of data is an ideal means of doing so.

Look at the product catalog to see what pieces of data it needs and how you can trans-
form this data into information. For the product catalog, you’ll need at least three data tables:
one for departments, one for categories, and one for products. It’s important to note that
physically each data table is an independent database object, even if logically it’s part of a
larger entity—in other words, even though we say that a category contains products, the table
that contains the products is not inside the table that contains categories. This is not in con-
tradiction with the relational character of the database. Figure 4-1 depicts a simple
representation of three data tables, including some selected sample data.

Figure 4-1. Unrelated departments, categories, and products

Table with categories

NameName

Christmas Hats

Halloween Hats

St. Patrick’s Day Hats

Berets

Driving Caps

Theatrical Hats

Military Hats

Table with products

NameName

Black Puritan Hat

Military Beret

Metal Viking Helmet

Uncle Sam Top Hat

Velvet Sombrero Hat

Chauffeur Hat

...

Table with departments

NameName

Holiday

Caps and Berets

Costume Hats

?

?

?

648XCH04.qxd 10/31/06 10:01 PM Page 108

When two tables are said to be related, this more specifically means that the records of
those tables are related. So, if the products table is related to the categories table, this trans-
lates into each product record being somehow related to one of the records in the categories
table.

Figure 4-1 doesn’t show the physical representation of the database, so we didn’t list the
table names there. Diagrams like this are used to decide what needs to be stored in the data-
base. After you know what to store, the next step is to decide how the listed data is related,
which leads to the physical structure for the database. Although Figure 4-1 shows three kinds
of data that you want to store, you’ll learn later that to implement this structure in the data-
base, you’ll actually use four tables.

So, now that you know the data you want to store, let’s think about how the three parts
relate to each other. Apart from knowing that the records of two tables are related somehow,
you also need to know the kind of relationship between them. Let’s now take a closer look at
the different ways in which two tables can be related.

Relational Data and Table Relationships
To continue exploring the world of relational databases, let’s further analyze the three logical
tables we’ve been looking at so far. To make life easier, let’s give them names now: the table
containing products is product, the table containing categories is category, and the last one is
our old friend, department. No surprises here! Luckily, these tables implement the most com-
mon kinds of relationships that exist between tables, the One-to-Many and Many-to-Many
relationships, so you have the chance to learn about them.

■Note Some variations of these two relationship types exist, as well as the less popular One-to-One
relationship. In the One-to-One relationship, each row in one table matches exactly one row in the other.
For example, in a database that allowed patients to be assigned to beds, you would hope that there would
be a One-to-One relationship between patients and beds! Database systems don’t support enforcing this
kind of relationship because you would have to add matching records in both tables at the same time.
Moreover, two tables with a One-to-One relationship can be joined to form a single table.

One-to-Many Relationships

The One-to-Many relationship happens when one record in a table can be associated with
multiple records in the related table but not vice versa. In our case, this happens for the
department – category relation. A specific department can contain any number of categories,
but each category belongs to exactly one department. Figure 4-2 better represents the One-
to-Many relationship between departments and categories.

Another common scenario in which you see the One-to-Many relationship is with the
order – order_details tables, where order contains general details about the order (such as
date, total amount, and so on), and order_details contains the products related to the order.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 109

648XCH04.qxd 10/31/06 10:01 PM Page 109

Figure 4-2. A One-to-Many relationship between departments and categories

The One-to-Many relationship is implemented in the database by adding an extra col-
umn in the table at the many side of the relationship, which references the ID column of the
table in the one side of the relationship. Simply said, in the category table, you’ll have an extra
column (called department_id) that will hold the ID of the department the category belongs to.
You’ll implement this in your database a bit later, after you learn about the Many-to-Many
relationships and the FOREIGN KEY constraint.

Many-to-Many Relationships

The other common type of relationship is the Many-to-Many relationship. This kind of relation-
ship is implemented when records in both tables of the relationship can have multiple matching
records in the other. In our scenario, this happens for the product and category tables because
we know that a product can exist in more than one category (one product – many categories),
and also a category can have more than one product (one category – many products).

This happens because we decided earlier that a product could be in more than one
category. If a product could only belong to a single category, you would have another One-to-
Many relationship, just like the one that exists between departments and categories (where
a category can’t belong to more than one department).

If you represent this relationship with a picture, as shown previously in Figure 4-2, but
with generic names this time, you get something like what is shown in Figure 4-3.

category tabledepartment table

Berets

Driving Caps

Christmas Hats

Halloween Hats

St. Patrick’s Day Hats

Theatrical Hats

Military Hats

Caps and Berets

Holiday

Costume Hats

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I110

648XCH04.qxd 10/31/06 10:01 PM Page 110

Figure 4-3. The Many-to-Many relationship between categories and products

Although logically the Many-to-Many relationship happens between two tables, databases
(including PostgreSQL databases) don’t have the means to physically implement this kind of
relationship by using just two tables, so we cheat by adding a third table to the mix. This third
table, called a junction table (also known as a linking table or an associate table) and two
One-to-Many relationships will help achieve the Many-to-Many relationship. The junction table
is used to associate products and categories, with no restriction on how many products can exist
for a category, or how many categories a product can be added to. Figure 4-4 shows the role of
the junction table.

Figure 4-4. The Many-to-Many relationship between categories and products

category 1
product 1

category 1
product 2

category 1
product 3

category 2
product 3

Junction table

product 1

product tablecategory table

product 3

product 2

category 1

category 2

product 1

product tablecategory table

product 3

product 2category 1

category 2

category 3

product 5

product 4

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 111

648XCH04.qxd 10/31/06 10:01 PM Page 111

Note that each record in the junction table links one category with one product. You can
have as many records as you like in the junction table, linking any category to any product.
The linking table contains two fields, each one referencing the primary key of one of the two
linked tables. In our case, the junction table will contain two fields: a category_id field and a
product_id field.

Each record in the junction table will consist of a (product_id, category_id) pair, which
will be used to associate a particular product with a particular category. By adding more
records to the product_category table, you can associate a product with more categories or
a category with more products, effectively implementing the Many-to-Many relationship.

Because the Many-to-Many relationship is implemented using a third table that makes
the connection between the linked tables, there is no need to add additional fields to the
related tables in the way that we added the department_id to the category table for imple-
menting the One-to-Many relationship.

There’s no definitive naming convention to use for the junction table. Most of the time it’s
okay to just join the names of the two linked tables—in this case, the junction table is named
product_category.

Enforcing Table Relationships with the FOREIGN KEY
Constraint
Relationships between tables can be physically enforced in the database using FOREIGN KEY
constraints, or simply foreign keys.

You learned in the previous chapter about the PRIMARY KEY and UNIQUE constraints. We
covered them there because they apply to the table as an individual entity. Foreign keys, on
the other hand, occur between two tables: the table in which the foreign key is defined (the
referencing table) and the table the foreign key references (the referenced table).

■Tip Actually, the referencing table and the referenced table can be one and the same. This isn’t seen too
often in practice, but it’s not unusual either. For example, you can have a table with employees, where each
employee references the employee that is his or her boss (in this scenario the big boss would probably
reference itself).

A foreign key is a column or combination of columns used to enforce a link between data
in two tables (usually representing a One-to-Many relationship). Foreign keys are used both
as a method of ensuring data integrity and to establish a relationship between tables.

To enforce database integrity, the foreign keys, like the other types of constraints, apply
certain restrictions. Unlike PRIMARY KEY and UNIQUE constraints that apply restrictions to a single
table, the FOREIGN KEY constraint applies restrictions on both the referencing and referenced
tables. For example, if you enforce the One-to-Many relationship between the department and
category tables by using a FOREIGN KEY constraint, the database will include this relationship as
part of its integrity. It will not allow you to add a category to a nonexistent department, nor will
it allow you to delete a department if there are categories that belong to it.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I112

648XCH04.qxd 10/31/06 10:01 PM Page 112

You now know the general theory of foreign keys. In the following exercises, you’ll put into
practice the new theory you learned on table relationships by creating and populating these
tables:

• category

• product

• product_category

Adding Categories
The process of creating the category table is pretty much the same as for the department table
you created in Chapter 2. The category table will have four fields, described in Table 4-1.

Table 4-1. Designing the category Table

Field Name Data Type Description

category_id SERIAL An integer that represents the unique ID for the
category. It is the primary key of the table.

department_id INTEGER An integer that represents the department the
category belongs to. It doesn’t allow NULLs.

name VARCHAR(50) Stores the category name. It does not allow
NULLs.

description VARCHAR(1000) Stores the category description. It allows NULLs.

There are two ways to create the category table and populate it. Either execute the SQL
scripts from the Source Code/Download section of the Apress web site
(http://www.apress.com/) or follow the steps in the following exercise.

Exercise: Creating the category Table

1. Start pgAdmin III, and connect to the hatshop database.

2. Select Tools ➤ Query Tool.

3. Enter the following code:

-- Create category table
CREATE TABLE category
(
category_id SERIAL NOT NULL,
department_id INTEGER NOT NULL,
name VARCHAR(50) NOT NULL,
description VARCHAR(1000),
CONSTRAINT pk_category_id PRIMARY KEY (category_id),
CONSTRAINT fk_department_id FOREIGN KEY (department_id)

REFERENCES department (department_id)
ON UPDATE RESTRICT ON DELETE RESTRICT

);

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 113

648XCH04.qxd 10/31/06 10:01 PM Page 113

4. Execute the query by selecting Query ➤ Execute, or by pressing F5. The results can be seen in Figure 4-5.

Figure 4-5. Creating the category table using pgAdmin III

■Tip When executing this command, the database will automatically create a sequence named
category_category_id_seq that will generate the values for the category_id field. Also, as you know
from Chapter 3, an index will be created on the primary key column.

How It Works: The One-to-Many Relationship

Okay, so you created and then enforced a relationship between the category and department tables. But how
does it work, and how does it affect your life? Let’s study how you implemented this relationship.

In the category table, apart from the primary key and the usual category_id, name, column, and
description columns, you added a department_id column. This column stores the ID of the department the
category belongs to. Because the department_id field in category doesn’t allow NULLs, you must supply a
department for each category. Furthermore, because of the foreign key relationship, the database won’t allow
you to specify a nonexistent department.

The foreign key’s behavior is dictated by the command used to create it, which in our case is

CONSTRAINT fk_department_id FOREIGN KEY (department_id)
REFERENCES department (department_id)
ON UPDATE RESTRICT ON DELETE RESTRICT

The constraint can be instructed to act differently on update and delete operations. Here, in both cases the
behavior is RESTRICT. Let’s see the alternatives:

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I114

648XCH04.qxd 10/31/06 10:01 PM Page 114

• RESTRICT (similar to NO ACTION): This is probably the most important of the options. It tells PostgreSQL
to make sure that database operations on the tables involved in the relationship don’t break the relationship.
When this option is set, PostgreSQL won’t allow you to add categories to nonexistent departments or delete
departments that have related categories.

• CASCADE: Performs automatic data changes to maintain the data integrity. For example, changing the ID of
an existing department would cause the change to propagate to the category table to keep the category-
department associations intact. This way, even after you change the ID of the department, its categories
would still belong to it. This option is dangerous because when deleting a department, PostgreSQL automati-
cally deletes all the department’s related categories. This is a sensitive option, so be very careful with it. You
won’t use it in the HatShop project.

• SET NULL: Sets the foreign key field to NULL when the parent is updated or deleted.

• SET DEFAULT: Sets the foreign key field to its default value when the parent is updated or deleted.

In the One-to-Many relationship (and implicitly the FOREIGN KEY constraint), you link two columns from two
different tables. One of these columns is a primary key, and it defines the One part of the relationship. In our case,
department_id is the primary key of department, so department is the one that connects to many cate-
gories. A primary key must be on the One part to ensure that it’s unique—a category can’t be linked to a
department if you can’t be sure that the department ID is unique. You must ensure that no two departments have
the same ID; otherwise, the relationship wouldn’t make much sense.

You’ll find a very nice article on referential integrity with PostgreSQL at http://techdocs.postgresql.org/
techdocs/hackingreferentialintegrity.php.

Now that you’ve created the category table, you can populate it with some data. We’ll also
try to add data that would break the relationship that you established between the department
and category tables.

The sample data that we’ll add to the category table is shown in Table 4-2.

Table 4-2. Designing the category Table

category_id department_id name description

1 1 Christmas Hats Enjoy browsing our collection of
Christmas hats!

2 1 Halloween Hats Find the hat you’ll wear this
Halloween!

3 1 St. Patrick’s Day Hats Try one of these beautiful hats on
St. Patrick’s Day!

4 2 Berets An amazing collection of berets
from all around the world!

5 2 Driving Caps Be an original driver! Buy a
driver’s hat today!

6 3 Theatrical Hats Going to a costume party? Try
one of these hats to complete
your costume!

7 3 Military Hats This collection contains the most
realistic replicas of military hats!

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 115

648XCH04.qxd 10/31/06 10:01 PM Page 115

Exercise: Adding Categories

1. Start pgAdmin, and connect to the hatshop database.

2. Select Tools ➤ Query Tool.

3. Enter the following code:

-- Populate category table
INSERT INTO category (category_id, department_id, name, description)
VALUES (1, 1, 'Christmas Hats',
'Enjoy browsing our collection of Christmas hats!');
INSERT INTO category (category_id, department_id, name, description)
VALUES (2, 1, 'Halloween Hats',
'Find the hat you''ll wear this Halloween!');
INSERT INTO category (category_id, department_id, name, description)
VALUES (3, 1, 'St. Patrick''s Day Hats',
'Try one of these beautiful hats on St. Patrick''s Day!');
INSERT INTO category (category_id, department_id, name, description)
VALUES (4, 2, 'Berets',
'An amazing collection of berets from all around the world!');
INSERT INTO category (category_id, department_id, name, description)
VALUES (5, 2, 'Driving Caps',
'Be an original driver! Buy a driver''s hat today!');
INSERT INTO category (category_id, department_id, name, description)
VALUES (6, 3, 'Theatrical Hats',
'Going to a costume party? Try one of these hats to complete your costume!');
INSERT INTO category (category_id, department_id, name, description)
VALUES (7, 3, 'Military Hats',
'This collection contains the most realistic replicas of military hats!');

-- Update the sequence
ALTER SEQUENCE category_category_id_seq RESTART WITH 8;

■Note In the SQL code that creates the categories, we preferred not to rely on the category_id values
automatically generated by the database, to make sure you end up having the same IDs as the ones we
assume you have. This will be important later, when assigning particular category IDs with product IDs.
When manually specifying IDs that would otherwise be generated by the sequence, you need to also update
the sequence, as shown in the previous code snippet. If you plan on adding new categories, make sure the
table is empty before executing the SQL INSERT statements. You can delete the contents of the category
table using this command:

DELETE FROM category;

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I116

648XCH04.qxd 10/31/06 10:01 PM Page 116

4. Execute the query by selecting Query ➤ Execute, or by pressing F5. The results can be seen in Figure 4-6.

Figure 4-6. Adding sample categories

5. Now, try to break the database integrity by adding a category to a nonexistent department (for example, set
the DepartmentID to 500). Try executing this SQL command using pgAdmin III:

INSERT INTO category (department_id, name, description)
VALUES (500, 'New category', 'Executing this command should throw an error.');

6. If everything goes well, the database should deny adding the new record, throwing this error you can see in
Figure 4-7.

Figure 4-7. The foreign key in action

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 117

648XCH04.qxd 10/31/06 10:01 PM Page 117

How It Works: Populating the categories Table

Adding data to your table should be a trivial task, given that you know the data that needs to be inserted. As
pointed out earlier, you can find the SQL scripts in the book’s code in the Source Code/Download section of the
Apress web site (http://www.apress.com).

Note how we escaped the special characters in the category descriptions, such as the single quotes, which need
to be doubled, so PostgreSQL will know to interpret that as a quote to be added to the description, instead of a
string termination character.

When manually adding values to fields whose values would otherwise be generated by sequences, you need to
manually update the sequence because the sequences are separate database objects that aren’t automatically
updated if they aren’t used to generate data. If you don’t change the sequence, it would probably end up generat-
ing values that have already been added to the database, and some or all of your INSERT commands would end
up throwing errors.

Adding Products
You’ll now go through the same steps as earlier, but this time, you’ll create a bit more compli-
cated table: product. The product table has the fields shown in Table 4-3.

Table 4-3. Designing the product Table

Field Name Data Type Description

product_id SERIAL An integer that represents the unique ID for the
category. It is the primary key of the table.

name VARCHAR(50) Stores the product name. It doesn’t allow NULLs.

description VARCHAR(1000) Stores the category description. It allows NULLs.

price NUMERIC(10,2) Stores the product price.

discounted_price NUMERIC(10,2) Stores the discounted product price. Will store 0.00 in
case the product doesn’t have a current discount price.

image VARCHAR(150) Stores the name of the product’s picture file (or
eventually the complete path), which gets displayed
on the product details page. You could keep the
picture directly in the table, but in most cases, it’s
much more efficient to store the picture files in the file
system and have only their names stored into the
database. If you have a high-traffic web site, you might
even want to have the image files placed in a separate
physical location (for example, another hard disk) to
increase site performance.

thumbnail VARCHAR(150) Stores the name of the product’s thumbnail picture.
This image gets displayed in product lists when
browsing the catalog.

display INTEGER Stores a value specifying in what areas of the catalog
this product should be displayed. The possible values
are 0 (default; the product shows only in the page of
the category it’s a part of), 1 (the product is also fea-
tured on the front catalog page), 2 (the product is also

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I118

648XCH04.qxd 10/31/06 10:01 PM Page 118

featured in the departments it’s a part of), and 3 (the
product is also featured on both the front page and on
the department page). With the help of this field, the
site administrators can highlight a set of products that
will be of particular interest to visitors at a specific
time. For example, before Halloween, you will want
the Halloween hats to appear prominently on the front
page of the site. Also if you want to promote products
that have a discounted price, this feature is just what
you need.

Follow the steps of the exercise to create the product table in your database.

Exercise: Creating the product Table

1. Start pgAdmin III, and connect to the hatshop database.

2. Select Tools ➤ Query tool.

3. Enter the following code:

-- Create product table
CREATE TABLE product
(
product_id SERIAL NOT NULL,
name VARCHAR(50) NOT NULL,
description VARCHAR(1000) NOT NULL,
price NUMERIC(10, 2) NOT NULL,
discounted_price NUMERIC(10, 2) NOT NULL DEFAULT 0.00,
image VARCHAR(150),
thumbnail VARCHAR(150),
display SMALLINT NOT NULL DEFAULT 0,
CONSTRAINT pk_product PRIMARY KEY (product_id)

);

4. Execute the query by selecting Query ➤ Execute, or by pressing F5.

■Note When executing this command, the database will automatically create a sequence named
product_product_id_seq that will generate the values for the product_id field. Also, an index will
be created for the primary key column.

5. Let’s now populate the table with products. Because there are so many of them, use the
populate_product.sql script provided in the Source Code/Download section
(http://www.apress.com).

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 119

Table 4-3. Continued

Field Name Data Type Description

648XCH04.qxd 10/31/06 10:01 PM Page 119

Relating Products to Categories
The product_category table is the linking table that allows implementing the Many-to-Many
relationship between product and category. It has two fields, product_id and category_id,
which form the primary key of the table.

Create and populate the table following the steps in the exercise.

Exercise: Creating the product_category Table

1. Start pgAdmin III, and connect to the hatshop database.

2. Select Tools ➤ Query Tool.

3. Enter the following code:

-- Create product_category table
CREATE TABLE product_category
(
product_id INTEGER NOT NULL,
category_id INTEGER NOT NULL,
CONSTRAINT pk_product_id_category_id PRIMARY KEY (product_id, category_id),
CONSTRAINT fk_product_id FOREIGN KEY (product_id)

REFERENCES product (product_id)
ON UPDATE RESTRICT ON DELETE RESTRICT,

CONSTRAINT fk_category_id FOREIGN KEY (category_id)
REFERENCES category (category_id)
ON UPDATE RESTRICT ON DELETE RESTRICT

);

4. Execute the query by selecting Query ➤ Execute, or by pressing F5.

5. Populate the table with data. Because there are many rows, use the populate_product_category.sql
script provided in the Source Code/Download section (http://www.apress.com).

How It Works: Many-to-Many Relationships

Many-to-Many relationships are created by adding a third table, called a junction table, which is named
product_category in this case. This table contains (product_id, category_id) pairs, and each record in
the table associates a particular product with a particular category. So, if you see a record such as (1,4) in
product_category, you know that the product with the ID of 1 belongs to the category with the ID of 4.

The Many-to-Many relationship is physically enforced through two FOREIGN KEY constraints—one that links the
table product to the table product_category, and the other that links the table product_category to the
table category. In English, this means, “one product can be associated with many product-category entries, each
of those being associated with one category.” The foreign keys ensure that the products and categories that
appear in the product_category table actually exist in the database and won’t allow you to delete a product if
you have a category associated with it and vice versa.

This is also the first time that you set a primary key consisting of more than one column. The primary key of
product_category is formed by both its fields: product_id and category_id. This means that you won’t be

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I120

648XCH04.qxd 10/31/06 10:01 PM Page 120

allowed to have two identical (product_id, category_id) pairs in the table. However, it’s perfectly legal to
have a product_id or category_id appear more than once, as long as it is part of a unique (product_id,
category_id) pair. This makes sense because you don’t want to have two identical records in the product_
category table. A product can be associated with a particular category, or not; it cannot be associated with a
category multiple times.

At first, all the theory about table relationships can be a bit confusing, until you get used
to it. To understand the relationship more clearly, you can get a picture by using database
diagrams.

Using Database Diagrams
A number of tools allow you to build database structures visually, implement them physically
in the database for you, and generate the necessary SQL script. Although we won’t present any
particular tool in this book, it’s good to know that they exist. You can find a list of the most
popular tools at http://www.databaseanswers.com/modelling_tools.htm.

Database diagrams also have the capability to implement the relationships between
tables. For example, if you had implemented the relationships between your four tables so far,
the database diagram would look something like Figure 4-8.

Figure 4-8. Viewing tables and relationships using the database diagram

In the diagram, the primary keys of each table are marked with the PK notation. Foreign
keys are marked with FK (because there can be more of them in a table, they’re numbered).
The arrows between two tables point toward the table in the One part of the relationship.

department

department_id

name
description

PK

category

category_id

department_id
name
description

PK

FK1

product_category

product_id
category_id

PK, FK2
PK, FK1

department

product_id

name
description
price
discounted_price
image
thumbnail
display

PK

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 121

648XCH04.qxd 10/31/06 10:01 PM Page 121

Querying the New Data
Now you have a database with a wealth of information just waiting to be read by somebody.
However, the new elements bring with them a set of new things you need to learn.

For this chapter, the data tier logic is a little bit more complicated than in the previous
chapter because it must answer to queries like “give me the second page of products from the
Cartoons category” or “give me the products on promotion for department X.” Before moving
on to writing the stored procedures that implement this logic, let’s first cover the theory about

• Retrieving short product descriptions

• Joining data tables

• Implementing paging

Let’s deal with these tasks one by one.

Getting Short Descriptions
In the product lists your visitor sees while browsing the catalog, we won’t display full product
descriptions but only a portion of them. In HatShop, we’ll display the first 150 characters of
every product description, after which we append “…”.

In PostgreSQL, you can extract a substring from a string using the substring function. The
following SELECT command returns products’ descriptions trimmed at 30 characters, with “...”
appended:

SELECT name,
substring(description, 1, 30) || '...' AS description

FROM product
ORDER BY name;

The new column generated by the (substring(description, 1, 30) || '...') expres-
sion doesn’t have a name, so we created an alias for it using the AS keyword. With your current
data, this query would return something like this:

name description
454 Black Pirate Hat Our wool felt Pirate Hat comes...
9 Green MadHatter Top Hat Each of our MadHatter hats is ...
Black Basque Beret This is our tried and true men...
Black Puritan Hat Haentze Hatcrafters has been m...
Black Wizard Hat This cool Merlin-style wizard ...
... ...

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I122

648XCH04.qxd 10/31/06 10:01 PM Page 122

Joining Data Tables
Because your data is stored in several tables, frequently not all of the information you’ll need
is in one table. Take a look at the following list, which contains data from both the department
and category tables:

Department Name Category Name
--- ---
Holiday Christmas Hats
Holiday Halloween Hats
Holiday St. Patrick’s Day Hats
Caps and Berets Berets
Caps and Berets Driving Caps
Costume Hats Theatrical Hats
Costume Hats Military Hats

In other cases, all the information you need is in just one table, but you need to place
conditions on it based on the information in another table. You cannot get this kind of result
set with simple queries such as the ones you’ve used so far. Needing a result set based on data
from multiple tables is a good indication that you might need to use table joins.

When extracting the products that belong to a category, the SQL query isn’t the same as
when extracting the categories that belong to a department. This is because products and
categories are linked through the product_category associate table.

To get the list of products in a category, you first need to look in the product_category
table and get all the (product_id, category_id) pairs where category_id is the ID of the cate-
gory you’re looking for. That list contains the IDs of the products in that category. Using these
IDs, you’ll be able to generate the required product list. Although this sounds pretty compli-
cated, it can be done using a single SQL query. The real power of SQL lies in its capability to
perform complex operations on large amounts of data using simple queries.

You’ll learn how to make table joins by analyzing the product and product_category
tables and by analyzing how you can get a list of products that belong to a certain category.
Tables are joined in SQL using the JOIN clause. Joining one table with another results in the
columns (not the rows) of those tables being joined. When joining two tables, there always
must be a common column on which the join will be made.

Suppose you want to get all the products in the category where category_id = 5.
The query that joins the product and product_category tables is as follows:

SELECT product_category.product_id,
product_category.category_id,
product.name

FROM product_category
INNER JOIN product

ON product.product_id = product_category.product_id
ORDER BY product.product_id;

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 123

648XCH04.qxd 10/31/06 10:01 PM Page 123

The result will look something like this (to save space, the listing doesn’t include all
returned rows and columns):

product_id category_id name
----------- ----------- --
1 1 Christmas Candy Hat
2 1 Hanukah Hat
3 1 Springy Santa Hat
4 1 Plush Santa Hat
5 1 Red Santa Cowboy Hat
6 1 Santa Jester Hat
7 1 Santa’s Elf Hat
8 2 Chauffeur Hat
8 5 Chauffeur Hat
...

The resultant table is composed of the requested fields from the joined tables synchro-
nized on the product_id column, which was specified as the column to make the join on. You
can see that the products that exist in more categories are listed more than once, once for
each category they belong in, but this problem will go away after we filter the results to get
only the products for a certain category.

Note that in the SELECT clause, the column names are prefixed by the table name. This is
a requirement if the columns exist in more tables that participate in the table join, such as
product_id in our case. For the other column, prefixing its name with the table name is
optional, although it’s a good practice to avoid confusion.

The query that returns only the products that belong to category 5 is

SELECT product.product_id, product.name
FROM product_category
INNER JOIN product

ON product.product_id = product_category.product_id
WHERE product_category.category_id = 5;

The results are

product_id Name
----------- --
8 Chauffeur Hat
27 Bond-Leather Driver
28 Moleskin Driver
29 Herringbone English Driver

A final thing worth discussing here is the use of aliases. Aliases aren’t necessarily related
to table joins, but they become especially useful (and sometimes necessary) when joining
tables, and they assign different (usually) shorter names for the tables involved. Aliases are
necessary when joining a table with itself, in which case, you need to assign different aliases

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I124

648XCH04.qxd 10/31/06 10:01 PM Page 124

for its different instances to differentiate them. The following query returns the same products
as the query before, but it uses aliases:

SELECT p.product_id, p.name
FROM product_category pc
INNER JOIN product p

ON p.product_id = pc.product_id
WHERE pc.category_id = 5;

Showing Products Page by Page
If certain web sections need to list large numbers of products, it’s useful to let the visitor
browse them page by page, with a predefined (or configurable by the visitor) number of
products per page.

Depending on the tier on your architecture where paging is performed, there are three
main ways to implement paging:

Paging at the data tier level: In this case, the database returns only the page of products
needed by the presentation tier.

Paging at the business tier level: The business tier requests the complete page of prod-
ucts from the database, performs filtering, and returns back to the presentation tier only
the page of products that needs to be displayed.

Paging at the presentation tier level: In this scenario, the presentation tier receives the
complete list of products and extracts the page that needs to be displayed for the visitor.

Paging at the business tier and presentation tier levels has potential performance prob-
lems, especially when dealing with large result sets, because they imply transferring
unnecessarily large quantities of data from the database to the presentation tier. Additional
data also needs to be stored on the server’s memory, unnecessarily consuming server
resources.

In our web site, we’ll implement paging at the data tier level, not only because of its better
performance, but also because it allows you to learn some tricks about database programming
that you’ll find useful when developing your web sites.

To implement paging at the data tier level, we need to find how to build a SELECT query
that returns just a portion of records (products) from a larger set, and each database language
seems to have different ways for doing this. To achieve this functionality in PostgreSQL, you
need to use the LIMIT and OFFSET keywords together with the SELECT statement:

• OFFSET specifies how many records from the original rowset to skip. So if you want to
retrieve the second page of products in a catalog that has four products per page, you
would need to specify OFFSET 4. A query without an offset is the same as a query with
OFFSET 0.

• LIMIT specifies the maximum number of rows to return.

When using OFFSET and LIMIT, it’s highly recommended to also use ORDER BY. Without this
clause, PostgreSQL doesn’t guarantee the order in which the results are returned, so, theoreti-
cally, different requests for a certain page of products could deliver different results. The

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 125

648XCH04.qxd 10/31/06 10:01 PM Page 125

following SQL query tells PostgreSQL to return the rows 15, 16, 17, 18, and 19 from the list of
alphabetically ordered products:

SELECT name
FROM product
ORDER BY name
LIMIT 5
OFFSET 14;

With the current database you should get these products:

name
--
Confederate Civil War Kepi
Confederate Slouch Hat
Cotton Beret
Green MadHatter Hat
Hanukah Hat

You’ll use the LIMIT and OFFSET keywords to specify the range of records you’re interested
in when retrieving lists of products. For more details, you can always refer to the official docu-
mentation at http://www.postgresql.org/docs/current/interactive/queries-limit.html.

Writing the New Database Functions
Now you implement the data tier functions, which return data from the database. First you’ll
implement the PostgreSQL functions that retrieve department and category information:

• catalog_get_department_details

• catalog_get_categories_list

• catalog_get_category_details

Afterwards, you’ll write the functions that deal with products. Only four functions
effectively ask for products, but you’ll also implement three helper functions
(catalog_count_products_in_category, catalog_count_products_on_department, and
catalog_count_products_on_catalog) to assist in implementing the paging functionality.
The complete list of methods you need to implement is

• catalog_count_products_in_category

• catalog_get_products_in_category

• catalog_count_products_on_department

• catalog_get_products_on_department

• catalog_count_products_on_catalog

• catalog_get_products_on_catalog

• catalog_get_product_details

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I126

648XCH04.qxd 10/31/06 10:01 PM Page 126

In the following sections, you’ll be shown the code of each function and its return type.
We won’t go though individual exercises to create these functions. Use pgAdmin III to add
them to your database.

catalog_get_department_details

The catalog_get_category_details function returns the name and description for a given
department whose ID is received as parameter. This is needed when the user selects a depart-
ment in the product catalog, and the database must be queried to find out the name and the
description of the particular department.

The return data is packaged into an object of the type department_details. Next is the
SQL code that creates the catalog_get_department_details function and the
department_details type:

-- Create department_details type
CREATE TYPE department_details AS
(
name VARCHAR(50),
description VARCHAR(1000)

);

-- Create catalog_get_department_details function
CREATE FUNCTION catalog_get_department_details(INTEGER)
RETURNS department_details LANGUAGE plpgsql AS $$
DECLARE
inDepartmentId ALIAS FOR $1;
outDepartmentDetailsRow department_details;

BEGIN
SELECT INTO outDepartmentDetailsRow

name, description
FROM department
WHERE department_id = inDepartmentId;
RETURN outDepartmentDetailsRow;

END;
$$;

The WHERE clause (WHERE department_id = inDepartmentId) is used to request the details
of a specific department.

catalog_get_categories_list

When a visitor selects a department, the categories that belong to that department must be
displayed. The categories will be retrieved by the catalog_get_categories_list function,
which returns the list of categories in a specific department. The function needs to know the
ID of the department for which to retrieve the categories. The return type is category_list.

-- Create category_list type
CREATE TYPE category_list AS
(
category_id INTEGER,

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 127

648XCH04.qxd 10/31/06 10:01 PM Page 127

name VARCHAR(50)
);

-- Create catalog_get_categories_list function
CREATE FUNCTION catalog_get_categories_list(INTEGER)
RETURNS SETOF category_list LANGUAGE plpgsql AS $$
DECLARE
inDepartmentId ALIAS FOR $1;
outCategoryListRow category_list;

BEGIN
FOR outCategoryListRow IN
SELECT category_id, name
FROM category
WHERE department_id = inDepartmentId
ORDER BY category_id

LOOP
RETURN NEXT outCategoryListRow;

END LOOP;
END;

$$;

catalog_get_category_details

When the visitor selects a particular category, we need to display its name and description.

-- Create category_details type
CREATE TYPE category_details AS
(
name VARCHAR(50),
description VARCHAR(1000)

);

-- Create catalog_get_category_details function
CREATE FUNCTION catalog_get_category_details(INTEGER)
RETURNS category_details LANGUAGE plpgsql AS $$
DECLARE
inCategoryId ALIAS FOR $1;
outCategoryDetailsRow category_details;

BEGIN
SELECT INTO outCategoryDetailsRow

name, description
FROM category
WHERE category_id = inCategoryId;
RETURN outCategoryDetailsRow;

END;
$$;

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I128

648XCH04.qxd 10/31/06 10:01 PM Page 128

catalog_count_products_in_category

This function returns the number of products in a category. This data will be necessary when
paginating the lists of products, when we’ll need to be able to calculate how many pages of
products we have in a category.

-- Create catalog_count_products_in_category function
CREATE FUNCTION catalog_count_products_in_category(INTEGER)
RETURNS INTEGER LANGUAGE plpgsql AS $$
DECLARE
inCategoryId ALIAS FOR $1;
outCategoriesCount INTEGER;

BEGIN
SELECT INTO outCategoriesCount

count(*)
FROM product p
INNER JOIN product_category pc

ON p.product_id = pc.product_id
WHERE pc.category_id = inCategoryId;
RETURN outCategoriesCount;

END;
$$;

catalog_get_products_in_category

This function returns the products that belong to a certain category. To obtain this list of
products, you need to join the product and product_category tables, as explained earlier in
this chapter. We also trim the product’s description.

The function receives four parameters:

• inCategoryID represents the ID for which we’re returning products.

• inShortProductDescriptionLength represents the maximum length allowed for the
product’s description. If the description is longer than this value, it will be truncated,
and “...” is added at the end. Note this is only used when displaying product lists; in a
product details page, the description won’t be truncated.

• inProductsPerPage represent the maximum number of products our site can display
on a catalog page. If the total number of products in the category is larger than this
number, we only return a page containing inProductsPerPage products.

• inStartItem represents the index of the first product to return. When using pagination
and displaying four products per page, inStartItem will be 5 and inProductsPerPage
will be 4 when the visitor visits the second page of products. With these values, the
catalog_get_products_in_category function will return the products from fifth to
ninth.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 129

648XCH04.qxd 10/31/06 10:01 PM Page 129

-- Create product_list type
CREATE TYPE product_list AS
(
product_id INTEGER,
name VARCHAR(50),
description VARCHAR(1000),
price NUMERIC(10, 2),
discounted_price NUMERIC(10, 2),
thumbnail VARCHAR(150)

);

-- Create catalog_get_products_in_category function
CREATE FUNCTION catalog_get_products_in_category(

INTEGER, INTEGER, INTEGER, INTEGER)
RETURNS SETOF product_list LANGUAGE plpgsql AS $$
DECLARE
inCategoryId ALIAS FOR $1;
inShortProductDescriptionLength ALIAS FOR $2;
inProductsPerPage ALIAS FOR $3;
inStartItem ALIAS FOR $4;
outProductListRow product_list;

BEGIN
FOR outProductListRow IN
SELECT p.product_id, p.name, p.description, p.price,

p.discounted_price, p.thumbnail
FROM product p
INNER JOIN product_category pc

ON p.product_id = pc.product_id
WHERE pc.category_id = inCategoryId
ORDER BY p.product_id
LIMIT inProductsPerPage
OFFSET inStartItem

LOOP
IF char_length(outProductListRow.description) >

inShortProductDescriptionLength THEN
outProductListRow.description :=
substring(outProductListRow.description, 1,

inShortProductDescriptionLength) || '...';
END IF;
RETURN NEXT outProductListRow;

END LOOP;
END;

$$;

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I130

648XCH04.qxd 10/31/06 10:01 PM Page 130

catalog_count_products_on_department

This function counts the number of products that are to be displayed in the page of a given
department. Note that all the department’s products aren’t listed on the department’s page,
but only those products whose display value is 2 (product on department promotion) or 3
(product on department and catalog promotion).

-- Create catalog_count_products_on_department function
CREATE FUNCTION catalog_count_products_on_department(INTEGER)
RETURNS INTEGER LANGUAGE plpgsql AS $$
DECLARE
inDepartmentId ALIAS FOR $1;
outProductsOnDepartmentCount INTEGER;

BEGIN
SELECT DISTINCT INTO outProductsOnDepartmentCount

count(*)
FROM product p
INNER JOIN product_category pc

ON p.product_id = pc.product_id
INNER JOIN category c

ON pc.category_id = c.category_id
WHERE (p.display = 2 OR p.display = 3)

AND c.department_id = inDepartmentId;
RETURN outProductsOnDepartmentCount;

END;
$$;

The SQL code is almost the same as the one in catalog_get_products_on_department,
which we’re discussing next.

catalog_get_products_on_department

When the visitor selects a particular department, apart from needing to list its name, descrip-
tion, and list of categories (you wrote the necessary code for these tasks earlier), you also want
to display the list of featured products for that department.

catalog_get_products_on_department returns all the products that belong to a specific de-
partment and has the display set to 2 (product on department promotion) or 3 (product on
department and catalog promotion).

In catalog_get_products_in_category, you needed to make a table join to find out the
products that belong to a specific category. Now that you need to do this for departments, the
task is a bit more complicated because you can’t directly know what products belong to each
department.

You know how to find categories that belong to a specific department (you did this in
catalog_get_categories_list), and you know how to get the products that belong to a spe-
cific category (you did that in catalog_get_products_in_category). By combining these pieces
of information, you can generate the list of products in a department. For this, you need two
table joins.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 131

648XCH04.qxd 10/31/06 10:01 PM Page 131

You will also use the DISTINCT clause to filter the results to avoid getting the same record
multiple times. This can happen when a product belongs to more than one category, and
these categories are in the same department. In this situation, you would get the same prod-
uct returned for each of the matching categories, unless the results are filtered using DISTINCT.

-- Create catalog_get_products_on_department function
CREATE FUNCTION catalog_get_products_on_department(

INTEGER, INTEGER, INTEGER, INTEGER)
RETURNS SETOF product_list LANGUAGE plpgsql AS $$
DECLARE
inDepartmentId ALIAS FOR $1;
inShortProductDescriptionLength ALIAS FOR $2;
inProductsPerPage ALIAS FOR $3;
inStartItem ALIAS FOR $4;
outProductListRow product_list;

BEGIN
FOR outProductListRow IN
SELECT DISTINCT p.product_id, p.name, p.description, p.price,

p.discounted_price, p.thumbnail
FROM product p
INNER JOIN product_category pc

ON p.product_id = pc.product_id
INNER JOIN category c

ON pc.category_id = c.category_id
WHERE (p.display = 2 OR p.display = 3)

AND c.department_id = inDepartmentId
ORDER BY p.product_id
LIMIT inProductsPerPage
OFFSET inStartItem

LOOP
IF char_length(outProductListRow.description) >

inShortProductDescriptionLength THEN
outProductListRow.description :=
substring(outProductListRow.description, 1,

inShortProductDescriptionLength) || '...';
END IF;
RETURN NEXT outProductListRow;

END LOOP;
END;

$$;

■Tip If the way table joins work looks too complicated, try following them on the diagram shown earlier in
Figure 4-8.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I132

648XCH04.qxd 10/31/06 10:01 PM Page 132

catalog_count_products_on_catalog

The catalog_count_products_on_catalog catalog returns the number of products to be dis-
played on the catalog’s front page. These are products whose display fields have the value of 1
(product is promoted on the first page) or 3 (product is promoted on the first page and on the
department pages).

-- Create catalog_count_products_on_catalog function
CREATE FUNCTION catalog_count_products_on_catalog()
RETURNS INTEGER LANGUAGE plpgsql AS $$
DECLARE
outProductsOnCatalogCount INTEGER;

BEGIN
SELECT INTO outProductsOnCatalogCount

count(*)
FROM product
WHERE display = 1 OR display = 3;
RETURN outProductsOnCatalogCount;

END;
$$;

catalog_get_products_on_catalog

The catalog_get_products_on_catalog function returns the products to be displayed on the
catalog’s front page. These are products whose display fields have the value of 1 (product is
promoted on the first page) or 3 (product is promoted on the first page and on the department
pages). The product description is trimmed at a specified number of characters. The pagina-
tion is implemented the same way as in the previous two functions that return lists of
products.

-- Create catalog_get_products_on_catalog function
CREATE FUNCTION catalog_get_products_on_catalog(INTEGER, INTEGER, INTEGER)
RETURNS SETOF product_list LANGUAGE plpgsql AS $$
DECLARE
inShortProductDescriptionLength ALIAS FOR $1;
inProductsPerPage ALIAS FOR $2;
inStartItem ALIAS FOR $3;
outProductListRow product_list;

BEGIN
FOR outProductListRow IN
SELECT product_id, name, description, price,

discounted_price, thumbnail
FROM product
WHERE display = 1 OR display = 3
ORDER BY product_id
LIMIT inProductsPerPage
OFFSET inStartItem

LOOP
IF char_length(outProductListRow.description) >

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 133

648XCH04.qxd 10/31/06 10:01 PM Page 133

inShortProductDescriptionLength THEN
outProductListRow.description :=
substring(outProductListRow.description, 1,

inShortProductDescriptionLength) || '...';
END IF;
RETURN NEXT outProductListRow;

END LOOP;
END;

$$;

catalog_get_product_details

The catalog_get_product_details function returns detailed information about a product and
is called to get the data that will be displayed on the product’s details page.

-- Create product_details type
CREATE TYPE product_details AS
(
product_id INTEGER,
name VARCHAR(50),
description VARCHAR(1000),
price NUMERIC(10, 2),
discounted_price NUMERIC(10, 2),
image VARCHAR(150)

);

-- Create catalog_get_product_details function
CREATE FUNCTION catalog_get_product_details(INTEGER)
RETURNS product_details LANGUAGE plpgsql AS $$
DECLARE
inProductId ALIAS FOR $1;
outProductDetailsRow product_details;

BEGIN
SELECT INTO outProductDetailsRow

product_id, name, description,
price, discounted_price, image

FROM product
WHERE product_id = inProductId;
RETURN outProductDetailsRow;

END;
$$;

Well, that’s about it. Right now, your data store is ready to hold and process the product
catalog information. It’s time to move to the next step: implementing the business tier of the
product catalog.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I134

648XCH04.qxd 10/31/06 10:01 PM Page 134

Completing the Business Tier Code
In the business tier, you’ll add some new methods that will call the earlier created methods
in the data tier. Remember that you started working on the Catalog class (located in the
business/catalog.php file) in Chapter 3. The new methods that you’ll add here are

• GetDepartmentDetails

• GetCategoriesInDepartment

• GetCategoryDetails

• HowManyPages

• GetProductsInCategory

• GetProductsOnDepartment

• GetProductsOnCatalog

• GetProductDetails

Defining Product List Constants and Activating Session

Before writing the business tier methods, let’s first update the include/config.php file by
adding the SHORT_PRODUCT_DESCRIPTION_LENGTH and PRODUCTS_PER_PAGE constants. These allow
you to easily define the behavior of your site by specifying the length of product descriptions
and how many products to be displayed per page.

...
// Server HTTP port (can omit if the default 80 is used)
define('HTTP_SERVER_PORT', '8080');
/* Name of the virtual directory the site runs in, for example:

'/hatshop/' if the site runs at http://www.example.com/hatshop/
'/' if the site runs at http://www.example.com/ */

define('VIRTUAL_LOCATION', '/hatshop/');
// We enable and enforce SSL when this is set to anything else than 'no'
define('USE_SSL', 'yes');

// Configure product lists display options
define('SHORT_PRODUCT_DESCRIPTION_LENGTH', 150);
define('PRODUCTS_PER_PAGE', 4);
?>

Then, modify include/app_top.php by adding these lines to it:

<?php
// Activate session
session_start();

// Include utility files
require_once 'include/config.php';
require_once BUSINESS_DIR . 'error_handler.php';
...

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 135

648XCH04.qxd 10/31/06 10:01 PM Page 135

The SHORT_PRODUCT_DESCRIPTION_LENGTH constant specifies how many characters from the
product’s description should appear when displaying product lists. The complete description
gets displayed in the product’s details page, which you’ll implement at the end of this chapter.

PRODUCTS_PER_PAGE specifies the maximum number of products that can be displayed in
any catalog page. If the visitor’s selection contains more than PRODUCTS_PER_PAGE products, the
list of products is split into subpages, accessible through the navigation controls.

We also enabled the PHP session, which will help us improve performance when navigat-
ing through pages of products.

■Note Session handling is a great PHP feature that allows you to keep track of variables specific to a cer-
tain visitor accessing the web site. While the visitor browses the catalog, its session variables are persisted
by the web server and associated to a unique visitor identifier (which is stored by default in the visitor’s
browser as a cookie). The visitor’s session object stores (name, value) pairs that are saved at server-side
and are accessible for the entire visitor’s session. In this chapter, we’ll use the session feature for improving
performance. When implementing the paging functionality, before requesting the list of products, you first
ask the database for the total number of products that are going to be returned, so you can show the visitor
how many pages of products are available. This number will be saved in the visitor’s session, so if the visitor
browses the pages of a list of products, the database wouldn’t be queried multiple times for the total number
of products—on subsequent calls, this number will be directly read from the session (this functionality is
implemented in the HowManyPages method that you’ll implement later). In this chapter, you’ll also use the
session to implement the Continue Shopping buttons in product details pages.

Let’s work through each business tier method. All these methods need to be added to the
Catalog class, located in the business/catalog.php file that you started writing in Chapter 3.

GetDepartmentDetails

GetDepartmentDetails is called from the presentation tier when a department is clicked to
display its name and description. The presentation tier passes the ID of the selected depart-
ment, and you need to send back the name and the description of the selected department.

// Retrieves complete details for the specified department
public static function GetDepartmentDetails($departmentId)
{
// Build SQL query
$sql = 'SELECT *

FROM catalog_get_department_details(:department_id);';
// Build the parameters array
$params = array (':department_id' => $departmentId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetRow($result, $params);

}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I136

648XCH04.qxd 10/31/06 10:01 PM Page 136

GetCategoriesInDepartment

The GetCategoriesInDepartment method is called to retrieve the list of categories that belong
to a department. Add this method to the Catalog class:

// Retrieves list of categories that belong to a department
public static function GetCategoriesInDepartment($departmentId)
{
// Build SQL query
$sql = 'SELECT *

FROM catalog_get_categories_list(:department_id);';
// Build the parameters array
$params = array (':department_id' => $departmentId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

GetCategoryDetails

GetCategoryDetails is called from the presentation tier when a category is clicked to display
its name and description. The presentation tier passes the ID of the selected category, and
you need to send back the name and the description of the selected category.

// Retrieves complete details for the specified category
public static function GetCategoryDetails($categoryId)
{
// Build SQL query
$sql = 'SELECT *

FROM catalog_get_category_details(:category_id);';
// Build the parameters array
$params = array (':category_id' => $categoryId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetRow($result, $params);

}

HowManyPages

As you know, our product catalog will display a fixed number of products in every page. When a
catalog page contains more than an established number of products, we display navigation con-
trols that allow the visitor to browse back and forth through the subpages of products. You can
see the navigation controls in Figure 3-2 in Chapter 3 or later in this chapter in Figure 4-11.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 137

648XCH04.qxd 10/31/06 10:01 PM Page 137

When displaying the navigation controls, you need to calculate the number of subpages
of products you have for a given catalog page; for this, we’re creating the HowManyPages helper
method.

This method receives as argument a SELECT query that counts the total number of prod-
ucts of the catalog page ($countSql) and returns the number of subpages. This will be done by
simply dividing the total number of products by the number of products to be displayed in a
subpage of products; this latter number is configurable through the PRODUCTS_PER_PAGE con-
stant in include/config.php.

To improve the performance when the visitor browses back and forth through the sub-
pages, after we calculate the number of subpages for the first time, we’re saving it to the
visitor’s session. This way, the SQL query received as parameter won’t need to be executed
more than once on a single visit to a catalog page.

This method is called from the other data tier methods (GetProductsInCategory,
GetProductsOnDepartment, GetProductsOnCatalog), which we’ll cover next.

Add HowManyPages to the Catalog class.

/* Calculates how many pages of products could be filled by the
number of products returned by the $countSql query */

private static function HowManyPages($countSql, $countSqlParams)
{
// Create a hash for the sql query
$queryHashCode = md5($countSql . var_export($countSqlParams, true));

// Verify if we have the query results in cache
if (isset ($_SESSION['last_count_hash']) &&

isset ($_SESSION['how_many_pages']) &&
$_SESSION['last_count_hash'] === $queryHashCode)

{
// Retrieve the the cached value
$how_many_pages = $_SESSION['how_many_pages'];

}
else
{
// Execute the query
$prepared = DatabaseHandler::Prepare($countSql);
$items_count = DatabaseHandler::GetOne($prepared, $countSqlParams);

// Calculate the number of pages
$how_many_pages = ceil($items_count / PRODUCTS_PER_PAGE);

// Save the query and its count result in the session
$_SESSION['last_count_hash'] = $queryHashCode;
$_SESSION['how_many_pages'] = $how_many_pages;

}

// Return the number of pages
return $how_many_pages;

}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I138

648XCH04.qxd 10/31/06 10:01 PM Page 138

Let’s analyze the function to see how it does its job.
The method is private because you won’t access it from within other classes—it’s a helper

class for other methods of Catalog.
The method verifies whether the previous call to it was for the same SELECT query. If it

was, the result cached from the previous call is returned. This small trick improves perform-
ance when the visitor is browsing subpages of the same list of products because the actual
counting in the database is performed only once.

// Create a hash for the sql query
$queryHashCode = md5($countSql . var_export($countSqlParams, true));

// Verify if we have the query results in cache
if (isset ($_SESSION['last_count_hash']) &&

isset ($_SESSION['how_many_pages']) &&
$_SESSION['last_count_hash'] === $queryHashCode)

{
// Retrieve the the cached value
$how_many_pages = $_SESSION['how_many_pages'];

}

The number of pages associated with the received query and parameters is saved in the
current visitor’s session in a variable named how_many_pages. If the conditions aren’t met,
which means the results of the query aren’t cached, we calculate them and save them to the
session:

else
{
// Execute the query
$prepared = DatabaseHandler::Prepare($countSql);
$items_count = DatabaseHandler::GetOne($prepared, $countSqlParams);

// Calculate the number of pages
$how_many_pages = ceil($items_count / PRODUCTS_PER_PAGE);

// Save the query and its count result in the session
$_SESSION['last_count_hash'] = $queryHashCode;
$_SESSION['how_many_pages'] = $how_many_pages;

}

In the end, no matter if the number of pages was fetched from the session or calculated
by the database, it is returned to the calling function:

// Return the number of pages
return $how_many_pages;

GetProductsInCategory

GetProductsInCategory returns the list of products that belong to a particular category. Add
the following method to the Catalog class in business/catalog.php:

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 139

648XCH04.qxd 10/31/06 10:01 PM Page 139

// Retrieves list of products that belong to a category
public static function GetProductsInCategory(

$categoryId, $pageNo, &$rHowManyPages)
{
// Query that returns the number of products in the category
$sql = 'SELECT catalog_count_products_in_category(:category_id);';
$params = array (':category_id' => $categoryId);
// Calculate the number of pages required to display the products
$rHowManyPages = Catalog::HowManyPages($sql, $params);
// Calculate the start item
$start_item = ($pageNo - 1) * PRODUCTS_PER_PAGE;

// Retrieve the list of products
$sql = 'SELECT *

FROM catalog_get_products_in_category(
:category_id, :short_product_description_length,
:products_per_page, :start_item);';

$params = array (
':category_id' => $categoryId,
':short_product_description_length' => SHORT_PRODUCT_DESCRIPTION_LENGTH,
':products_per_page' => PRODUCTS_PER_PAGE,
':start_item' => $start_item);

$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

This function has two purposes:

• Calculate the number of subpages of products, and return this number through the
&$rHowManyPages parameter. To calculate this number, the HowManyPages method you’ve
added earlier is used. The SQL query that is used to retrieve the total number of prod-
ucts calls the catalog_count_products_in_category database function that you added
earlier to your databases.

• Return the list of products in the mentioned category.

■Note The ampersand (&) before a function parameter means it is passed by reference. When a variable is
passed by reference, an alias of the variable is passed instead of creating a new copy of the value. This way,
when a variable is passed by reference and the called function changes its value, its new value will reflect in
the caller function, too. Passing by reference is an alternative method to receiving a return value from a
called function and is particularly useful when you need to get multiple return values from the called func-
tion. CreateSubpageQuery returns the text of a SELECT query through its return value and the total number
of subpages through the $rHowManyPages parameter that is passed by reference.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I140

648XCH04.qxd 10/31/06 10:01 PM Page 140

GetProductsOnDepartment

The GetProductsOnDepartment function returns the list of products featured for a particular
department. The department’s featured products must be displayed when the customer visits
the home page of a department. Put it inside the Catalog class.

// Retrieves the list of products for the department page
public static function GetProductsOnDepartmentDisplay(

$departmentId, $pageNo, &$rHowManyPages)
{
// Query that returns the number of products in the department page
$sql = 'SELECT catalog_count_products_on_department(:department_id);';
$params = array (':department_id' => $departmentId);
// Calculate the number of pages required to display the products
$rHowManyPages = Catalog::HowManyPages($sql, $params);
// Calculate the start item
$start_item = ($pageNo - 1) * PRODUCTS_PER_PAGE;

// Retrieve the list of products
$sql = 'SELECT *

FROM catalog_get_products_on_department(
:department_id, :short_product_description_length,
:products_per_page, :start_item);';

$params = array (
':department_id' => $departmentId,
':short_product_description_length' => SHORT_PRODUCT_DESCRIPTION_LENGTH,
':products_per_page' => PRODUCTS_PER_PAGE,
':start_item' => $start_item);

$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

GetProductsOnCatalog

The GetProductsOnCatalog function returns the list of products featured on the catalog’s front
page. It goes inside the Catalog class.

// Retrieves the list of products on catalog display
public static function GetProductsOnCatalogDisplay($pageNo, &$rHowManyPages)
{
// Query that returns the number of products for the front catalog page
$sql = 'SELECT catalog_count_products_on_catalog();';
// Calculate the number of pages required to display the products
$rHowManyPages = Catalog::HowManyPages($sql, null);
// Calculate the start item
$start_item = ($pageNo - 1) * PRODUCTS_PER_PAGE;

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 141

648XCH04.qxd 10/31/06 10:01 PM Page 141

// Retrieve the list of products
$sql = 'SELECT *

FROM catalog_get_products_on_catalog(
:short_product_description_length,
:products_per_page, :start_item);';

$params = array (
':short_product_description_length' => SHORT_PRODUCT_DESCRIPTION_LENGTH,
':products_per_page' => PRODUCTS_PER_PAGE,
':start_item' => $start_item);

$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

GetProductDetails

Add the GetProductDetails method to the Catalog class:

// Retrieves complete product details
public static function GetProductDetails($productId)
{
// Build SQL query
$sql = 'SELECT *

FROM catalog_get_product_details(:product_id);';
// Build the parameters array
$params = array (':product_id' => $productId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetRow($result, $params);

}

Implementing the Presentation Tier
Believe it or not, right now the data and business tiers of the product catalog are complete for
this chapter. All you have to do is use their functionality in the presentation tier. In this final
section, you’ll create a few Smarty templates and integrate them into the existing project.

Execute the HatShop project (or load http://localhost/hatshop in your favorite web
browser) to see once again what happens when the visitor clicks a department. After the page
loads, click one of the departments. The main page (index.php) is reloaded, but this time with
a query string at the end:

http://localhost/hatshop/index.php?DepartmentID=1

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I142

648XCH04.qxd 10/31/06 10:01 PM Page 142

Using this parameter, DepartmentID, you can obtain any information about the selected
department, such as its name, description, list of products, and so on. In the following sec-
tions, you’ll create the controls that display the list of categories associated with the selected
department, and the products for the selected department, category, or main web page.

Displaying Department and Category Details
The componentized template responsible for showing the contents of a particular department
is named department, and you’ll build it in the exercise that follows. You’ll first create the com-
ponentized template and then modify index.php and templates/index.tpl to load it when
DepartmentID is present in the query string. After this exercise, when clicking a department in
the list, you should see a page like the one in Figure 4-9.

Figure 4-9. Selecting the Holiday department

Exercise: Displaying Department Details

1. Add the following two styles to the hatshop.css file. You’ll need them for displaying the department’s title
and description:

.title
{
color: #ff0000;
font-family: arial, tahoma, verdana;
font-size: 18px;
margin: 0px;

}
.description
{
color: #0583b5;
font-size: 12px;
font-weight: bold;
margin: 0px;

}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 143

648XCH04.qxd 10/31/06 10:01 PM Page 143

2. Create a new template file named blank.tpl in the presentation/templates folder with the following
contents:

{* Smarty blank page *}

Yes, this is a blank Smarty template file, which contains just a comment. You’ll use it a bit later. Make sure
you add that comment to the file; otherwise, if you leave it empty, you’ll get an error when trying to use the
template.

3. Create a new template file named department.tpl in the presentation/templates folder, and add
the following code to it:

{* department.tpl *}
{load_department assign="department"}
<p class="title">{$department->mNameLabel}</p>

<p class="description">{$department->mDescriptionLabel}</p>

Place list of products here

The two variables, $department->mNameLabel and $department->mDescriptionLabel,
contain the name and description of the selected department and are populated by the template plugin
file, function.load_department.php.

4. Let’s now create the template plugin file for department.tpl. Create the presentation/
smarty_plugins/function.load_department.php file, and add the following code to it:

<?php
// Plugin functions inside plugin files must be named: smarty_type_name
function smarty_function_load_department($params, $smarty)
{
// Create Department object
$department = new Department();
$department->init();

// Assign template variable
$smarty->assign($params['assign'], $department);

}

// Deals with retrieving department details
class Department
{
// Public variables for the smarty template
public $mDescriptionLabel;
public $mNameLabel;

// Private members
private $_mDepartmentId;
private $_mCategoryId;

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I144

648XCH04.qxd 10/31/06 10:01 PM Page 144

// Class constructor
public function __construct()
{
// We need to have DepartmentID in the query string
if (isset ($_GET['DepartmentID']))
$this->_mDepartmentId = (int)$_GET['DepartmentID'];

else
trigger_error('DepartmentID not set');

/* If CategoryID is in the query string we save it
(casting it to integer to protect against invalid values) */

if (isset ($_GET['CategoryID']))
$this->_mCategoryId = (int)$_GET['CategoryID'];

}

public function init()
{
// If visiting a department ...
$details = Catalog::GetDepartmentDetails($this->_mDepartmentId);
$this->mNameLabel = $details['name'];
$this->mDescriptionLabel = $details['description'];

// If visiting a category ...
if (isset ($this->_mCategoryId))
{
$details = Catalog::GetCategoryDetails($this->_mCategoryId);
$this->mNameLabel =
$this->mNameLabel . ' » ' . $details['name'];

$this->mDescriptionLabel = $details['description'];
}

}
}
?>

5. Now let’s modify index.tpl and index.php to load the newly created componentized template
when DepartmentID appears in the query string. If the visitor is browsing a department, you set the
pageContentsCell variable to the componentized template you have just created.

Modify index.php as shown:

<?php
// Load Smarty library and config files
require_once 'include/app_top.php';

// Load Smarty template file
$page = new Page();

// Define the template file for the page contents
$pageContentsCell = 'blank.tpl';

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 145

648XCH04.qxd 10/31/06 10:01 PM Page 145

// Load department details if visiting a department
if (isset ($_GET['DepartmentID']))
{
$pageContentsCell = 'department.tpl';

}

// Assign a template file to the page contents cell
$page->assign('pageContentsCell', $pageContentsCell);

// Display the page
$page->display('index.tpl');

// Load app_bottom which closes the database connection
require_once 'include/app_bottom.php';
?>

6. Open presentation/templates/index.tpl, and replace the text Place contents here with

{include file="$pageContentsCell"}

7. Load your web site in a browser, and select one of the departments to ensure everything works as expected.

How It Works: The Department Componentized Template

Now that the most important functionality has already been implemented in the data and business tiers,
implementing the visual part was an easy task.

After adding the CSS styles and creating the blank template file, you created the Smarty template file
department.tpl, which contains the HTML layout for displaying a department’s data. This template file
is loaded in the page contents cell, just below the header, in index.tpl:

{include file="header.tpl"}
<div id="content">
{include file="$pageContentsCell"}

</div>

The $pageContentsCell variable is populated in index.php, depending on the query string parameters. At the
moment, if the DepartmentID parameter is found in the query string, the page contents cell is populated with the
department.tpl template file you just wrote. Otherwise (such as when being on the first page), the blank tem-
plate file is used (you’ll change this when creating a template to populate the contents cell for the first page). This
is the code in index.php that assigns a value to $pageContentsCell:

// Define the template file for the page contents
$pageContentsCell = 'blank.tpl';

// Load department details if visiting a department
if (isset ($_GET['DepartmentID']))
{

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I146

648XCH04.qxd 10/31/06 10:01 PM Page 146

$pageContentsCell = 'department.tpl';
}

// Assign a template file to the page contents cell
$page->assign('pageContentsCell', $pageContentsCell);

The first interesting aspect to know about department.tpl is the way it loads the load_department function
plugin.

{* department.tpl *}
{load_department assign="department"}

This allows you to access the instance of the Department class (that we’ll discuss next) and its public members
(mNameLabel and mDescriptionLabel) from the template file (department.tpl), like this:

<p class="title">{$department->mNameLabel}</p>

<p class="description">{$department->mDescriptionLabel}</p>

Place list of products here

The next step now is to understand how the template plugin file (function.load_department.php) does its
work to obtain the department’s name and description. The file begins with a plugin function that is standard in our
architecture. It creates a Department instance (the Department class is defined afterwards), initializes it calling
its init() method, and then associates the assign plugin parameter with the earlier created Department
instance.

// Plugin functions inside plugin files must be named: smarty_type_name
function smarty_function_load_department($params, $smarty)
{
// Create Department object
$department = new Department();
$department->init();

// Assign template variable
$smarty->assign($params['assign'], $department);

}

Next, we have the Department class. The two public members of Department are the ones you access from the
Smarty template (the department’s name and description). The final role of this class is to populate these mem-
bers, which are required to build the output for the visitor:

// Deals with retrieving department details
class Department
{
// Public variables for the smarty template
public $mDescriptionLabel;
public $mNameLabel;

There are also two private members that are used for internal purposes. $_mDepartmentId and
$m_CategoryId will store the values of the DepartmentID and CategoryID query string parameters:

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 147

648XCH04.qxd 10/31/06 10:01 PM Page 147

// Private members
private $_mDepartmentId;
private $_mCategoryId;

And then comes the constructor. In any object-oriented language, the constructor of the class is executed when
the class is instantiated, and the constructor is used to perform various initialization procedures. In our case, the
constructor of Department reads the DepartmentID and CategoryID query string parameters into the
_mDepartmentId and _mCategoryId private class members. You need these because if CategoryID actually
exists in the query string, then you also need to display the name of the category and the category’s description
instead of the department’s description.

// Class constructor
public function __construct()
{
// We need to have DepartmentID in the query string
if (isset ($_GET['DepartmentID']))
$this->_mDepartmentId = (int)$_GET['DepartmentID'];

else
trigger_error('DepartmentID not set');

/* If CategoryID is in the query string we save it
(casting it to integer to protect against invalid values) */

if (isset ($_GET['CategoryID']))
$this->_mCategoryId = (int)$_GET['CategoryID'];

}

The real functionality of the class is hidden inside the init() method, which in our case gets executed immedi-
ately after the constructor. This method populates the mNameLabel and mDescriptionLabel public members
with information from the business tier. The GetDepartmentDetails method of the business tier Catalog class
is used to retrieve the details of the department; if necessary, the GetCategoryDetails method is also called to
retrieve the details of the category. (The details of the department need to be retrieved even if visiting a category
because the page heading would be composed of both the department name and the category name.)

public function init()
{
// If visiting a department ...

$details = Catalog::GetDepartmentDetails($this->_mDepartmentId);
$this->mNameLabel = $details['name'];
$this->mDescriptionLabel = $details['description'];

// If visiting a category ...
if (isset ($this->_mCategoryId))
{
$details = Catalog::GetCategoryDetails($this->_mCategoryId);
$this->mNameLabel =
$this->mNameLabel . ' » ' . $details['name'];

$this->mDescriptionLabel = $details['description'];
}

}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I148

648XCH04.qxd 10/31/06 10:01 PM Page 148

Displaying the List of Categories
When the visitor selects a department, the categories that belong to that department must
appear. For this, you’ll implement a new Smarty template named categories_list.

categories_list is very similar to the department_list componentized template. It con-
sists of a template section used for looping over the array of categories data (category name
and category ID). This template section will contain links to index.php, but this time their
query string will also contain a CategoryID, showing that a category has been clicked, like this:

http://localhost/hatshop/index.php?DepartmentID=1&CategoryID=2

The steps in the following exercise are very much like the ones for the departments_list
componentized template (created at the end of Chapter 3), so we’ll move a bit more quickly
this time.

Exercise: Creating the categories_list Componentized Template

1. First, update hatshop.css by adding the following styles, which you’ll use for displaying categories:

#categories_box
{
border: 1px solid #ef8d0e;

}
#categories_box p
{
background: #ef8d0e;

}

2. Create the Smarty template for the categories_list componentized template. Write the following lines in
presentation/templates/categories_list.tpl:

{* categories_list.tpl *}
{load_categories_list assign="categories_list"}
{* Start categories list *}
<div class="left_box" id="categories_box">
<p>Choose a Category</p>

{section name=i loop=$categories_list->mCategories}
{assign var=selected_c value=""}
{if ($categories_list->mCategorySelected ==

$categories_list->mCategories[i].category_id)}
{assign var=selected_c value="class=\"selected\""}

{/if}

<a {$selected_c}
href="{$categories_list->mCategories[i].link|prepare_link:"http"}">
» {$categories_list->mCategories[i].name}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 149

648XCH04.qxd 10/31/06 10:01 PM Page 149

{/section}

</div>
{* End categories list *}

3. Create the presentation/smarty_plugins/function.load_categories_list.php file, and add
the following code to it:

<?php
// Plugin functions inside plugin files must be named: smarty_type_name
function smarty_function_load_categories_list($params, $smarty)
{
// Create CategoriesList object
$categories_list = new CategoriesList();
$categories_list->init();

// Assign template variable
$smarty->assign($params['assign'], $categories_list);

}

// Manages the categories list
class CategoriesList
{
// Public variables for the smarty template
public $mCategorySelected = 0;
public $mDepartmentSelected = 0;
public $mCategories;

// Constructor reads query string parameter
public function __construct()
{
if (isset ($_GET['DepartmentID']))
$this->mDepartmentSelected = (int)$_GET['DepartmentID'];

else
trigger_error('DepartmentID not set');

if (isset ($_GET['CategoryID']))
$this->mCategorySelected = (int)$_GET['CategoryID'];

}

public function init()
{
$this->mCategories =
Catalog::GetCategoriesInDepartment($this->mDepartmentSelected);

// Building links for the category pages
for ($i = 0; $i < count($this->mCategories); $i++)
$this->mCategories[$i]['link'] =

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I150

648XCH04.qxd 10/31/06 10:01 PM Page 150

'index.php?DepartmentID=' . $this->mDepartmentSelected .
'&CategoryID=' . $this->mCategories[$i]['category_id'];

}
}
?>

4. Modify index.php like this:

<?php
// Load Smarty library and config files
require_once 'include/app_top.php';

// Load Smarty template file
$page = new Page();

// Define the template file for the page contents
$pageContentsCell = 'blank.tpl';

// Define the template file for the categories cell
$categoriesCell = 'blank.tpl';

// Load department details if visiting a department
if (isset ($_GET['DepartmentID']))
{
$pageContentsCell = 'department.tpl';
$categoriesCell = 'categories_list.tpl';

}

// Assign a template file to the page contents cell
$page->assign('pageContentsCell', $pageContentsCell);
$page->assign('categoriesCell', $categoriesCell);

// Display the page
$page->display('index.tpl');

// Load app_bottom which closes the database connection
require_once 'include/app_bottom.php';
?>

5. Now include the categories_list componentized template in
presentation/templates/index.tpl, just below the list of departments:

{include file="departments_list.tpl"}
{include file="$categoriesCell"}

6. Load HatShop in a web browser. When the page loads, click on one of the departments. You’ll see the
categories list appear in the chosen place (see Figure 4-10).

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 151

648XCH04.qxd 10/31/06 10:01 PM Page 151

Figure 4-10. Selecting the Holiday department

How It Works: The categories_list Componentized Template

The categories_list componentized template works similarly to the departments_list. The
CategoriesList class (located in the function.load_categories_list.php plugin file) has three public
members that can be accessed from the template file (categories_list.tpl):

// Public variables for the smarty template
public $mCategorySelected = 0;
public $mDepartmentSelected = 0;
public $mCategories;

$mCategorySelected retains the category that is selected, which must be displayed with a different style than
the other categories in the list. The same is true with $mDepartmentSelected. $mCategories is the list of cat-
egories you populate the categories list with. This list is obtained with a call to the business tier.

The links in the categories list are processed using the prepare_link Smarty modifier to ensure all characters
are transformed to their HTML equivalents (such as & is transformed to &, and so on) and to compose the
correct absolute links, as you learned in Chapter 3.

<a {$selected_c}
href="{$categories_list->mCategories[i].link|prepare_link:"http"}">
» {$categories_list->mCategories[i].name}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I152

648XCH04.qxd 10/31/06 10:01 PM Page 152

Displaying Product Lists
Whether on the main web page or browsing a category, some products should appear instead
of the “Place list of products here” text. Here you create the products_list componentized
template, which is capable of displaying a list containing detailed information about the prod-
ucts. When a large number of products are present to be browsed, navigation links will appear
(see Figure 4-11).

Figure 4-11. The products_list componentized template with paging

This componentized template will be used in multiple places within the web site. On the
main page, it displays the products on catalog display (remember, the ones that have the
display field set to 1 or 3). When a visitor selects a particular department, the products_list
componentized template displays the products featured for the selected department. Finally,
when the visitor clicks on a category, the componentized template displays all the products
that belong to that category. Due to the way the database is implemented, you can feature a
product in the departments it belongs to but not on the main page, or vice versa. If a product
belongs to more than one department, it will appear on the main page of each of these
departments.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 153

648XCH04.qxd 10/31/06 10:01 PM Page 153

The componentized template chooses which products to display after analyzing the
query string. If both DepartmentID and CategoryID parameters are present in the query string,
this means the products of that category should be listed. If only DepartmentID is present, the
visitor is visiting a department, so its featured products should appear. If DepartmentID is not
present, the visitor is on the main page, so the catalog featured products should appear.

To integrate the products_list componentized template with the first page, you’ll need to
create an additional template file (first_page_contents.tpl), which you’ll implement later.
After creating products_list in the following exercise, you’ll be able to browse the products by
department and by category. Afterwards, you’ll see how to add products to the main web page.

Exercise: Creating the products_list Componentized Template

1. Copy the product_images directory from the Source Code/Download section
(http://www.apress.com) to your project’s hatshop folder.

2. Add the following styles to the hatshop.css file:

.paging_text a
{
color: #0000ff;
font-size: 11px;
font-weight: normal;
text-decoration: underline;

}
.paging_text a:hover
{
color: #0000ff;

}
p.right
{
clear: right;
float: right;
width: 260px;
margin: 0px 0px 15px 0px;

}
p.right br
{
clear: left;

}
p.left
{
clear: left;
float:left;
width: 260px;
margin: 0px 0px 15px 0px;
padding: 0px;

}
p.left br

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I154

648XCH04.qxd 10/31/06 10:01 PM Page 154

{
clear: left;

}
.product_image
{
clear: none;
float: left;
margin: -10px 5px 0px 0px;
padding: 10px 0px 0px 0px;

}
a.product_name
{
color: #000000;
font-family: arial, tahoma, verdana;
font-size: 14px;

}
a.product_name:hover
{
color: #ff0000;
font-family: arial, tahoma, verdana;
font-size: 14px;

}
.price
{
font-weight: bold;

}
.old_price
{
color: #ff0000;
font-weight: normal;
text-decoration: line-through;

}

3. Create a new Smarty design template named products_list.tpl inside the presentation/
templates folder, and add the following code to it:

{* products_list.tpl *}
{load_products_list assign="products_list"}
{if $products_list->mrHowManyPages > 1}

Page {$products_list->mPageNo} of {$products_list->mrHowManyPages}
{if $products_list->mPreviousLink}
mPreviousLink|prepare_link:"http"}">Previous

{else}
Previous

{/if}
{if $products_list->mNextLink}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 155

648XCH04.qxd 10/31/06 10:01 PM Page 155

mNextLink|prepare_link:"http"}">Next
{else}
Next

{/if}

{/if}

{section name=k loop=$products_list->mProducts}
{assign var=direction_p value="left"}
{if $smarty.section.k.index != 0 &&

($smarty.section.k.index + 1) % 2 == 0}
{assign var=direction_p value="right"}

{else}

{/if}
<p class="{$direction_p}">
<a class="product_name"
href="{$products_list->mProducts[k].link|prepare_link:"http"}">
{$products_list->mProducts[k].name}

mProducts[k].link|prepare_link:"http"}">
mProducts[k].thumbnail}"
border="0" width="120" alt="Product image" class="product_image" />

{$products_list->mProducts[k].description}

Price:
{if $products_list->mProducts[k].discounted_price == 0}

{else}

{/if}
${$products_list->mProducts[k].price}

{if $products_list->mProducts[k].discounted_price != 0}

 ${$products_list->mProducts[k].discounted_price}

{/if}

</p>
{/section}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I156

648XCH04.qxd 10/31/06 10:01 PM Page 156

4. Now you must create the template plugin file for the products_list.tpl template. Create a new file
named function.load_products_list.php in the presentation/smarty_plugins folder, and add
the following code to it:

<?php
// Plugin functions inside plugin files must be named: smarty_type_name
function smarty_function_load_products_list($params, $smarty)
{
// Create ProductsList object
$products_list = new ProductsList();
$products_list->init();

// Assign template variable
$smarty->assign($params['assign'], $products_list);

}

class ProductsList
{
// Public variables to be read from Smarty template
public $mProducts;
public $mPageNo;
public $mrHowManyPages;
public $mNextLink;
public $mPreviousLink;

// Private members
private $_mDepartmentId;
private $_mCategoryId;

// Class constructor
public function __construct()
{
// Get DepartmentID from query string casting it to int
if (isset ($_GET['DepartmentID']))
$this->_mDepartmentId = (int)$_GET['DepartmentID'];

// Get CategoryID from query string casting it to int
if (isset ($_GET['CategoryID']))
$this->_mCategoryId = (int)$_GET['CategoryID'];

// Get PageNo from query string casting it to int
if (isset ($_GET['PageNo']))
$this->mPageNo = (int)$_GET['PageNo'];

else
$this->mPageNo = 1;

}

public function init()

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 157

648XCH04.qxd 10/31/06 10:01 PM Page 157

{
/* If browsing a category, get the list of products by calling

the GetProductsInCategory business tier method */
if (isset ($this->_mCategoryId))
$this->mProducts = Catalog::GetProductsInCategory(
$this->_mCategoryId, $this->mPageNo, $this->mrHowManyPages);

/* If browsing a department, get the list of products by calling
the GetProductsOnDepartmentDisplay business tier method */

elseif (isset ($this->_mDepartmentId))
$this->mProducts = Catalog::GetProductsOnDepartmentDisplay(
$this->_mDepartmentId, $this->mPageNo, $this->mrHowManyPages);

/* If browsing the first page, get the list of products by
calling the GetProductsOnCatalogDisplay business
tier method */

else
$this->mProducts = Catalog::GetProductsOnCatalogDisplay(

$this->mPageNo, $this->mrHowManyPages);

/* If there are subpages of products, display navigation
controls */

if ($this->mrHowManyPages > 1)
{
// Read the query string
$query_string = getenv('QUERY_STRING');

// Find if we have PageNo in the query string
$pos = stripos($query_string, 'PageNo=');

/* If there is no PageNo in the query string
then we're on the first page */

if ($pos == false)
{
$query_string .= '&PageNo=1';
$pos = stripos($query_string, 'PageNo=');

}

// Read the current page number from the query string
$temp = substr($query_string, $pos);
sscanf($temp, 'PageNo=%d', $this->mPageNo);

// Build the Next link
if ($this->mPageNo >= $this->mrHowManyPages)
$this->mNextLink = '';

else
{
$new_query_string = str_replace('PageNo=' . $this->mPageNo,

'PageNo=' . ($this->mPageNo + 1),

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I158

648XCH04.qxd 10/31/06 10:01 PM Page 158

$query_string);
$this->mNextLink = 'index.php?' . $new_query_string;

}

// Build the Previous link
if ($this->mPageNo == 1)
$this->mPreviousLink = '';

else
{
$new_query_string = str_replace('PageNo=' . $this->mPageNo,

'PageNo=' . ($this->mPageNo - 1),
$query_string);

$this->mPreviousLink = 'index.php?' . $new_query_string;
}

}

// Build links for product details pages
$url = $_SESSION['page_link'];

if (count($_GET) > 0)
$url = $url . '&ProductID=';

else
$url = $url . '?ProductID=';

for ($i = 0; $i < count($this->mProducts); $i++)
{
$this->mProducts[$i]['link'] =
$url . $this->mProducts[$i]['product_id'];

}
}

}
?>

5. Add the following code at the beginning of index.php, after the reference to app_top.php
(app_top.php activates session handling, which is required for the following code to work). This code
makes sure to always save the link to the current page if that page is not a product details page. In other
words, $_SESSION['page_link'] will always contain the link to the last visited page which is not
a product details page. You need to save this value to implement the Continue Shopping button in the
product details page, which needs to forward the visitor to the previously visited page.

<?php
// Load Smarty library and config files
require_once 'include/app_top.php';

/* If not visiting a product page, save the link to the current page
in the page_link session variable; it will be used to create the
Continue Shopping link in the product details page and the links
to product details pages */

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 159

648XCH04.qxd 10/31/06 10:01 PM Page 159

if (!isset ($_GET['ProductID']))
$_SESSION['page_link'] = substr(getenv('REQUEST_URI'),

strrpos(getenv('REQUEST_URI'), '/') + 1,
strlen(getenv('REQUEST_URI')) - 1);

// Load Smarty template file
$page = new Page();

6. Open presentation/templates/department.tpl and replace

Place list of products here

with

{include file="products_list.tpl"}

7. Load your project in your favorite browser, navigate to one of the departments, and then select a category
from a department. Also, find a category with more than four products to test that the paging functionality
works, as shown earlier in Figure 4-8.

How It Works: The products_list Componentized Template

Because most functionality regarding the products list has already been implemented in the data and business
tiers, this task was fairly simple. The Smarty design template file (products_list.tpl) contains the layout to
be used when displaying products, and its template plugin file (function.load_products_list.php) gets the
correct list of products to display.

The constructor in function.load_products_list.php (the ProductsList class) creates a new instance of
the business tier object (Catalog) and retrieves DepartmentID, CategoryID, and PageNo from the query
string, casting them to int as a security measure. These values are used to decide which products to display:

// Class constructor
public function __construct()
{
// Get DepartmentID from query string casting it to int
if (isset ($_GET['DepartmentID']))
$this->_mDepartmentId = (int)$_GET['DepartmentID'];

// Get CategoryID from query string casting it to int
if (isset ($_GET['CategoryID']))
$this->_mCategoryId = (int)$_GET['CategoryID'];

// Get PageNo from query string casting it to int
if (isset ($_GET['PageNo']))
$this->mPageNo = (int)$_GET['PageNo'];

else
$this->mPageNo = 1;

}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I160

648XCH04.qxd 10/31/06 10:01 PM Page 160

The init() method, which continues the constructor’s job, starts by retrieving the requested list of products. It
decides what method of the business tier to call by analyzing the mCategoryId and mDepartmentId members
(which, thanks to the constructor, represent the values of the CategoryID and DepartmentID query string
parameters).

If CategoryID is present in the query string, it means the visitor is browsing a category, so
GetProductsInCategory is called to retrieve the products in that category. If only DepartmentID is present,
GetProductsOnDepartmentDisplay is called to retrieve the department’s featured products. If not even
DepartmentID is present, this means the visitor is on the main page, and GetProductsOnCatalogDisplay
is called to get the products to be featured on the first page of the site:

public function init()
{
/* If browsing a category, get the list of products by calling

the GetProductsInCategory business tier method */
if (isset ($this->_mCategoryId))
$this->mProducts = Catalog::GetProductsInCategory(
$this->_mCategoryId, $this->mPageNo, $this->mrHowManyPages);

/* If browsing a department, get the list of products by calling
the GetProductsOnDepartmentDisplay business tier method */

elseif (isset ($this->_mDepartmentId))
$this->mProducts = Catalog::GetProductsOnDepartmentDisplay(
$this->_mDepartmentId, $this->mPageNo, $this->mrHowManyPages);

/* If browsing the first page, get the list of products by
calling the GetProductsOnCatalogDisplay business
tier method */

else
$this->mProducts = Catalog::GetProductsOnCatalogDisplay(

$this->mPageNo, $this->mrHowManyPages);

The next part of the function takes care of paging. If the business tier call tells you there is more than one page of
products (so there are more products than what you specified in the PRODUCTS_PER_PAGE constant), you need to
show the visitor the current subpage of products being visited, the total number of subpages, and the Previous
and Next page links. The comments in code should make the functionality fairly clear so we won’t reiterate the
code here.

In the final part of the function, you added the link member to each mProducts record, which contains the link
to the product’s page. These values are used in the template file to create links to the product’s pages on the
product’s name and picture. The links are created using the page_link session variable, which points to the last
loaded page that is not a product details page (which in this case is the current page), and adds ProductID to the
query string:

// Build links for product details pages
$url = $_SESSION['page_link'];

if (count($_GET) > 0)
$url = $url . '&ProductID=';

else
$url = $url . '?ProductID=';

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 161

648XCH04.qxd 10/31/06 10:01 PM Page 161

for ($i = 0; $i < count($this->mProducts); $i++)
{
$this->mProducts[$i]['link'] =
$url . $this->mProducts[$i]['product_id'];

}

Displaying Front Page Contents
Apart from general information about the web site, you also want to show some promotional
products on the first page of HatShop.

If the visitor browses a department or a category, the department Smarty template is used
to build the output. For the main web page, we’ll create the first_page_contents componen-
tized template that will build the output.

Remember in index.tpl you have a cell named pageContentsCell that you fill with differ-
ent details depending on what part of the site is being visited? When a department or a
category is being visited, the department componentized template is loaded, and it takes care
of filling that space. We still haven’t done anything with that cell for the first page, when no
department or category has been selected.

In the following exercise, you’ll write a template file that contains some information
about the web site and shows the products that have been set up as promotions on the first
page. Remember that the product table contains a field named display. Site administrators
will set this field to on_catalog for products that need to be displayed in the first page.

Exercise: Creating the first_page_contents Componentized Template

1. Start by creating the Smarty design template file. The presentation/templates/first_page_
contents.tpl file should have these contents:

{* first_page_contents.tpl *}
<p class="first_page_text">
We hope you have fun developing HatShop, the e-commerce store from

Beginning PHP and PostgreSQL E-Commerce: From Novice to Professional!

</p>

<p class="description">
This week we have discounted prices for these fantastic products!

</p>
{include file="products_list.tpl"}

2. Enter the following style into hatshop.css:

.first_page_text
{
color: #000080;
font-size: 12px;

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I162

648XCH04.qxd 10/31/06 10:01 PM Page 162

font-weight: bold;
margin: 0px;

}

3. Open the index.php file, and replace the line

$pageContentsCell = 'blank.tpl';

with the line

$pageContentsCell = 'first_page_contents.tpl';

This way, when no DepartmentID and CategoryID are in the query string, index.php will load the
first_page_contents componentized template.

4. Load your project in your favorite browser. The result should look like Figure 3-1 in Chapter 3.

How It Works: The first_page_contents Componentized Template

The actual list of products is still displayed using the products_list Smarty componentized template, which
you built earlier in this chapter. However, this time it isn’t loaded from department.tpl (like it loads when
browsing a department or a category) but from a new template file named first_page_contents.tpl.

Showing Product Details
The last bit of code you’ll implement in this chapter is about displaying product details. When
the visitor clicks on any product, he or she will be forwarded to the product’s details page,
which shows the product’s complete description and the secondary product image. In the
later chapters, you’ll add more features to this page, such as product recommendations or
product reviews.

Let’s do this in the following exercise.

Exercise: Creating the product Componentized Template

1. Edit index.php to load the product.tpl template using the $pageContentsCell variable if the
ProductID parameter exists in the query string. Add the boldfaced lines to the index.php file as shown
in the following code:

// Load department details if visiting a department
if (isset ($_GET['DepartmentID']))
{
$pageContentsCell = 'department.tpl';
$categoriesCell = 'categories_list.tpl';

}

// Load product details page if visiting a product
if (isset ($_GET['ProductID']))

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 163

648XCH04.qxd 10/31/06 10:01 PM Page 163

$pageContentsCell = 'product.tpl';

// Assign a template file to the page contents cell
$page->assign('pageContentsCell', $pageContentsCell);
$page->assign('categoriesCell', $categoriesCell);

2. Okay, now create the componentized template for the product details page in which the product with full
description and second image will display. Create a file named function.load_product.php in the
presentation/smarty_plugins folder with the following contents:

<?php
// Plugin function for the load_product function plugin
function smarty_function_load_product($params, $smarty)
{
// Create Product object
$product = new Product();
$product->init();

// Assign template variable
$smarty->assign($params['assign'], $product);

}

// Handles product details
class Product
{
// Public variables to be used in Smarty template
public $mProduct;
public $mPageLink = 'index.php';

// Private stuff
private $_mProductId;

// Class constructor
public function __construct()
{
// Variable initialization
if (isset ($_GET['ProductID']))
$this->_mProductId = (int)$_GET['ProductID'];

else
trigger_error('ProductID required in product.php');

}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I164

648XCH04.qxd 10/31/06 10:01 PM Page 164

public function init()
{
// Get product details from business tier
$this->mProduct = Catalog::GetProductDetails($this->_mProductId);

if (isset ($_SESSION['page_link']))
$this->mPageLink = $_SESSION['page_link'];

}
}
?>

3. Now get in touch with your artistic side, and spread these variables all over the page in an attempt
to make the page more attractive to the visitor. To do that, you need to create a product.tpl file in
the presentation/templates folder. Feel free to go wild and customize this page as you want.

{load_product assign="product"}
{$product->mProduct.name}

mProduct.image}"

alt="Product image" width="190" border="0" />

{$product->mProduct.description}

Price:

{if $product->mProduct.discounted_price == 0}

{else}

{/if}
${$product->mProduct.price}

{if $product->mProduct.discounted_price != 0}

 ${$product->mProduct.discounted_price}

{/if}

<input type="button" value="Continue Shopping"
onclick="window.location='{$product->mPageLink|prepare_link:"http"}';" />

4. Load the web site, and click on the picture or name of any product. You should be forwarded to its details
page. Figure 4-12 shows an example details page.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 165

648XCH04.qxd 10/31/06 10:01 PM Page 165

Figure 4-12. Product details for the Confederate Slouch Hat

How It Works: The product Componentized Template

It all starts in index.php, which loads the product.tpl Smarty template in case ProductID appears in the
query string:

// Load product details page if visiting a product
if (isset ($_GET['ProductID']))

$pageContentsCell = 'product.tpl';

The Smarty template gets the needed information through the members of the Product class, which is made
available to the template by the function plugin it loads:

{load_product assign="product"}

The Product class gets the necessary data at its turn by calling the GetProductDetails method from the
business tier class Catalog.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I166

648XCH04.qxd 10/31/06 10:01 PM Page 166

Summary
You’ve done a lot of work in this chapter. You finished building the product catalog by imple-
menting the necessary logic in the data, business, and presentation tiers. On the way, you
learned about many new theory issues, including

• Relational data and the types of relationships that can occur between tables

• How to obtain data from multiple tables in a single result set using JOIN, and how to fil-
ter the results using WHERE

• How to display the list of categories and products depending on what page the visitor is
browsing

• How to display a product details page, and implement the Continue Shopping func-
tionality

• How to implement paging in the products list when browsing pages containing many
products

Chapter 5 will be at least as exciting as this one because you’ll learn how to add search
functionality to your web site!

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART I I 167

648XCH04.qxd 10/31/06 10:01 PM Page 167

648XCH04.qxd 10/31/06 10:01 PM Page 168

Searching the Catalog

“What are you looking for?” There are no places where you’ll hear this question more fre-
quently than in both brick-and-mortar stores and e-commerce stores. Like any other quality
web store around, your HatShop will allow visitors to search through the product catalog.
You’ll see how easy it is to add new functionality to a working site by integrating the new
components into the existing architecture.

In this chapter, you will

• Analyze the various ways in which the product catalog can be searched.

• Implement a custom search engine that works with PostgreSQL.

• Write the data and business tiers for the searching feature.

• Build the user interface for the catalog search feature using Smarty componentized
templates.

Choosing How to Search the Catalog
As always, there are a few things you need to think about before starting to code. When
designing a new feature, you should always begin by analyzing that feature from the final
user’s perspective.

For the visual part, you’ll use a text box in which the visitor can enter one or more words
to search for. In HatShop, the words entered by the visitor will be searched for in the products’
names and descriptions. The text entered by the visitor can be searched for in several ways:

Exact-match search: If the visitor enters a search string composed of more words, this
would be searched in the catalog as it is, without splitting the words and searching for
them separately.

All-words search: The search string entered by the visitor is split into words, causing a
search for products that contain every word entered by the visitor. This is like the exact-
match search in that it still searches for all the entered words, but this time the order of
the words is no longer important.

Any-words search: At least one of the words of the search string must find a matching
product.

This simple classification isn’t by any means complete. The search engine can be as com-
plex as the one offered by modern search engines, which provides many options and features 169

C H A P T E R 5

648XCH05.qxd 10/31/06 10:04 PM Page 169

170 CHAPTER 5 ■ SEARCHING THE CATALOG

and shows a ranked list of results, or as simple as searching the database for the exact string
provided by the visitor.

HatShop will support the any-words and all-words search modes. This decision leads to
the visual design of the search feature (see Figure 5-1).

Figure 5-1. The design of the search feature

The text box is there, as expected, along with a check box that allows the visitor to choose
between an all-words search and an any-words search.

Another decision you need to make here is the way in which the search results are dis-
played. How should the search results page look? You want to display, after all, a list of
products that match the search criteria.

The simplest solution to display the search results would be to reuse the products_list
componentized template you built in the previous chapter. A sample search page will look like
Figure 5-2.

Figure 5-2. Sample search results

648XCH05.qxd 10/31/06 10:04 PM Page 170

You can also see in the figure that the site employs paging. If there are a lot of search
results, you’ll only present a fixed (but configurable) number of products per page and allow
the visitor to browse through the pages using Previous and Next links.

Let’s begin implementing the functionality, by starting, as usual, with the data tier.

Teaching the Database to Search Itself
You have two main options to implement searching in the database:

• Implement searching using WHERE and LIKE.

• Search using the tsearch2 module.

Let’s analyze these options.

Searching Using WHERE and LIKE
The straightforward solution, frequently used to implement searching, consists of using LIKE
in the WHERE clause of the SELECT statement. Let’s take a look at a simple example that will
return the products that have the word “war” somewhere in their description:

SELECT name FROM product WHERE description LIKE '%war%'

The LIKE operator matches parts of strings, and the percent wildcard (%) is used to specify
any string of zero or more characters. That’s why in the previous example, the pattern %war%
matches all records whose description column has the word “war” somewhere in it. This
search is case-insensitive.

If you want to retrieve all the products that contain the word “war” somewhere in the
product’s name or description, the query will look like this:

SELECT name FROM product
WHERE description LIKE '%war%' OR name LIKE '%war%';

This method of searching has three important drawbacks:

Speed: Because we need to search for text somewhere inside the description and name
fields, the entire database must be searched on each query. This can significantly slow
down the overall performance of HatShop when database searches are performed, espe-
cially if you have a large number of products in the database.

Quality of search results: This method doesn’t make it easy for you to implement various
advanced features, such as returning the matching products sorted by search relevance.

Advanced search features: These include searching using the Boolean operators (AND,
OR) and searching for inflected forms of words, such as plurals and various verb tenses, or
words located in close proximity.

So how can you do better searches that implement these features? If you have a large
database that needs to be searched frequently, how can you search this database without
killing your server?

The answer is using PostgreSQL’s tsearch2 module.

CHAPTER 5 ■ SEARCHING THE CATALOG 171

648XCH05.qxd 10/31/06 10:04 PM Page 171

Searching Using the PostgreSQL tsearch2 Module
tsearch2 is the search module we’ll be using to implement our site’s search feature. This mod-
ule ships with PostgreSQL, and it allows performing advanced searches of your database by
using special search indexes. Read Appendix A for installation instructions.

There are two aspects to consider when building the data tier part of a catalog search
feature:

• Preparing the database to be searched

• Using SQL to search the database

Creating Data Structures That Enable Searching
In our scenario, the table that we’ll use for searches is product, because that’s what our visitors
will be looking for. To make the table searchable using the tsearch2 module, you need to pre-
pare the table to be searched in three steps:

1. Add a new field to the product table, which will hold the search vectors. A search vector
is a string that contains a prepared (searchable) version of the data you want to be
searched (such as product names and descriptions). In our case, the command will
look like this (don’t execute it now, we’ll take care of this using an exercise):

ALTER TABLE product ADD COLUMN search_vector tsvector;

2. Update the product table by adding a gist index on the newly added field. gist is the
engine that performs the actual searches, and it is an implementation of the Berkeley
Generalized Search Tree (find more details about gist at http://gist.cs.berkeley.
edu/). The command for adding a gist index on the product table is

CREATE INDEX idx_search_vector ON product USING gist(search_vector);

3. Populate the search_vector field of product with the search vectors. These search
vectors are lists of the words to be searchable for each product. For HatShop, we’ll
consider the words that appear in the product’s name and the product’s description,
giving more relevance to those appearing in the name. This way, if more products
match a particular search string, those with matches in the name will be shown at the
top of the results list. At this step, we also filter the so-called stop-words (also called
noise words), which aren’t relevant for searches, such as “the,” “or,” “in,” and so on.
The following command sets the search vector for each product using the to_tsvector
function (which creates the search vector) and setweight (used to give higher rele-
vance to the words in the name):

UPDATE product
SET search_vector =

setweight(to_tsvector(name), 'A') || to_tsvector(description);

CHAPTER 5 ■ SEARCHING THE CATALOG172

648XCH05.qxd 10/31/06 10:04 PM Page 172

The ‘A’ parameter of setweight gives highest relevance to words appearing in the prod-
uct’s name. For detailed information about how these functions work, refer to The tsearch2
Reference at http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/docs/
tsearch2-ref.html. You can find a tsearch2 guide at http://rhodesmill.org/brandon/
projects/tsearch2-guide.html and an excellent article at http://www.devx.com/
opensource/Article/21674.

For an example, see Table 5-1, which shows the search vector for the Santa Jester Hat.
Note the vector retains the positions of the words (although we don’t really need this), and the
“A” relevance factor is added to the words from the product’s name. Also note that various
forms of the same word are recognized (see “fit” for example) and that the stop-words aren’t
taken into consideration.

Table 5-1. The Search Vector for a Product

Field Value

product_id 6

name Santa Jester Hat

description This three-prong velvet jester is one size fits all and has an adjustable touch
fastener back for perfect fitting.

search_string 'fit':13,24 'hat':3A 'one':11 'back':21 'size':12 'prong':7
'santa':1A 'three':6 'touch':19 'adjust':18 'fasten':20
'jester':2A,9 'velvet':8 'perfect':23 'three-prong':5

■Note When adding new products to the table or updating existing products, you’ll need to be sure to also
(re)create their search vectors. The index that parses these vectors does its job automatically, but the vector
itself must be manually created. You’ll take care of this in Chapter 7, where you’ll add catalog administration
features. Until then, if you change your products manually, just execute the previous SQL command to
update the search vectors.

Searching the Database
Now that you’ve built the search vector for each product, let’s see how to use it for searching.
For performing the search, once again, there are three steps that you need to take:

1. Build a search string that expresses what exactly you are looking for. This can contain
Boolean operators; we’ll use & (AND) when doing all-words searches, and | (OR) when
doing any-words searches.

2. Apply the to_tsquery function on the query string. This prepares the query string into
a form that can be used for searching.

CHAPTER 5 ■ SEARCHING THE CATALOG 173

648XCH05.qxd 10/31/06 10:04 PM Page 173

3. When performing the search, use the condition search_vector @@
prepared_search_string, which returns TRUE if there’s a match and FALSE otherwise.
Here, search_vector is the one calculated earlier (step 3 of the previous section), and
prepared_search_string is the result of step 2.

Let’s see how this would be applied in practice. The following query performs an all-
words search on the “yankee war” search string:

SELECT product_id, name
FROM product
WHERE search_vector @@ to_tsquery('yankee & war')
ORDER BY product_id;

With the sample products database, this query should have the results shown in Table 5-2.

Table 5-2. Hats That Match “yankee & war”

product_id name

40 Civil War Union Slouch Hat

44 Union Civil War Kepi Cap

To perform an any-words search, you should use | instead of & in the search string:

SELECT product_id, name
FROM product
WHERE search_vector @@ to_tsquery('yankee | war')
ORDER BY product_id;

As expected, this time you’ll have more matching products as shown in Table 5-3 (because
the list is unsorted, you may get these results in different order).

Table 5-3. Hats That Match “yankee | war”

product_id name

26 Military Beret

30 Confederate Civil War Kepi

33 Uncle Sam Top Hat

38 Confederate Slouch Hat

40 Civil War Union Slouch Hat

41 Civil War Leather Kepi Cap

44 Union Civil War Kepi Cap

Sorting Results by Relevance
The previous queries show matching products without ordering them in any particular order.
The database engine will simply return the results in whatever order it finds easier. For

CHAPTER 5 ■ SEARCHING THE CATALOG174

648XCH05.qxd 10/31/06 10:04 PM Page 174

searches, we’re interested in showing the more relevant matches first. Remember that we gave
higher priority to matches from the product titles, so everything is set.

The tsearch2 engine offers the rank function that can be used for ordering the results. The
default order is to show the lower ranking matches first, so you’ll also need to use the DESC
option of ORDER BY to put the better matches at the top.

The following query performs a ranked any-words search for “yankee war”:

SELECT rank(search_vector, to_tsquery('yankee | war')) as rank, product_id, name
FROM product
WHERE search_vector @@ to_tsquery('yankee | war')
ORDER BY rank DESC;

This time, the results will come ordered. You can also see the search rankings. The prod-
ucts that have matches in the name have significantly higher ranks.

Table 5-4. Search Results Ordered by Rank

rank product_id name

0.341959 40 Civil War Union Slouch Hat

0.33436 44 Union Civil War Kepi Cap

0.31684 41 Civil War Leather Kepi Cap

0.303964 30 Confederate Civil War Kepi

0.0379954 26 Military Beret

0.0303964 38 Confederate Slouch Hat

0.0303964 33 Uncle Sam Top Hat

You should be ready now to implement your web site’s search functionality. To learn more
about the inner workings of the tsearch2 engine, consult its official documentation.

Exercise: Writing the Database Searching Code

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query Tools (or click the SQL button on the toolbar). A new query window should appear.

3. Write the following code in the query tool, and then execute it by pressing F5. This command prepares the
product table to be searched using the tsearch2 engine, as explained earlier in this chapter.

-- Alter product table adding search_vector field
ALTER TABLE product ADD COLUMN search_vector tsvector;

-- Create index for search_vector field in product table
CREATE INDEX idx_search_vector ON product USING gist(search_vector);

-- Update newly added search_vector field from product table
UPDATE product
SET search_vector =

setweight(to_tsvector(name), 'A') || to_tsvector(description);

CHAPTER 5 ■ SEARCHING THE CATALOG 175

648XCH05.qxd 10/31/06 10:04 PM Page 175

4. Use the Query tool to execute this code, which creates the catalog_flag_stop_words function into your
hatshop database:

-- Create catalog_flag_stop_words function
CREATE FUNCTION catalog_flag_stop_words(TEXT[])
RETURNS SETOF SMALLINT LANGUAGE plpgsql AS $$
DECLARE
inWords ALIAS FOR $1;
outFlag SMALLINT;
query TEXT;

BEGIN
FOR i IN array_lower(inWords, 1)..array_upper(inWords, 1) LOOP
SELECT INTO query

to_tsquery(inWords[i]);
IF query = '' THEN
outFlag := 1;

ELSE
outFlag := 0;

END IF;
RETURN NEXT outFlag;

END LOOP;
END;

$$;

5. Use the Query tool to execute this code, which creates the catalog_count_search_result function into
your hatshop database:

-- Function returns the number of products that match a search string
CREATE FUNCTION catalog_count_search_result(TEXT[], VARCHAR(3))
RETURNS INTEGER LANGUAGE plpgsql AS $$
DECLARE
-- inWords is an array with the words from user's search string
inWords ALIAS FOR $1;

-- inAllWords is 'on' for all-words searches
-- and 'off' for any-words searches
inAllWords ALIAS FOR $2;

outSearchResultCount INTEGER;
query TEXT;
search_operator VARCHAR(1);

BEGIN
-- Initialize query with an empty string
query := '';
-- Establish the operator to be used when preparing the search string
IF inAllWords = 'on' THEN
search_operator := '&';

ELSE
search_operator := '|';

CHAPTER 5 ■ SEARCHING THE CATALOG176

648XCH05.qxd 10/31/06 10:04 PM Page 176

END IF;

-- Compose the search string
FOR i IN array_lower(inWords, 1)..array_upper(inWords, 1) LOOP
IF i = array_upper(inWords, 1) THEN
query := query || inWords[i];

ELSE
query := query || inWords[i] || search_operator;

END IF;
END LOOP;

-- Return the number of matches
SELECT INTO outSearchResultCount

count(*)
FROM product,

to_tsquery(query) AS query_string
WHERE search_vector @@ query_string;
RETURN outSearchResultCount;

END;
$$;

6. Use the query tool to execute this code, which creates the catalog_ search function into your hatshop
database:

-- Create catalog_search function
CREATE FUNCTION catalog_search(TEXT[], VARCHAR(3), INTEGER, INTEGER, INTEGER)
RETURNS SETOF product_list LANGUAGE plpgsql AS $$
DECLARE
inWords ALIAS FOR $1;
inAllWords ALIAS FOR $2;
inShortProductDescriptionLength ALIAS FOR $3;
inProductsPerPage ALIAS FOR $4;
inStartPage ALIAS FOR $5;
outProductListRow product_list;
query TEXT;
search_operator VARCHAR(1);
query_string TSQUERY;

BEGIN
-- Initialize query with an empty string
query := '';
-- All-words or Any-words?
IF inAllWords = 'on' THEN
search_operator := '&';

ELSE
search_operator := '|';

END IF;

-- Compose the search string

CHAPTER 5 ■ SEARCHING THE CATALOG 177

648XCH05.qxd 10/31/06 10:04 PM Page 177

FOR i IN array_lower(inWords, 1)..array_upper(inWords, 1) LOOP
IF i = array_upper(inWords, 1) THEN
query := query||inWords[i];

ELSE
query := query||inWords[i]||search_operator;

END IF;
END LOOP;
query_string := to_tsquery(query);

-- Return the search results
FOR outProductListRow IN
SELECT product_id, name, description, price,

discounted_price, thumbnail
FROM product
WHERE search_vector @@ query_string
ORDER BY rank(search_vector, query_string) DESC
LIMIT inProductsPerPage
OFFSET inStartPage

LOOP
IF char_length(outProductListRow.description) >

inShortProductDescriptionLength THEN
outProductListRow.description :=
substring(outProductListRow.description, 1,

inShortProductDescriptionLength) || '...';
END IF;
RETURN NEXT outProductListRow;

END LOOP;
END;

$$;

How It Works: The Catalog Search Functionality

In this exercise, you created the database functionality to support the product searching business tier logic. After
adding the necessary structures as explained in the beginning of the chapter, you added three functions:

• catalog_flag_stop_words: As mentioned earlier, some words from the search string entered by the
visitor may not be used for searching, because they are considered to be noise words. The tsearch2
engine removes the noise words by default, but we need to find what words it removed, so we can report
these words to our visitor. We do this using catalog_flag_stop_words, which will be called from the
FlagStopWords method of the business tier.

• catalog_count_search_result: This function counts the number of search results. This is required so
that the presentation tier will know how many search results pages to display.

• catalog_search: Performs the actual product search.

CHAPTER 5 ■ SEARCHING THE CATALOG178

648XCH05.qxd 10/31/06 10:04 PM Page 178

Implementing the Business Tier
The business tier of the search feature consists of two methods: FlagStopWords and Search.
Let’s implement them first and discuss how they work afterwards.

Exercise: Implementing the Business Tier

1. The full-text search feature automatically removes words that are shorter than a specified length. You need
to tell the visitor which words have been removed when doing searches. First, find out which words are
removed with the FlagStopWords method. This method receives as parameter an array of words and
returns two arrays, one for the stop-words, and the other for the accepted words. Add this method to your
Catalog class, located in business/catalog.php:

// Flags stop words in search query
public static function FlagStopWords($words)
{
// Build SQL query
$sql = 'SELECT *

FROM catalog_flag_stop_words(:words);';
// Build the parameters array
$params = array (':words' => '{' . implode(', ', $words) . '}');
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
$flags = DatabaseHandler::GetAll($result, $params);

$search_words = array ('accepted_words' => array (),
'ignored_words' => array ());

for ($i = 0; $i < count($flags); $i++)
if ($flags[$i]['catalog_flag_stop_words'])
$search_words['ignored_words'][] = $words[$i];

else
$search_words['accepted_words'][] = $words[$i];

return $search_words;
}

2. Finally, add the Search method to your Catalog class:

// Search the catalog
public static function Search($searchString, $allWords,

$pageNo, &$rHowManyPages)
{
// The search results will be an array of this form
$search_result = array ('accepted_words' => array (),

'ignored_words' => array (),

CHAPTER 5 ■ SEARCHING THE CATALOG 179

648XCH05.qxd 10/31/06 10:04 PM Page 179

'products' => array ());

// Return void result if the search string is void
if (empty ($searchString))
return $search_result;

// Search string delimiters
$delimiters = ',.; ';
// Use strtok to get the first word of the search string
$word = strtok($searchString, $delimiters);
$words = array ();

// Build words array
while ($word)
{
$words[] = $word;
// Get the next word of the search string
$word = strtok($delimiters);

}

// Split the search words in two categories: accepted and ignored
$search_words = Catalog::FlagStopWords($words);
$search_result['accepted_words'] = $search_words['accepted_words'];
$search_result['ignored_words'] = $search_words['ignored_words'];

// Return void result if all words are stop words
if (count($search_result['accepted_words']) == 0)
return $search_result;

// Count the number of search results
$sql = 'SELECT catalog_count_search_result(:words, :all_words);';
$params = array (
':words' => '{' . implode(', ', $search_result['accepted_words']) . '}',
':all_words' => $allWords);

// Calculate the number of pages required to display the products
$rHowManyPages = Catalog::HowManyPages($sql, $params);
// Calculate the start item
$start_item = ($pageNo - 1) * PRODUCTS_PER_PAGE;

// Retrieve the list of matching products
$sql = 'SELECT *

FROM catalog_search(:words,
:all_words,
:short_product_description_length,
:products_per_page,
:start_page);';

$params = array (

CHAPTER 5 ■ SEARCHING THE CATALOG180

648XCH05.qxd 10/31/06 10:04 PM Page 180

':words' => '{' . implode(', ', $search_result['accepted_words']) . '}',
':all_words' => $allWords,
':short_product_description_length' => SHORT_PRODUCT_DESCRIPTION_LENGTH,
':products_per_page' => PRODUCTS_PER_PAGE,
':start_page' => $start_item);

// Prepare and execute the query, and return the results
$result = DatabaseHandler::Prepare($sql);
$search_result['products'] = DatabaseHandler::GetAll($result, $params);
return $search_result;

}

How It Works: The Business Tier Search Method

The main purpose of the FlagStopWords method is to analyze which words will and will not be used for searching.

The full-text feature of PostgreSQL automatically filters the words that are less than four letters by default, and you
don’t interfere with this behavior in the business tier. However, you need to find out which words will be ignored by
PostgreSQL so you can inform the visitor.

The Search method of the business tier is called from the presentation tier with the following parameters (notice
all of them except the first one are the same as the parameters of the data tier Search method):

• $searchString contains the search string entered by the visitor.

• $allWords is “on” for all-words searches.

• $pageNo represents the page of products being requested.

• $rHowManyPages represents the number of pages.

The method returns the results to the presentation tier in an associative array.

Implementing the Presentation Tier
The catalog-searching feature has two separate interface elements that you need to imple-
ment:

• A componentized template named search_box, whose role is to provide the means to
enter the search string for the visitor (refer to Figure 5-1).

• A componentized template named search_results, which displays the products
matching the search criteria (refer to Figure 5-2).

You’ll create the two componentized templates in two separate exercises.

Creating the Search Box
Follow the steps in the exercise to build the search_box componentized template, and inte-
grate it into HatShop.

CHAPTER 5 ■ SEARCHING THE CATALOG 181

648XCH05.qxd 10/31/06 10:04 PM Page 181

Exercise: Creating the search_box Componentized Template

1. Create a new template file named search_box.tpl in the presentation/templates folder, and add
the following code to it:

{* search_box.tpl *}
{load_search_box assign="search_box"}
{* Start search box *}
<div class="left_box" id="search_box">
<p>Search the Catalog</p>
<form action={"index.php"|prepare_link:"http"}>
<input maxlength="100" id="Search" name="Search"

value="{$search_box->mSearchString}" size="23" />
<input type="submit" value="Go!" />

<input type="checkbox" id="AllWords" name="AllWords"
{if $search_box->mAllWords == "on" } checked="checked" {/if}/>
Search for all words

</form>
</div>
{* End search box *}

2. Create a new Smarty function plugin file named function.load_search_box.php in the
presentation/smarty_plugins folder with the following code in it:

<?php
// Plugin functions inside plugin files must be named: smarty_type_name
function smarty_function_load_search_box($params, $smarty)
{
// Create SearchBox object
$search_box = new SearchBox();

// Assign template variable
$smarty->assign($params['assign'], $search_box);

}

// Manages the search box
class SearchBox
{
// Public variables for the smarty template
public $mSearchString = '';
public $mAllWords = 'off';

// Class constructor
public function __construct()
{
if (isset ($_GET['Search']))
$this->mSearchString = $_GET['Search'];

CHAPTER 5 ■ SEARCHING THE CATALOG182

648XCH05.qxd 10/31/06 10:04 PM Page 182

if (isset ($_GET['AllWords']))
$this->mAllWords = $_GET['AllWords'];

}
}
?>

3. Add the following styles needed in the search_box template file to the hatshop.css file:

#search_box
{
border: 1px solid #0583b5;

}
#search_box p
{
background: #0583b5;

}
form
{
margin: 2px;

}
input
{
font-family: tahoma, verdana, arial;
font-size: 11px;

}

4. Modify the index.tpl file to load the newly created template file:

...
{include file="departments_list.tpl"}
{include file="$categoriesCell"}
{include file="search_box.tpl"}

...

5. Load your project in a browser, and you'll see the search box resting nicely in its place (refer to Figure 5-1).

How It Works: The search_box Componentized Template

By now, you’re used to the way we use function plugins in conjunction with Smarty templates. In this case, we use
the plugin to maintain the state of the search box after performing a search. When the page is reloaded after click-
ing the Go! button, we want to keep the entered string in the text box and also maintain the state of the
AllWords check box.

The load_search_box function plugin simply saves the values of the Search and AllWords query string
parameters, while checking to make sure these parameters actually exist in the query string. These values are
then used in the search_box.tpl Smarty template to recreate the previous state.

Note that we could have implemented this functionality by reading the values of the Search and AllWords query
string parameters using $smarty.get.Search and $smarty.get.AllWords instead of a plugin. However,
having a plugin gives you more control over the process and also avoids generating warnings in case the men-
tioned parameters don’t exist in the query string.

CHAPTER 5 ■ SEARCHING THE CATALOG 183

648XCH05.qxd 10/31/06 10:04 PM Page 183

Displaying the Search Results
In the next exercise, you’ll create the componentized template that displays the search results.
To make your life easier, you can reuse the product_list componentized template to display
the actual list of products. This is the componentized template that we have used so far to list
products for the main page, for departments, and for categories. Of course, if you want to have
the search results displayed in another format, you must create another user control.

You’ll need to modify the templates-logic file of the products list (products_list.php) to
recognize when it’s being called to display search results, so it calls the correct method of the
business tier to get the list of products.

Let’s create the search_result template and update the templates-logic file of the
products_list componentized template in the following exercise:

Exercise: Creating the search_results Componentized Template

1. Create a new template file in the presentation/templates directory named search_results.tpl,
and add the following to it:

{* search_results.tpl *}
<p class="title">Search results</p>

{include file="products_list.tpl"}

2. Modify the presentation/smarty_plugins/function.load_products_list.php file by adding
the following lines at the end of the constructor method of the ProductList class (__construct):

// Get search details from query string
if (isset ($_GET['Search']))

$this->mSearchString = $_GET['Search'];

// Get all_words from query string
if (isset ($_GET['AllWords']))

$this->mAllWords = $_GET['AllWords'];

3. Add the $mSearchResultsTitle, $mSearch, $mAllWords, and $mSearchString members to the
ProductsList class, located in the same file:

class ProductsList
{
// Public variables to be read from Smarty template
public $mProducts;
public $mPageNo;
public $mrHowManyPages;
public $mNextLink;
public $mPreviousLink;
public $mSearchResultsTitle;
public $mSearch = '';
public $mAllWords = 'off';
public $mSearchString;

CHAPTER 5 ■ SEARCHING THE CATALOG184

648XCH05.qxd 10/31/06 10:04 PM Page 184

// Private members
private $_mDepartmentId;
private $_mCategoryId;

4. Modify the init method in ProductsList class like this:

public function init()
{
/* If searching the catalog, get the list of products by calling

the Search busines tier method */
if (isset ($this->mSearchString))
{
// Get search results
$search_results = Catalog::Search($this->mSearchString,

$this->mAllWords,
$this->mPageNo,
$this->mrHowManyPages);

// Get the list of products
$this->mProducts = $search_results['products'];
// Build the title for the list of products
if (count($search_results['accepted_words']) > 0)
$this->mSearchResultsTitle =
'Products containing '
. ($this->mAllWords == 'on' ? 'all' : 'any') . ''
. ' of these words: '
. implode(', ', $search_results['accepted_words']) .
'
';

if (count($search_results['ignored_words']) > 0)
$this->mSearchResultsTitle .=
'Ignored words: '
. implode(', ', $search_results['ignored_words']) .
'
';

if (!(count($search_results['products']) > 0))
$this->mSearchResultsTitle .=
'Your search generated no results.
';

}
/* If browsing a category, get the list of products by calling

the GetProductsInCategory business tier method */
elseif (isset ($this->_mCategoryId))
$this->mProducts = Catalog::GetProductsInCategory(

$this->mCategoryId, $this->mPageNo, $this->mrHowManyPages);
...

CHAPTER 5 ■ SEARCHING THE CATALOG 185

648XCH05.qxd 10/31/06 10:04 PM Page 185

5. Add the following lines in the beginning of presentation/templates/products_list.tpl, just below
the load_products_list line:

{* products_list.tpl *}
{load_products_list assign="products_list"}
{if $products_list->mSearchResultsTitle != ""}
<p class="description">{$products_list->mSearchResultsTitle}</p>

{/if}

6. Modify the index.php file to load the search_results componentized template when a search is
performed by adding these lines:

...
// Load department details if visiting a department
if (isset ($_GET['DepartmentID']))
{
$pageContentsCell = 'department.tpl';
$categoriesCell = 'categories_list.tpl';

}

// Load search result page if we're searching the catalog
if (isset ($_GET['Search']))
$pageContentsCell = 'search_results.tpl';

// Load product details page if visiting a product
if (isset ($_GET['ProductID']))
$pageContentsCell = 'product.tpl';

...

7. Add the following style to the hatshop.css file:

.words
{
color: #ff0000;

}

8. Load your project in your favorite browser and type yankee to get an output similar to Figure 5-3.

CHAPTER 5 ■ SEARCHING THE CATALOG186

648XCH05.qxd 10/31/06 10:04 PM Page 186

Figure 5-3. Sample HatShop search results page

How It Works: The Searchable Product Catalog

Congratulations, you have a searchable product catalog! There was quite a bit to write, but the code wasn’t very
complicated, was it?

Because you’ve used much of the already existing code and added bits to the already working architecture, there
weren’t any surprises. The list of products is still displayed by the products_list template you built earlier,
which is now updated to recognize the Search element in the query string, in which case it uses the Search
method of the business tier to get the list of products for the visitor.

The Search method of the business tier returns a SearchResults object that contains, apart from the list of
returned products, the list of words that were used for searching and the list of words that were ignored (words
shorter than a predefined number of characters). These details are shown to the visitor.

CHAPTER 5 ■ SEARCHING THE CATALOG 187

648XCH05.qxd 10/31/06 10:04 PM Page 187

Summary
In this chapter, you implemented the search functionality of HatShop by using the full-text
searching functionality of PostgreSQL. The search mechanism integrated very well with the cur-
rent web site structure and the paging functionality built in Chapter 4. The most interesting new
detail you learned in this chapter was about performing full-text searches with PostgreSQL. This
was also the first instance where the business tier had some functionality of its own instead of
simply passing data back and forth between the data tier and the presentation tier.

In Chapter 6, you’ll learn how to sell your products using PayPal.

CHAPTER 5 ■ SEARCHING THE CATALOG188

648XCH05.qxd 10/31/06 10:04 PM Page 188

Receiving Payments Using
PayPal

Let’s make some money! Your e-commerce web site needs a way to receive payments from
customers. The preferred solution for established companies is to open a merchant account,
but many small businesses choose to start with a solution that’s simpler to implement, where
they don’t have to process credit card or payment information themselves.

A number of companies and web sites can help individuals or small businesses that don’t
have the resources to process credit cards and wire transactions. These companies can be
used to intermediate the payment between online businesses and their customers. Many of
these payment-processing companies are relatively new, and the handling of any individual’s
financial details is very sensitive. Additionally, a quick search on the Internet will produce
reports from both satisfied and unsatisfied customers for almost all of these companies. For
these reasons, we are not recommending any specific third-party company.

Instead, this chapter lists some of the companies currently providing these services, and
then demonstrates some of the functionality they provide with PayPal. You’ll learn how to
integrate PayPal with HatShop in the first two stages of development. In this chapter, you will

• Learn how to create a new PayPal Website Payments Standard account.

• Learn how to integrate PayPal in stage 1 of development, where you’ll need a shopping
cart and custom checkout mechanism.

• Learn how to integrate PayPal in stage 2 of development, where you’ll have your own
shopping cart, so you’ll need to guide the visitor directly to a payment page.

• Learn how to configure PayPal to automatically calculate shipping costs.

■Note This chapter is not a PayPal manual but a quick guide to using PayPal. For any complex queries
about the services provided, visit PayPal (http://www.paypal.com) or the Internet Payment Service
Provider you decide to use. Also, you can buy components that make it easier to interact with these systems,
or use free ones such as ComponentOne PayPal eCommerce for ASP.NET by ComponentOne
(http://www.componentone.com).

189

C H A P T E R 6

648XCH06.qxd 10/31/06 10:06 PM Page 189

190 CHAPTER 6 ■ RECEIVING PAYMENTS USING PAYPAL

Considering Internet Payment Service Providers
Take a look at this list of Internet Payment Service Provider web sites. This is a diverse group,
each having its advantages. Some of the providers transfer money person to person, and pay-
ments need to be verified manually; others offer sophisticated integration with your web site.
Some work anywhere on the globe, whereas others work only for a single country.

The following list is not complete. You can find many other such companies by doing a
Google search on “Internet Payment Service Providers.”

• 2Checkout: http://www.2checkout.com

• AnyPay: http://www.anypay.com

• CCNow: http://www.ccnow.com

• Electronic Transfer: http://www.electronictransfer.com

• Moneybookers: http://www.moneybookers.com

• MultiCards: http://www.multicards.com

• Pay By Web: http://www.paybyweb.com

• Paymate: https://www.paymate.com.au

• PayPal: http://www.paypal.com

• PaySystems: http://www.paysystems.com

• ProPay: http://www.propay.com

• QuickPayPro: http://www.quickpaypro.com

• WorldPay: http://www.worldpay.com

Apart from being popular, PayPal offers services that fit very well into our web site for the
first two stages of development. PayPal is available in a number of countries—the most up-to-
date list can be found at http://www.paypal.com.

For the first stage of development (the current stage)—where you only have a searchable
product catalog—and with only a few lines of HTML code, PayPal enables you to add a shop-
ping cart with checkout functionality. For the second stage of development, in which you will
implement your own shopping cart, PayPal has a feature called Single Item Purchases that can
be used to send the visitor directly to a payment page without the intermediate shopping cart.
You’ll use this feature of PayPal in Chapter 9.

For a summary of the features provided by PayPal, point your browser to http://www.
paypal.com and click the Merchant Tools link. That page contains a few other useful links
that will show you the main features available from PayPal.

Getting Started with PayPal
Probably the best description of this service is the one found on its web site: “PayPal is an
account-based system that lets anyone with an email address securely send and receive online
payments using their credit card or bank account.”

648XCH06.qxd 10/31/06 10:06 PM Page 190

Instead of paying the client directly, the visitor pays PayPal using a credit card or bank
account. The client then uses its PayPal account to get the money received from the cus-
tomers. At the time of writing, no cost is involved in creating a new PayPal account, and the
service is free for the buyer. The fees involved when receiving money are shown at
http://www.paypal.com/cgi-bin/webscr?cmd=_display-fees-outside.

PAYPAL LINKS AND RESOURCES

Check out these resources when you need more information than this short chapter provides:

• Website Payments Standard Integration Guide: Contains information previously contained in
separate manuals, such as the Shopping Cart manual and the Instant Payments Notification manual.
Get it at https://www.paypal.com/en_US/pdf/PP_WebsitePaymentsStandard_
IntegrationGuide.pdf.

• The PayPal Developer Network: The official resource for PayPal developers, which you can access at
https://www.paypal.com/pdn.

• PayPalDev: According to the site, this is an independent forum for PayPal developers. Access it at
http://www.paypaldev.org/. You’ll also find numerous links to various PayPal resources.

In the following exercise, you’ll create a new PayPal account, and then integrate it with
HatShop. (The steps to create a PayPal account are also described in more detail in the PayPal
manuals mentioned earlier.)

Exercise: Creating the PayPal Account

To create your PayPal account, follow these steps:

1. Browse to http://www.paypal.com using your favorite web browser.

2. Click the Sign Up link.

3. PayPal supports three account types: Personal, Premier, and Business. To receive credit card payments, you
need to open a Premier or Business account. Choose your country from the combo box, and click Continue.

4. Complete all of the requested information, and you will receive an email asking you to revisit the PayPal site
to confirm the details you have entered.

How It Works: The PayPal Account

After the PayPal account is set up, the email address you provided will be your PayPal ID.

A lot of functionality is available within the PayPal service—because the site is easy to use and many of the
functions are self-explanatory, we won’t describe everything here. Remember that these sites are there for your
business, so they’re more than happy to assist with any of your queries.

Now let’s see how you can actually use the new account for the web site.

CHAPTER 6 ■ RECEIVING PAYMENTS USING PAYPAL 191

648XCH06.qxd 10/31/06 10:06 PM Page 191

Integrating the PayPal Shopping Cart and
Checkout
In the first stage of development (the current stage), you need to integrate the shopping cart
and checkout functionality from PayPal. In the second stage of development, after you create
your own shopping cart, you’ll only need to rely on PayPal’s checkout mechanism.

To accept payments, you need to add two important elements to the user interface part of
the site: Add to Cart buttons for each product and a View Cart button somewhere on the page.
PayPal makes adding these buttons a piece of cake.

The functionality of those buttons is performed by secure links to the PayPal web site. For
example, the following form represents the Add to Cart button for a product named “Black
Puritan Hat” that costs $74.99:

<form target="paypal" action="https://www.paypal.com/cgi-bin/webscr"
method="post">

<input type="hidden" name="cmd" value="_cart" />
<input type="hidden" name="business" value="youremail@example.com" />
<input type="hidden" name="item_name" value="Black Puritan Hat" />
<input type="hidden" name="amount" value="74.99" />
<input type="hidden" name="currency" value="USD" />
<input type="hidden" name="add" value="1" />
<input type="hidden" name="return" value="www.example.com" />
<input type="hidden" name="cancel_return" value="www.example.com" />
<input type="submit" name="submit" value="Add to Cart" />

</form>

The fields are predefined, and their names are self-explanatory. The most important is
business, which must be the email address you used when you registered the PayPal account
(the email address that will receive the money). Consult PayPal’s Website Payments Standard
Integration Guide for more details.

■Tip Although we won’t use them for our site, it’s good to know that PayPal provides button generators
based on certain data you provide (product name, product price), giving you an HTML code block similar to
the one shown previously. Click the Developers link at the bottom of the first page, and then click PayPal
Solutions in the menu on the left to find the button generators.

You need to make sure this HTML code gets added to each product, so you’ll have Add to
Cart buttons for each product. To do this, you must modify the products_list.tpl file. Next,
you’ll add the View Cart button somewhere on index.tpl, so it will be accessible at any time
for the visitor.

The View Cart button can be generated using a similar structure. An alternative way to
generate the Add to Cart and View Cart links is to use links such as the following, instead of
forms as shown earlier:

https://www.paypal.com/cgi-bin/webscr?cmd=_cart&business=your_email_address&
item_name=Black Puritan Hat&amount=74.99&amount=74.99¤cy=USD&add=1&
return=www.example.com&cancel_return=www.example.com

CHAPTER 6 ■ RECEIVING PAYMENTS USING PAYPAL192

648XCH06.qxd 10/31/06 10:06 PM Page 192

■Caution Yes, it’s just that simple to manufacture an Add to Cart link! The drawback of this simplicity
is that it can be potentially used against you. After PayPal confirms the payment, you can ship the products
to your customer. On each payment, you need to carefully check that the product prices correspond to
the correct amounts because it’s very easy for anyone to add a fake product to the shopping cart or an
existing product with a modified price. This can be done simply by fabricating one of those PayPal Add
to Cart links and navigating to it. You can read a detailed article about this problem at
http://www.alphabetware.com/pptamper.asp.

After adding the Add to Cart and View Cart buttons, the web site will look like Figure 6-1.

Figure 6-1. HatShop with Add to Cart and View Cart buttons

You’ll implement the PayPal integration in the next exercise.

CHAPTER 6 ■ RECEIVING PAYMENTS USING PAYPAL 193

648XCH06.qxd 10/31/06 10:06 PM Page 193

Exercise: Integrating the PayPal Shopping Cart and Custom Checkout

1. Open index.tpl, and add the OpenPayPalWindow JavaScript function inside the <head> element, as
shown in the following code listing. This function is used to open the PayPal shopping cart window when the
visitor clicks on one of the Add to Cart buttons.

<head>
<title>{#site_title#}</title>
<link href="hatshop.css" type="text/css" rel="stylesheet" />
{literal}
<script language="JavaScript" type="text/javascript">
<!--
var PayPalWindow = null;
function OpenPayPalWindow(url)
{
if ((!PayPalWindow) || PayPalWindow.closed)
// If the PayPal window doesn't exist, we open it
PayPalWindow = window.open(url, "cart", "height=300, width=500");

else
{
// If the PayPal window exists, we make it show
PayPalWindow.location.href = url;
PayPalWindow.focus();

}
}

// -->
</script>
{/literal}

</head>

■Note Any JavaScript code you place in a Smarty template should be enclosed between {literal}
and {/literal} elements because the JavaScript code uses { and } characters, which are the default
delimiters for Smarty. This way, Smarty will not parse your JavaScript code.

2. Now, add the View Cart button on the main page, just below the search box. Modify index.tpl like this:

{include file="departments_list.tpl"}
{include file="$categoriesCell"}
{include file="search_box.tpl"}
<div class="left_box" id="view_cart">
<input type="button" name="view_cart" value="View Cart"
onclick="JavaScript:OpenPayPalWindow(

CHAPTER 6 ■ RECEIVING PAYMENTS USING PAYPAL194

648XCH06.qxd 10/31/06 10:06 PM Page 194

"https://www.paypal.com/cgi-bin/webscr?cmd=_cart
&business=youremail@example.com
&display=1&return=www.example.com
&cancel_return=www.example.com")" />

</div>
{include file="header.tpl"}
<div id="content">
{include file="$pageContentsCell"}

</div>

■Caution You must write the OpenPayPalWindow call on a single line in the HTML source. We split it on
multiple lines in the code snippet to make it easier to read.

3. Add the following style code to hatshop.css:

#view_cart
{
text-align: center;

}

4. Add the PayPal Add to Cart button in presentation/templates/products_list.tpl, just below the
product price:

<input type="button" name="add_to_cart" value="Add to Cart"
onclick="{$products_list->mProducts[k].paypal}" />

</p>
{/section}

5. Add the code that creates the PayPal Add to Cart link code at the end of the init() method in
presentation/smarty_plugins/function.load_products_list.php:

for ($i = 0; $i < count($this->mProducts); $i++)
{
$this->mProducts[$i]['link'] =
$url . $this->mProducts[$i]['product_id'];

// Create the PayPal link
$this->mProducts[$i]['paypal'] =
'JavaScript:OpenPayPalWindow("' .
'https://www.paypal.com/cgi-bin/webscr?' .
'cmd=_cart&business=youremail@example.com' .
'&item_name=' . rawurlencode($this->mProducts[$i]['name']) .
'&amount=' .

CHAPTER 6 ■ RECEIVING PAYMENTS USING PAYPAL 195

648XCH06.qxd 10/31/06 10:06 PM Page 195

(($this->mProducts[$i]['discounted_price'] == 0) ?
$this->mProducts[$i]['price'] :
$this->mProducts[$i]['discounted_price']) .
'&currency=USD&add=1&return=www.example.com' .
'&cancel_return=www.example.com")';

}
}

6. Make sure you replace youremail@example.com with the email address you submitted when you
created your PayPal account for both Add to Cart and View Cart buttons! Also, replace both instances of
www.example.com with the address of your e-commerce store. Alternatively, you can remove the return
and cancel_return variables if you don’t want PayPal to redirect to your web site after the customer
completes or cancels a payment.

■Caution You need to use the correct email address if you want the money to get into your account!

7. Load the index.php page in a browser, and click one of the Add to Cart buttons. You should get the PayPal
shopping cart, which looks like Figure 6-2.

Figure 6-2. Integrating the PayPal shopping cart

Experiment with the PayPal shopping cart to see that it works as advertised.

CHAPTER 6 ■ RECEIVING PAYMENTS USING PAYPAL196

648XCH06.qxd 10/31/06 10:06 PM Page 196

How It Works: PayPal Integration

Yes, it was just that simple. Now, all visitors are potential customers! They can click the Checkout button of the
PayPal shopping cart and then buy the products!

For building the PayPal call, we use Smarty’s escaping functionality to ensure the product’s name is correctly
formed in case it contains nonportable characters (such as &, spaces, and so on). See more details about the
escape method at http://smarty.php.net/manual/en/language.modifier.escape.php.

After a customer makes a payment on the web site, an email notification is sent to the email address registered on
PayPal and also to the customer. Your PayPal account will reflect the payment, and you can view the transaction
information in your account history or as a part of the history transaction log.

After PayPal confirms the payment, you can ship the products to your customer.

If you decide to use PayPal for your own web site, make sure you learn about all of its features. For example, you
can teach PayPal to automatically calculate shipping costs and tax for each order.

Using the PayPal Single Item Purchases Feature
Single Item Purchases is a PayPal feature that allows you to send the visitor directly to a pay-
ment page instead of the PayPal shopping cart. The PayPal shopping cart will become useless
in Chapter 8, where you’ll create your own shopping cart.

In Chapter 9, you’ll implement the Place Order button in the shopping cart, which saves
the order into the database and forwards to a PayPal payment page. To call the PayPal pay-
ment page (bypassing the PayPal shopping cart), you redirect to a link like the following:

https://www.paypal.com/xclick/business=youremail@example.com&item_name=Order 123
&item_number=123&amount=123¤cy=USD&return=www.example.com
&cancel_return=www.example.com

Review the PayPal Website Payments Standard Integration Guide for more details about
the service.

■Tip You will create your own complete order-processing system in the third phase of development
(starting with Chapter 12), where you’ll process credit card transactions.

When you implement the PayPal Single Item Purchases in Chapter 9, you’ll use code
that looks like the following code snippet to create the URL of the PayPal Single Item
Purchases page:

// Calculate the total amount for the shopping cart
$this->mTotalAmount = ShoppingCart::GetTotalAmount();

CHAPTER 6 ■ RECEIVING PAYMENTS USING PAYPAL 197

648XCH06.qxd 10/31/06 10:06 PM Page 197

// If the Place Order button was clicked ...
if(isset ($_POST['place_order']))
{
// Create the order and get the order ID
$order_id = ShoppingCart::CreateOrder();

// This will contain the PayPal link
$redirect =
'https://www.paypal.com/xclick/business=youremail@example.com' .
'&item_name=HatShop Order ' . $order_id .
'&item_number=' . $order_id .
'&amount=' . $this->mTotalAmount .
'¤cy=USD&return=www.example.com' .
'&cancel_return=www.example.com';

// Redirection to the payment page
header('Location: ' . $redirect);

exit;
}

You’ll learn how to work with this feature in Chapter 9.

Summary
In this chapter, you saw how to integrate PayPal into an e-commerce site—a simple payment
solution that many small businesses choose so they don’t have to process credit card or pay-
ment information themselves.

First, we listed some of the alternatives to PayPal, before guiding you through the creation
of a new PayPal account. We then covered how to integrate PayPal in stages 1 and 2 of develop-
ment, first discussing a shopping cart, a custom checkout mechanism, and then how to direct
the visitor directly to the payment page.

In the next chapter, we will move on to look at a catalog administration page for HatShop.

CHAPTER 6 ■ RECEIVING PAYMENTS USING PAYPAL198

648XCH06.qxd 10/31/06 10:06 PM Page 198

Catalog Administration

In the previous chapters, you worked with catalog information that already existed in the
database. You have probably inserted some records yourself, or maybe you downloaded the
department, category, and product information from the book’s accompanying source code.
Obviously, both ways are unacceptable for a real web site, so you need to write some code to
allow easy management of the web store data. That said, the final detail to take care of before
launching a web site is to create its administrative interface. Although visitors will never see
this part, it’s key to delivering a quality web site to your client.

In this chapter, you’ll implement a catalog administration page. With this feature, you
complete the first stage of your web site’s development! Because this page can be imple-
mented in many ways, a serious discussion with the client is required to get the specific list
of required features. In our case, the catalog administration page should allow your client to
do the following:

• Add and remove departments

• Modify existing departments’ information (name, description)

• View the list of categories that belong to a department

• Manage department categories

• Edit existing categories’ information (name, description)

• View the list of products in a specific category

• Edit product details

• Assign an existing product to an additional category (a product can belong to multiple
categories), or move it to another category

• View the categories that a department is associated with

• Remove a product from a category

• Delete a product from the catalog

To secure sensitive pages, such as the administrative section of your site, you’ll also do the
following:

• Implement a login form where the administrator needs to supply a username and pass-
word.

• Learn how to secure the login form and the administrative pages using SSL. 199

C H A P T E R 7

648XCH07a.qxd 10/25/06 10:56 PM Page 199

200 CHAPTER 7 ■ CATALOG ADMINISTRATION

Previewing the Catalog Administration Page
Although the long list of objectives might look intimidating at first, they will be easy to imple-
ment. We have already covered most of the theory in the previous chapters, but you’ll still
learn quite a bit in this chapter.

The first step toward creating the catalog administration page is to create a login mecha-
nism, which will be implemented as a simple login page that you can see in Figure 7-1.

Figure 7-1. The HatShop login page

Next, you build the site administration part of the site by creating its main page
(admin.php), its associated Smarty template (admin.tpl), a main menu template
(admin_menu.tpl) used to navigate through different sections of administration that we’ll
develop in the next chapters, a componentized template to manage the authentication
(admin_login), and four componentized templates for catalog administration (admin_
departments, admin_categories, admin_products, and admin_product).

After logging in, the administrator is presented with the list of departments (generated
by the admin_departments Smarty template, which is loaded from the main admin page,
admin.php), as shown in Figure 7-2.

The functionality you’ll implement for departments is much the same as you’ll see for
categories and products. More specifically, the administrator can

• Edit the department’s name or description by clicking the Edit button.

• Edit the categories for a specific department by clicking the Edit Categories button.

• Completely remove a department from the database by clicking the Delete button (this
works only if the department has no related categories).

648XCH07a.qxd 10/25/06 10:56 PM Page 200

Figure 7-2. The HatShop departments admin page

When clicking the Edit button, the corresponding row from the table enters edit mode,
and its fields become editable, as shown in Figure 7-3. Also, as you can see, instead of the Edit
button, you get Update and Cancel buttons. Clicking Update updates the database with the
changes, whereas clicking Cancel simply quits edit mode.

Figure 7-3. Editing department information

CHAPTER 7 ■ CATALOG ADMINISTRATION 201

648XCH07a.qxd 10/25/06 10:56 PM Page 201

The administrator can add new departments by entering the new department’s name and
description in the text boxes below the table, and then clicking the Add button.

When the administrator clicks the Edit Categories button, the admin.php page is reloaded
but with an additional parameter in the query string: DepartmentID. This parameter tells
admin.php to load the admin_categories Smarty template, which lets the administrator edit the
categories that belong to the selected department (see Figure 7-4).

Figure 7-4. The HatShop categories admin page

This page works similarly to the one for editing departments. You also get a link (back to
departments...) that redirects back to the department’s administration page.

The navigation logic among the department, category, and product administration pages
is done using query string parameters. As you can see in Figure 7-4, when a department is
selected, its ID is appended to the query string.

You already implemented this kind of functionality in the index.php page. There you
decided which componentized template to load (at runtime) by analyzing the query string
parameters.

We’ll discuss more about admin.php and its templates later, while you’re building them.
For now, let’s start by dealing with the security mechanism.

Setting Up the Catalog Administration Page
The catalog administration part of the site will consist of the admin.php page and a number
of other PHP files and Smarty templates. You’ll build each of these components one at a time.
For each component, you’ll first implement the presentation layer, then write the business tier
code, and finally write the data tier methods.

Before building the admin pages, however, you need to put in place a mechanism to
secure access to them. You don’t want to give anyone access to your admin pages! Also, for an
even increased level of security, if the admin pages are to be accessed through the Internet
(and not only in a local intranet), you may also want to load them through SSL.

CHAPTER 7 ■ CATALOG ADMINISTRATION202

648XCH07a.qxd 10/25/06 10:56 PM Page 202

Your administrators will be able to log in and perform various administrative tasks. In this
chapter, you’re only implementing catalog administration features, but at stage two of devel-
opment, you’ll also have them manage customers’ orders. When implementing your own
order-processing system, you’ll handle customer accounts yourself and store sensitive data
such as customer credit cards, phone numbers, and so on.

This makes it obvious how important it is to plan ahead for implementing secure connec-
tions to the sensitive areas of your web site.

Using Secure Connections
HTTP isn’t a secure protocol, and even if your site protects sensitive areas using passwords (or
other forms of authentication), the transmitted data could be intercepted and stolen. To avoid
this, you need to set up the application to work with SSL (Secure Socket Layer) connections,
using the HTTPS protocol (Hypertext Transport Protocol - Secure).

To do this, you have a bit of groundwork to get through first. Unless you have already
been using an SSL connection on your web server, you are unlikely to have the correct config-
uration to do so. This configuration involves obtaining a security certificate for your server
and installing it on your Apache web server. (If the hosting service is provided by a third party,
the hosting service probably also has an option of enabling SSL.)

Security certificates are basically public-private key pairs similar to those used in asyn-
chronous encryption algorithms. You can generate these if your domain controller is
configured as a certification authority, but if you’re not a trusted certification authority, this
method may be problematic. Digitally signed SSL certificates may cause browsers that use
these certificates to be unable to verify the identity of your certification authority and there-
fore doubt your security.

When someone accesses secure pages whose certificate isn’t issued by a trusted certifica-
tion authority, the browser will show a warning message. This isn’t disastrous when securing
pages that are to be visited by your company personnel, but would certainly affect customer
confidence if such a warning message shows up, for example, when they try to pay for their
order.

To set up Apache on your own, we recommend you check out the article at http://www.
sitepoint.com/article/securing-apache-2-server-ssl. Because enabling SSL can be a time-
consuming process, for test purposes, you can get an already-configured Apache version from
http://www.devside.net/web/server/free/download. Review Appendix A for more details.

The alternative is to obtain SSL certificates from a known and respected organization that
specializes in web security, such as:

• VeriSign (http://www.verisign.com/)

• Thawte (http://www.thawte.com/)

• InstantSSL (http://www.instantssl.com/)

Web browsers have built-in root certificates from organizations such as these and are able
to authenticate the digital signature of SSL certificates supplied by them. This means that no
warning message will appear, and an SSL-secured connection will be available with a mini-
mum of fuss.

For example, in Opera, you can see the name of the company that registered the SSL cer-
tificate next to the URL (see Figure 7-5).

CHAPTER 7 ■ CATALOG ADMINISTRATION 203

648XCH07a.qxd 10/25/06 10:56 PM Page 203

Figure 7-5. Opening a secured web page in Opera

For the purpose of this chapter, I’ve installed the XAMPP package, with comes with an
SSL-enabled Apache server. My local machine issued the certificate, which, as you can guess,
isn’t in the list of trusted certificate providers.

With this setup, I can show you what you get when loading an HTTPS address that doesn’t
have a trusted certificate (see Figure 7-6).

Figure 7-6. Certificate signer not found

If you click View, you can see that the certificate has been issued by localhost, for Apache
Friends. Apache Friends (http://www.apachefriends.org) is the maker of the XAMPP package.

CHAPTER 7 ■ CATALOG ADMINISTRATION204

648XCH07a.qxd 10/25/06 10:56 PM Page 204

The warning message you get when using an untrusted certificate varies from browser to
browser. In Internet Explorer 7, the message is even more obvious (see Figure 7-7).

Figure 7-7. Internet Explorer doesn’t like untrusted certificates.

Configuring HatShop for SSL
If you decide to use SSL, you’ll need to install an SSL certificate, as shown in the next few
pages. When using SSL, it’s also advisable to enforce any sensitive page to be accessed through
SSL; that is, in case anyone tries accessing a sensitive page (such as the login page) through
http://, the request will be automatically redirected to an https:// URL.

However, if you want to postpone handling SSL and want to focus on building the admin
pages for the moment, you can. To make the solution configurable, you added the following
configuration option to your include/config.php file, back in Chapter 3.

// We enable and enforce SSL when this is set to anything else than 'no'
define('USE_SSL', 'yes')

If you prefer not to use SSL for now, simply set the USE_SSL constant to no.

Obtaining an SSL Certificate
Obtaining a certificate is a relatively painless experience. We’re covering here the steps
required to get a certificate from VeriSign, but the process is similar with the other providers as
well. The full instructions are available on the VeriSign web site (http://www.verisign.com/).
You can also get test certificates from VeriSign, which are free to use for a trial period. Here are
the basic steps:

CHAPTER 7 ■ CATALOG ADMINISTRATION 205

648XCH07a.qxd 10/25/06 10:56 PM Page 205

1. Sign up for a trial certificate on the VeriSign web site.

2. Generate a Certificate Signing Request (CSR) on your web server. This involves filling
out various personal information, including the name of your web site, and so on.
For this to work, you need to install an SSL module in your web server, as described in
Appendix A.

3. Copy the contents of the generated CSR into the VeriSign request system.

4. Shortly afterwards, you will receive a certificate from VeriSign that you copy into your
web server to install the certificate.

There is a little more to it than that, but as noted previously, detailed instructions are
available on the VeriSign web site, and you shouldn’t run into any difficulties.

Enforcing SSL Connections
After you’ve installed the certificate, you can access any web pages on your web server using
an SSL connection, simply by replacing the http:// part of the URL used to access the page
with https:// (assuming that your firewall is set up to allow an SSL connection, which by
default uses port 443).

Obviously, you don’t need SSL connections for all areas of the site and shouldn’t enforce it
in all places because that reduces performance. However, you do want to make sure that the
sensitive pages are accessible only via SSL. Now you should enforce SSL for the administrator
login page and for the admin pages of your site. (In later chapters, when we’ll handle pay-
ments ourselves, we’ll also want to enforce SSL for the checkout, customer login, customer
registration, and customer detail modification pages.)

If you want to ensure that all requests to the admin script (admin.php) are done through
HTTPS, you’ll simply need to add this code at the beginning of admin.php:

<?php
// Load Smarty library and config files
require_once 'include/app_top.php';

// Enforce page to be accessed through HTTPS
if (USE_SSL != 'no' and getenv('HTTPS') != 'on')
{
header ('Location: https://' . getenv('SERVER_NAME') .

getenv('REQUEST_URI'));
exit();

}

Note that the secure connection isn’t enforced if the USE_SSL constant defined in
config.php is set to no. Setting the constant to no may be useful when developing the web site
if you don’t have access to an SSL-enabled server.

CHAPTER 7 ■ CATALOG ADMINISTRATION206

648XCH07a.qxd 10/25/06 10:56 PM Page 206

Authenticating Administrators
Because you want only certain users to access the catalog administration page, you need to
implement some sort of security mechanism that controls access to the sensitive pages in the
site.

Implementing security requires dealing with two important concepts: authentication and
authorization. Authentication is the process in which users are uniquely identified (most
often by supplying a username and password), whereas authorization refers to which
resources the authenticated user can access.

Users who want to access the catalog administration page should first authenticate them-
selves. After you know who the user is, you decide whether the user is authorized to access the
administration page.

In HatShop, you’ll use an authentication method called HTTP authentication, which
allows you to control the login process through an HTML form. After the client is authenti-
cated, PHP automatically generates a cookie on the client, which is used to authenticate all
subsequent requests. If the cookie is not found, the client is shown the login HTML form.

■Note We assume the administrator accesses the administrative pages from a client that has cookies
enabled.

The username and password combinations can be physically stored in various ways. For
example, in Chapter 11, you’ll see how to store hashed (encrypted) customer passwords in the
database.

■Tip Hashing is a common method for storing passwords. The hash value of a password is calculated by
applying a mathematical function (hash algorithm) to it. When the user tries to authenticate, the password is
hashed, and the resulting hash value is compared to the hash value of the original (correct) password. If the
two values are identical, then the entered password is correct. The essential property about the hash algo-
rithm is that theoretically you cannot obtain the original password from its hash value (the algorithm is
one-way). In practice, scientists have recently found vulnerabilities with the popular MD5, SHA-0, and SHA-1
hashing algorithms.

A simpler method is to store the username and password combination in your PHP file.
This method isn’t as flexible as using the database, but it’s fast and easy to implement.

When storing the username/password combination in your script file, you can choose to
store the password either in clear text or as hashed text with a hashing algorithm such as MD5
or SHA-1.

In the following exercise, you’ll simply store the password in clear text, but it’s good to
know you have other options as well. You’ll learn more about hashing in Chapter 11.

CHAPTER 7 ■ CATALOG ADMINISTRATION 207

648XCH07a.qxd 10/25/06 10:56 PM Page 207

Exercise: Implementing the Skeleton of the Admin Page

1. Modify the presentation/templates/first_page_contents.tpl file to add a link to the admin
page:

Beginning PHP and PostgreSQL E-Commerce: From Novice to Professional!

Access the admin page.

</p>

2. Add the following styles to hatshop.css:

.first_page_text a
{
color: #0000ff;
font-size: 12px;
text-decoration: underline;

}
#admin_login_box
{
border: dashed 1px #c9c9c9;
display: block;
margin: auto;
padding: 10px;
width: 368px;

}
.admin_title
{
color: #228aaa;
font-family: verdana, arial, tahoma;
font-size: 20px;
font-weight: bold;
text-align: left;

}
.admin_page_text
{
color: #000080;
font-family: verdana, arial, tahoma;
font-size: 11px;
font-weight: bold;
line-height: 12px;

}
.admin_page_text a
{
color: #0000ff;
text-decoration: underline;

}
.admin_error_text
{

CHAPTER 7 ■ CATALOG ADMINISTRATION208

648XCH07a.qxd 10/25/06 10:56 PM Page 208

color: #ff0000;
font-family: verdana, arial, tahoma;
font-size: 12px;
font-weight: bold;

}
.menu_text
{
color: #000000;
font-family: verdana, arial, tahoma;
font-size: 11px;
font-weight: bold;

}
.menu_text a
{
color: #0000ff;
text-decoration: underline;

}
table
{
border-collapse: collapse;
table-layout: auto;
width: 100%;

}
th
{
background: #00008b;
color: #ffffff;
font-family: verdana, arial, tahoma;
font-size: 12px;
font-weight: bold;
margin: 1px;
padding: 3px;
text-align: left;

}
td
{
background: #e6e6e6;
border-bottom: solid 1px #000000;
font-family: verdana, arial, tahoma;
font-size: 11px;
margin: 1px;
padding: 3px;

}
select
{
font-family: tahoma, verdana, arial;
font-size: 11px;

}

CHAPTER 7 ■ CATALOG ADMINISTRATION 209

648XCH07a.qxd 10/25/06 10:56 PM Page 209

3. Modify include/app_top.php by adding the following two lines at its beginning. Calling ob_start()—
see http://www.php.net/ob_start—turns on output buffering, which improves performance and
ensures that page redirections with the header function (see admin.php at the next step) don’t generate
errors.

<?php
// Turn on output buffering
ob_start();

// Activate session
session_start();

4. In your site’s document root, create a new file named admin.php, and write the following code in it:

<?php
// Load Smarty library and config files
require_once 'include/app_top.php';

// Enforce page to be accessed through HTTPS
if (USE_SSL != 'no' and getenv('HTTPS') != 'on')
{
header ('Location: https://' . getenv('SERVER_NAME') .

getenv('REQUEST_URI'));

exit();
}

// Load Smarty template file
$page = new Page();

// Define the template file for the page menu
$pageMenuCell = 'blank.tpl';

// Define the template file for the page contents
$pageContentsCell = 'blank.tpl';

// If admin is not logged, assign admin_login template to $pageContentsCell
if (!(isset ($_SESSION['admin_logged'])) || $_SESSION['admin_logged'] != true)
$pageContentsCell = 'admin_login.tpl';

else
{
// If admin is logged, load the admin page menu
$pageMenuCell = 'admin_menu.tpl';

// If loggin out ...
if (isset ($_GET['Page']) && ($_GET['Page'] == 'Logout'))
{
unset($_SESSION['admin_logged']);
header('Location: admin.php');

CHAPTER 7 ■ CATALOG ADMINISTRATION210

648XCH07a.qxd 10/25/06 10:56 PM Page 210

exit;
}

}

// Assign templates file to be loaded
$page->assign('pageMenuCell', $pageMenuCell);
$page->assign('pageContentsCell', $pageContentsCell);

// Display the page
$page->display('admin.tpl');

// Load app_bottom which closes the database connection
require_once 'include/app_bottom.php';
?>

5. Create the presentation/templates/admin.tpl template file, which is loaded from the admin.php
file we just created, and add the following code in it:

{* smarty *}
{config_load file="site.conf"}
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
<head>
<title>{#site_title#}</title>
<link href="hatshop.css" type="text/css" rel="stylesheet" />

</head>
<body>
<div>

{include file="$pageMenuCell"}

</div>
<div>
{include file="$pageContentsCell"}

</div>
</body>

</html>

6. Add the administrator login information at the end of include/config.php:

// Administrator login information
define('ADMIN_USERNAME', 'hatshopadmin');
define('ADMIN_PASSWORD', 'hatshopadmin');

CHAPTER 7 ■ CATALOG ADMINISTRATION 211

648XCH07a.qxd 10/25/06 10:56 PM Page 211

■Note As stated earlier, in Chapter 11, you’ll learn about hashing and how to work with hashed passwords
stored in the database. If you want to use hashing now, you need to store the hash value of the password in
the config file instead of storing the password in clear text (hatshopadmin, in this case). At login time, you
compare the hash value of the string entered by the user to the hash value you saved in the config file. You
can calculate the hash value of a string by applying the sha1 function to it (the sha1 function calculates the
hash value using the SHA-1 algorithm). Don’t worry if this sounds too advanced at this moment, Chapter 11
will show you the process in more detail.

7. Now we’ll create the admin_login componentized template to supervise the login moment. Let’s start by
creating the presentation/templates/admin_login.tpl file and then add the following code to it:

{* admin_login.tpl *}
{load_admin_login assign="admin_login"}

<div id="admin_login_box">
HatShop Login

Enter login information or go back to
storefront

{if $admin_login->mLoginMessage neq ''}

{$admin_login->mLoginMessage}

{/if}

<form method="post" action="{"admin.php"|prepare_link:"https"}">
Username:
<input type="text" name="username" value="{$admin_login->mUsername}" />

Password:
<input type="password" name="password" value="" />

<input type="submit" name="submit" value="Login" />

</form>
</div>

8. Create a new Smarty function plugin file named function.load_admin_login.php in the
presentation/smarty_plugins folder with the following code in it:

<?php
/* Smarty plugin function that gets called when the

load_admin_login function plugin is loaded from a template */
function smarty_function_load_admin_login($params, $smarty)

CHAPTER 7 ■ CATALOG ADMINISTRATION212

648XCH07a.qxd 10/25/06 10:56 PM Page 212

{
// Create AdminLogin object
$admin_login = new AdminLogin();

// Assign template variable
$smarty->assign($params['assign'], $admin_login);

}

// Class that deals with authenticating administrators
class AdminLogin
{
// Public variables available in smarty templates
public $mUsername;
public $mLoginMessage = '';

// Class constructor
public function __construct()
{
// Verify if the correct username and password have been supplied
if (isset ($_POST['submit']))
{
if ($_POST['username'] == ADMIN_USERNAME

&& $_POST['password'] == ADMIN_PASSWORD)
{
$_SESSION['admin_logged'] = true;
header('Location: admin.php');
exit;

}
else
$this->mLoginMessage = 'Login failed. Please try again:';

}
}

}
?>

9. Create the presentation/templates/admin_menu.tpl file, and add the following code:

{* admin_menu.tpl *}
HatShop Admin
 |
CATALOG ADMIN |
STOREFRONT |
LOGOUT |

10. Load index.php in your favorite browser page, and you’ll see the admin page link in the welcome mes-
sage. Click it, and an HTML login form will be displayed; Figure 7-8 shows the message you’ll get if you type
in the wrong password.

CHAPTER 7 ■ CATALOG ADMINISTRATION 213

648XCH07a.qxd 10/25/06 10:56 PM Page 213

Figure 7-8. The login page

After you supply the correct login info (hatshopadmin/hatshopadmin), you’ll be redirected to the catalog admin
page. Currently the catalog admin page contains only the main menu but we’ll change this immediately.

How It Works: The admin Page

So far, you’ve created the admin.php that you’ll continue to develop in the rest of the chapter to allow the user to
administer catalog data and the admin_login componentized template that contains the admin authentication
and authorization functionality.

All the fun begins in admin.php, which checks to see whether the visitor has been authenticated as administrator
(by checking whether the admin_logged session variable is true). If the visitor is not logged in as administrator,
the admin_login componentized template is loaded:

// If admin is not logged, assign admin_login template to $pageContentsCell
if (!(isset ($_SESSION['admin_logged'])) || $_SESSION['admin_logged'] != true)
$pageContentsCell = 'admin_login.tpl';

The login mechanism in the AdminLogin helper class stores the current authentication state in the visitor’s ses-
sion under a variable named admin_logged. In the __construct function, we test whether the supplied
username and password match the values stored in config.php as ADMIN_USERNAME and ADMIN_PASSWORD;
if they match, we set the value of admin_logged to true and redirect to admin.php:

// Verify if the correct username and password have been supplied
if (isset ($_POST['submit']))
{
if ($_POST['username'] == ADMIN_USERNAME

&& $_POST['password'] == ADMIN_PASSWORD)
{
$_SESSION['admin_logged'] = true;
header('Location: admin.php');

CHAPTER 7 ■ CATALOG ADMINISTRATION214

648XCH07a.qxd 10/25/06 10:56 PM Page 214

exit;
}
else
$this->mLoginMessage = 'Login failed. Please try again:';

}

The logout link in admin_menu.tpl simply unsets the admin_logged session variable in admin.php and redi-
rects the administrator to index.php. This way, on the next attempt to access the admin page, the administrator
will be redirected to the login page.

// If loggin out ...
if (isset ($_GET['Page']) && ($_GET['Page'] == 'Logout'))
{
unset($_SESSION['admin_logged']);
header('Location: admin.php');

exit;
}

Administering Departments
The department administration section allows the client to add, remove, or change depart-
ment information. To implement this functionality, you’ll need to write the necessary code for
the presentation, business, and data layers.

One fundamental truth regarding n-Tiered applications (which also applies to this partic-
ular case) is that the business and data tiers are ultimately created to support the presentation
tier. Drawing on paper and establishing exactly how you want the site to look (in other words,
what functionality needs to be supported by the UI) is a good indication of what the database
and business tier will contain.

With the proper design work, you can know exactly what to place in each tier, so the order
of writing the code doesn’t matter. When the design is clearly established, a team of program-
mers can work at the same time and implement the three tiers concurrently, which is one of
the benefits of having a tiered architecture.

However, this rarely happens in practice, except for the largest projects that really need
very careful design and planning. In our case, usually the best way is to start with the lower
levels (the database and data object) to have the basics established before creating the UI.
For this to happen, first you need to analyze what functionality you’ll need for the UI; other-
wise, you won’t know what to write in the data and business tiers.

In this chapter, we will always start with the presentation tier. You can do this because
now you have a good overview of the architecture and know beforehand how you’ll implement
the other two tiers. This knowledge is necessary because in the presentation tier, you call
methods from the business tier (which you haven’t created yet), and in the business tier, you
call the data tier (which, again, you haven’t yet created). If you don’t have a clear idea of how to
implement the other tiers, starting with the presentation tier can be trickier in the long run.

CHAPTER 7 ■ CATALOG ADMINISTRATION 215

648XCH07a.qxd 10/25/06 10:56 PM Page 215

Because you already have a working architecture, it will be simple to write components as
needed for each tier. Of course, if you had to implement something new or more complicated,
we would have spent some time analyzing the full implications, but here you won’t do anything
more complicated than the code in the previous chapters. You’ll apply the same technique for all
componentized templates you’ll build in this chapter.

Implementing the Presentation Tier
Take another look at what the admin_departments componentized template looks like in action
(see Figure 7-9).

Figure 7-9. The admin_departments componentized template in action

This componentized template will generate a list populated with the departments’ infor-
mation, and it also has a label, two text boxes, and a button used to add new departments to
the list.

When you click on a department’s Edit button, the name and the description of that
department becomes editable, and the Update and Cancel buttons appear in place of the Edit
button, as you saw earlier in Figure 7-3.

Exercise: Implementing the admin_departments Componentized Template

1. Create a new template file named admin_departments.tpl in the presentation/templates folder,
and add the following code to it:

{* admin_departments.tpl *}
{load_admin_departments assign="admin_departments"}
Edit the departments of HatShop:

{if $admin_departments->mErrorMessage neq ""}

CHAPTER 7 ■ CATALOG ADMINISTRATION216

648XCH07a.qxd 10/25/06 10:56 PM Page 216

{$admin_departments->mErrorMessage}

{/if}
<form method="post"
action="{$admin_departments->mAdminDepartmentsTarget|prepare_link:"https"}">
{if $admin_departments->mDepartmentsCount eq 0}
There are no departments in your database!

{else}
<table>
<tr>
<th>Department Name</th>
<th>Department Description</th>
<th> </th>

</tr>
{section name=cDepartments loop=$admin_departments->mDepartments}
{if $admin_departments->mEditItem ==

$admin_departments->mDepartments[cDepartments].department_id}
<tr>
<td width="122">
<input type="text" name="name"
value="{$admin_departments->mDepartments[cDepartments].name}" />

</td>
<td>
{strip}
<textarea name="description" rows="3" cols="42">
{$admin_departments->mDepartments[cDepartments].description}

</textarea>
{/strip}
</td>
<td align="right" width="280">
<input type="submit"
name="submit_edit_categ_{

$admin_departments->mDepartments[cDepartments].department_id}"
value="Edit Categories" />
<input type="submit"
name="submit_update_dep_{

$admin_departments->mDepartments[cDepartments].department_id}"
value="Update" />
<input type="submit" name="cancel" value="Cancel" />
<input type="submit"
name="submit_delete_dep_{

$admin_departments->mDepartments[cDepartments].department_id}"
value="Delete" />

</td>
</tr>
{else}
<tr>

CHAPTER 7 ■ CATALOG ADMINISTRATION 217

648XCH07a.qxd 10/25/06 10:56 PM Page 217

<td width="122">
{$admin_departments->mDepartments[cDepartments].name}

</td>
<td>{$admin_departments->mDepartments[cDepartments].description}</td>
<td align="right" width="280">
<input type="submit"
name="submit_edit_categ_{

$admin_departments->mDepartments[cDepartments].department_id}"
value="Edit Categories" />
<input type="submit"
name="submit_edit_dep_{

$admin_departments->mDepartments[cDepartments].department_id}"
value="Edit" />
<input type="submit"
name="submit_delete_dep_{

$admin_departments->mDepartments[cDepartments].department_id}"
value="Delete" />

</td>
</tr>
{/if}

{/section}
</table>

{/if}

Add new department:

<input type="text" name="department_name" value="[name]" size="30" />
<input type="text" name="department_description" value="[description]"
size="60" />
<input type="submit" name="submit_add_dep_0" value="Add" />

</form>

2. Create a new plugin file named function.load_admin_departments.php in the
presentation/smarty_plugins folder, and add the following to it:

<?php
/* Smarty plugin function that gets called when the

load_admin_departments function plugin is loaded from a template */
function smarty_function_load_admin_departments($params, $smarty)
{
// Create AdminDepartments object
$admin_departments = new AdminDepartments();
$admin_departments->init();

// Assign template variable
$smarty->assign($params['assign'], $admin_departments);

}

CHAPTER 7 ■ CATALOG ADMINISTRATION218

648XCH07a.qxd 10/25/06 10:56 PM Page 218

// Class that supports departments admin functionality
class AdminDepartments
{
// Public variables available in smarty template
public $mDepartmentsCount;
public $mDepartments;
public $mErrorMessage = '';
public $mEditItem;
public $mAdminDepartmentsTarget = 'admin.php?Page=Departments';

// Private members
public $mAction = '';
public $mActionedDepartmentId;

// Class constructor
public function __construct()
{
// Parse the list with posted variables
foreach ($_POST as $key => $value)
// If a submit button was clicked ...
if (substr($key, 0, 6) == 'submit')
{
/* Get the position of the last '_' underscore from submit

button name e.g strtpos('submit_edit_dep_1', '_') is 16 */
$last_underscore = strrpos($key, '_');

/* Get the scope of submit button
(e.g 'edit_dep' from 'submit_edit_dep_1') */

$this->mAction = substr($key, strlen('submit_'),
$last_underscore - strlen('submit_'));

/* Get the department id targeted by submit button
(the number at the end of submit button name)
e.g '1' from 'submit_edit_dep_1' */

$this->mActionedDepartmentId = substr($key, $last_underscore + 1);

break;
}

}

public function init()
{
// If adding a new department ...
if ($this->mAction == 'add_dep')
{
$department_name = $_POST['department_name'];
$department_description = $_POST['department_description'];

CHAPTER 7 ■ CATALOG ADMINISTRATION 219

648XCH07a.qxd 10/25/06 10:56 PM Page 219

if ($department_name == null)
$this->mErrorMessage = 'Department name required';

if ($this->mErrorMessage == null)
Catalog::AddDepartment($department_name, $department_description);

}

// If editing an existing department ...
if ($this->mAction == 'edit_dep')
$this->mEditItem = $this->mActionedDepartmentId;

// If updating a department ...
if ($this->mAction == 'update_dep')
{
$department_name = $_POST['name'];
$department_description = $_POST['description'];

if ($department_name == null)
$this->mErrorMessage = 'Department name required';

if ($this->mErrorMessage == null)
Catalog::UpdateDepartment($this->mActionedDepartmentId,

$department_name, $department_description);
}

// If deleting a department ...
if ($this->mAction == 'delete_dep')
{
$status = Catalog::DeleteDepartment($this->mActionedDepartmentId);

if ($status < 0)
$this->mErrorMessage = 'Department not empty';

}

// If editing department's categories ...
if ($this->mAction == 'edit_categ')
{
header('Location: admin.php?Page=Categories&DepartmentID=' .

$this->mActionedDepartmentId);

exit;
}

// Load the list of departments
$this->mDepartments = Catalog::GetDepartmentsWithDescriptions();
$this->mDepartmentsCount = count($this->mDepartments);

CHAPTER 7 ■ CATALOG ADMINISTRATION220

648XCH07a.qxd 10/25/06 10:56 PM Page 220

}
}
?>

3. Modify the admin.php file to load the newly created admin_departments componentized template:

// If admin is logged, load the admin page menu
$pageMenuCell = 'admin_menu.tpl';

if (isset ($_GET['Page']))
$admin_page = $_GET['Page'];

// If Page is not explicitly set, assume the Departments page
else
$admin_page = 'Departments';

// If logging out ...
if (isset ($_GET['Page']) && ($_GET['Page'] == 'Logout'))
{
unset($_SESSION['AdminLogged']);
header('Location: admin.php');

exit;
}

// Choose what admin page to load ...
if ($admin_page == 'Departments')
$pageContentsCell = 'admin_departments.tpl';

}

How It Works: The admin_departments Componentized Template

You wrote a lot of code in this exercise, and you still can’t test anything. This is the tough part about creating the UI
first. Still, the code is not that complicated if you look at it. Let’s see how the admin_departments.tpl template
is done.

Here’s a scheme of the {section} construct used to build the rows of the table:

{section name=cDepartments loop=$admin_departments->mDepartments}
{if $admin_departments->mEditItem ==

$admin_departments->mDepartments[cDepartments].department_id}
<!--
Here goes a form where the administrator can edit the department name
and description with Update/Cancel, Edit Categories, and Delete buttons.

//-->
{else}
<!--
Here goes a form that displays the department name and description, and
also Edit, Edit Categories, and Delete buttons.

//-->
{/if}

{/section}

CHAPTER 7 ■ CATALOG ADMINISTRATION 221

648XCH07a.qxd 10/25/06 10:56 PM Page 221

By default, the department name and description are not editable, but when you click the Edit button of one
department, $admin_departments->mEditItem is set to the department_id value of the clicked depart-
ment, and the Smarty presentation logic generates editable text boxes instead of labels. This will allow the
administrator to edit the selected department’s details (in edit mode, Update/Cancel buttons appear instead of
the Edit button, as you saw in the earlier figures).

The Smarty plugin function loaded from the admin_departments template (in function.
load_admin_departments.php) is executed whenever the user clicks any of these buttons and reacts
to the visitor’s action. The function recognizes what button was clicked and knows what to do after parsing
the list of posted variables and reading the clicked button’s name. In the departments admin page (see the
admin_departments.tpl template file), buttons have names such as submit_edit_dep_1.

All button names start with submit and end with the ID of the department. In the middle of the name is the
code for the button type, which specifies what operation to do with the mentioned department. A button named
submit_edit_dep_1 tells the plugin function to enter edit mode for the department with a department_id
value of 1.

Note that with the Add department button, the department’s ID specified in the button name becomes irrelevant,
because its value is automatically generated by the database (department_id is a SERIAL column).

In our case, the button type can be

• add_dep for the Add department buttons

• edit_dep for the Edit department buttons

• update_dep for the Update buttons

• delete_dep for the Delete buttons

• edit_categ for the Edit Categories buttons

Depending on the type of the clicked button, one of the corresponding business tier methods is called. Let’s con-
sider these methods next.

Implementing the Business Tier
You called four middle-tier methods from the AdminDepartments class. Now it’s time to add
their business tier counterparts:

• GetDepartmentsWithDescriptions returns the list of departments to be displayed in the
department’s admin page.

• UpdateDepartment changes a department’s details. Its parameters are the department’s
department_id value, its new name, and its new description.

• DeleteDepartment deletes the department specified by the department_id parameter.

• AddDepartment needs the name and description for the new department because the
department_id value is automatically generated by the database (the department_id
column in the department table is a SERIAL column).

CHAPTER 7 ■ CATALOG ADMINISTRATION222

648XCH07a.qxd 10/25/06 10:56 PM Page 222

Exercise: Implementing the Business Tier

Now it’s time to implement the new methods. Add this code to the Catalog class in business/catalog.php:

// Retrieves all departments with their descriptions
public static function GetDepartmentsWithDescriptions()
{
// Build the SQL query
$sql = 'SELECT * FROM catalog_get_departments();';
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

return DatabaseHandler::GetAll($result);
}

// Updates department details
public static function UpdateDepartment($departmentId, $departmentName,

$departmentDescription)
{
// Build the SQL query
$sql = 'SELECT catalog_update_department(:department_id, :department_name,

:department_description);';
// Build the parameters array
$params = array (':department_id' => $departmentId,

':department_name' => $departmentName,
':department_description' => $departmentDescription);

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

// Deletes a department
public static function DeleteDepartment($departmentId)
{
// Build the SQL query
$sql = 'SELECT catalog_delete_department(:department_id);';
// Build the parameters array
$params = array (':department_id' => $departmentId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetOne($result, $params);

}

CHAPTER 7 ■ CATALOG ADMINISTRATION 223

648XCH07a.qxd 10/25/06 10:56 PM Page 223

// Add a department
public static function AddDepartment($departmentName, $departmentDescription)
{
// Build the SQL query
$sql = 'SELECT catalog_add_department(

:department_name, :department_description);';
// Build the parameters array
$params = array (':department_name' => $departmentName,

':department_description' => $departmentDescription);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

Implementing the Data Tier
You’ll add four methods in the data tier that correspond to the four business tier methods you
wrote earlier. Let’s see what this is all about.

Exercise: Adding Data Tier Functions to the Database

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Use the query tool to execute this code, which creates the catalog_get_departments function in your
hatshop database:

-- Create catalog_get_departments function
CREATE FUNCTION catalog_get_departments()
RETURNS SETOF department LANGUAGE plpgsql AS $$
DECLARE
outDepartmentRow department;

BEGIN
FOR outDepartmentRow IN
SELECT department_id, name, description
FROM department
ORDER BY department_id

LOOP

CHAPTER 7 ■ CATALOG ADMINISTRATION224

648XCH07a.qxd 10/25/06 10:56 PM Page 224

RETURN NEXT outDepartmentRow;
END LOOP;

END;
$$;

catalog_get_departments is the simplest function you’ll implement here. It returns the complete list of
departments with their identities, names, and descriptions. This is almost similar to the
catalog_get_departments_list function called to fill the departments list from the storefront, but this
one also returns the descriptions and doesn’t need to create a type for the returned data because we
already have it from the creation of the department table.

4. Use the query tool to execute this code, which creates the catalog_update_department function in your
hatshop database:

-- Create catalog_update_department function
CREATE FUNCTION catalog_update_department(

INTEGER, VARCHAR(50), VARCHAR(1000))
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inDepartmentId ALIAS FOR $1;
inName ALIAS FOR $2;
inDescription ALIAS FOR $3;

BEGIN
UPDATE department
SET name = inName, description = inDescription
WHERE department_id = inDepartmentId;

END;
$$;

The catalog_update_department function updates the name and description of an existing department
using the UPDATE SQL statement.

5. Use the query tool to execute this code, which creates the catalog_delete_department function in your
hatshop database:

-- Create catalog_delete_department function
CREATE FUNCTION catalog_delete_department(INTEGER)
RETURNS SMALLINT LANGUAGE plpgsql AS $$
DECLARE
inDepartmentId ALIAS FOR $1;
categoryRowsCount INTEGER;

BEGIN
SELECT INTO categoryRowsCount

count(*)

CHAPTER 7 ■ CATALOG ADMINISTRATION 225

648XCH07a.qxd 10/25/06 10:56 PM Page 225

FROM category
WHERE department_id = inDepartmentId;
IF categoryRowsCount = 0 THEN
DELETE FROM department WHERE department_id = inDepartmentId;
RETURN 1;

END IF;
RETURN -1;

END;
$$;

catalog_delete_department deletes an existing department from the database, but only if no cate-
gories are related to it.

6. Use the query tool to execute this code, which creates the catalog_add_department function in your
hatshop database:

-- Create catalog_add_department function
CREATE FUNCTION catalog_add_department(VARCHAR(50), VARCHAR(1000))
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inName ALIAS FOR $1;
inDescription ALIAS FOR $2;

BEGIN
INSERT INTO department (name, description)

VALUES (inName, inDescription);
END;

$$;

catalog_add_department inserts a new department into the database.

7. Finally, load the admin.php page in your browser, and admire your results. Check all the buttons carefully.

Administering Categories and Products
Because the pages that administer categories and products are based on the same steps and
concepts as the departments’ admin page, we’ll quickly list the steps you need to follow.

As you saw earlier, when clicking the Edit Categories button in the departments page, you
get the list of categories for that department. In the categories page, clicking an Edit Products
button brings up the list of products for the selected category (see Figure 7-10).

CHAPTER 7 ■ CATALOG ADMINISTRATION226

648XCH07a.qxd 10/25/06 10:56 PM Page 226

Figure 7-10. Visiting the Christmas Hats category

Exercise: Creating Admin Categories and Products Pages

1. Create a new template file named admin_categories.tpl in the presentation/templates folder,
and add the following code to it:

{* admin_categories.tpl *}
{load_admin_categories assign="admin_categories"}

Editing categories for department: {$admin_categories->mDepartmentName} [
{strip}
mAdminDepartmentsLink|prepare_link:"https"}">
back to departments ...

CHAPTER 7 ■ CATALOG ADMINISTRATION 227

648XCH07a.qxd 10/25/06 10:56 PM Page 227

{/strip}
]

{if $admin_categories->mErrorMessage neq ""}

{$admin_categories->mErrorMessage}

{/if}
<form method="post"
action="{$admin_categories->mAdminCategoriesTarget|prepare_link:"https"}">
{if $admin_categories->mCategoriesCount eq 0}
There are no categories in this department!

{else}
<table>
<tr>
<th>Category Name</th>
<th>Category Description</th>
<th> </th>

</tr>
{section name=cCategories loop=$admin_categories->mCategories}
{if $admin_categories->mEditItem ==

$admin_categories->mCategories[cCategories].category_id}
<tr>
<td width="122">
<input type="text" name="name"
value="{$admin_categories->mCategories[cCategories].name}" />

</td>
<td>
{strip}
<textarea name="description"rows="3" cols="42">
{$admin_categories->mCategories[cCategories].description}

</textarea>
{/strip}

</td>
<td align="right" width="280">
<input type="submit"
name="submit_edit_products_{

$admin_categories->mCategories[cCategories].category_id}"
value="Edit Products" />
<input type="submit"
name="submit_update_categ_{

$admin_categories->mCategories[cCategories].category_id}"
value="Update" />
<input type="submit" name="cancel" value="Cancel" />
<input type="submit"
name="submit_delete_categ_{

CHAPTER 7 ■ CATALOG ADMINISTRATION228

648XCH07a.qxd 10/25/06 10:56 PM Page 228

$admin_categories->mCategories[cCategories].category_id}"
value="Delete" />

</td>
</tr>
{else}
<tr>
<td width="122">
{$admin_categories->mCategories[cCategories].name}

</td>
<td>{$admin_categories->mCategories[cCategories].description}</td>
<td align="right" width="280">
<input type="submit"
name="submit_edit_products_{

$admin_categories->mCategories[cCategories].category_id}"
value="Edit Products" />
<input type="submit"
name="submit_edit_categ_{

$admin_categories->mCategories[cCategories].category_id}"
value="Edit" />
<input type="submit"
name="submit_delete_categ_{

$admin_categories->mCategories[cCategories].category_id}"
value="Delete" />

</td>
</tr>
{/if}

{/section}
</table>

{/if}

Add new category:

<input type="text" name="category_name" value="[name]" size="30" />
<input type="text" name="category_description" value="[description]"
size="60" />
<input type="submit" name="submit_add_categ_0" value="Add" />

</form>

2. Create a new plugin file named function.load_admin_categories.php in the
presentation/smarty_plugins folder, and add the following to it:

<?php
/* Smarty plugin function that gets called when the

load_admin_categories function plugin is loaded from a template */
function smarty_function_load_admin_categories($params, $smarty)
{
// Create AdminLogin object
$admin_categories = new AdminCategories();

CHAPTER 7 ■ CATALOG ADMINISTRATION 229

648XCH07a.qxd 10/25/06 10:56 PM Page 229

$admin_categories->init();

// Assign template variable
$smarty->assign($params['assign'], $admin_categories);

}

// Class that deals with departments admin
class AdminCategories
{
// Public variables available in smarty template
public $mCategoriesCount;
public $mCategories;
public $mEditItem = - 1;
public $mErrorMessage = '';
public $mDepartmentId;
public $mDepartmentName;
public $mAdminDepartmentsLink = 'admin.php?Page=Departments';
public $mAdminCategoriesTarget = 'admin.php?Page=Categories';

// Private members
private $mAction = '';
private $mActionedCategoryId;

// Class constructor
public function __construct()
{
if (isset ($_GET['DepartmentID']))
$this->mDepartmentId = (int)$_GET['DepartmentID'];

else
trigger_error('DepartmentID not set');

$department_details = Catalog::GetDepartmentDetails($this->mDepartmentId);
$this->mDepartmentName = $department_details['name'];

foreach ($_POST as $key => $value)
// If a submit button was clicked ...
if (substr($key, 0, 6) == 'submit')
{
/* Get the position of the last '_' underscore from submit

button name e.g strtpos('submit_edit_categ_1', '_') is 18 */
$last_underscore = strrpos($key, '_');

/* Get the scope of submit button
(e.g 'edit_categ' from 'submit_edit_categ_1') */

$this->mAction = substr($key, strlen('submit_'),
$last_underscore - strlen('submit_'));

CHAPTER 7 ■ CATALOG ADMINISTRATION230

648XCH07a.qxd 10/25/06 10:56 PM Page 230

/* Get the category id targeted by submit button
(the number at the end of submit button name)
e.g '1' from 'submit_edit_categ_1' */

$this->mActionedCategoryId = (int)substr($key, $last_underscore + 1);

break;
}

}

public function init()
{
// If adding a new category ...
if ($this->mAction == 'add_categ')
{
$category_name = $_POST['category_name'];
$category_description = $_POST['category_description'];

if ($category_name == null)
$this->mErrorMessage = 'Category name is empty';

if ($this->mErrorMessage == null)
Catalog::AddCategory($this->mDepartmentId, $category_name,

$category_description);
}

// If editing an existing category ...
if ($this->mAction == 'edit_categ')
{
$this->mEditItem = $this->mActionedCategoryId;

}

// If updating a category ...
if ($this->mAction == 'update_categ')
{
$category_name = $_POST['name'];
$category_description = $_POST['description'];

if ($category_name == null)
$this->mErrorMessage = 'Category name is empty';

if ($this->mErrorMessage == null)
Catalog::UpdateCategory($this->mActionedCategoryId, $category_name,

$category_description);
}

// If deleting a category ...
if ($this->mAction == 'delete_categ')

CHAPTER 7 ■ CATALOG ADMINISTRATION 231

648XCH07a.qxd 10/25/06 10:56 PM Page 231

{
$status = Catalog::DeleteCategory($this->mActionedCategoryId);

if ($status < 0)
$this->mErrorMessage = 'Category not empty';

}

// If editing category's products ...
if ($this->mAction == 'edit_products')
{
header('Location: admin.php?Page=Products&DepartmentID=' .

$this->mDepartmentId . '&CategoryID=' .
$this->mActionedCategoryId);

exit;
}

$this->mAdminCategoriesTarget .= '&DepartmentID=' . $this->mDepartmentId;

// Load the list of categories
$this->mCategories =
Catalog::GetDepartmentCategories($this->mDepartmentId);

$this->mCategoriesCount = count($this->mCategories);
}

}
?>

3. Create a new template file named admin_products.tpl in the presentation/templates folder,
and add the following code to it:

{* admin_products.tpl *}
{load_admin_products assign="admin_products"}

Editing products for category: {$admin_products->mCategoryName} [
{strip}
mAdminCategoriesLink|prepare_link:"https"}">
back to categories ...

{/strip}
]

{if $admin_products->mErrorMessage neq ""}

{$admin_products->mErrorMessage}

{/if}
<form method="post"

CHAPTER 7 ■ CATALOG ADMINISTRATION232

648XCH07a.qxd 10/25/06 10:56 PM Page 232

action="{$admin_products->mAdminProductsTarget|prepare_link:"https"}">
{if $admin_products->mProductsCount eq 0}
There are no products in this category!

{else}
<table>
<tr>
<th>Name</th>
<th>Description</th>
<th>Price</th>
<th>Discounted Price</th>
<th> </th>

</tr>
{section name=cProducts loop=$admin_products->mProducts}
{if $admin_products->mEditItem ==

$admin_products->mProducts[cProducts].product_id}
<tr>
<td>
<input type="text" size="15" name="name"
value="{$admin_products->mProducts[cProducts].name}" />

</td>
<td>
{strip}
<textarea name="description" rows="3" cols="39">
{$admin_products->mProducts[cProducts].description}

</textarea>
{/strip}
</td>
<td>
<input type="text" name="price"
value="{$admin_products->mProducts[cProducts].price}" size="5" />

</td>
<td>
<input type="text" name="discounted_price"
value="{$admin_products->mProducts[cProducts].discounted_price}"
size="5" />

</td>
<td align="right" width="180">
<input type="submit"
name="submit_update_prod_{

$admin_products->mProducts[cProducts].product_id}"
value="Update" />
<input type="submit" name="cancel" value="Cancel" />
<input type="submit"
name="submit_select_prod_{

$admin_products->mProducts[cProducts].product_id}"
value="Select" />

</td>

CHAPTER 7 ■ CATALOG ADMINISTRATION 233

648XCH07a.qxd 10/25/06 10:56 PM Page 233

</tr>
{else}
<tr>
<td>{$admin_products->mProducts[cProducts].name}</td>
<td>{$admin_products->mProducts[cProducts].description}</td>
<td>{$admin_products->mProducts[cProducts].price}</td>
<td>{$admin_products->mProducts[cProducts].discounted_price}</td>
<td align="right" width="180">
<input type="submit"
name="submit_edit_prod_{

$admin_products->mProducts[cProducts].product_id}"
value="Edit" />
<input type="submit"
name="submit_select_prod_{

$admin_products->mProducts[cProducts].product_id}"
value="Select" />

</td>
</tr>
{/if}

{/section}
</table>

{/if}

Add new product:

<input type="text" name="product_name" value="[name]" size="30" />
<input type="text" name="product_description" value="[description]"
size="75" />
<input type="text" name="product_price" value="[price]" size="10" />
<input type="submit" name="submit_add_prod_0" value="Add" />

</form>

4. Create a new plugin file named function.load_admin_products.php in the
presentation/smarty_plugins folder, and add the following to it:

<?php
/* Smarty plugin function that gets called when the

load_admin_products function plugin is loaded from a template */
function smarty_function_load_admin_products($params, $smarty)
{
// Create AdminProducts object
$admin_products = new AdminProducts();
$admin_products->init();

// Assign template variable
$smarty->assign($params['assign'], $admin_products);

}

CHAPTER 7 ■ CATALOG ADMINISTRATION234

648XCH07a.qxd 10/25/06 10:56 PM Page 234

// Class that deals with products administration from a specific category
class AdminProducts
{
// Public variables available in smarty template
public $mProducts;
public $mProductsCount;
public $mEditItem;
public $mErrorMessage = '';
public $mDepartmentId;
public $mCategoryId;
public $mProductId;
public $mCategoryName;
public $mAdminCategoriesLink = 'admin.php?Page=Categories';
public $mAdminProductsTarget = 'admin.php?Page=Products';

// Private attributes
private $mCatalog;
private $mAction = '';
private $mActionedProductId;
// Class constructor
public function __construct()
{
if (isset ($_GET['DepartmentID']))
$this->mDepartmentId = (int)$_GET['DepartmentID'];

else
trigger_error('DepartmentID not set');

if (isset ($_GET['CategoryID']))
$this->mCategoryId = (int)$_GET['CategoryID'];

else
trigger_error('CategoryID not set');

$category_details = Catalog::GetCategoryDetails($this->mCategoryId);
$this->mCategoryName = $category_details['name'];

foreach ($_POST as $key => $value)
// If a submit button was clicked ...
if (substr($key, 0, 6) == 'submit')
{
/* Get the position of the last '_' underscore from submit button name

e.g strtpos('submit_edit_prod_1', '_') is 17 */
$last_underscore = strrpos($key, '_');

/* Get the scope of submit button
(e.g 'edit_dep' from 'submit_edit_prod_1') */

$this->mAction = substr($key, strlen('submit_'),
$last_underscore - strlen('submit_'));

CHAPTER 7 ■ CATALOG ADMINISTRATION 235

648XCH07a.qxd 10/25/06 10:56 PM Page 235

/* Get the product id targeted by submit button
(the number at the end of submit button name)
e.g '1' from 'submit_edit_prod_1' */

$this->mActionedProductId = (int)substr($key, $last_underscore + 1);

break;
}

}

public function init()
{
// If adding a new product
if ($this->mAction == 'add_prod')
{
$product_name = $_POST['product_name'];
$product_description = $_POST['product_description'];
$product_price = $_POST['product_price'];

if ($product_name == null)
$this->mErrorMessage = 'Product name is empty';

if ($product_description == null)
$this->mErrorMessage = 'Product description is empty';

if ($product_price == null || !is_numeric($product_price))
$this->mErrorMessage = 'Product price must be a number!';

if ($this->mErrorMessage == null)
Catalog::AddProductToCategory($this->mCategoryId, $product_name,
$product_description, $product_price, 'generic_image.jpg',
'generic_thumbnail.jpg');

}

// If editing a product
if ($this->mAction == 'edit_prod')
{
$this->mEditItem = $this->mActionedProductId;

}

// If we want to see a product details
if ($this->mAction == 'select_prod')
{
header('Location: admin.php?Page=ProductDetails&DepartmentID=' .

$this->mDepartmentId . '&CategoryID=' . $this->mCategoryId .
'&ProductID=' . $this->mActionedProductId);

CHAPTER 7 ■ CATALOG ADMINISTRATION236

648XCH07a.qxd 10/25/06 10:56 PM Page 236

exit;
}

// If updating a product
if ($this->mAction == 'update_prod')
{
$product_name = $_POST['name'];
$product_description = $_POST['description'];
$product_price = $_POST['price'];
$product_discounted_price = $_POST['discounted_price'];

if ($product_name == null)
$this->mErrorMessage = 'Product name is empty';

if ($product_description == null)
$this->mErrorMessage = 'Product description is empty';

if ($product_price == null || !is_numeric($product_price))
$this->mErrorMessage = 'Product price must be a number!';

if ($product_discounted_price == null ||
!is_numeric($product_discounted_price))

$this->mErrorMessage = 'Product discounted price must be a number!';

if ($this->mErrorMessage == null)
Catalog::UpdateProduct($this->mActionedProductId, $product_name,
$product_description, $product_price, $product_discounted_price);

}

$this->mAdminCategoriesLink .= '&DepartmentID=' . $this->mDepartmentId;
$this->mAdminProductsTarget .= '&DepartmentID=' . $this->mDepartmentId .

'&CategoryID=' . $this->mCategoryId;

$this->mProducts = Catalog::GetCategoryProducts($this->mCategoryId);
$this->mProductsCount = count($this->mProducts);

}
}
?>

5. Open business/catalog.php to add the following business tier methods needed for
admin_categories and admin_products to the Catalog class:

// Gets categories in a department
public static function GetDepartmentCategories($departmentId)
{
// Build the SQL query
$sql = 'SELECT * FROM catalog_get_department_categories(:department_id);';
// Build the parameters array

CHAPTER 7 ■ CATALOG ADMINISTRATION 237

648XCH07a.qxd 10/25/06 10:56 PM Page 237

$params = array (':department_id' => $departmentId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

// Adds a category
public static function AddCategory($departmentId, $categoryName,

$categoryDescription)
{
// Build the SQL query
$sql = 'SELECT catalog_add_category(:department_id, :category_name,

:category_description);';
// Build the parameters array
$params = array (':department_id' => $departmentId,

':category_name' => $categoryName,
':category_description' => $categoryDescription);

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

// Deletes a category
public static function DeleteCategory($categoryId)
{
// Build the SQL query
$sql = 'SELECT catalog_delete_category(:category_id);';
// Build the parameters array
$params = array (':category_id' => $categoryId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetOne($result, $params);

}

// Updates a category
public static function UpdateCategory($categoryId, $categoryName,

$categoryDescription)
{
// Build the SQL query
$sql = 'SELECT catalog_update_category(:category_id, :category_name,

:category_description);';

CHAPTER 7 ■ CATALOG ADMINISTRATION238

648XCH07a.qxd 10/25/06 10:56 PM Page 238

// Build the parameters array
$params = array (':category_id' => $categoryId,

':category_name' => $categoryName,
':category_description' => $categoryDescription);

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

// Gets products in a category
public static function GetCategoryProducts($categoryId)
{
// Build the SQL query
$sql = 'SELECT * FROM catalog_get_category_products(:category_id);';
// Build the parameters array
$params = array (':category_id' => $categoryId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

// Creates a product and assigns it to a category
public static function AddProductToCategory($categoryId, $productName,

$productDescription, $productPrice)
{
// Build the SQL query
$sql = 'SELECT catalog_add_product_to_category(:category_id, :product_name,

:product_description, :product_price);';
// Build the parameters array
$params = array (':category_id' => $categoryId,

':product_name' => $productName,
':product_description' => $productDescription,
':product_price' => $productPrice);

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

// Updates a product
public static function UpdateProduct($productId, $productName,

$productDescription, $productPrice,

CHAPTER 7 ■ CATALOG ADMINISTRATION 239

648XCH07a.qxd 10/25/06 10:56 PM Page 239

$productDiscountedPrice)
{
// Build the SQL query
$sql = 'SELECT catalog_update_product(:product_id, :product_name,

:product_description, :product_price,
:product_discounted_price);';

// Build the parameters array
$params = array (':product_id' => $productId,

':product_name' => $productName,
':product_description' => $productDescription,
':product_price' => $productPrice,
':product_discounted_price' => $productDiscountedPrice);

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

6. Modify the admin.php page to load the newly added componentized templates:

// Choose what admin page to load ...
if ($admin_page == 'Departments')
$pageContentsCell = 'admin_departments.tpl';

elseif ($admin_page == 'Categories')
$pageContentsCell = 'admin_categories.tpl';

elseif ($admin_page == 'Products')
$pageContentsCell = 'admin_products.tpl';

7. Load pgAdmin III, and connect to the hatshop database. Use the query tool to execute this code, which
creates the data tier functions into your hatshop database:

-- Create department_category type
CREATE TYPE department_category AS
(
category_id INTEGER,
name VARCHAR(50),
description VARCHAR(1000)

);

-- Create catalog_get_department_categories function
CREATE FUNCTION catalog_get_department_categories(INTEGER)
RETURNS SETOF department_category LANGUAGE plpgsql AS $$
DECLARE
inDepartmentId ALIAS FOR $1;
outDepartmentCategoryRow department_category;

BEGIN
FOR outDepartmentCategoryRow IN
SELECT category_id, name, description

CHAPTER 7 ■ CATALOG ADMINISTRATION240

648XCH07a.qxd 10/25/06 10:56 PM Page 240

FROM category
WHERE department_id = inDepartmentId
ORDER BY category_id

LOOP
RETURN NEXT outDepartmentCategoryRow;

END LOOP;
END;

$$;

-- Create catalog_add_category function
CREATE FUNCTION catalog_add_category(

INTEGER, VARCHAR(50), VARCHAR(1000))
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inDepartmentId ALIAS FOR $1;
inName ALIAS FOR $2;
inDescription ALIAS FOR $3;

BEGIN
INSERT INTO category (department_id, name, description)

VALUES (inDepartmentId, inName, inDescription);
END;

$$;

-- Create catalog_delete_category function
CREATE FUNCTION catalog_delete_category(INTEGER)
RETURNS SMALLINT LANGUAGE plpgsql AS $$
DECLARE
inCategoryId ALIAS FOR $1;
productCategoryRowsCount INTEGER;

BEGIN
SELECT INTO productCategoryRowsCount

count(*)
FROM product p
INNER JOIN product_category pc

ON p.product_id = pc.product_id
WHERE pc.category_id = inCategoryId;
IF productCategoryRowsCount = 0 THEN
DELETE FROM category WHERE category_id = inCategoryId;
RETURN 1;

END IF;
RETURN -1;

END;
$$;

-- Create catalog_update_category function
CREATE FUNCTION catalog_update_category(

INTEGER, VARCHAR(50), VARCHAR(1000))

CHAPTER 7 ■ CATALOG ADMINISTRATION 241

648XCH07a.qxd 10/25/06 10:56 PM Page 241

RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inCategoryId ALIAS FOR $1;
inName ALIAS FOR $2;
inDescription ALIAS FOR $3;

BEGIN
UPDATE category
SET name = inName, description = inDescription
WHERE category_id = inCategoryId;

END;
$$;

-- Create category_product type
CREATE TYPE category_product AS
(
product_id INTEGER,
name VARCHAR(50),
description VARCHAR(1000),
price NUMERIC(10, 2),
discounted_price NUMERIC(10, 2)

);

-- Create catalog_get_category_products function
CREATE FUNCTION catalog_get_category_products(INTEGER)
RETURNS SETOF category_product LANGUAGE plpgsql AS $$
DECLARE
inCategoryId ALIAS FOR $1;
outCategoryProductRow category_product;

BEGIN
FOR outCategoryProductRow IN
SELECT p.product_id, p.name, p.description, p.price,

p.discounted_price
FROM product p
INNER JOIN product_category pc

ON p.product_id = pc.product_id
WHERE pc.category_id = inCategoryId
ORDER BY p.product_id

LOOP
RETURN NEXT outCategoryProductRow;

END LOOP;
END;

$$;

CHAPTER 7 ■ CATALOG ADMINISTRATION242

648XCH07a.qxd 10/25/06 10:56 PM Page 242

-- Create catalog_add_product_to_category function
CREATE FUNCTION catalog_add_product_to_category(INTEGER, VARCHAR(50),

VARCHAR(1000), NUMERIC(10, 2))
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inCategoryId ALIAS FOR $1;
inName ALIAS FOR $2;
inDescription ALIAS FOR $3;
inPrice ALIAS FOR $4;
productLastInsertId INTEGER;

BEGIN
INSERT INTO product (name, description, price, image, thumbnail,

search_vector)
VALUES (inName, inDescription, inPrice, 'generic.jpg',

'generic.thumb.jpg',
(setweight(to_tsvector(inName), 'A')
|| to_tsvector(inDescription)));

SELECT INTO productLastInsertId currval('product_product_id_seq');
INSERT INTO product_category (product_id, category_id)

VALUES (productLastInsertId, inCategoryId);
END;

$$;

-- Create catalog_update_product function
CREATE FUNCTION catalog_update_product(INTEGER, VARCHAR(50),

VARCHAR(1000), NUMERIC(10, 2), NUMERIC(10, 2))
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inProductId ALIAS FOR $1;
inName ALIAS FOR $2;
inDescription ALIAS FOR $3;
inPrice ALIAS FOR $4;
inDiscountedPrice ALIAS FOR $5;

BEGIN
UPDATE product
SET name = inName, description = inDescription, price = inPrice,

discounted_price = inDiscountedPrice,
search_vector = (setweight(to_tsvector(inName), 'A')

|| to_tsvector(inDescription))
WHERE product_id = inProductId;

END;
$$;

8. Load admin.php in your browser, choose a department, and click its Edit Categories button. The
categories componentized template loads, and a page like the one in Figure 7-11 appears.

CHAPTER 7 ■ CATALOG ADMINISTRATION 243

648XCH07a.qxd 10/25/06 10:56 PM Page 243

Figure 7-11. The admin_categories componentized template

How It Works: Administering Categories and Products

This time, we chose to quickly show you how to add the new functionality. We did this because the code for
administering categories and products follows the same patterns as the code for administering departments.

Have a close look at the new code that you added to make sure you understand exactly how it works before
moving on to administering product details.

Administering Product Details
The products list you built earlier is wonderful, but it lacks a few important features. The final
componentized template you’re implementing, admin_product, enables you to

• View the product’s picture.

• Remove the product from a category.

• Remove the product from the database completely.

• Assign the current product to an additional category.

• Move the current product to another category.

When it comes to product removal, things aren’t so straightforward. You can either unas-
sign the product from a category by removing the record from the product_category table, or
you can effectively remove the product from the product table. Because products are accessed
in the catalog by selecting a category, you must make sure there are no orphaned products
(products that don’t belong to any category) because they couldn’t be accessed using the cur-
rent administration interface.

CHAPTER 7 ■ CATALOG ADMINISTRATION244

648XCH07a.qxd 10/25/06 10:56 PM Page 244

So, if you added a Delete button for a product, what would it actually do? Delete the prod-
uct from the database? This would work, but it’s a bit awkward if you have a product assigned
to multiple categories, and you only want to remove it from a single category. On the other
hand, if the Delete button removes the product from the current category, you can create
orphaned products because they exist in the product table, but they don’t belong to any cate-
gory, so they can’t be accessed. You could fix that by allowing the site administrator to see the
complete list of products without locating them by department and category.

The simple solution implemented in this chapter is like that. There will be two delete but-
tons: a Remove from category button, which allows removing the product from a single
category, and a Remove from catalog button, which completely removes the product from the
catalog by deleting its entries in the product and product_category tables. If the product
belongs to more categories, only the Remove from category button will be active. If the prod-
uct belongs to a single category, only the Remove from catalog button will be available
because removing it only from its category would generate an orphan product in the product
table (a product that doesn’t belongs to any category, thus is inaccessible through the current
interface).

With this componentized template, apart from permitting the administrator to remove
products, you’ll also see how to assign the currently selected product to an additional category
or to move the product to another category.

Implementing the Presentation Tier
Figure 7-12 shows how the product details admin page will look for the Black Basque Beret
product.

Figure 7-12. Administering product details

CHAPTER 7 ■ CATALOG ADMINISTRATION 245

648XCH07a.qxd 10/25/06 10:56 PM Page 245

You’ll implement the admin_product Smarty componentized template in the following
exercise.

Exercise: Implementing admin_product

1. Create the presentation/templates/admin_product.tpl template file, and add the following in it:

{* admin_product.tpl *}
{load_admin_product assign="admin_product"}

Editing product: ID #{$admin_product->mProductId} —
{$admin_product->mProductName} [
{strip}
mAdminProductsLink|prepare_link:"https"}">
back to products ...

{/strip}
]

<form enctype="multipart/form-data" method="post"
action="{$admin_product->mAdminProductTarget|prepare_link:"https"}">

Product belongs to these categories:
{$admin_product->mProductCategoriesString}

Remove this product from:
{html_options name="TargetCategoryIdRemove"
options=$admin_product->mRemoveFromCategories}
<input type="submit" name="RemoveFromCategory" value="Remove"
{if $admin_product->mRemoveFromCategoryButtonDisabled}
disabled="disabled" {/if}/>

Set display option for this product:
{html_options name="ProductDisplay"
options=$admin_product->mProductDisplayOptions
selected=$admin_product->mProductDisplay}
<input type="submit" name="SetProductDisplayOption" value="Set" />

Assign product to this category:
{html_options name="TargetCategoryIdAssign"
options=$admin_product->mAssignOrMoveTo}
<input type="submit" name="Assign" value="Assign" />

Move product to this category:
{html_options name="TargetCategoryIdMove"
options=$admin_product->mAssignOrMoveTo}
<input type="submit" name="Move" value="Move" />

CHAPTER 7 ■ CATALOG ADMINISTRATION246

648XCH07a.qxd 10/25/06 10:56 PM Page 246

<input type="submit" name="RemoveFromCatalog"
value="Remove product from catalog"
{if !$admin_product->mRemoveFromCategoryButtonDisabled}
disabled="disabled" {/if} />

Image name: {$admin_product->mProductImage}
<input name="ImageUpload" type="file" value="Upload" />
<input type="submit" name="Upload" value="Upload" />

mProductImage}"
border="0" alt="Product image" />

Thumbnail name: {$admin_product->mProductThumbnail}
<input name="ThumbnailUpload" type="file" value="Upload" />
<input type="submit" name="Upload" value="Upload" />

mProductThumbnail}"
border="0" alt="Product thumbnail" />

</form>

2. Open business/catalog.php to add the $mProductDisplayOptions member to the Catalog class
needed for admin_products as shown:

<?php
// Business tier class for reading product catalog information
class Catalog
{
public static $mProductDisplayOptions = array ('Default', // 0

'On Catalog', // 1
'On Department', // 2
'On Both'); // 3

// Retrieves all departments
public static function GetDepartments()

3. Create the presentation/smarty_plugins/function.load_admin_product.php file, and add the
following in it:

<?php
// Plugin function for the load_admin_product function plugin
function smarty_function_load_admin_product($params, $smarty)
{
// Create AdminProduct object
$admin_product = new AdminProduct();
$admin_product->init();

// Assign template variable
$smarty->assign($params['assign'], $admin_product);

CHAPTER 7 ■ CATALOG ADMINISTRATION 247

648XCH07a.qxd 10/25/06 10:56 PM Page 247

}

// Class that deals with product administration
class AdminProduct
{
// Public attributes
public $mProductName;
public $mProductImage;
public $mProductThumbnail;
public $mProductDisplay;
public $mProductCategoriesString;
public $mRemoveFromCategories;
public $mProductDisplayOptions;
public $mProductId;
public $mCategoryId;
public $mDepartmentId;
public $mRemoveFromCategoryButtonDisabled = false;
public $mAdminProductsLink = 'admin.php?Page=Products';
public $mAdminProductTarget = 'admin.php?Page=ProductDetails';

// Private attributes
private $mTargetCategoryId;

// Class constructor
public function __construct()
{
// Need to have DepartmentID in the query string
if (!isset ($_GET['DepartmentID']))
trigger_error('DepartmentID not set');

else
$this->mDepartmentId = (int)$_GET['DepartmentID'];

// Need to have CategoryID in the query string
if (!isset ($_GET['CategoryID']))
trigger_error('CategoryID not set');

else
$this->mCategoryId = (int)$_GET['CategoryID'];

// Need to have ProductID in the query string
if (!isset ($_GET['ProductID']))
trigger_error('ProductID not set');

else
$this->mProductId = (int)$_GET['ProductID'];

$this->mProductDisplayOptions = Catalog::$mProductDisplayOptions;
}

CHAPTER 7 ■ CATALOG ADMINISTRATION248

648XCH07a.qxd 10/25/06 10:56 PM Page 248

public function init()
{
// If uploading a product picture ...
if (isset ($_POST['Upload']))
{
/* Check whether we have write permission on the

product_images folder */
if (!is_writeable(SITE_ROOT . '/product_images/'))
{
echo "Can't write to the product_images folder";

exit;
}

// If the error code is 0, the first file was uploaded ok
if ($_FILES['ImageUpload']['error'] == 0)
{
/* Use the move_uploaded_file PHP function to move the file

from its temporary location to the product_images folder */
move_uploaded_file($_FILES['ImageUpload']['tmp_name'],

SITE_ROOT . '/product_images/' .
$_FILES['ImageUpload']['name']);

// Update the product's information in the database
Catalog::SetImage($this->mProductId,

$_FILES['ImageUpload']['name']);
}

// If the error code is 0, the second file was uploaded ok
if ($_FILES['ThumbnailUpload']['error'] == 0)
{
// Move the uploaded file to the product_images folder
move_uploaded_file($_FILES['ThumbnailUpload']['tmp_name'],

SITE_ROOT . '/product_images/' .
$_FILES['ThumbnailUpload']['name']);

// Update the product's information in the database
Catalog::SetThumbnail($this->mProductId,

$_FILES['ThumbnailUpload']['name']);
}

}

// If removing the product from a category ...
if (isset ($_POST['RemoveFromCategory']))
{
$target_category_id = $_POST['TargetCategoryIdRemove'];
$still_exists = Catalog::RemoveProductFromCategory(

CHAPTER 7 ■ CATALOG ADMINISTRATION 249

648XCH07a.qxd 10/25/06 10:56 PM Page 249

$this->mProductId, $target_category_id);

if ($still_exists == 0)
{
header('Location: admin.php?Page=Products&DepartmentID=' .

$this->mDepartmentId . '&CategoryID=' . $this->mCategoryId);

exit;
}

}

// If setting product display option ...
if (isset ($_POST['SetProductDisplayOption']))
{
$product_display = $_POST['ProductDisplay'];
Catalog::SetProductDisplayOption($this->mProductId, $product_display);

}

// If removing the product from catalog ...
if (isset ($_POST['RemoveFromCatalog']))
{
Catalog::DeleteProduct($this->mProductId);

header('Location: admin.php?Page=Products&DepartmentID=' .
$this->mDepartmentId . '&CategoryID=' . $this->mCategoryId);

exit;
}

// If assigning the product to another category ...
if (isset ($_POST['Assign']))
{
$target_category_id = $_POST['TargetCategoryIdAssign'];
Catalog::AssignProductToCategory($this->mProductId,

$target_category_id);
}

// If moving the product to another category ...
if (isset ($_POST['Move']))
{
$target_category_id = $_POST['TargetCategoryIdMove'];
Catalog::MoveProductToCategory($this->mProductId,
$this->mCategoryId, $target_category_id);

header('Location: admin.php?Page=ProductDetails&DepartmentID=' .
$this->mDepartmentId . '&CategoryID=' .
$target_category_id . '&ProductID=' . $this->mProductId);

CHAPTER 7 ■ CATALOG ADMINISTRATION250

648XCH07a.qxd 10/25/06 10:56 PM Page 250

exit;
}

// Get product info and show it to user
$product_info = Catalog::GetProductInfo($this->mProductId);
$this->mProductName = $product_info['name'];
$this->mProductImage = $product_info['image'];
$this->mProductThumbnail = $product_info['thumbnail'];
$this->mProductDisplay = $product_info['display'];
$product_categories = Catalog::GetCategoriesForProduct($this->mProductId);

if (count($product_categories) == 1)
$this->mRemoveFromCategoryButtonDisabled = true;

// Show the categories the product belongs to
for ($i = 0; $i < count($product_categories); $i++)
$temp1[$product_categories[$i]['category_id']] =
$product_categories[$i]['name'];

$this->mRemoveFromCategories = $temp1;
$this->mProductCategoriesString = implode(', ', $temp1);
$all_categories = Catalog::GetCategories();

for ($i = 0; $i < count($all_categories); $i++)
$temp2[$all_categories[$i]['category_id']] =
$all_categories[$i]['name'];

$this->mAssignOrMoveTo = array_diff($temp2, $temp1);

$this->mAdminProductsLink .= '&DepartmentID=' . $this->mDepartmentId .
'&CategoryID=' . $this->mCategoryId;

$this->mAdminProductTarget .= '&DepartmentID=' . $this->mDepartmentId .
'&CategoryID=' . $this->mCategoryId .
'&ProductID=' . $this->mProductId;

}
}
?>

4. Modify the admin.php page to load the admin_product componentized template:

// Choose what admin page to load ...
if ($admin_page == 'Departments')
$pageContentsCell = 'admin_departments.tpl';

elseif ($admin_page == 'Categories')
$pageContentsCell = 'admin_categories.tpl';

elseif ($admin_page == 'Products')
$pageContentsCell = 'admin_products.tpl';

CHAPTER 7 ■ CATALOG ADMINISTRATION 251

648XCH07a.qxd 10/25/06 10:56 PM Page 251

elseif ($admin_page == 'ProductDetails')
$pageContentsCell = 'admin_product.tpl';

How It Works: admin_product

Even though you can’t execute the page yet, it’s worth taking a look at the new elements the new template con-
tains.

The admin_product.tpl template contains a single form with the enctype="multipart/form-data"
attribute. This attribute is needed for uploading product pictures, and works in conjunction with the HTML code
that enables file uploading:

...
<input name="ImageUpload" type="file" value="Upload" />
<input type="submit" name="Upload" value="Upload" />

...

At the end of the admin_product.tpl template file, you’ll find a similar piece of code used for uploading the
thumbnail image of the product:

...
<input name="ThumbnailUpload" type="file" value="Upload" />
<input type="submit" name="Upload" value="Upload" />

...

The reaction to clicking these Upload buttons is implemented in the init() method from the AdminProduct
class (in presentation/smarty_plugins/function.load_admin_product.php):

// If uploading a product picture ...
if (isset ($_POST['Upload']))
{
/* Check whether we have write permission on the

product_images folder */
if (!is_writeable(SITE_ROOT . '/product_images/'))
{
echo "Can't write to the product_images folder";

exit;
}

// If the error code is 0, the first file was uploaded ok
if ($_FILES['ImageUpload']['error'] == 0)
{
/* Use the move_uploaded_file PHP function to move the file

from its temporary location to the product_images folder */
move_uploaded_file($_FILES['ImageUpload']['tmp_name'],

SITE_ROOT . '/product_images/' .
$_FILES['ImageUpload']['name']);

// Update the product's information in the database

CHAPTER 7 ■ CATALOG ADMINISTRATION252

648XCH07a.qxd 10/25/06 10:56 PM Page 252

Catalog::SetImage($this->mProductId,
$_FILES['ImageUpload']['name']);

}

// If the error code is 0, the second file was uploaded ok
if ($_FILES['ThumbnailUpload']['error'] == 0)
{
// Move the uploaded file to the product_images folder
move_uploaded_file($_FILES['ThumbnailUpload']['tmp_name'],

SITE_ROOT . '/product_images/' .
$_FILES['ThumbnailUpload']['name']);

// Update the product's information in the database
Catalog::SetThumbnail($this->mProductId,

$_FILES['ThumbnailUpload']['name']);
}

}

The $_FILES superglobal variable is a two-dimensional array that stores information about your uploaded file (or
files). If the $_FILES['ImageUpload']['error'] variable is set to 0, then the main image of the product has
uploaded successfully and must be handled. The $_FILES['ImageUpload']['tmp_name'] variable stores the
temporary file name of the uploaded file on the server, and the $_FILES['ImageUpload']['name'] variable
stores the name of the file as specified when uploaded to the server.

■Note A complete description of the $_FILES superglobal is available at http://www.php.net/
manual/en/features.file-upload.php.

The move_uploaded_file PHP function is used to move the file from the temporary location to the
product_images folder:

/* Use the move_uploaded_file PHP function to move the file
from its temporary location to the product_images folder */

move_uploaded_file($_FILES['ImageUpload']['tmp_name'],
SITE_ROOT . '/product_images/' .
$_FILES['ImageUpload']['name']);

After uploading a product picture, the file name must be stored in the database (otherwise, the file upload has no
effect):

// Update the product's information in the database
Catalog::SetImage($this->mProductId,

$_FILES['ImageUpload']['name']);

As you can see, it’s pretty simple to handle file uploads with PHP.

CHAPTER 7 ■ CATALOG ADMINISTRATION 253

648XCH07a.qxd 10/25/06 10:56 PM Page 253

Implementing the Business Tier
To implement the business tier, you’ll need to add the following methods to the Catalog class:

• DeleteProduct completely removes a product from the catalog.

• RemoveProductFromCategory is called when the Remove from category button is clicked
to unassign the product from a category.

• GetCategories returns all the categories from our catalog.

• GetProductInfo returns the product details.

• GetCategoriesForProduct is used to get the list of categories that are related to the spec-
ified product.

• SetProductDisplayOption sets the product’s display setting.

• AssignProductToCategory assigns a product to a category.

• MoveProductToCategory moves a product from one category to another.

• SetImage changes the image file name in the database for a certain product.

• SetThumbnail changes the second image file name for a certain product.

Exercise: Implementing the Business Tier Methods

Because the functionality is better expressed by the data tier functions the methods call, we’ll discuss more
about them when implementing the data tier. Add the following code to the Catalog class inside of
business/catalog.php:

// Removes a product from the product catalog
public static function DeleteProduct($productId)
{
// Build the SQL query
$sql = 'SELECT catalog_delete_product(:product_id);';
// Build the parameters array
$params = array (':product_id' => $productId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

// Unassigns a product from a category
public static function RemoveProductFromCategory($productId, $categoryId)
{

CHAPTER 7 ■ CATALOG ADMINISTRATION254

648XCH07a.qxd 10/25/06 10:56 PM Page 254

// Build the SQL query
$sql = 'SELECT catalog_remove_product_from_category(

:product_id, :category_id);';
// Build the parameters array
$params = array (':product_id' => $productId,

':category_id' => $categoryId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetOne($result, $params);

}

// Retrieves the list of categories a product belongs to
public static function GetCategories()
{
// Build the SQL query
$sql = 'SELECT * FROM catalog_get_categories();';
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result);

}

// Retrieves product info
public static function GetProductInfo($productId)
{
// Build the SQL query
$sql = 'SELECT * FROM catalog_get_product_info(:product_id);';
// Build the parameters array
$params = array (':product_id' => $productId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetRow($result, $params);

}

// Retrieves the list of categories a product belongs to
public static function GetCategoriesForProduct($productId)
{
// Build the SQL query
$sql = 'SELECT * FROM catalog_get_categories_for_product(:product_id);';
// Build the parameters array
$params = array (':product_id' => $productId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

CHAPTER 7 ■ CATALOG ADMINISTRATION 255

648XCH07a.qxd 10/25/06 10:56 PM Page 255

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

// Assigns a product to a category
public static function SetProductDisplayOption($productId, $display)
{
// Build the SQL query
$sql = 'SELECT catalog_set_product_display_option(

:product_id, :display);';
// Build the parameters array
$params = array (':product_id' => $productId,

':display' => $display);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

// Assigns a product to a category
public static function AssignProductToCategory($productId, $categoryId)
{
// Build the SQL query
$sql = 'SELECT catalog_assign_product_to_category(

:product_id, :category_id);';
// Build the parameters array
$params = array (':product_id' => $productId,

':category_id' => $categoryId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

// Moves a product from one category to another
public static function MoveProductToCategory($productId, $sourceCategoryId,

$targetCategoryId)
{
// Build the SQL query
$sql = 'SELECT catalog_move_product_to_category(:product_id,

:source_category_id, :target_category_id);';
// Build the parameters array

CHAPTER 7 ■ CATALOG ADMINISTRATION256

648XCH07a.qxd 10/25/06 10:56 PM Page 256

$params = array (':product_id' => $productId,
':source_category_id' => $sourceCategoryId,
':target_category_id' => $targetCategoryId);

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

// Changes the name of the product image file in the database
public static function SetImage($productId, $imageName)
{
// Build the SQL query
$sql = 'SELECT catalog_set_image(:product_id, :image_name);';
// Build the parameters array
$params = array (':product_id' => $productId, ':image_name' => $imageName);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

// Changes the name of the product thumbnail file in the database
public static function SetThumbnail($productId, $thumbnailName)
{
// Build the SQL query
$sql = 'SELECT catalog_set_thumbnail(:product_id, :thumbnail_name);';
// Build the parameters array
$params = array (':product_id' => $productId,

':thumbnail_name' => $thumbnailName);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

Implementing the Data Tier
In the data tier, you add the corresponding methods in the Catalog class for the business tier
methods you have just seen.

CHAPTER 7 ■ CATALOG ADMINISTRATION 257

648XCH07a.qxd 10/25/06 10:56 PM Page 257

Exercise: Adding the Data Tier Functions

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Use the query tool to execute this code, which creates the catalog_delete_product function to your
hatshop database:

-- Create catalog_delete_product function
CREATE FUNCTION catalog_delete_product(INTEGER)
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inProductId ALIAS FOR $1;

BEGIN
DELETE FROM product_category WHERE product_id = inProductId;
DELETE FROM product WHERE product_id = inProductId;

END;
$$;

The catalog_delete_product function completely removes a product from the catalog by deleting its
entries in the product_category and product tables.

4. Use the query tool to execute this code, which creates the catalog_remove_product_from_category
function in your hatshop database:

-- Create catalog_remove_product_from_category function
CREATE FUNCTION catalog_remove_product_from_category(INTEGER, INTEGER)
RETURNS SMALLINT LANGUAGE plpgsql AS $$
DECLARE
inProductId ALIAS FOR $1;
inCategoryId ALIAS FOR $2;
productCategoryRowsCount INTEGER;

BEGIN
SELECT INTO productCategoryRowsCount

count(*)
FROM product_category
WHERE product_id = inProductId;
IF productCategoryRowsCount = 1 THEN
PERFORM catalog_delete_product(inProductId);
RETURN 0;

END IF;
DELETE FROM product_category
WHERE category_id = inCategoryId AND product_id = inProductId;
RETURN 1;

END;
$$;

CHAPTER 7 ■ CATALOG ADMINISTRATION258

648XCH07a.qxd 10/25/06 10:56 PM Page 258

The catalog_remove_product_from_category function verifies how many categories the product
exists in. If the product exists in more than one category, then it just removes the product from the specified
category (ID received as a parameter). If the product is associated with a single category, it is removed
completely from the database.

5. Use the query tool to execute this code, which creates the catalog_get_categories function in your
hatshop database:

-- Create catalog_get_categories function
CREATE FUNCTION catalog_get_categories()
RETURNS SETOF department_category LANGUAGE plpgsql AS $$
DECLARE
outDepartmentCategoryRow department_category;

BEGIN
FOR outDepartmentCategoryRow IN
SELECT category_id, name, description
FROM category
ORDER BY category_id

LOOP
RETURN NEXT outDepartmentCategoryRow;

END LOOP;
END;

$$;

catalog_get_categories simply returns all the categories from your catalog.

6. Use the query tool to execute this code, which creates the product_info type and
catalog_get_product_info function in your hatshop database:

-- Create product_info type
CREATE TYPE product_info AS
(
name VARCHAR(50),
image VARCHAR(150),
thumbnail VARCHAR(150),
display SMALLINT

);

-- Create catalog_get_product_info function
CREATE FUNCTION catalog_get_product_info(INTEGER)
RETURNS product_info LANGUAGE plpgsql AS $$
DECLARE
inProductId ALIAS FOR $1;
outProductInfoRow product_info;

BEGIN
SELECT INTO outProductInfoRow

name, image, thumbnail, display
FROM product
WHERE product_id = inProductId;
RETURN outProductInfoRow;

END;
$$;

CHAPTER 7 ■ CATALOG ADMINISTRATION 259

648XCH07a.qxd 10/25/06 10:56 PM Page 259

The catalog_get_product_info function retrieves the product name, image, and thumbnail for the
product identified by the product ID ($1).

7. Use the query tool to execute this code, which creates the product_category_details type and
catalog_get_categories_for_product function in your hatshop database:

-- Create product_category_details type
CREATE TYPE product_category_details AS
(
category_id INTEGER,
department_id INTEGER,
name VARCHAR(50)

);

-- Create catalog_get_categories_for_product function
CREATE FUNCTION catalog_get_categories_for_product(INTEGER)
RETURNS SETOF product_category_details LANGUAGE plpgsql AS $$
DECLARE
inProductId ALIAS FOR $1;
outProductCategoryDetailsRow product_category_details;

BEGIN
FOR outProductCategoryDetailsRow IN
SELECT c.category_id, c.department_id, c.name
FROM category c
JOIN product_category pc

ON c.category_id = pc.category_id
WHERE pc.product_id = inProductId
ORDER BY category_id

LOOP
RETURN NEXT outProductCategoryDetailsRow;

END LOOP;
END;

$$;

The catalog_get_categories_for_product function returns a list of the categories that belong to the
specified product. Only their IDs and names are returned because this is the only information we’re inter-
ested in.

8. Use the query tool to execute this code, which creates the catalog_set_product_display_option
function in your hatshop database:

-- Create catalog_set_product_display_option function
CREATE FUNCTION catalog_set_product_display_option(INTEGER, SMALLINT)
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inProductId ALIAS FOR $1;
inDisplay ALIAS FOR $2;

BEGIN
UPDATE product SET display = inDisplay WHERE product_id = inProductId;

END;
$$;

CHAPTER 7 ■ CATALOG ADMINISTRATION260

648XCH07a.qxd 10/25/06 10:56 PM Page 260

9. Use the query tool to execute this code, which creates the catalog_assign_product_to_category
function in your hatshop database:

-- Create catalog_assign_product_to_category function
CREATE FUNCTION catalog_assign_product_to_category(INTEGER, INTEGER)
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inProductId ALIAS FOR $1;
inCategoryId ALIAS FOR $2;

BEGIN
INSERT INTO product_category (product_id, category_id)

VALUES (inProductId, inCategoryId);
END;

$$;

The catalog_assign_product_to_category function associates a product with a category by adding
a (product_id, category_id) value pair into the product_category table.

10. Use the query tool to execute this code, which creates the catalog_assign_product_to_category
function in your hatshop database:

-- Create catalog_move_product_to_category function
CREATE FUNCTION catalog_move_product_to_category(

INTEGER, INTEGER, INTEGER)
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inProductId ALIAS FOR $1;
inSourceCategoryId ALIAS FOR $2;
inTargetCategoryId ALIAS FOR $3;

BEGIN
UPDATE product_category
SET category_id = inTargetCategoryId
WHERE product_id = inProductId

AND category_id = inSourceCategoryId;
END;

$$;

The catalog_move_product_to_category function removes a product from a category and places it in
another one.

11. Use the query tool to execute this code, which creates the catalog_set_image and
catalog_set_thumbnail functions in your hatshop database:

-- Create catalog_set_image function
CREATE FUNCTION catalog_set_image(INTEGER, VARCHAR(150))
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inProductId ALIAS FOR $1;
inImage ALIAS FOR $2;

BEGIN
UPDATE product SET image = inImage WHERE product_id = inProductId;

END;
$$;

CHAPTER 7 ■ CATALOG ADMINISTRATION 261

648XCH07a.qxd 10/25/06 10:56 PM Page 261

-- Create catalog_set_thumbnail function
CREATE FUNCTION catalog_set_thumbnail(INTEGER, VARCHAR(150))
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inProductId ALIAS FOR $1;
inThumbnail ALIAS FOR $2;

BEGIN
UPDATE product
SET thumbnail = inThumbnail
WHERE product_id = inProductId;

END;
$$;

We need these functions to change the image or thumbnail name of a product when uploading a new
picture.

12. Load your product details page, and ensure everything works as it should. You have a lot of functionality to
test! Figure 7-13 shows the product details admin page in action.

Figure 7-13. Assigning a product to a new category

CHAPTER 7 ■ CATALOG ADMINISTRATION262

648XCH07a.qxd 10/25/06 10:56 PM Page 262

Summary
You’ve done quite a lot of coding in this chapter. You implemented a number of componen-
tized templates, along with their middle-tier methods and methods for the data tier. You
learned how to implement a simple authentication scheme so only administrators are allowed
to access the catalog administration page. At the conclusion of the chapter, you learned how
to upload files from the client to the server using PHP.

In the next chapter, you enter the second stage of development by implementing a
custom shopping basket into your web site.

CHAPTER 7 ■ CATALOG ADMINISTRATION 263

648XCH07a.qxd 10/25/06 10:56 PM Page 263

648XCH07a.qxd 10/25/06 10:56 PM Page 264

Phase II of Development

P A R T 2

648XCH08.qxd 10/31/06 10:07 PM Page 265

648XCH08.qxd 10/31/06 10:07 PM Page 266

The Shopping Cart

Welcome to the second stage of development! At this stage, you start improving and adding
new features to the already existing, fully functional e-commerce site.

So, what exactly can you improve? Well, the answer to this question isn’t hard to find if you
take a quick look at the popular e-commerce sites on the web. They personalize the experi-
ence for the user, provide product recommendations, remember customers’ preferences, and
boast many other features that make the site easy to remember and hard to leave without first
purchasing something.

In the first stage of development, you extensively relied on a third-party payment proces-
sor (PayPal) that supplied an integrated shopping cart, so you didn’t record any shopping cart
or order info in the database. Right now, your site isn’t capable of displaying a list of “most
wanted” products or any other information about the products that have been sold through
the web site because, at this stage, you aren’t tracking the products sold. This makes it impos-
sible to implement any of these improvements.

Obviously, saving order information in the database is your first priority. In fact, most of
the features you’ll want to implement next rely on having a record of the products sold. To
achieve this functionality, in this chapter, you’ll implement a custom shopping cart, which will
store data in the local hatshop database. This will provide you with more flexibility than the
PayPal shopping cart over which you have no control and which cannot be easily saved into
your database for further processing and analysis. With the custom shopping cart, when the
visitor clicks the Add to Cart button for a product, the product is added to the visitor’s shop-
ping cart. When the visitor clicks the View Cart button, a page like the one shown in Figure 8-1
appears.

267

C H A P T E R 8

648XCH08.qxd 10/31/06 10:07 PM Page 267

268 CHAPTER 8 ■ THE SHOPPING CART

Figure 8-1. The HatShop shopping cart

Our shopping cart will have a “Save for Later” feature, which allows the visitor to move a
shopping cart product to a separate list, in case he or she wants to buy only a part of the items
(see Figure 8-2).

Figure 8-2. The HatShop “Save for Later” feature

648XCH08.qxd 10/31/06 10:07 PM Page 268

In all the other pages except the shopping cart page, the visitor will be able to see a shop-
ping cart summary in the left part of the screen as shown in Figure 8-3.

At the end of this chapter, you’ll have a functional shopping cart, but the visitor will not
yet be able to order the products contained in it. You’ll add this functionality in the next chap-
ter, when you implement a custom checkout—the Proceed to Checkout button. When the
visitor clicks this button, the products in the shopping cart are saved as a separate order in the
database, and the visitor is redirected to a page to pay. If you integrated the PayPal shopping
cart for the first development stage, starting with the next chapter, PayPal will only be used to
handle payments, and you won’t rely on its shopping cart anymore.

Specifically, in this chapter, you’ll learn how to

• Design a shopping cart

• Add a new database table to store shopping cart records

• Create the data tier functions that work with the new table

• Implement the business layer methods

• Implement the Add to Cart and View Cart buttons (or make them work with the new
shopping cart if you already implemented them in the PayPal chapter)

• Implement the presentation layer part of the custom shopping cart

Figure 8-3. Displaying the shopping cart summary

CHAPTER 8 ■ THE SHOPPING CART 269

648XCH08.qxd 10/31/06 10:07 PM Page 269

Designing the Shopping Cart
Before starting to write the code for the shopping cart, let’s take a closer look at what you’re
going to do.

First, note that you won’t have any user personalization features at this stage of the site.
It doesn’t matter who buys your products at this point, you just want to know what products
were sold and when. When you add user customization features in the later chapters, your
task will be fairly simple: when the visitor authenticates, the visitor’s temporary (anonymous)
shopping cart will be associated with the visitor’s account. Because you work with temporary
shopping carts, even after implementing the customer account system, the visitor isn’t
required to supply additional information (log in) earlier than necessary.

Probably the best way to store shopping cart information is to generate a unique cart ID
for each shopping cart and save it on the visitor’s computer as a cookie. When the visitor clicks
the Add to Cart button, the server first verifies whether the cookie exists on the client com-
puter. If it does, the specified product is added to the existing cart. Otherwise, the server
generates another cart ID, saves it to the client’s cookie, and then adds the product to the
newly generated shopping cart.

In the previous chapter, you created the componentized templates by starting with the
presentation layer components. However, this strategy doesn’t work here because now you
need to do a bit more design work beforehand, so we’ll take the more common approach and
start with the database tier.

Storing Shopping Cart Information
You will store all the information from the shopping carts in a single table named
shopping_cart. Follow the next exercise to create the shopping_cart table.

Exercise: Creating the shopping_cart Table

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Use the query tool to execute this code, which creates the shopping_cart table in your hatshop data-
base:

-- Create shopping_cart table
CREATE TABLE shopping_cart
(
cart_id CHAR(32) NOT NULL,
product_id INTEGER NOT NULL,
quantity INTEGER NOT NULL,
buy_now BOOLEAN NOT NULL DEFAULT true,
added_on TIMESTAMP NOT NULL,
CONSTRAINT pk_cart_id_product_id PRIMARY KEY (cart_id, product_id),
CONSTRAINT fk_product_id FOREIGN KEY (product_id)

REFERENCES product (product_id)
ON UPDATE RESTRICT ON DELETE RESTRICT

);

CHAPTER 8 ■ THE SHOPPING CART270

648XCH08.qxd 10/31/06 10:07 PM Page 270

How It Works: The shopping_cart Table

Let’s look at each field in shopping_cart:

• cart_id stores a unique ID that you’ll generate for each shopping cart. This is not an integer field like other
ID columns you’ve created so far. It is a char field and will be filled with an MD5 hash of a unique ID, which
will be a 32-character string.

• product_id references the ID of an existing product.

• quantity stores the product’s shopping cart quantity.

• buy_now helps you implement the Save for Later functionality. The buy_now field is a boolean type with
the default value of true. When the customer proceeds to check out, only the products that have this value
set to true are added to the order, whereas the Save for Later products remain in the shopping cart. This
feature is useful because it allows the visitor to keep more products in the shopping cart than he or she can
afford (or wants to buy) at the moment and allows the visitor to order only a selection of the products in the
shopping cart.

• added_on will be populated with the current date when a new product is added to the cart and is useful
when deleting old shopping carts from the database.

■Note The shopping_cart table has a composite primary key formed of both cart_id and product_id
fields. This make sense because a particular product can exist only once in a particular shopping cart, so a
(cart_id, product_id) pair shouldn’t appear more than once in the table.

Implementing the Data Tier
In this section, you’ll create the usual functions that query the database for the shopping cart
operation. Before going further with the code, let’s review the functions you’ll add to the
hatshop database:

• shopping_cart_add_product adds a product to the shopping cart.

• shopping_cart_update modifies shopping cart products’ quantities.

• shopping_cart_remove_product deletes a record from the visitor’s shopping cart.

• shopping_cart_get_products gets the list of products in the specified shopping cart and
is called when you want to show the user his shopping cart.

• shopping_cart_get_saved_products gets the list of products saved in the shopping cart
to buy later and is called when the user requests to view the shopping cart details page.

• shopping_cart_get_total_amount returns the total costs of the products in the specified
product cart.

CHAPTER 8 ■ THE SHOPPING CART 271

648XCH08.qxd 10/31/06 10:07 PM Page 271

• shopping_cart_save_product_for_later saves a product to a shopping cart for later
purchase.

• shopping_cart_move_product_to_cart moves a product from the Save for Later list back
to the “main” shopping cart.

Now let’s create each method one at a time in the following exercise.

Exercise: Implementing the Functions

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Use the query tool to execute this code, which creates the shopping_cart_add_product function in your
hatshop database:

-- Create shopping_cart_add_product function
CREATE FUNCTION shopping_cart_add_product(CHAR(32), INTEGER)
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inCartId ALIAS FOR $1;
inProductId ALIAS FOR $2;
productQuantity INTEGER;

BEGIN
SELECT INTO productQuantity

quantity
FROM shopping_cart
WHERE cart_id = inCartId AND product_id = inProductId;
IF productQuantity IS NULL THEN
INSERT INTO shopping_cart(cart_id, product_id, quantity, added_on)

VALUES (inCartId, inProductId , 1, NOW());
ELSE
UPDATE shopping_cart
SET quantity = quantity + 1, buy_now = true
WHERE cart_id = inCartId AND product_id = inProductId;

END IF;
END;

$$;

The shopping_cart_add_product function is called when the visitor clicks on the Add to Cart button for
one of the products. If the selected product already exists in the shopping cart, its quantity is increased by
one; if the product doesn't exist, one unit is added to the shopping cart (a new shopping_cart record is
created).

Not surprisingly, shopping_cart_add_product receives two parameters, namely inCartId and, of
course, inProductId.

CHAPTER 8 ■ THE SHOPPING CART272

648XCH08.qxd 10/31/06 10:07 PM Page 272

The function first determines whether the product mentioned by inProductId exists in the cart referred to
by the inCartId. It does this by testing whether an (inCartId, inProductId) pair is in the
shopping_cart table. If the product is in the cart, shopping_cart_add_product updates the current
product quantity in the shopping cart by adding one unit. Otherwise, shopping_cart_add_product cre-
ates a new record for the product in shopping_cart with a default quantity of 1 but not before checking
whether the mentioned inProductId is valid.

The NOW() PostgreSQL function retrieves the current date and manually populates the added_on field.

4. Use the query tool to execute the following code, which creates the shopping_cart_update function in
your hatshop database:

-- Create shopping_cart_update function
CREATE FUNCTION shopping_cart_update(CHAR(32), INTEGER[], INTEGER[])
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inCartId ALIAS FOR $1;
inProductIds ALIAS FOR $2;
inQuantities ALIAS FOR $3;

BEGIN
FOR i IN array_lower(inQuantities, 1)..array_upper(inQuantities, 1)
LOOP
IF inQuantities[i] > 0 THEN
UPDATE shopping_cart
SET quantity = inQuantities[i], added_on = NOW()
WHERE cart_id = inCartId AND product_id = inProductIds[i];

ELSE
PERFORM shopping_cart_remove_product(inCartId, inProductIds[i]);

END IF;
END LOOP;

END;
$$;

The shopping_cart_update function is used when you want to update the quantity of one or more exist-
ing shopping cart items. This function is called when the visitor clicks the Update button.

shopping_cart_update receives as parameters two array values: inProductIds and inQuantities.
The value of inQuantities[i] represents the new quantity for the product specified by
inProductIDs[i].

If inQuantities[i] is zero or less, shopping_cart_update removes the mentioned product from the
shopping cart. Otherwise, it updates the quantity of the product in the shopping cart and also updates
added_on to accurately reflect the time the record was last modified.

Updating the added_on field is particularly useful for the administration page, when you’ll want to remove
shopping carts that haven’t been updated in a long time.

5. Use the query tool to execute this code, which creates the shopping_cart_remove_product function in
your hatshop database:

-- Create shopping_cart_remove_product function
CREATE FUNCTION shopping_cart_remove_product(CHAR(32), INTEGER)

CHAPTER 8 ■ THE SHOPPING CART 273

648XCH08.qxd 10/31/06 10:07 PM Page 273

RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inCartId ALIAS FOR $1;
inProductId ALIAS FOR $2;

BEGIN
DELETE FROM shopping_cart
WHERE cart_id = inCartId AND product_id = inProductId;

END;
$$;

The shopping_cart_remove_product function removes a product from the shopping cart when a visitor
clicks the Remove button for one of the products in the shopping cart.

6. Use the query tool to execute this code, which creates the cart_product type and shopping_cart_
get_products functions in your hatshop database:

-- Create cart_product type
CREATE TYPE cart_product AS
(
product_id INTEGER,
name VARCHAR(50),
price NUMERIC(10, 2),
quantity INTEGER,
subtotal NUMERIC(10, 2)

);

-- Create shopping_cart_get_products function
CREATE FUNCTION shopping_cart_get_products(CHAR(32))
RETURNS SETOF cart_product LANGUAGE plpgsql AS $$
DECLARE
inCartId ALIAS FOR $1;
outCartProductRow cart_product;

BEGIN
FOR outCartProductRow IN
SELECT p.product_id, p.name,

COALESCE(NULLIF(p.discounted_price, 0), p.price) AS price,
sc.quantity,
COALESCE(NULLIF(p.discounted_price, 0),

p.price) * sc.quantity AS subtotal

FROM shopping_cart sc
INNER JOIN product p

ON sc.product_id = p.product_id
WHERE sc.cart_id = inCartId AND buy_now

LOOP
RETURN NEXT outCartProductRow;

END LOOP;
END;

$$;

CHAPTER 8 ■ THE SHOPPING CART274

648XCH08.qxd 10/31/06 10:07 PM Page 274

The shopping_cart_get_products function returns the products in the shopping cart mentioned by the
inCartId parameter. Because the shopping_cart table only stores the product_id for each product it
stores, you need to join the shopping_cart and product tables to get the information you need.

Note that some of the products can have discounted prices. When a product has a discounted price (which
happens when its discounted_price value is different from 0), then its discounted price should be used
for calculations. Otherwise, its list price should be used. The following expression returns
discounted_price if different from 0; otherwise, it returns price.

COALESCE(NULLIF(p.discounted_price, 0), p.price)

■Note This is the first time you’ve worked with the COALESCE and NULLIF PostgreSQL conditional
expressions, so let’s see what they do. COALESCE can receive any number of parameters, and it returns
the first one that is not NULL. NULLIF receives two parameters and returns NULL if they’re equal; otherwise,
it returns the first of the parameters. In our case, we use NULLIF to test whether the discounted_price
is 0; if this condition is true, NULLIF return false, and the COALESCE function will return p.price. If
discounted_price is different from 0, the whole expression returns discounted_price.

7. Use the query tool to execute this code, which creates the cart_saved_product type and
shopping_cart_get_saved_products functions in your hatshop database:

-- Create cart_saved_product type
CREATE TYPE cart_saved_product AS
(
product_id INTEGER,
name VARCHAR(50),
price NUMERIC(10, 2)

);

-- Create shopping_cart_get_saved_products function
CREATE FUNCTION shopping_cart_get_saved_products(CHAR(32))
RETURNS SETOF cart_saved_product LANGUAGE plpgsql AS $$
DECLARE
inCartId ALIAS FOR $1;
outCartSavedProductRow cart_saved_product;

BEGIN
FOR outCartSavedProductRow IN
SELECT p.product_id, p.name,

COALESCE(NULLIF(p.discounted_price, 0), p.price) AS price
FROM shopping_cart sc
INNER JOIN product p

ON sc.product_id = p.product_id
WHERE sc.cart_id = inCartId AND NOT buy_now

CHAPTER 8 ■ THE SHOPPING CART 275

648XCH08.qxd 10/31/06 10:07 PM Page 275

LOOP
RETURN NEXT outCartSavedProductRow;

END LOOP;
END;

$$;

The shopping_cart_get_saved_products function returns the products saved for later in the shopping
cart specified by the inCartId parameter.

8. Use the query tool to execute this code, which creates the shopping_cart_get_total_amount function
in your hatshop database:

-- Create shopping_cart_get_total_amount function
CREATE FUNCTION shopping_cart_get_total_amount(CHAR(32))
RETURNS NUMERIC(10, 2) LANGUAGE plpgsql AS $$
DECLARE
inCartId ALIAS FOR $1;
outTotalAmount NUMERIC(10, 2);

BEGIN
SELECT INTO outTotalAmount

SUM(COALESCE(NULLIF(p.discounted_price, 0), p.price)
* sc.quantity)

FROM shopping_cart sc
INNER JOIN product p

ON sc.product_id = p.product_id
WHERE sc.cart_id = inCartId AND sc.buy_now;
RETURN outTotalAmount;

END;
$$;

The shopping_cart_get_total_amount function returns the total value of the products in the shopping
cart. This is called when displaying the total amount for the shopping cart. If the cart is empty,
total_amount will be 0.

9. Use the query tool to execute this code, which creates the shopping_cart_save_product_for_later
function in your hatshop database:

-- Create shopping_cart_save_product_for_later function
CREATE FUNCTION shopping_cart_save_product_for_later(CHAR(32), INTEGER)
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inCartId ALIAS FOR $1;
inProductId ALIAS FOR $2;

BEGIN
UPDATE shopping_cart
SET buy_now = false, quantity = 1
WHERE cart_id = inCartId AND product_id = inProductId;

END;
$$;

CHAPTER 8 ■ THE SHOPPING CART276

648XCH08.qxd 10/31/06 10:07 PM Page 276

The shopping_cart_save_product_for_later function saves a shopping cart product to the Save for
Later list so the visitor can buy it later (the product isn’t sent to checkout when placing the order). This is
done by setting the value of the buy_now field to false.

10. Use the query tool to execute this code, which creates the shopping_cart_move_product_to_cart
function in your hatshop database:

-- Create shopping_cart_move_product_to_cart function
CREATE FUNCTION shopping_cart_move_product_to_cart(CHAR(32), INTEGER)
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inCartId ALIAS FOR $1;
inProductId ALIAS FOR $2;

BEGIN
UPDATE shopping_cart
SET buy_now = true, added_on = NOW()
WHERE cart_id = inCartId AND product_id = inProductId;

END;
$$;

The shopping_cart_move_product_to_cart function sets a product’s buy_now state to true, so the visitor
can buy the product when placing the order.

Implementing the Business Tier
To implement the business tier, you’ll need to create the usual methods that call the data
object layer methods you’ve just written, and you’ll add some new ones that manage business
logic.

Exercise: Implementing the Shopping Cart Business Logic

1. First, add the following two lines at the end of your include/config.php file. These constants are used
to differentiate between current shopping cart items and items that are saved for later:

// Shopping cart item types
define('GET_CART_PRODUCTS', 1);
define('GET_CART_SAVED_PRODUCTS', 2);

2. Include a reference to shopping_cart.php in include/app_top.php:

// Load Business Tier
require_once BUSINESS_DIR . 'catalog.php';
require_once BUSINESS_DIR . 'shopping_cart.php';

3. Create a new file called shopping_cart.php in the business folder. Add the following code to the file,
and then we’ll comment on it in the “How It Works” section:

CHAPTER 8 ■ THE SHOPPING CART 277

648XCH08.qxd 10/31/06 10:07 PM Page 277

<?php
// Business tier class for the shopping cart
class ShoppingCart
{
// Stores the visitor's Cart ID
private static $_mCartId;

// Private constructor to prevent direct creation of object
private function __construct()
{
}

/* This will be called by GetCartId to ensure we have the
visitor's cart ID in the visitor's session in case
$_mCartID has no value set */

public static function SetCartId()
{
// If the cart ID hasn't already been set ...
if (self::$_mCartId == '')
{
// If the visitor's cart ID is in the session, get it from there
if (isset ($_SESSION['cart_id']))
{
self::$_mCartId = $_SESSION['cart_id'];

}
// If not, check if the cart ID was saved as a cookie
elseif (isset ($_COOKIE['cart_id']))
{
// Save the cart ID from the cookie
self::$_mCartId = $_COOKIE['cart_id'];
$_SESSION['cart_id'] = self::$_mCartId;

// Regenerate cookie to be valid for 7 days (604800 seconds)
setcookie('cart_id', self::$_mCartId, time() + 604800);

}
else
{
/* Generate cart id and save it to the $_mCartId class member,

the session and a cookie (on subsequent requests $_mCartId
will be populated from the session) */

self::$_mCartId = md5(uniqid(rand(), true));

// Store cart id in session
$_SESSION['cart_id'] = self::$_mCartId;

// Cookie will be valid for 7 days (604800 seconds)
setcookie('cart_id', self::$_mCartId, time() + 604800);

}

CHAPTER 8 ■ THE SHOPPING CART278

648XCH08.qxd 10/31/06 10:07 PM Page 278

}
}

// Returns the current visitor's cart id
public static function GetCartId()
{
// Ensure we have a cart id for the current visitor
if (!isset (self::$_mCartId))
self::SetCartId();

return self::$_mCartId;
}

// Adds product to the shopping cart
public static function AddProduct($productId)
{
// Build the SQL query
$sql = 'SELECT shopping_cart_add_product(:cart_id, :product_id);';
// Build the parameters array
$params = array (':cart_id' => self::GetCartId(),

':product_id' => $productId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

/* Updates the shopping cart with new product quantities
($productId and $quantity are arrays that contain product ids
and their respective quantities) */

public static function Update($productId, $quantity)
{
// Build the SQL query
$sql = 'SELECT shopping_cart_update(:cart_id, :product_id, :quantity);';
// Build the parameters array
$params = array (':cart_id' => self::GetCartId(),

':product_id' => '{' . implode(', ', $productId) . '}',
':quantity' => '{' . implode(', ', $quantity) . '}');

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

CHAPTER 8 ■ THE SHOPPING CART 279

648XCH08.qxd 10/31/06 10:07 PM Page 279

// Removes product from shopping cart
public static function RemoveProduct($productId)
{
// Build the SQL query
$sql = 'SELECT shopping_cart_remove_product(:cart_id, :product_id);';
// Build the parameters array
$params = array (':cart_id' => self::GetCartId(),

':product_id' => $productId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

// Save product to the Save for Later list
public static function SaveProductForLater($productId)
{
// Build the SQL query
$sql = 'SELECT shopping_cart_save_product_for_later(

:cart_id, :product_id);';
// Build the parameters array
$params = array (':cart_id' => self::GetCartId(),

':product_id' => $productId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

// Get product from the Save for Later list back to the cart
public static function MoveProductToCart($productId)
{
// Build the SQL query
$sql = 'SELECT shopping_cart_move_product_to_cart(

:cart_id, :product_id);';
// Build the parameters array
$params = array (':cart_id' => self::GetCartId(),

':product_id' => $productId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

CHAPTER 8 ■ THE SHOPPING CART280

648XCH08.qxd 10/31/06 10:07 PM Page 280

// Gets shopping cart products
public static function GetCartProducts($cartProductsType)
{
$sql = '';
// If retrieving "active" shopping cart products ...
if ($cartProductsType == GET_CART_PRODUCTS)
{
// Build the SQL query
$sql = 'SELECT * FROM shopping_cart_get_products(:cart_id);';

}
// If retrieving products saved for later ...
elseif ($cartProductsType == GET_CART_SAVED_PRODUCTS)
{
// Build the SQL query
$sql = 'SELECT * FROM shopping_cart_get_saved_products(:cart_id);';

}
else
trigger_error($cartProductsType. ' value unknown', E_USER_ERROR);

// Build the parameters array
$params = array (':cart_id' => self::GetCartId());
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

/* Gets total amount of shopping cart products
(not including the ones that are being saved for later) */

public static function GetTotalAmount()
{
// Build the SQL query
$sql = 'SELECT shopping_cart_get_total_amount(:cart_id);';
// Build the parameters array
$params = array (':cart_id' => self::GetCartId());
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetOne($result, $params);

}
}
?>

CHAPTER 8 ■ THE SHOPPING CART 281

648XCH08.qxd 10/31/06 10:07 PM Page 281

How It Works: The Business Tier Part of the Shopping Cart

When a visitor adds a product or requests any shopping cart operation, you’ll have to generate a shopping cart ID
for the visitor if he doesn’t have one. You take care of this in the SetCartId method in the ShoppingCart class
to ensure that the visitor’s cart ID is saved in the $_mCartID member of the ShoppingCart class. The shopping
cart ID is cached in the visitor’s session and in a persistent cookie.

The function starts by verifying that the $_mCartId member was already set, in which case, we don’t need to
read it from external sources:

public static function SetCartId()
{
// If the cart ID hasn't already been set ...
if (self::$_mCartId == '')
{

If we don’t have the ID in the member variable, the next place to look is the visitor’s session:

// If the visitor's cart ID is in the session, get it from there
if (isset ($_SESSION['cart_id']))
{
self::$_mCartId = $_SESSION['cart_id'];

}

If the ID couldn’t be found in the session either, we check whether it was saved as a cookie. If yes, we save the
value both to the session and to the $_mCartId member, and we regenerate the cookie to reset its expiration
date:

// If not, check if the cart ID was saved as a cookie
elseif (isset ($_COOKIE['cart_id']))
{
// Save the cart ID from the cookie
self::$_mCartId = $_COOKIE['cart_id'];
$_SESSION['cart_id'] = self::$_mCartId;

// Regenerate cookie to be valid for 7 days (604800 seconds)
setcookie('cart_id', self::$_mCartId, time() + 604800);

}

Finally, if the cart ID can’t be found anywhere, a new one is generated and saved to the session, to the
$_mCartId member, and to the persistent cookie:

else
{
/* Generate cart id and save it to the $_mCartId class member,

the session and a cookie (on subsequent requests $_mCartId
will be populated from the session) */

self::$_mCartId = md5(uniqid(rand(), true));

// Store cart id in session
$_SESSION['cart_id'] = self::$_mCartId;

CHAPTER 8 ■ THE SHOPPING CART282

648XCH08.qxd 10/31/06 10:07 PM Page 282

// Cookie will be valid for 7 days (604800 seconds)
setcookie('cart_id', self::$_mCartId, time() + 604800);

}
}

}

Three functions are used to generate the cart ID: md5, uniqid, and rand. The call to
md5(uniqid(rand(),true)) generates a unique, difficult-to-predict, 32-byte value, which represents the cart ID.

■Note If you’re interested to know the details about generating the cart ID, here they are. The md5
function uses the MD5 Message-Digest Algorithm to calculate the hash value of the value it receives as
parameter; it always returns a 32.The uniqid function returns a unique identifier based on the current time
in microseconds; its first parameter is the prefix to be appended to its generated value, in this case, the
rand() function that returns a pseudo-random value between 0 and RAND_MAX, which is platform depend-
ent. If the second parameter of uniqid is true, uniqid adds an additional combined LCG (combined Linear
Congruential Generator) entropy at the end of the return value, which should make the results even “more
unique.”

In short, uniquid(rand(), true) generates a “very unique” value, which is passed through md5 to ensure that
it becomes a random sequence of characters that is 32 characters long.

The SetCartId method is used only by the GetCartId method that returns the cart ID. GetCartID first checks
to see whether _mCartId has been set, and if not, it calls SetCartId before returning the value of $_mCartId:

// Returns the current visitor's cart id
public static function GetCartId()
{
// Ensure we have a cart id for the current visitor
if (!isset (self::$_mCartId))
self::SetCartId();

return self::$_mCartId;
}

Let’s also take a look at the GetCartProducts method. This method returns the products in the shopping cart. It
receives $cartProductsType as a parameter, which determines whether you’re looking for the current shopping
cart products or for the products saved for later.

If $cartProductsType is equal to the GET_CART_PRODUCTS constant, GetCartProducts will return the
shopping cart products. If the $cartProductsType is equal to the GET_CART_SAVED_PRODUCTS constant,
GetCartProducts will return the Save for Later products. If $cartProductsType is neither GET_CART_
PRODUCTS nor GET_CART_SAVED_PRODUCTS, the method will raise an error.

All the other business tier methods you’ve written basically call their associated data tier functions to perform the
various shopping cart tasks.

CHAPTER 8 ■ THE SHOPPING CART 283

648XCH08.qxd 10/31/06 10:07 PM Page 283

Implementing the Presentation Tier
Now let’s build the user interface (UI) part of the shopping cart. After updating the storefront,
you’ll have Add to Cart buttons for each product and a View Cart link in the cart summary box
in the left part of the page. If the visitor’s cart is empty, the link isn’t displayed anymore, as you
can see in Figure 8-4.

Figure 8-4. The View Cart link doesn’t show up if the cart is empty.

If you added PayPal integration as presented in Chapter 6, you’ll already have these
buttons on your site, and you’ll update their functionality here.

When clicking on View Cart, the shopping cart componentized template (which you’ll
build later) is loaded in index.tpl. You can see this componentized component in action in
Figure 8-1, shown earlier.

The mechanism for loading the shopping cart componentized template is the same one
you already used in index.php to load other components. When the Add to Cart button is
clicked, index.php is reloaded with an additional parameter (CartAction) in the query string:

http://localhost/hatshop/index.php?CartAction=1&ProductID=10

When clicking on View Cart, the CartAction parameter added to the query string doesn’t
take any value.

The shopping cart will have five cart actions, which are described using the following
self-explanatory constants in the configuration file (include/config.php): ADD_PRODUCT,
REMOVE_PRODUCT, UPDATE_PRODUCTS_QUANTITIES, SAVE_PRODUCT_FOR_LATER, and
MOVE_PRODUCT_TO_CART.

CHAPTER 8 ■ THE SHOPPING CART284

648XCH08.qxd 10/31/06 10:07 PM Page 284

Before moving on, let’s recap the main steps you’ll take to implement the whole UI of the
shopping cart:

1. Modify the Add to Cart buttons to use the custom shopping cart.

2. Add a “shopping cart summary” box to index.tpl instead of the View Cart button.

3. Modify index.php to recognize the CartAction query string parameter.

4. Implement the cart_details componentized template.

Updating the Add to Cart Buttons
You need to change the code of products_list.tpl so that each displayed product includes
an Add to Cart button with a link like the ones shown earlier (a link to index.php with an
additional CartAction parameter in the query string).

Exercise: Adding Products to the New Shopping Cart

1. Add the following code at the end of include/config.php:

// Cart actions
define('ADD_PRODUCT', 1);
define('REMOVE_PRODUCT', 2);
define('UPDATE_PRODUCTS_QUANTITIES', 3);
define('SAVE_PRODUCT_FOR_LATER', 4);
define('MOVE_PRODUCT_TO_CART', 5);

2. If you implemented the PayPal shopping cart, you need to change the Add to Cart buttons to link to the Hat-
Shop web site instead of PayPal. Open presentation/templates/products_list.tpl, and replace
the code that calls the OpenPayPalWindow() function:

<input type="button" name="add_to_cart" value="Add to Cart"
onclick="{$products_list->mProducts[k].paypal}" />

with the following code:

<input type="button" name="add_to_cart" value="Add to Cart"
onclick="javascript:window.location=
'{$products_list->mProducts[k].add_to_cart|prepare_link:"http"}';" />

3. Open presentation/smarty_plugins/function.load_products_list.php; find the following
code from the init() method of the ProductList class that builds PayPal links:

// Create the PayPal link
$this->mProducts[$i]['paypal'] =
'JavaScript:OpenPayPalWindow("' .
'https://www.paypal.com/cgi-bin/webscr?' .
'cmd=_cart&business=youremail@example.com' .
'&item_name=' . rawurlencode($this->mProducts[$i]['name']) .
'&amount=' .

CHAPTER 8 ■ THE SHOPPING CART 285

648XCH08.qxd 10/31/06 10:07 PM Page 285

(($this->mProducts[$i]['discounted_price'] == 0) ?
$this->mProducts[$i]['price'] :
$this->mProducts[$i]['discounted_price']) .
'&currency=USD&add=1&return=www.example.com' .
'&cancel_return=www.example.com")';

Replace it with the following code that builds the Add to Cart links for our shopping cart:

// Create the Add to Cart link
$this->mProducts[$i]['add_to_cart'] = $this->mProducts[$i]['link'] .

'&CartAction=' . ADD_PRODUCT;

4. Let’s also create Add to Cart links in product.tpl. First, add the following highlighted code to
presentation/templates/product.tpl, just before the Continue Shopping button:

<input type="button" name="add_to_cart" value="Add to Cart"
onclick="window.location=
'{$product->mAddToCartLink|prepare_link:"http"}';" />

<input type="button" value="Continue Shopping"
onclick="window.location='{$product->mPageLink|prepare_link:"http"}';" />

5. Open presentation/smarty_plugins/function.load_product.php, and add the
$mAddToCartLink member to the Product class:

// Public variables to be used in Smarty template
public $mProduct;
public $mPageLink = 'index.php';
public $mAddToCartLink;

6. In the same file, add the following code at the end of the init() method of the Product class. This
creates the link for the Add to Cart button:

$this->mAddToCartLink = 'index.php?ProductID=' . $this->_mProductId .
'&CartAction=' . ADD_PRODUCT;

How It Works: Adding Products Links

You created Add to Cart buttons that link to index.php with an additional CartAction parameter to the original
query string. After making this change, execute the page to make sure you have your button in place, although you
can’t really test how they work until finishing the presentation tier. If you browse now to your favorite department,
and click the Add to Cart button of one of the products, index.php is reloaded with the additional CartAction
parameter appended at the beginning of the query string: http://localhost/hatshop/
index.php?CartAction=1&ProductID=10.

At this moment, this links gets you to the product details page because your site doesn’t know yet how to interpret
the CartAction query string parameter. The value of the CartAction parameter represents the value of one of
the constants you just added to include/config.php.

CHAPTER 8 ■ THE SHOPPING CART286

648XCH08.qxd 10/31/06 10:07 PM Page 286

Displaying the Cart Summary in the Main Page
Instead of PayPal’s View Cart buttons, we want to have a cart summary component with a view
details link, as shown in the screenshots at the beginning of this chapter.

Now follow the steps to implement the cart_summary componentized template by follow-
ing the steps of the exercise.

Exercise: Displaying the Cart Summary

1. Let’s start by removing the View Cart button. Locate and delete the following code in presentation/
templates/index.tpl (feel free to also remove the OpenPayPalWindow function completely):

<div class="left_box" id="view_cart">
<input type="button" name="view_cart" value="View Cart"
onclick="JavaScript:OpenPayPalWindow("...")" />

</div>

2. In the same file, add a reference to the cart summary component:

{include file="departments_list.tpl"}
{include file="$categoriesCell"}
{include file="search_box.tpl"}
{include file="$cartSummaryCell"}

3. Open index.php, and update it as highlighted in the following code snippet. This way, index.php will rec-
ognize the CartAction query string parameter.

// Define the template file for the categories cell
$categoriesCell = 'blank.tpl';

// Define the template file for the cart summary cell
$cartSummaryCell = 'blank.tpl';

// Load department details if visiting a department
if (isset ($_GET['DepartmentID']))
{
$pageContentsCell = 'department.tpl';
$categoriesCell = 'categories_list.tpl';

}

// Load search result page if we're searching the catalog
if (isset ($_GET['Search']))
$pageContentsCell = 'search_results.tpl';

// Load product details page if visiting a product
if (isset ($_GET['ProductID']))
$pageContentsCell = 'product.tpl';

if (isset ($_GET['CartAction']))
{

CHAPTER 8 ■ THE SHOPPING CART 287

648XCH08.qxd 10/31/06 10:07 PM Page 287

$pageContentsCell = 'cart_details.tpl';
}
else
$cartSummaryCell = 'cart_summary.tpl';

// Assign a template file to the cart summary cell
$page->assign('cartSummaryCell', $cartSummaryCell);

// Assign a template file to the page contents cell
$page->assign('pageContentsCell', $pageContentsCell);

4. Create a new file named presentation/smarty_plugins/function.load_cart_summary.php,
and add the following code to it:

<?php
// Plugin functions inside plugin files must be named: smarty_type_name
function smarty_function_load_cart_summary($params, $smarty)
{
// Create CartSummary object
$cart_summary = new CartSummary();

// Assign template variable
$smarty->assign($params['assign'], $cart_summary);

}

// Class that deals with managing the shopping cart summary
class CartSummary
{
// Public variables to be used in Smarty template
public $mTotalAmount;
public $mItems;
public $mEmptyCart;

// Class constructor
public function __construct()
{
// Calculate the total amount for the shopping cart
$this->mTotalAmount = ShoppingCart::GetTotalAmount();

// Get shopping cart products
$this->mItems = ShoppingCart::GetCartProducts(GET_CART_PRODUCTS);

if (empty($this->mItems))
$this->mEmptyCart = true;

else
$this->mEmptyCart = false;

}
}
?>

CHAPTER 8 ■ THE SHOPPING CART288

648XCH08.qxd 10/31/06 10:07 PM Page 288

5. Create a new file in the presentation/templates folder named cart_summary.tpl, and write the fol-
lowing code to it:

{* cart_summary.tpl *}
{load_cart_summary assign="cart_summary"}
{* Start cart summary *}
<div class="left_box" id="cart_summary_box">
<p>Cart Summary</p>

{if $cart_summary->mEmptyCart}
Your shopping cart is empty!

{else}
<ol class="cart_items_list">
{section name=cCartSummary loop=$cart_summary->mItems}

{$cart_summary->mItems[cCartSummary].quantity} x
{$cart_summary->mItems[cCartSummary].name}

{/section}

${$cart_summary->mTotalAmount}
(View details)

{/if}
</div>
{* End cart summary *}

6. Add the following styles to hatshop.css:

#cart_summary_box
{
border: 1px solid #efba00;

}
#cart_summary_box p
{
background: #efba00;

}
.cart_empty
{
display: block;
text-align: center;
margin: 10px;

}
.cart_items_list
{
border-bottom: 1px solid #000000;
padding: 3px;

}
.cart_items_total

CHAPTER 8 ■ THE SHOPPING CART 289

648XCH08.qxd 10/31/06 10:07 PM Page 289

{
display: block;
font-weight: bold;
margin-left: 8px;

}

How It Works: Displaying the Cart Summary

If you reload HatShop, you’ll now see the cart summary box on the left side of the page. At this point, you still can’t
add new products to your cart yet because you need to create the cart details page. You’ll be able to fully test your
cart summary component after you implement the cart details page in the next exercise.

Displaying the Cart Details
Right now, clicking on the Add to Cart or View Cart buttons generates an error because you
haven’t written the cart_details componentized template yet (this displays the visitor’s shop-
ping cart details). To create the new componentized template, you first create a new template
named cart_details.tpl in the Templates folder. Next, you create the function.load_
cart_details.php file that will keep your function plugin and CartDetails class behind
the cart_details.tpl template.

Exercise: Creating the shopping_cart Template

1. Update index.php to avoid saving the page_link session item (used for building the Continue Shopping
links) when visiting the shopping cart:

/* If not visiting a product page, save the link to the current page
in the page_link session variable; it will be used to create the
Continue Shopping link in the product details page and the links
to product details pages */

if (!isset ($_GET['ProductID']) && !isset ($_GET['CartAction']))
$_SESSION['page_link'] = substr(getenv('REQUEST_URI'),

strrpos(getenv('REQUEST_URI'), '/') + 1,
strlen(getenv('REQUEST_URI')) - 1);

2. Create a new file named presentation/smarty_plugins/function.load_cart_details.php,
and add the following code to it:

<?php
// Plugin functions inside plugin files must be named: smarty_type_name
function smarty_function_load_cart_details($params, $smarty)
{

$cart_details = new CartDetails();
$cart_details->init();

CHAPTER 8 ■ THE SHOPPING CART290

648XCH08.qxd 10/31/06 10:07 PM Page 290

// Assign template variable
$smarty->assign($params['assign'], $cart_details);

}

// Class that deals with managing the shopping cart
class CartDetails
{
// Public variables available in smarty template
public $mCartProducts;
public $mSavedCartProducts;
public $mTotalAmount;
public $mIsCartNowEmpty = 0; // Is the shopping cart empty?
public $mIsCartLaterEmpty = 0; // Is the 'saved for later' list empty?
public $mCartReferrer = 'index.php';
public $mCartDetailsTarget;

// Private attributes
private $_mProductId;
private $_mCartAction;

// Class constructor
public function __construct()
{
// Setting the "Continue shopping" button target
if (isset ($_SESSION['page_link']))
$this->mCartReferrer = $_SESSION['page_link'];

if (isset ($_GET['CartAction']))
$this->mCartAction = $_GET['CartAction'];

else
trigger_error('CartAction not set', E_USER_ERROR);

// These cart operations require a valid product id
if ($this->mCartAction == ADD_PRODUCT ||

$this->mCartAction == REMOVE_PRODUCT ||
$this->mCartAction == SAVE_PRODUCT_FOR_LATER ||
$this->mCartAction == MOVE_PRODUCT_TO_CART)

if (isset ($_GET['ProductID']))
$this->mProductId = $_GET['ProductID'];

else
trigger_error('ProductID must be set for this type of request',

E_USER_ERROR);

$this->mCartDetailsTarget = 'index.php?CartAction=' .
UPDATE_PRODUCTS_QUANTITIES;

}

CHAPTER 8 ■ THE SHOPPING CART 291

648XCH08.qxd 10/31/06 10:07 PM Page 291

public function init()
{
switch ($this->mCartAction)
{
case ADD_PRODUCT:
ShoppingCart::AddProduct($this->mProductId);
header('Location: ' . $this->mCartReferrer);

break;
case REMOVE_PRODUCT:
ShoppingCart::RemoveProduct($this->mProductId);

break;
case UPDATE_PRODUCTS_QUANTITIES:
ShoppingCart::Update($_POST['productID'], $_POST['quantity']);

break;
case SAVE_PRODUCT_FOR_LATER:
ShoppingCart::SaveProductForLater($this->mProductId);

break;
case MOVE_PRODUCT_TO_CART:
ShoppingCart::MoveProductToCart($this->mProductId);

break;
default:
// Do nothing
break;

}

// Calculate the total amount for the shopping cart
$this->mTotalAmount = ShoppingCart::GetTotalAmount();

// Get shopping cart products
$this->mCartProducts =
ShoppingCart::GetCartProducts(GET_CART_PRODUCTS);

// Gets the Saved for Later products
$this->mSavedCartProducts =
ShoppingCart::GetCartProducts(GET_CART_SAVED_PRODUCTS);

// Check whether we have an empty shopping cart
if (count($this->mCartProducts) == 0)
$this->mIsCartNowEmpty = 1;

// Check whether we have an empty Saved for Later list

CHAPTER 8 ■ THE SHOPPING CART292

648XCH08.qxd 10/31/06 10:07 PM Page 292

if (count($this->mSavedCartProducts) == 0)
$this->mIsCartLaterEmpty = 1;

// Build the links for cart actions
for ($i = 0; $i < count($this->mCartProducts); $i++)
{
$this->mCartProducts[$i]['save'] = 'index.php?ProductID=' .
$this->mCartProducts[$i]['product_id'] .
'&CartAction=' . SAVE_PRODUCT_FOR_LATER;

$this->mCartProducts[$i]['remove'] = 'index.php?ProductID=' .
$this->mCartProducts[$i]['product_id'] .
'&CartAction=' . REMOVE_PRODUCT;

}

for ($i = 0; $i < count($this->mSavedCartProducts); $i++)
{
$this->mSavedCartProducts[$i]['move'] = 'index.php?ProductID=' .
$this->mSavedCartProducts[$i]['product_id'] .
'&CartAction=' . MOVE_PRODUCT_TO_CART;

$this->mSavedCartProducts[$i]['remove'] = 'index.php?ProductID=' .
$this->mSavedCartProducts[$i]['product_id'] .
'&CartAction=' . REMOVE_PRODUCT;

}
}

}
?>

3. Create a new file named cart_details.tpl in the presentation/templates folder, and add the fol-
lowing code to it:

{* cart_details.tpl *}
{load_cart_details assign="cart_details"}
{if ($cart_details->mIsCartNowEmpty == 1)}
Your shopping cart is empty!

{else}
These are the products in your shopping cart:

<form method="post"
action="{$cart_details->mCartDetailsTarget|prepare_link:"http"}">
<table>
<tr>
<th>Product Name</th>
<th>Price</th>
<th>Quantity</th>
<th>Subtotal</th>

CHAPTER 8 ■ THE SHOPPING CART 293

648XCH08.qxd 10/31/06 10:07 PM Page 293

<th> </th>
</tr>

{section name=cCart loop=$cart_details->mCartProducts}
<tr>
<td>
<input name="productID[]" type="hidden"
value="{$cart_details->mCartProducts[cCart].product_id}" />
{$cart_details->mCartProducts[cCart].name}

</td>
<td>${$cart_details->mCartProducts[cCart].price}</td>
<td>
<input type="text" name="quantity[]" size="10"
value="{$cart_details->mCartProducts[cCart].quantity}" />

</td>
<td>${$cart_details->mCartProducts[cCart].subtotal}</td>
<td align="right">
<input type="button" name="saveForLater" value="Save for later"
onclick="window.location=
'{$cart_details->mCartProducts[cCart].save|prepare_link}';" />

<input type="button" name="remove" value="Remove"
onclick="window.location=
'{$cart_details->mCartProducts[cCart].remove|prepare_link}';" />

</td>
</tr>

{/section}
</table>
<table>
<tr>
<td class="cart_total">
Total amount:
${$cart_details->mTotalAmount}

</td>
<td class="cart_total" align="right">
<input type="submit" name="update" value="Update" />

</td>
</tr>

</table>
</form>
{/if}
{if ($cart_details->mIsCartLaterEmpty == 0)}

Saved products to buy later:

<table>
<tr>
<th>Product Name</th>
<th>Price</th>

CHAPTER 8 ■ THE SHOPPING CART294

648XCH08.qxd 10/31/06 10:07 PM Page 294

<th> </th>
</tr>
{section name=cSavedCart loop=$cart_details->mSavedCartProducts}
<tr>
<td>{$cart_details->mSavedCartProducts[cSavedCart].name}</td>
<td>
${$cart_details->mSavedCartProducts[cSavedCart].price}

</td>
<td align="right">
<input type="button" name="moveToCart" value="Move to cart"
onclick="window.location=
'{$cart_details->mSavedCartProducts[cSavedCart].move|prepare_link}';"

/>
<input type="button" name="remove" value="Remove"
onclick="window.location=
'{$cart_details->mSavedCartProducts[cSavedCart].remove|prepare_link}';"
/>

</td>
</tr>
{/section}

</table>
{/if}

<input type="button" name="continueShopping" value="Continue Shopping"
onclick="window.location='{$cart_details->mCartReferrer}';" />

4. Add the following styles to hatshop.css:

.cart_total
{
background: #ffffff;
border: none;

}

You just finished the visitor’s part of the code for this chapter, so now it’s time to try it out and make sure everything
works as expected. Test it by adding products to the shopping cart, changing the quantity, and removing items.

How It Works: The Shopping Cart

The actions that the shopping cart can execute are defined by the following constants defined in include/
config.php: ADD_PRODUCT, REMOVE_PRODUCT, UPDATE_PRODUCTS_QUANTITIES, SAVE_PRODUCT_
FOR_LATER, and MOVE_PRODUCT_TO_CART. Note that we didn’t define any variable for viewing the shopping
cart, so if CartAction does not take any value or its value is not equal to one of the action variables, it will
simply display the shopping cart content.

Every shopping cart action, except viewing and updating the shopping cart, relies on the ProductID query string
parameter (an error is raised if it isn’t set). If the proper conditions are met, the business tier method that corre-
sponds to the visitor’s action is called.

CHAPTER 8 ■ THE SHOPPING CART 295

648XCH08.qxd 10/31/06 10:07 PM Page 295

Administering the Shopping Cart
Now that you’ve finished writing the shopping cart, there are two more things you need to take
into account, both related to administration issues:

• How to delete from the catalog a product that exists in shopping carts.

• How to count or remove old shopping cart elements by building a simple shopping cart
administration page. This is important because without this feature, the shopping_cart
table keeps growing, filled with old temporary (and useless) carts.

Deleting Products Residing in the Shopping Cart
The catalog administration pages enable you to completely delete products from the catalog.
Before removing a product, you should also remove its appearances in visitors’ shopping carts.

Update the catalog_delete_product function from the hatshop database by following
these steps:

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window
should appear.

3. Use the query tool to execute this code, which updates the catalog_delete_product
function from your hatshop database:

-- Updates catalog_delete_product function
CREATE OR REPLACE FUNCTION catalog_delete_product(INTEGER)
RETURNS VOID LANGUAGE plpgsql AS $$

DECLARE
inProductId ALIAS FOR $1;

BEGIN
DELETE FROM product_category WHERE product_id = inProductId;
DELETE FROM shopping_cart WHERE product_id = inProductId;
DELETE FROM product WHERE product_id = inProductId;

END;
$$;

Building the Shopping Cart Admin Page
The second problem with the shopping cart is that at this moment no mechanism exists
to delete the old records from the shopping_cart table. On a high-activity web site, the
shopping_cart table can grow very large.

With the current version of the code, shopping cart IDs are stored at the client browser for
seven days. As a result, you can assume that any shopping carts that haven’t been updated in
the last ten days are invalid and can be safely removed.

CHAPTER 8 ■ THE SHOPPING CART296

648XCH08.qxd 10/31/06 10:07 PM Page 296

In the following exercise, you’ll quickly implement a simple shopping cart administration
page, where the administrator can see how many old shopping cart entries exist, and can
delete them if he or she wants to. Figure 8-5 shows this page.

Figure 8-5. Administering shopping carts

The most interesting aspect you need to understand is the SQL logic that deletes all shop-
ping carts that haven’t been updated in a certain amount of time. This isn’t as simple as it
sounds—at first sight, you might think all you have to do is delete all the records in
shopping_cart whose added_on is older than a specified date. However, this strategy doesn’t
work with shopping carts that are modified over time (say, the visitor has been adding items to
the cart each week in the past three months). If the last change to the shopping cart is recent,
none of its elements should be deleted, even if some are very old. In other words, you should
either remove all elements in a shopping cart or none of them. The age of a shopping cart is
given by the age of its most recently modified or added product.

This being said, implement the new functionality by following the exercise steps.

Exercise: Creating the Shopping Cart Admin Page

1. Load pgAdmin III, and connect to the hatshop database.

2. Add the following data tier functions to the hatshop database:

-- Create shopping_cart_count_old_carts function
CREATE FUNCTION shopping_cart_count_old_carts(INTEGER)
RETURNS INTEGER LANGUAGE plpgsql AS $$
DECLARE
inDays ALIAS FOR $1;
outOldShoppingCartsCount INTEGER;

BEGIN
SELECT INTO outOldShoppingCartsCount

COUNT(cart_id)
FROM (SELECT cart_id

FROM shopping_cart

CHAPTER 8 ■ THE SHOPPING CART 297

648XCH08.qxd 10/31/06 10:07 PM Page 297

GROUP BY cart_id
HAVING ((NOW() - ('1'||' DAYS')::INTERVAL) >= MAX(added_on)))
AS old_carts;

RETURN outOldShoppingCartsCount;
END;

$$;

-- Create shopping_cart_delete_old_carts function
CREATE FUNCTION shopping_cart_delete_old_carts(INTEGER)
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inDays ALIAS FOR $1;

BEGIN
DELETE FROM shopping_cart
WHERE cart_id IN

(SELECT cart_id
FROM shopping_cart
GROUP BY cart_id
HAVING ((NOW() - (inDays||' DAYS')::INTERVAL) >= MAX(added_on)));

END;
$$;

3. Add the following business tier method to business/shopping_cart.php:

// Count old shopping carts
public static function CountOldShoppingCarts($days)
{
// Build SQL query
$sql = 'SELECT shopping_cart_count_old_carts(:days);';
// Build the parameters array
$params = array (':days' => $days);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetOne($result, $params);

}

// Deletes old shopping carts
public static function DeleteOldShoppingCarts($days)
{
// Build the SQL query
$sql = 'SELECT shopping_cart_delete_old_carts(:days);';
// Build the parameters array
$params = array (':days' => $days);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

CHAPTER 8 ■ THE SHOPPING CART298

648XCH08.qxd 10/31/06 10:07 PM Page 298

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

4. Create a new file named presentation/smarty_plugins/function.load_admin_cart.php, and
add the following code to it:

<?php
/* Smarty plugin function that gets called when the

load_admin_cart function plugin is loaded from a template */
function smarty_function_load_admin_cart($params, $smarty)
{
// Create AdminCart object
$admin_cart = new AdminCart();
$admin_cart->init();

// Assign template variable
$smarty->assign($params['assign'], $admin_cart);

}

// Class that supports cart admin functionality
class AdminCart
{
// Public variables available in smarty template
public $mMessage;
public $mDaysOptions = array (0 => 'All shopping carts',

1 => 'One day old',
10 => 'Ten days old',
20 => 'Twenty days old',
30 => 'Thirty days old',
90 => 'Ninety days old');

public $mSelectedDaysNumber = 0;

// Private members
public $_mAction = '';

// Class constructor
public function __construct()
{
foreach ($_POST as $key => $value)
// If a submit button was clicked ...
if (substr($key, 0, 6) == 'submit')
{
// Get the scope of submit button
$this->_mAction = substr($key, strlen('submit_'), strlen($key));

// Get selected days number
if (isset ($_POST['days']))

CHAPTER 8 ■ THE SHOPPING CART 299

648XCH08.qxd 10/31/06 10:07 PM Page 299

$this->mSelectedDaysNumber = (int) $_POST['days'];
else
trigger_error('days value not set');

}
}

public function init()
{
// If counting shopping carts ...
if ($this->_mAction == 'count')
{
$count_old_carts =
ShoppingCart::CountOldShoppingCarts($this->mSelectedDaysNumber);

if ($count_old_carts == 0)
$count_old_carts = 'no';

$this->mMessage = 'There are ' . $count_old_carts .
' old shopping carts (selected option: ' .
$this->mDaysOptions[$this->mSelectedDaysNumber] .
').';

}

// If deleting shopping carts ...
if ($this->_mAction == 'delete')
{
$this->mDeletedCarts =
ShoppingCart::DeleteOldShoppingCarts($this->mSelectedDaysNumber);

$this->mMessage = 'The old shopping carts were removed from the
database (selected option: ' .
$this->mDaysOptions[$this->mSelectedDaysNumber] .').';

}
}

}
?>

5. Create a new file in the presentation/templates folder named admin_cart.tpl, and type the
following code:

{* admin_cart.tpl *}
{load_admin_cart assign='admin_cart'}
Admin users' shopping carts:

{if $admin_cart->mMessage neq ""}
{$admin_cart->mMessage}

{/if}

CHAPTER 8 ■ THE SHOPPING CART300

648XCH08.qxd 10/31/06 10:07 PM Page 300

<form action="{"admin.php?Page=Cart"|prepare_link:"https"}" method="post">
Select carts
{html_options name="days" options=$admin_cart->mDaysOptions

selected=$admin_cart->mSelectedDaysNumber}
<input type="submit" name="submit_count" value="Count Old Shopping Carts" />
<input type="submit" name="submit_delete" value="Delete Old Shopping Carts" />

</form>

6. Modify presentation/templates/admin_menu.tpl by adding the highlighted link code to the cart
admin page:

 |
CART ADMIN |
CATALOG ADMIN |

7. Add the highlighted code that loads the admin_cart.tpl in admin.php:

elseif ($admin_page == 'ProductDetails')
$pageContentsCell = 'admin_product.tpl';

elseif ($admin_page == 'Cart')
$pageContentsCell = 'admin_cart.tpl';

How It Works: The Shopping Cart Admin Page

The hard work of the shopping cart admin page is done by the two functions you’ve added to the hatshop data-
base: shopping_cart_count_old_carts and shopping_cart_delete_old_carts. They both receive as
parameter the number of days that determine when a shopping cart is old, and they use the same logic to calcu-
late the shopping cart elements that are old and should be removed.

The age of a shopping cart is given by the age of the most recently added or changed item and is calculated using
the GROUP BY SQL clause. The condition that establishes whether a cart should be considered old is the following:

WHERE cart_id IN
(SELECT cart_id
FROM shopping_cart
GROUP BY cart_id
HAVING ((NOW() - (inDays||' DAYS')::INTERVAL) >= MAX(added_on)));

Summary
In this chapter, you learned how to store the shopping cart information in the database, and
you learned a few things in the process as well. Probably the most interesting was the way you
can store the shopping cart ID as a cookie on the client because you haven’t done anything
similar so far in this book.

CHAPTER 8 ■ THE SHOPPING CART 301

648XCH08.qxd 10/31/06 10:07 PM Page 301

After working through the process of creating the shopping cart, starting with the data-
base and ending with the presentation tier, we also touched on the new administrative
challenges.

You’ll complete the functionality offered by the custom shopping cart in the next chapter
with a custom checkout system. You’ll add a Place Order button to the shopping cart, which
will allow you to save the shopping cart information as a separate order in the database.

CHAPTER 8 ■ THE SHOPPING CART302

648XCH08.qxd 10/31/06 10:07 PM Page 302

Dealing with Customer Orders

The good news is that your shopping cart looks good and is fully functional. The bad news is
that it doesn’t allow the visitor to actually place an order, which makes the cart totally useless in
the context of a production system. We’ll deal with that problem in this chapter in two separate
stages. In the first part of the chapter, you’ll implement the client-side part of the order-placing
mechanism. More precisely, you’ll add a Place Order button to the shopping cart control, which
will allow the visitor to order the products in the shopping cart.

In the second part of the chapter, you’ll implement a simple orders administration page
where the site administrator can view and handle pending orders.

The code for each part of the site will be presented in the usual way, starting with the data-
base tier, continuing with the business tier, and finishing with the user interface (UI).

Implementing an Order Placement System
The entire order-placement system is related to the Place Order button mentioned earlier.
Figure 9-1 shows how this button will look after you update the cart_details componentized
template in this chapter.

Figure 9-1. The shopping cart with a Place Order button 303

C H A P T E R 9

648XCH09.qxd 11/17/06 3:39 PM Page 303

304 CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS

The button looks quite boring for something that we can honestly say is the center of this
chapter’s universe. Still, a lot of logic is hidden behind it, so let’s talk about what should hap-
pen when the customer clicks that button. Remember that at this stage we don’t care who
places the order, but we do want to store information in the database about the products that
were ordered.

Basically, two things need to happen when the customer clicks the Place Order button:

• First, the order must be stored somewhere in the database. This means that you must
save the shopping cart’s products to an order named HatShop Order nnn and clear the
shopping cart.

• Secondly, the customer is redirected to a PayPal payment page where the customer
pays the necessary amount for the order. You can see the PayPal payment page in
Figure 9-2.

Figure 9-2. The PayPal payment page

■Note For the second development stage, we still don’t process payments ourselves but use a third-party
payment processor instead. Now we no longer need the PayPal shopping cart because we implemented our
own in the previous chapter. Instead, we’ll use the Single Item Purchases option of PayPal, which redirects
the visitor directly to a payment page.

A problem that arises when using a third-party payment processor is that the customer
can change his mind and cancel the order while at the checkout page. This can result in orders

648XCH09.qxd 11/17/06 3:39 PM Page 304

that are saved to the database (the order is saved before the page is redirected to the payment
page) but for which payment wasn’t completed. Obviously, we need a payment confirmation
system, along with a database structure that is able to store status information about each
order.

The confirmation system that you’ll implement is simple. Every payment processor,
including PayPal, can be instructed to send a confirmation message after a payment has been
processed. We’ll allow the site administrator to manually check, in the administration page,
which orders have been paid for. These orders are known as verified orders. You’ll see later in
this chapter how to manage them in the orders-management part of the site.

■Note PayPal and its competitors offer automated systems that inform your web site when a payment has
been completed or canceled. However, this book doesn’t visit the intimate details of any of these payment
systems—you’ll need to do your homework and study the documentation of your company of choice. The
PayPal Instant Payment Notification documentation is included in the Order Management Integration Guide,
which can be downloaded at https://www.paypal.com/en_US/pdf/
PP_OrderManagement_IntegrationGuide.pdf.

Now that you have an idea of what to do with that Place Order button, the next major
concerns are what order information to store in the database and how to store it. As you saw
in previous chapters, deciding how to store information helps you get a better idea of how the
whole system works.

Storing Orders in the Database
Two kinds of order information need to be stored:

• General details about the order, such as the date the order was created; whether and
when the products have been shipped; whether the order is verified, completed, or
canceled; and a few other details

• The products that belong to that order and their quantities

In the orders administration page that you’ll create later in this chapter, you’ll be able to
see and modify the general order information.

Creating the New Data Tables
Due to the nature of the information that will be stored, you need two data tables: orders and
order_detail. The orders table stores information regarding the order as a whole, while
order_detail contains the products that belong to each order.

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS 305

648XCH09.qxd 11/17/06 3:39 PM Page 305

■Tip So far we have been consistent about naming our tables in singular form (shopping_cart,
department, and so on). However, here we make an exception for the orders table because ORDER is
also an SQL keyword. For the purposes of this book, we prefer to break the naming convention to avoid any
confusion while writing the SQL code, and generally speaking, it isn’t good practice to use SQL keywords as
object names.

These tables have a one-to-many relationship, enforced through a FOREIGN KEY constraint
on their order_id fields. One-to-many is the usual relationship implemented between an
orders table and an order_detail table. The order_detail table contains many records that
belong to one order. You might want to revisit Chapter 4 where the table relationships are
explained in more detail.

You’ll implement the tables in the following exercise.

Exercise: Adding the orders and the order_detail Tables to the Database

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Use the query tool to execute this code, which creates the orders table in your hatshop database:

-- Create orders table
CREATE TABLE orders
(
order_id SERIAL NOT NULL,
total_amount NUMERIC(10,2) NOT NULL DEFAULT 0.00,
created_on TIMESTAMP NOT NULL,
shipped_on TIMESTAMP,
status INTEGER NOT NULL DEFAULT 0,
comments VARCHAR(255),
customer_name VARCHAR(50),
shipping_address VARCHAR(255),
customer_email VARCHAR(50),
CONSTRAINT pk_order_id PRIMARY KEY (order_id)

);

4. Use the query tool to execute this code, which creates the order_detail table in your hatshop database:

-- Create order_detail table
CREATE TABLE order_detail
(
order_id INTEGER NOT NULL,
product_id INTEGER NOT NULL,
product_name VARCHAR(50) NOT NULL,
quantity INTEGER NOT NULL,
unit_cost NUMERIC(10, 2) NOT NULL,

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS306

648XCH09.qxd 11/17/06 3:39 PM Page 306

CONSTRAINT pk_order_id_product_id PRIMARY KEY (order_id, product_id),
CONSTRAINT fk_order_id FOREIGN KEY (order_id)

REFERENCES orders (order_id)
ON UPDATE RESTRICT ON DELETE RESTRICT

);

How It Works: The Data Tables

Now that you’ve created the tables, let’s take a closer look at their structure and relationships.

The orders Table

The orders table contains two categories of information: data about the order itself (the first six fields) and data
about the customer that made the order (last three fields).

An alternative would be to store the customer information in a separate table named customer and store only the
customer_id value in the orders table. However, storing customer data is not one of the goals of this develop-
ment stage. At this stage, we prefer to keep things simple because it doesn’t matter who made the order, just what
products have been sold. You’ll deal with creating a separate customer table in Chapter 11.

Third-party payment processors such as PayPal store and manage the complete customer information, so it
doesn’t need to be stored in your database as well. We have added the customer_name, shipping_address,
and customer_email fields as optional fields that can be filled by the administrator if it’s easier to have this
information at hand for certain (or all) orders.

The field names are self-explanatory. order_id is the primary key of the table. total_amount stores the total
value of the order. created_on and shipped_on specify when the order was created and shipped (the latter
supports NULLs if the order hasn’t been shipped yet).

The status field contains an integer that can have these values:

• 0: The order has been placed. This is the initial status of an order after the Place Order button is clicked in
the shopping cart.

• 1: The order is verified. The administrator marks the order as verified after the payment was confirmed.

• 2: The order is completed. The administrator marks the order as completed after the products have been
shipped. At the same time, the shipped_on field is also populated.

• 3: The order is canceled. Typically, the administrator marks the order as canceled if the order has been
placed (by clicking the Place Order button), but the payment wasn’t processed, or in other scenarios that
require canceling the order.

■Note PayPal can automatically tell your web site when a payment is completed through the Instant Pay-
ment Notification feature. Using this feature can make things easier for the site administrator because he or
she wouldn’t need to manually check orders for which payment was received; however, we won’t use this
feature in HatShop because it’s too specific to PayPal. Consult the documentation of the payment provider
you choose to check what specific features they have prepared for you to play with.

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS 307

648XCH09.qxd 11/17/06 3:39 PM Page 307

The order_detail Table

Let’s see what information the order_detail table contains. Take a look at Figure 9-3 to see some typical
order_detail records.

Figure 9-3. Sample data in the order_detail table

Each record in order_detail represents an ordered product that belongs to the order specified by order_id.
The primary key is formed by both order_id and product_id because a particular product can be ordered only
once in one order. A quantity field contains the number of ordered items, so it wouldn’t make any sense to have
one product_id recorded more than once for one order.

You might be wondering why the product_id and the price and product name are recorded in the
order_detail table, especially because if you have the product id, you can get all of the product’s details
from the product table without having any duplicated information.

We chose to duplicate the product data (the product’s name and price) in the order_detail table to guard
against product information changes; products can be removed from the database, and their name and price
can change, but this shouldn’t affect the orders’ data.

We store the product_id because apart from being the only programmatic way to link back to the original
product info (if the product still exists), product_id is used to create the primary key of order_detail.
product_id comes in very handy here because having it in the composite primary key in order_detail
saves you from needing to add another primary key field, and also ensures that you won’t have the same product
more than once in a single order.

Implementing the Data Tier
At this stage, you need to add two additional data tier functions in the hatshop database. The
most important is shopping_cart_create_order, which takes the products from the shopping
cart and creates an order with them. The other function is shopping_cart_empty, which
empties the visitor’s cart after the order has been placed.

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS308

648XCH09.qxd 11/17/06 3:39 PM Page 308

In the following exercise we’ll implement those functions starting with
shopping_cart_empty because this is called from shopping_cart_create_order.

Exercise: Implementing the Functions

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Use the query tool to execute this code, which creates the shopping_cart_empty function in your
hatshop database:

-- Create shopping_cart_empty function
CREATE FUNCTION shopping_cart_empty(CHAR(32))
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inCartId ALIAS FOR $1;

BEGIN
DELETE FROM shopping_cart WHERE cart_id = inCartId;

END;
$$;

When a customer places an order, shopping_cart_create_order will call shopping_cart_empty to
delete the products from the customer’s shopping cart.

4. Use the query tool to execute this code, which creates the shopping_cart_create_order function in
your hatshop database:

-- Create shopping_cart_create_order function
CREATE FUNCTION shopping_cart_create_order(CHAR(32))
RETURNS INTEGER LANGUAGE plpgsql AS $$
DECLARE
inCartId ALIAS FOR $1;
outOrderId INTEGER;
cartItem cart_product;
orderTotalAmount NUMERIC(10, 2);

BEGIN
-- Insert a new record into orders
INSERT INTO orders (created_on) VALUES (NOW());
-- Obtain the new Order ID
SELECT INTO outOrderId

currval('orders_order_id_seq');
orderTotalAmount := 0;
-- Insert order details in order_detail table
FOR cartItem IN
SELECT p.product_id, p.name,

COALESCE(NULLIF(p.discounted_price, 0), p.price) AS price,
sc.quantity,
COALESCE(NULLIF(p.discounted_price, 0), p.price) * sc.quantity
AS subtotal

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS 309

648XCH09.qxd 11/17/06 3:39 PM Page 309

FROM shopping_cart sc
INNER JOIN product p

ON sc.product_id = p.product_id
WHERE sc.cart_id = inCartId AND sc.buy_now

LOOP
INSERT INTO order_detail (order_id, product_id, product_name,

quantity, unit_cost)
VALUES (outOrderId, cartItem.product_id, cartItem.name,

cartItem.quantity, cartItem.price);
orderTotalAmount := orderTotalAmount + cartItem.subtotal;

END LOOP;
-- Save the order's total amount
UPDATE orders
SET total_amount = orderTotalAmount
WHERE order_id = outOrderId;
-- Clear the shopping cart
PERFORM shopping_cart_empty(inCartId);
-- Return the Order ID
RETURN outOrderId;

END;
$$;

This function gets called when the customer decides to buy the products in the shopping cart and clicks the
Place Order button.

The role of shopping_cart_create_order is to create a new order based on the products in the
customer’s shopping cart. This implies adding a new record to the orders table and a number of records
(one record for each product) in the order_detail table.

How It Works: Implementing Functions

The first step in shopping_cart_create_order involves creating the new record in the orders table. You
need to do this at the beginning to find out what order_id was generated for the new order. Remember that the
order_id field is an INTEGER column that has a sequence associated (orders_order_id_seq) and is auto-
matically generated by the database, so you need to retrieve its value after inserting a record into orders:

-- Insert a new record into orders
INSERT INTO orders (created_on) VALUES (NOW());
-- Obtain the new Order ID
SELECT INTO outOrderId

currval('orders_order_id_seq');

This is the basic mechanism of extracting the newly generated ID. After the INSERT statement, you save the
value returned by currval to a variable. You must do this immediately after inserting the new row because the value
returned by currval is incremented after the next successful insert operation. currval returns the current
value of the sequence that is equivalent with the last inserted order_id.

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS310

648XCH09.qxd 11/17/06 3:39 PM Page 310

Using the outOrderId variable, you add the order_detail records by gathering information from the product
and shopping_cart tables. You get the list of the products and their quantities from shopping_cart, get their
names and prices from product, and save these records one by one to the order_detail table.

-- Insert order details in order_detail table
FOR cartItem IN
SELECT p.product_id, p.name,

COALESCE(NULLIF(p.discounted_price, 0), p.price) AS price,
sc.quantity,
COALESCE(NULLIF(p.discounted_price, 0), p.price) * sc.quantity
AS subtotal

FROM shopping_cart sc
INNER JOIN product p

ON sc.product_id = p.product_id
WHERE sc.cart_id = inCartId AND sc.buy_now

LOOP
INSERT INTO order_detail (order_id, product_id, product_name,

quantity, unit_cost)
VALUES (outOrderId, cartItem.product_id, cartItem.name,

cartItem.quantity, cartItem.price);
orderTotalAmount := orderTotalAmount + cartItem.subtotal;

END LOOP;

■Tip When joining product and shopping_cart, you get the product_id from product, but you
could also get it from shopping_cart; the result would be the same because the table join is made on
the product_id column.

While saving the products, the function also calculates the total amount of the order by adding each product’s
price multiplied by its quantity to orderTotalAmount. This value is then saved as the order’s total_amount:

-- Save the order's total amount
UPDATE orders
SET total_amount = orderTotalAmount
WHERE order_id = outOrderId;

In the end, the function empties the visitor’s shopping cart calling the shopping_cart_empty function and
returns the order’s ID:

-- Clear the shopping cart
PERFORM shopping_cart_empty(inCartId);
-- Return the Order ID
RETURN outOrderId;

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS 311

648XCH09.qxd 11/17/06 3:39 PM Page 311

Implementing the Business Tier
In this step, you only need a single method, CreateOrder, which you’ll add to the ShoppingCart
class inside business/shopping_cart.php:

// Create a new order
public static function CreateOrder()
{
// Build SQL query
$sql = 'SELECT shopping_cart_create_order(:cart_id);';
// Build the parameters array
$params = array (':cart_id' => self::GetCartId());
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetOne($result, $params);

}

The method calls the shopping_cart_create_order data tier function, returning the
order_id of the newly created order.

Implementing the Presentation Tier
You’ve finally arrived at the part of the process where you’ll put the code you’ve written into
action. The UI consists of the Place Order button along with all the logic behind it, which
allows the visitor to become a customer.

This button is the only addition on the visitor side for the custom checkout. Let’s first
place the button on the cart_details template file, and then implement its functionality.

To get the desired functionality, you just follow a few simple steps. The first one involves
adding the Place Order button to the shopping cart.

Adding the Place Order Button
Modify presentation/templates/cart_details.tpl by adding a new button just after the
Update button, as highlighted in the following code snippet:

<table>
<tr>
<td class="cart_total">
Total amount:
${$cart_details->mTotalAmount}

</td>
<td class="cart_total" align="right">
<input type="submit" name="update" value="Update" />
<input type="submit" name="place_order" value="Place Order" />

</td>
</tr>

</table>

Cool, now you have a Place Order button in the shopping cart!

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS312

648XCH09.qxd 11/17/06 3:39 PM Page 312

Implementing the Order Placement Functionality
Now it’s time to implement the Place Order button’s functionality. Because this functionality
depends on the company that processes your payments, you might need to adapt it to the
behavior of your payment processing company. If you use PayPal, the code that redirects the
visitor to a payment was already presented in “Using the PayPal Single Item Purchases
Feature” section of Chapter 6.

Add the following highlighted code in the init() method of the CartDetails class in
presentation/smarty_plugins/function.load_cart_details.php:

// Calculate the total amount for the shopping cart
$this->mTotalAmount = ShoppingCart::GetTotalAmount();

// If the Place Order button was clicked ...
if(isset ($_POST['place_order']))
{
// Create the order and get the order ID
$order_id = ShoppingCart::CreateOrder();

// This will contain the PayPal link
$redirect =
'https://www.paypal.com/xclick/business=youremail@example.com' .
'&item_name=HatShop Order ' . $order_id .
'&item_number=' . $order_id .
'&amount=' . $this->mTotalAmount .
'¤cy=USD&return=www.example.com' .
'&cancel_return=www.example.com';

// Redirection to the payment page
header('Location: ' . $redirect);

exit;
}

// Get shopping cart products
$this->mCartProducts =
ShoppingCart::GetCartProducts(GET_CART_PRODUCTS);

Of course, if you use another company to process your payments, you’ll need to modify
the code accordingly.

When a visitor clicks the Place Order button, two important actions happen. First, the
order is created in the database by calling the CreateOrder method of the ShoppingCart class.
This function calls the shopping_cart_create_order database function to create a new order
with the products in the shopping cart and returns the ID of the new order:

// Create the order and get the order ID
$order_id = ShoppingCart::CreateOrder();

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS 313

648XCH09.qxd 11/17/06 3:39 PM Page 313

Second, the visitor is redirected to the payment page, which requests payment for an item
named “HatShop Order nnn” with a value that amounts to the total value of the order.

Right now, your Place Order button is fully functional! Test it by adding some products to
your cart, and clicking Place Order. Your shopping cart should be cleared, and you should be
forwarded to a PayPal payment page like the one shown earlier in Figure 9-2.

Administering Orders
So your visitor just made an order. Now what?

After giving visitors the option to pay for your products, you need to make sure they
actually get what they paid for. HatShop needs a carefully designed orders administration
page, where the administrator can quickly see the status of pending orders.

■Note This chapter doesn't intend to help you create a perfect order administration system but rather
something that is simple and functional enough to get you on the right track.

The orders administration part of the site will consist of two componentized templates
named admin_orders and admin_order_details.

When the administrator clicks on the ORDERS ADMIN link, the admin.php page loads the
admin_orders componentized template that offers the capability to filter the orders. When
first loaded, it offers you various ways of selecting orders, as shown in Figure 9-4.

Figure 9-4. The Orders Admin page

After clicking one of the Go! buttons, the matching orders appear in a table (see Figure 9-5).

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS314

648XCH09.qxd 11/17/06 3:39 PM Page 314

Figure 9-5. Selecting the most recent orders in the Orders Admin page

When you click the View Details button for an order, you are sent to a page where you can
view and update order information, as shown in Figure 9-6.

Figure 9-6. Administering order details

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS 315

648XCH09.qxd 11/17/06 3:39 PM Page 315

Setting Up the Orders Administration Page
Before you start creating the admin_orders and the admin_order_details componentized
templates, let’s modify admin.php to load these componentized templates and also modify
admin_menu.tpl to display an ORDERS ADMIN link.

Exercise: Setting Up ADMIN ORDERS

1. Modify admin.php to include a reference to include/app_top.php that we’ll later create:

// Load Business Tier
require_once BUSINESS_DIR . 'catalog.php';
require_once BUSINESS_DIR . 'shopping_cart.php';
require_once BUSINESS_DIR . 'orders.php';

2. In the admin.php file, add the highlighted code that loads admin_orders.tpl and
admin_order_details.tpl:

elseif ($admin_page == 'Cart')
$pageContentsCell = 'admin_cart.tpl';

elseif ($admin_page == 'Orders')
$pageContentsCell = 'admin_orders.tpl';

elseif ($admin_page == 'OrderDetails')
$pageContentsCell = 'admin_order_details.tpl';

3. Modify presentation/templates/admin_menu.tpl by adding the highlighted link code to the cart
admin page:

 |
ORDERS ADMIN
|
CART ADMIN |

Displaying Pending Orders
In the following pages, you’ll implement the admin_orders componentized template and its
supporting data tier and business tier functionality. admin_orders is the componentized tem-
plate that allows the administrator to view the orders that have been placed on the web site.
Because the orders list will become very long, it is important to have a few well-chosen
filtering options.

The administrator will be able to select the orders using the following criteria:

• Show the most recent orders.

• Show orders that took place in a certain period of time.

• Show orders with a specified status value.

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS316

648XCH09.qxd 11/17/06 3:39 PM Page 316

Okay, now that you know what you want, let’s start writing some code. You’ll start with the
data tier.

Implementing the Data Tier
In the following exercise, you’ll create the data tier functions one at a time, and we’ll comment
a little upon each one of them.

Exercise: Implementing the Functions

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Use the query tool to execute this code, which creates the order_short_details type and
orders_get_most_recent_orders function in your hatshop database:

-- Create order_short_details type
CREATE TYPE order_short_details AS
(
order_id INTEGER,
total_amount NUMERIC(10, 2),
created_on TIMESTAMP,
shipped_on TIMESTAMP,
status INTEGER,
customer_name VARCHAR(50)

);

-- Create orders_get_most_recent_orders function
CREATE FUNCTION orders_get_most_recent_orders(INTEGER)
RETURNS SETOF order_short_details LANGUAGE plpgsql AS $$
DECLARE
inHowMany ALIAS FOR $1;
outOrderShortDetailsRow order_short_details;

BEGIN
FOR outOrderShortDetailsRow IN
SELECT order_id, total_amount, created_on,

shipped_on, status, customer_name
FROM orders
ORDER BY created_on DESC
LIMIT inHowMany

LOOP
RETURN NEXT outOrderShortDetailsRow;

END LOOP;
END;

$$;

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS 317

648XCH09.qxd 11/17/06 3:39 PM Page 317

The orders_get_most_recent_orders function retrieves a list of the most recent orders. The SELECT
SQL statement used in this method uses the LIMIT clause to limit the number of returned rows to
inHowMany rows.

The ORDER BY clause is used to sort the results. The default sorting mode is ascending, but by adding
DESC, the descending sort mode is set (so the most recent orders will be listed first).

4. Use the query tool to execute this code, which creates the orders_get_orders_between_dates
function in your hatshop database:

-- Create orders_get_orders_between_dates function
CREATE FUNCTION orders_get_orders_between_dates(TIMESTAMP, TIMESTAMP)
RETURNS SETOF order_short_details LANGUAGE plpgsql AS $$
DECLARE
inStartDate ALIAS FOR $1;
inEndDate ALIAS FOR $2;
outOrderShortDetailsRow order_short_details;

BEGIN
FOR outOrderShortDetailsRow IN
SELECT order_id, total_amount, created_on,

shipped_on, status, customer_name
FROM orders
WHERE created_on >= inStartDate AND created_on <= inEndDate
ORDER BY created_on DESC

LOOP
RETURN NEXT outOrderShortDetailsRow;

END LOOP;
END;

$$;

This function returns all the records in which the current date is between inStartDate and inEndDate
that are supplied as parameters. The results are sorted descending by date.

5. Use the query tool to execute this code, which creates the orders_get_orders_by_status function
in your hatshop database:

-- Create orders_get_orders_by_status function
CREATE FUNCTION orders_get_orders_by_status(INTEGER)
RETURNS SETOF order_short_details LANGUAGE plpgsql AS $$
DECLARE
inStatus ALIAS FOR $1;
outOrderShortDetailsRow order_short_details;

BEGIN
FOR outOrderShortDetailsRow IN
SELECT order_id, total_amount, created_on,

shipped_on, status, customer_name
FROM orders
WHERE status = inStatus
ORDER BY created_on DESC

LOOP

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS318

648XCH09.qxd 11/17/06 3:39 PM Page 318

RETURN NEXT outOrderShortDetailsRow;
END LOOP;

END;
$$;

This function is used to return the orders that have the status value specified by the inStatus parameter.

Implementing the Business Tier
The business tier consists of a new class named Orders, whose methods call their data tier
counterparts. This class is pretty straightforward with no particularly complex logic, so we’ll
just list the code. Create the business/orders.php file, and add the following code to it:

<?php
// Business tier class for the orders
class Orders
{
public static $mOrderStatusOptions = array ('placed', // 0

'verified', // 1
'completed', // 2
'canceled'); // 3

// Get the most recent $how_many orders
public static function GetMostRecentOrders($how_many)
{
// Build the SQL query
$sql = 'SELECT * FROM orders_get_most_recent_orders(:how_many);';
// Build the parameters array
$params = array (':how_many' => $how_many);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

// Get orders between two dates
public static function GetOrdersBetweenDates($startDate, $endDate)
{
// Build the SQL query
$sql = 'SELECT * FROM orders_get_orders_between_dates(

:start_date, :end_date);';
// Build the parameters array
$params = array (':start_date' => $startDate, ':end_date' => $endDate);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS 319

648XCH09.qxd 11/17/06 3:39 PM Page 319

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

// Gets orders by status
public static function GetOrdersByStatus($status)
{
// Build the SQL query
$sql = 'SELECT * FROM orders_get_orders_by_status(:status);';
// Build the parameters array
$params = array (':status' => $status);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}
}
?>

Implementing the Presentation Tier
Now it’s time to implement the admin_orders componentized template. Follow the steps from
the next exercise to make the magic happen.

Exercise: Creating the admin_orders Componentized Template

1. Create a new file named admin_orders.tpl in the presentation/templates folder with the following
code in it:

{* admin_orders.tpl *}
{load_admin_orders assign="admin_orders"}
{if $admin_orders->mErrorMessage neq ""}
{$admin_orders->mErrorMessage}

{/if}
<form action="{"admin.php"|prepare_link:"https"}" method="get">
<input name="Page" type="hidden" value="Orders" />
Show the most recent
<input name="recordCount" type="text" value="{$admin_orders->mRecordCount}" />
orders
<input type="submit" name="submitMostRecent" value="Go!" />

Show all records created between
<input name="startDate" type="text" value="{$admin_orders->mStartDate}" />
and
<input name="endDate" type="text" value="{$admin_orders->mEndDate}" />

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS320

648XCH09.qxd 11/17/06 3:39 PM Page 320

<input type="submit" name="submitBetweenDates" value="Go!" />

Show orders by status
{html_options name="status" options=$admin_orders->mOrderStatusOptions
selected=$admin_orders->mSelectedStatus}
<input type="submit" name="submitOrdersByStatus" value="Go!" />

</form>

{if $admin_orders->mOrders}
<table>
<tr>
<th>Order ID</th>
<th>Date Created</th>
<th>Date Shipped</th>
<th>Status</th>
<th>Customer</th>
<th> </th>
</tr>
{section name=cOrders loop=$admin_orders->mOrders}
{assign var=status value=$admin_orders->mOrders[cOrders].status}

<tr>
<td>{$admin_orders->mOrders[cOrders].order_id}</td>
<td>
{$admin_orders->mOrders[cOrders].created_on|date_format:"%Y-%m-%d %T"}

</td>
<td>
{$admin_orders->mOrders[cOrders].shipped_on|date_format:"%Y-%m-%d %T"}

</td>
<td>{$admin_orders->mOrderStatusOptions[$status]}</td>
<td>{$admin_orders->mOrders[cOrders].customer_name}</td>
<td align="right">
<input type="button" value="View Details"
onclick="window.location='{
$admin_orders->mOrders[cOrders].onclick|prepare_link:"https"}';" />

</td>
</tr>
{/section}

</table>
{/if}

2. Create a new file named presentation/smarty_plugins/function.load_admin_orders.php,
and add the following code to it:

<?php
// Plugin functions inside plugin files must be named: smarty_type_name
function smarty_function_load_admin_orders($params, $smarty)
{

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS 321

648XCH09.qxd 11/17/06 3:39 PM Page 321

// Create AdminOrders object
$admin_orders = new AdminOrders();
$admin_orders->init();

// Assign template variable
$smarty->assign($params['assign'], $admin_orders);

}

/* Presentation tier class that supports order administration
functionality */

class AdminOrders
{
// Public variables available in smarty template
public $mOrders;
public $mStartDate;
public $mEndDate;
public $mRecordCount = 20;
public $mOrderStatusOptions;
public $mSelectedStatus = 0;
public $mErrorMessage = '';

// Class constructor
public function __construct()
{
/* Save the link to the current page in the AdminOrdersPageLink

session variable; it will be used to create the
"back to admin orders ..." link in admin order details pages */

$_SESSION['admin_orders_page_link'] =
str_replace(VIRTUAL_LOCATION, '', getenv('REQUEST_URI'));

$this->mOrderStatusOptions = Orders::$mOrderStatusOptions;
}

public function init()
{
// If the "Show the most recent x orders" filter is in action ...
if (isset ($_GET['submitMostRecent']))
{
// If the record count value is not a valid integer, display error
if ((string)(int)$_GET['recordCount'] == (string)$_GET['recordCount'])
{
$this->mRecordCount = (int)$_GET['recordCount'];
$this->mOrders = Orders::GetMostRecentOrders($this->mRecordCount);

}
else
$this->mErrorMessage = $_GET['recordCount'] . ' is not a number.';

}

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS322

648XCH09.qxd 11/17/06 3:39 PM Page 322

/* If the "Show all records created between date_1 and date_2"
filter is in action ... */

if (isset ($_GET['submitBetweenDates']))
{
$this->mStartDate = $_GET['startDate'];
$this->mEndDate = $_GET['endDate'];

// Check if the start date is in accepted format
if (($this->mStartDate == '') ||

($timestamp = strtotime($this->mStartDate)) == -1)
$this->mErrorMessage = 'The start date is invalid. ';

else
// Transform date to YYYY/MM/DD HH:MM:SS format
$this->mStartDate =
strftime('%Y/%m/%d %H:%M:%S', strtotime($this->mStartDate));

// Check if the end date is in accepted format
if (($this->mEndDate == '') ||

($timestamp = strtotime($this->mEndDate)) == -1)
$this->mErrorMessage .= 'The end date is invalid.';

else
// Transform date to YYYY/MM/DD HH:MM:SS format
$this->mEndDate =
strftime('%Y/%m/%d %H:%M:%S', strtotime($this->mEndDate));

// Check if start date is more recent than the end date
if ((empty ($this->mErrorMessage)) &&

(strtotime($this->mStartDate) > strtotime($this->mEndDate)))
$this->mErrorMessage .=
'The start date should be more recent than the end date.';

// If there are no errors, get the orders between the two dates
if (empty($this->mErrorMessage))
$this->mOrders = Orders::GetOrdersBetweenDates(

$this->mStartDate, $this->mEndDate);
}

// If "Show orders by status" filter is in action ...
if (isset ($_GET['submitOrdersByStatus']))
{
$this->mSelectedStatus = $_GET['status'];
$this->mOrders = Orders::GetOrdersByStatus($this->mSelectedStatus);

}

// Build View Details link
for ($i = 0; $i < count($this->mOrders); $i++)

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS 323

648XCH09.qxd 11/17/06 3:39 PM Page 323

{
$this->mOrders[$i]['onclick'] =
'admin.php?Page=OrderDetails&OrderId=' .
$this->mOrders[$i]['order_id'];

}
}

}
?>

3. Load admin.php into the browser and introduce the username/password combination if you logged out.
Click on the ORDERS ADMIN menu link, then click one of the Go! buttons, and see the results that should be
similar to those found earlier in Figure 9-4.

How It Works: The admin_orders Componentized Template

Each of the Go! buttons calls one of the business tier methods (in the Orders class) and populates the table with
the returned orders information.

When processing the request, we test the data the visitor entered to make sure it’s valid. When the first Go! button
is clicked, we verify that the entered value is a number (how many records to show). We also verify whether the
dates entered in the Start Date and End Date text boxes are valid. We process them first with strtotime that
parses a string and transforms it into a Unix timestamp. This function is useful because it also accepts entries such
as “now,” “tomorrow,” “last week,” and so on as input values. The resulting timestamp is then processed with the
strftime function, which transforms it into the YYYY/MM/DD HH:MM:SS format. Have a look at how these
date/time values are parsed:

// Check if the start date is in accepted format
if (($this->mStartDate == '') ||

($timestamp = strtotime($this->mStartDate)) == -1)
$this->mErrorMessage = 'The start date is invalid. ';

else
// Transform date to YYYY/MM/DD HH:MM:SS format
$this->mStartDate =
strftime('%Y/%m/%d %H:%M:%S', strtotime($this->mStartDate));

■Note Check http://www.php.net/strtotime to see what input formats are supported by the
strtotime function and http://www.php.net/strftime for more details about strftime.

Apart from this detail, the admin_orders.tpl template file is pretty simple and doesn’t introduce any new
theoretical elements for you.

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS324

648XCH09.qxd 11/17/06 3:39 PM Page 324

Displaying Order Details
In this section, you’ll create the admin_order_details componentized template, which allows
the administrator to edit the details of a particular order. The most common tasks are to mark
a placed order as either verified or canceled, and to mark a verified order as completed when
the shipment is dispatched. Take a look at Figure 9-5 (shown earlier) to see the
admin_order_details template in action.

The site administrator marks an order as verified when the payment for that order is con-
firmed by PayPal and marks the order as completed when the order is assembled, addressed,
and mailed to the purchaser. The administrator can mark an order as canceled if, for example,
PayPal does not confirm the payment in a reasonable amount of time (the exact meaning of
“reasonable” is up to the administrator).

The other buttons—Edit, Update, and Cancel—allow the administrator to manually edit
any of the details of an order. When the Edit button is clicked, the select box and the text boxes
become editable.

Now that you have an idea of what this control will do, let’s implement it in the usual style
by starting with the data tier.

Implementing the Data Tier
Here you’ll implement the data tier logic that supports the functionality required by the UI.
You’ll enable the administrator to do three operations, and you’ll implement them with the
following functions:

• orders_get_order_info gets back the data needed to populate the form with general
order information, such as the total amount, date created, date shipped, and so on.
You can see the complete list in Figure 9-6, shown previously.

• orders_get_order_details returns all the products that belong to the selected order,
and its return data is used to fill the grid at the bottom of the form.

• orders_update_order is called when the administrator updates an order in edit mode.

Now implement each of these functions by following the steps from the next exercise.

Exercise: Implementing the Functions

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Use the query tool to execute this code, which creates the orders_get_order_info function in your
hatshop database:

-- Create orders_get_order_info function
CREATE FUNCTION orders_get_order_info(INTEGER)
RETURNS orders LANGUAGE plpgsql AS $$
DECLARE
inOrderId ALIAS FOR $1;
outOrdersRow orders;

BEGIN

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS 325

648XCH09.qxd 11/17/06 3:39 PM Page 325

SELECT INTO outOrdersRow
order_id, total_amount, created_on, shipped_on, status,
comments, customer_name, shipping_address, customer_email

FROM orders
WHERE order_id = inOrderId;
RETURN outOrdersRow;

END;
$$;

This function returns the information necessary to fill the form in the admin_order_details componen-
tized template.

4. Use the query tool to execute this code, which creates the order_details type and the
orders_get_order_details function in your hatshop database:

-- Create order_details type
CREATE TYPE order_details AS
(
order_id INTEGER,
product_id INTEGER,
product_name VARCHAR(50),
quantity INTEGER,
unit_cost NUMERIC(10, 2),
subtotal NUMERIC(10, 2)

);

-- Create orders_get_order_details function
CREATE FUNCTION orders_get_order_details(INTEGER)
RETURNS SETOF order_details LANGUAGE plpgsql AS $$
DECLARE
inOrderId ALIAS FOR $1;
outOrderDetailsRow order_details;

BEGIN
FOR outOrderDetailsRow IN
SELECT order_id, product_id, product_name, quantity,

unit_cost, (quantity * unit_cost) AS subtotal
FROM order_detail
WHERE order_id = inOrderId

LOOP
RETURN NEXT outOrderDetailsRow;

END LOOP;
END;

$$;

The orders_get_order_details function returns the list of products that belong to a specific order.
This will be used to populate the table containing the order details, situated at the bottom of the page.

5. Use the query tool to execute this code, which creates the orders_update_order function in your
hatshop database:

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS326

648XCH09.qxd 11/17/06 3:39 PM Page 326

-- Create orders_update_order function
CREATE FUNCTION orders_update_order(INTEGER, INTEGER, VARCHAR(255),

VARCHAR(50), VARCHAR(255), VARCHAR(50))
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inOrderId ALIAS FOR $1;
inStatus ALIAS FOR $2;
inComments ALIAS FOR $3;
inCustomerName ALIAS FOR $4;
inShippingAddress ALIAS FOR $5;
inCustomerEmail ALIAS FOR $6;
currentStatus INTEGER;

BEGIN
SELECT INTO currentStatus

status
FROM orders
WHERE order_id = inOrderId;
IF inStatus != currentStatus AND (inStatus = 0 OR inStatus = 1) THEN
UPDATE orders SET shipped_on = NULL WHERE order_id = inOrderId;

ELSEIF inStatus != currentStatus AND inStatus = 2 THEN
UPDATE orders SET shipped_on = NOW() WHERE order_id = inOrderId;

END IF;
UPDATE orders
SET status = inStatus, comments = inComments,

customer_name = inCustomerName,
shipping_address = inShippingAddress,
customer_email = inCustomerEmail

WHERE order_id = inOrderId;
END;

$$;

The orders_update_order function updates the details of an order.

Implementing the Business Tier
The business tier part for the admin_order_details componentized template is very simple
and consists of the following methods that you need to add to the Orders class inside of the
business/orders.php file:

// Gets the details of a specific order
public static function GetOrderInfo($orderId)
{
// Build the SQL query
$sql = 'SELECT * FROM orders_get_order_info(:order_id);';
// Build the parameters array
$params = array (':order_id' => $orderId);
// Prepare the statement with PDO-specific functionality

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS 327

648XCH09.qxd 11/17/06 3:39 PM Page 327

$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetRow($result, $params);

}

// Gets the products that belong to a specific order
public static function GetOrderDetails($orderId)
{
// Build the SQL query
$sql = 'SELECT * FROM orders_get_order_details(:order_id);';
// Build the parameters array
$params = array (':order_id' => $orderId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

// Updates order details
public static function UpdateOrder($orderId, $status, $comments,

$customerName, $shippingAddress, $customerEmail)
{
// Build the SQL query
$sql = 'SELECT orders_update_order(:order_id, :status, :comments,

:customer_name, :shipping_address, :customer_email);';
// Build the parameters array
$params = array (':order_id' => $orderId,

':status' => $status,
':comments' => $comments,
':customer_name' => $customerName,
':shipping_address' => $shippingAddress,
':customer_email' => $customerEmail);

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

Implementing the Presentation Tier
Once again, you’ve reached the stage where you wrap up all the data tier and business tier
functionality and package it into a nice-looking UI. The presentation tier consists of the
admin_order_details componentized template. Let’s create this componentized template in
the following exercise.

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS328

648XCH09.qxd 11/17/06 3:39 PM Page 328

Exercise: Creating the admin_order_details Componentized Template

1. Create a new template file named admin_order_details.tpl in the presentation/templates
folder, and add the following code to it:

{* admin_order_details.tpl *}
{load_admin_order_details assign="admin_order_details"}

Editing details for order ID:
{$admin_order_details->mOrderInfo.order_id} [
{strip}
mAdminOrdersPageLink|prepare_link:"https"}">
back to admin orders...

{/strip}
]

<form action="{"admin.php"|prepare_link:"https"}" method="get">
<input type="hidden" name="Page" value="OrderDetails" />
<input type="hidden" name="OrderId"
value="{$admin_order_details->mOrderInfo.order_id}" />
<table class="edit">
<tr>
<td class="admin_page_text">Total Amount: </td>
<td class="price">
${$admin_order_details->mOrderInfo.total_amount}

</td>
</tr>
<tr>
<td class="admin_page_text">Date Created: </td>
<td>
{$admin_order_details->mOrderInfo.created_on|date_format:"%Y-%m-%d %T"}

</td>
</tr>
<tr>
<td class="admin_page_text">Date Shipped: </td>
<td>
{$admin_order_details->mOrderInfo.shipped_on|date_format:"%Y-%m-%d %T"}

</td>
</tr>
<tr>
<td class="admin_page_text">Status: </td>
<td>
<select name="status"
{if ! $admin_order_details->mEditEnabled}
disabled="disabled"

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS 329

648XCH09.qxd 11/17/06 3:39 PM Page 329

{/if} >
{html_options options=$admin_order_details->mOrderStatusOptions
selected=$admin_order_details->mOrderInfo.status}

</select>
</td>

</tr>
<tr>
<td class="admin_page_text">Comments: </td>
<td>
<input name="comments" type="text" size="50"
value="{$admin_order_details->mOrderInfo.comments}"
{if ! $admin_order_details->mEditEnabled}
disabled="disabled"
{/if} />

<td>
</tr>
<tr>
<td class="admin_page_text">Customer Name: </td>
<td>
<input name="customerName" type="text" size="50"
value="{$admin_order_details->mOrderInfo.customer_name}"
{if ! $admin_order_details->mEditEnabled}
disabled="disabled"
{/if} />

<td>
</tr>
<tr>
<td class="admin_page_text">Shipping Address: </td>
<td>
<input name="shippingAddress" type="text" size="50"
value="{$admin_order_details->mOrderInfo.shipping_address}"
{if ! $admin_order_details->mEditEnabled}
disabled="disabled"
{/if} />

</td>
</tr>
<tr>
<td class="admin_page_text">Customer Email: </td>
<td>
<input name="customerEmail" type="text" size="50"
value="{$admin_order_details->mOrderInfo.customer_email}"
{if ! $admin_order_details->mEditEnabled}
disabled="disabled"
{/if} />

</td>
</tr>

</table>

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS330

648XCH09.qxd 11/17/06 3:39 PM Page 330

<input type="submit" name="submitEdit" value="Edit"
{if $admin_order_details->mEditEnabled}
disabled="disabled"
{/if} />
<input type="submit" name="submitUpdate" value="Update"
{if ! $admin_order_details->mEditEnabled}
disabled="disabled"
{/if} />
<input type="submit" name="submitCancel" value="Cancel"
{if ! $admin_order_details->mEditEnabled}
disabled="disabled"
{/if} />

Order contains these products:

<table>
<tr>
<th>Product ID</th>
<th>Product Name</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Subtotal</th>

</tr>
{section name=cOrder loop=$admin_order_details->mOrderDetails}
<tr>
<td>{$admin_order_details->mOrderDetails[cOrder].product_id}</td>
<td>{$admin_order_details->mOrderDetails[cOrder].product_name}</td>
<td>{$admin_order_details->mOrderDetails[cOrder].quantity}</td>
<td>${$admin_order_details->mOrderDetails[cOrder].unit_cost}</td>
<td>${$admin_order_details->mOrderDetails[cOrder].subtotal}</td>

</tr>
{/section}
</table>

</form>

2. Create a new file named function.load_admin_order_details.php in the
presentation/smarty_plugins folder, and write the following code in it:

<?php
// Plugin functions inside plugin files must be named: smarty_type_name
function smarty_function_load_admin_order_details($params, $smarty)
{
// Create AdminOrderDetils object
$admin_order_details = new AdminOrderDetails();
$admin_order_details->init();

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS 331

648XCH09.qxd 11/17/06 3:39 PM Page 331

// Assign the template variable
$smarty->assign($params['assign'], $admin_order_details);

}

// Presentation tier class that deals with administering order details
class AdminOrderDetails
{
// Public variables available in smarty template
public $mOrderId;
public $mOrderInfo;
public $mOrderDetails;
public $mEditEnabled;
public $mOrderStatusOptions;
public $mAdminOrdersPageLink;

// Class constructor
public function __construct()
{
// Get the back link from session
$this->mAdminOrdersPageLink = $_SESSION['admin_orders_page_link'];

// We receive the order ID in the query string
if (isset ($_GET['OrderId']))
$this->mOrderId = (int) $_GET['OrderId'];

else
trigger_error('OrderId paramater is required');

$this->mOrderStatusOptions = Orders::$mOrderStatusOptions;
}

// Initializes class members
public function init()
{
if (isset ($_GET['submitUpdate']))
{
Orders::UpdateOrder($this->mOrderId, $_GET['status'],
$_GET['comments'], $_GET['customerName'], $_GET['shippingAddress'],
$_GET['customerEmail']);

}

$this->mOrderInfo = Orders::GetOrderInfo($this->mOrderId);
$this->mOrderDetails = Orders::GetOrderDetails($this->mOrderId);

// Value which specifies whether to enable or disable edit mode
if (isset ($_GET['submitEdit']))

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS332

648XCH09.qxd 11/17/06 3:39 PM Page 332

$this->mEditEnabled = true;
else
$this->mEditEnabled = false;

}
}
?>

3. Open hatshop.css, and add the following styles:

.edit tr td
{
background: #ffffff;
border: none;

}

4. Add some fictional orders to the database, and then load the admin.php file in your browser. Click on the
ORDERS ADMIN menu link, click on a Go! button to show some orders, and click the View Details button for
one of the orders. The order details admin page will show up allowing you to edit the order’s details, as
advertised earlier in this chapter.

How It Works: The admin_order_details Componentized Template

The three files you just wrote, admin_order_details.tpl, function.load_admin_order_details.php,
and admin_order_details.php, allow you to view and update the details of a particular order.

The function plugin is loaded from the template file using the usual mechanism. The constructor of the
AdminOrderDetails class (the __construct method) ensures that there’s an OrderId parameter in
the query string because without it this componentized template doesn’t make sense:

// Class constructor
public function __construct()
{
// Get the back link from session
$this->mAdminOrdersPageLink = $_SESSION['admin_orders_page_link'];

// We receive the order ID in the query string
if (isset ($_GET['OrderId']))
$this->mOrderId = (int) $_GET['OrderId'];

else
trigger_error('OrderId paramater is required');

$this->mOrderStatusOptions = Orders::$mOrderStatusOptions;
}

The init() method reacts to user’s actions and calls various business tier methods to accomplish the user’s
requests.

It populates the form with data it gets from the Orders::GetOrderInfo and the
Orders::GetOrderDetails business tier methods.

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS 333

648XCH09.qxd 11/17/06 3:39 PM Page 333

The mEditEnabled class member enters or exits edit mode depending on whether the submitEdit parameter
from the query string is set or not. When entering edit mode, all text boxes and the Update and Cancel buttons
become enabled, but the Edit button is disabled. The reverse happens when exiting edit mode, which happens
when either the Cancel or Update button is clicked.

Summary
We covered a lot of ground in this chapter. In two separate stages, you implemented a system
for taking orders and manually administering them. You added a Place Order button to the
shopping cart control to allow the visitor to order the products in the shopping cart. You
implemented a simple orders administration page, in which the site administrator can view
and handle pending orders.

Because order data is now stored in the database, you can do various statistics and calcu-
lations based on the items sold. In the next chapter, you’ll learn how to implement a “Visitors
who bought this also bought…” feature, which wouldn’t have been possible without the order
data stored in the database.

CHAPTER 9 ■ DEALING WITH CUSTOMER ORDERS334

648XCH09.qxd 11/17/06 3:39 PM Page 334

Product Recommendations

One of the most important advantages of an Internet store compared to a brick-and-mortar
location is the capability to customize the web site for each visitor based on his or her prefer-
ences or based on data gathered from other visitors with similar preferences. If your web site
knows how to suggest additional products to your visitor in a clever way, he or she might end
up buying more than initially planned.

In this chapter, you’ll implement a simple, but efficient, product recommendations
system in your HatShop web store. You can implement a product recommendations system
in several ways, depending on your kind of store. Here are a few popular ones:

Up-Selling: Up-selling is defined as the strategy of offering consumers the opportunity to
purchase an “upgrade” or a little extra based on their requested purchase. Perhaps the
most famous example of up-selling—“Would you like to super-size that?”—is mentioned
to customers when they order a value meal at McDonalds. This seemingly innocent
request greatly increases the profit margin.

Cross-Selling: Cross-selling is defined as the practice of offering customers complemen-
tary products. Continuing with the McDonalds analogy, you’ll always hear the phrase
“Would you like fries with that?” when someone orders a hamburger. Because it’s widely
acknowledged that fries go with burgers, and the consumer is ordering a burger, then its
likely that the consumer also likes french fries—the mere mention of french fries is likely
to generate a new sale.

Featured products on the home page: HatShop already permits the site administrator to
choose the products featured on the main page and on the department pages.

In this chapter, you’ll implement a dynamic recommendations system with both
up-selling and cross-selling strategies. This system has the advantage of not needing manual
maintenance. Because at this point HatShop retains what products were sold, you will imple-
ment a “customers who bought this product also bought…” feature in this chapter.

Increasing Sales with Dynamic Recommendations
In HatShop, you’ll implement the dynamic recommendations system in the visitor’s shopping
cart and in the product details page. After adding the new bits to your shop, the product
details page will contain the product recommendations list at the bottom of the page, as
shown in Figure 10-1.

335

C H A P T E R 1 0

648XCH10.qxd 11/19/06 1:59 PM Page 335

336 CHAPTER 10 ■ PRODUCT RECOMMENDATIONS

Figure 10-1. The product details page with the dynamic recommendations system implemented

The shopping cart page gets a similar addition, as shown in Figure 10-2.

648XCH10.qxd 11/19/06 1:59 PM Page 336

Figure 10-2. The shopping cart details page with the dynamic recommendations system
implemented

Implementing the Data Tier
Before writing any code, you first need to understand the logic you’ll implement for making
product recommendations. We’ll focus here on the logic of recommending products that were
ordered together with another specific product. Afterward, the recommendations for the shop-
ping cart page will function in a similar way but will take more products into consideration.

So, you need to find out what other products were bought by customers who also bought
the product for which you’re calculating the recommendations (in other words, determine the
“customer who bought this product also bought…” information). Let’s develop the SQL logic
to achieve the list of product recommendations step by step.

CHAPTER 10 ■ PRODUCT RECOMMENDATIONS 337

648XCH10.qxd 11/19/06 1:59 PM Page 337

■Tip Because SQL is very powerful, you can actually implement the same functionality in several ways.
Here, we’ll cover just one of the options, but when implementing the actual database functions, you’ll be
shown other options as well.

To determine what other products were ordered together with a specific product, you
need to join two instances of the order_detail table on their order_id fields. Feel free to
review the “Joining Data Tables” section in Chapter 4 for a quick refresher about table joins.
Joining multiple instances of a single table is just like joining different data tables, which
contain the same data.

You join two instances of order_detail—called od1 and od2—on their order_id fields,
while filtering the product_id value in od1 for the ID of the product you’re looking for. This way,
you’ll get in the od2 side of the relationship all the products that were ordered in the orders
that contain the product you’re looking for.

The SQL code that retrieves all the products that were ordered together with the product
identified by a product_id of 4 is

SELECT od2.product_id
FROM order_detail od1
JOIN order_detail od2

ON od1.order_id = od2.order_id
WHERE od1.product_id = 4;

This code returns a long list of products, which includes the product with the product_id
of 4, such as this one:

product_id

4
5
10
43
4
5
10
23
25
28
4
10
12
14
43

CHAPTER 10 ■ PRODUCT RECOMMENDATIONS338

648XCH10.qxd 11/19/06 1:59 PM Page 338

Starting from this list of results, you need to get the products that are most frequently
bought along with this product. The first problem with this list of products is that it includes
the product with the product_id of 4. To eliminate it from the list (because, of course, you can’t
put it in the recommendations list), you simply add one more rule to the WHERE clause:

SELECT od2.product_id
FROM order_detail od1
JOIN order_detail od2

ON od1.order_id = od2.order_id
WHERE od1.product_id = 4 AND od2.product_id != 4;

Not surprisingly, you get a list of products that is similar to the previous one, except it
doesn’t contain the product with a product_id of 4 any more:

product_id

5
10
43
5
10
23
25
28
10
12
14
43

Now the list of returned products is much shorter, but it contains multiple entries for the
products that were ordered more than once in the orders that contain the product identifier 4.
To get the most relevant recommendations, you need to see which products appear more fre-
quently in this list. You do this by grouping the results of the previous query by product_id and
sorting in descending order by how many times each product appears in the list (this number
is given by the rank calculated column in the following code snippet):

SELECT od2.product_id, COUNT(od2.product_id) AS rank
FROM order_detail od1
JOIN order_detail od2

ON od1.order_id = od2.order_id
WHERE od1.product_id = 4 AND od2.product_id != 4
GROUP BY od2.product_id
ORDER BY rank DESC;

CHAPTER 10 ■ PRODUCT RECOMMENDATIONS 339

648XCH10.qxd 11/19/06 1:59 PM Page 339

This query now returns a list such as the following:

product_id rank
---------- ----

10 3
5 2
43 2
23 1
25 1
28 1
12 1
14 1

If you don’t need the rank to be returned, you can rewrite this query by using the COUNT
aggregate function directly in the ORDER BY clause. You can also use the LIMIT keyword to
specify how many records you’re interested in. If you want the top five products of the list,
this query does the trick:

SELECT od2.product_id
FROM order_detail od1
JOIN order_detail od2

ON od1.order_id = od2.order_id
WHERE od1.product_id = 4 AND od2.product_id != 4
GROUP BY od2.product_id
ORDER BY COUNT(od2.product_id) DESC
LIMIT 5;

The results of this query are

product_id

10
43
5
23
28

Because this list of numbers doesn’t make much sense to the human eye, you’ll also want
to know the name and the description of the recommended products. The following query
does exactly this by querying the product table for the IDs returned by the previous query (the
description isn’t requested because of space reasons):

SELECT product_id, name
FROM product
WHERE product_id IN

(

CHAPTER 10 ■ PRODUCT RECOMMENDATIONS340

648XCH10.qxd 11/19/06 1:59 PM Page 340

SELECT od2.product_id
FROM order_detail od1
JOIN order_detail od2 ON od1.order_id = od2.order_id
WHERE od1.product_id = 4 AND od2.product_id != 4
GROUP BY od2.product_id
ORDER BY COUNT(od2.product_id) DESC
LIMIT 5

);

Based on the data from the previous fictional results, this query returns something like
this:

product_id name
---------- -----------------------

10 Vinyl Policeman Cop Hat
43 Hussar Military Hat
5 Red Santa Cowboy Hat
23 Black Basque Beret
28 Moleskin Driver

Alternatively, you might want to calculate the product recommendations only using data
from the orders that happened in the last n days. For this, you need an additional join with the
orders table, which contains the date_created field. The following query calculates product
recommendations based on orders placed in the past 30 days:

SELECT product_id, name
FROM product
WHERE product_id IN

(
SELECT od2.product_id
FROM order_detail od1
JOIN order_detail od2

ON od1.order_id = od2.order_id
JOIN orders o

ON od1.order_id = o.order_id
WHERE od1.product_id = 7

AND od2.product_id != 7
AND (NOW() - o.created_on) < 30

GROUP BY od2.product_id
ORDER BY COUNT(od2.product_id) DESC
LIMIT 5

);

We won’t use this trick in HatShop, but it’s worth keeping in mind as a possibility.

CHAPTER 10 ■ PRODUCT RECOMMENDATIONS 341

648XCH10.qxd 11/19/06 1:59 PM Page 341

Adding Product Recommendations
Make sure you understand the data tier logic explained earlier because you’ll implement it in
the catalog_get_recommendations database function. The only significant difference from the
queries shown earlier is that you’ll also ask for the product description, which will be trun-
cated at a specified number of characters.

The catalog_get_recommendations database function is called when displaying what
products were ordered together with the selected product. Follow the steps in the next exer-
cise to add the catalog_get_recommendations function to the hatshop database.

Exercise: Adding the catalog_get_recommendations Function

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Use the query tool to execute this code, which creates the product_recommendation type and the
catalog_get_recommendations function in your hatshop database:

-- Create product_recommendation type
CREATE TYPE product_recommendation AS
(
product_id INTEGER,
name VARCHAR(50),
description VARCHAR(1000)

);

-- Create catalog_get_recommend+ations function
CREATE FUNCTION catalog_get_recommendations(INTEGER, INTEGER)
RETURNS SETOF product_recommendation LANGUAGE plpgsql AS $$
DECLARE
inProductId ALIAS FOR $1;
inShortProductDescriptionLength ALIAS FOR $2;
outProductRecommendationRow product_recommendation;

BEGIN
FOR outProductRecommendationRow IN
SELECT product_id, name, description
FROM product
WHERE product_id IN

(SELECT od2.product_id
FROM order_detail od1
JOIN order_detail od2

ON od1.order_id = od2.order_id
WHERE od1.product_id = inProductId

AND od2.product_id != inProductId
GROUP BY od2.product_id
ORDER BY COUNT(od2.product_id) DESC
LIMIT 5)

LOOP

CHAPTER 10 ■ PRODUCT RECOMMENDATIONS342

648XCH10.qxd 11/19/06 1:59 PM Page 342

IF char_length(outProductRecommendationRow.description) >
inShortProductDescriptionLength THEN
outProductRecommendationRow.description :=
substring(outProductRecommendationRow.description, 1,

inShortProductDescriptionLength) || '...';
END IF;
RETURN NEXT outProductRecommendationRow;

END LOOP;
END;

$$;

An Alternate Solution Using Subqueries
Because SQL is so versatile, catalog_get_recommendations can be written in a variety of ways.
In our case, one popular alternative to using table joins is using subqueries. Here’s a version
of catalog_get_recommendations that uses subqueries instead of joins. The commented code
is self-explanatory:

-- Create catalog_get_recommendations function
CREATE OR REPLACE FUNCTION catalog_get_recommendations(INTEGER, INTEGER)
RETURNS SETOF product_recommendation LANGUAGE plpgsql AS $$
DECLARE
inProductId ALIAS FOR $1;
inShortProductDescriptionLength ALIAS FOR $2;
outProductRecommendationRow product_recommendation;

BEGIN
FOR outProductRecommendationRow IN
-- Returns the product recommendations
SELECT product_id, name, description
FROM product
WHERE product_id IN

(-- Returns the products that were ordered
-- together with inProductId
SELECT product_id
FROM order_detail
WHERE order_id IN

(-- Returns the orders that contain inProductId
SELECT DISTINCT order_id
FROM order_detail
WHERE product_id = inProductId
LIMIT 5)
-- Must not include products that already
-- exist in the visitor's cart
AND product_id != inProductId

-- Group the product_id so we can calculate the rank
GROUP BY product_id

CHAPTER 10 ■ PRODUCT RECOMMENDATIONS 343

648XCH10.qxd 11/19/06 1:59 PM Page 343

-- Order descending by rank
ORDER BY COUNT(product_id) DESC
LIMIT 5)

LOOP
IF char_length(outProductRecommendationRow.description) >

inShortProductDescriptionLength THEN
outProductRecommendationRow.description :=
substring(outProductRecommendationRow.description, 1,

inShortProductDescriptionLength) || '...';
END IF;
RETURN NEXT outProductRecommendationRow;

END LOOP;
END;

$$;

Adding Shopping Cart Recommendations
The logic for showing shopping cart recommendations is very similar to what you did earlier,
except now you need to take into account all products that exist in the shopping cart, instead
of a single product. Follow the steps in the next exercise to add the shopping_cart_get_
recommendations function to the hatshop database.

Exercise: Adding the shopping_cart_get_recommendations Function

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Use the query tool to execute this code, which creates the shopping_cart_get_recommendations
function in your hatshop database:

-- Create shopping_cart_get_recommendations function
CREATE FUNCTION shopping_cart_get_recommendations(CHAR(32), INTEGER)
RETURNS SETOF product_recommendation LANGUAGE plpgsql AS $$
DECLARE
inCartId ALIAS FOR $1;
inShortProductDescriptionLength ALIAS FOR $2;
outProductRecommendationRow product_recommendation;

BEGIN
FOR outProductRecommendationRow IN
-- Returns the product recommendations
SELECT product_id, name, description
FROM product
WHERE product_id IN

(-- Returns the products that exist in a list of orders
SELECT od1.product_id
FROM order_detail od1
JOIN order_detail od2

CHAPTER 10 ■ PRODUCT RECOMMENDATIONS344

648XCH10.qxd 11/19/06 1:59 PM Page 344

ON od1.order_id = od2.order_id
JOIN shopping_cart

ON od2.product_id = shopping_cart.product_id
WHERE shopping_cart.cart_id = inCartId

-- Must not include products that already exist
-- in the visitor's cart
AND od1.product_id NOT IN
(-- Returns the products in the specified
-- shopping cart
SELECT product_id
FROM shopping_cart
WHERE cart_id = inCartId)

-- Group the product_id so we can calculate the rank
GROUP BY od1.product_id
-- Order descending by rank
ORDER BY COUNT(od1.product_id) DESC
LIMIT 5)

LOOP
IF char_length(outProductRecommendationRow.description) >

inShortProductDescriptionLength THEN
outProductRecommendationRow.description :=
substring(outProductRecommendationRow.description, 1,

inShortProductDescriptionLength) || '...';
END IF;
RETURN NEXT outProductRecommendationRow;

END LOOP;
END;

$$;

The alternate version of this function, which uses subqueries instead of table joins, looks like this:

-- Create shopping_cart_get_recommendations function
CREATE OR REPLACE FUNCTION shopping_cart_get_recommendations(CHAR(32), INTEGER)
RETURNS SETOF product_recommendation LANGUAGE plpgsql AS $$
DECLARE
inCartId ALIAS FOR $1;
inShortProductDescriptionLength ALIAS FOR $2;
outProductRecommendationRow product_recommendation;

BEGIN
FOR outProductRecommendationRow IN
-- Returns the product recommendations
SELECT product_id, name, description
FROM product
WHERE product_id IN

(-- Returns the products that exist in a list of orders
SELECT product_id
FROM order_detail
WHERE order_id IN

CHAPTER 10 ■ PRODUCT RECOMMENDATIONS 345

648XCH10.qxd 11/19/06 1:59 PM Page 345

(-- Returns the orders that contain certain products
SELECT DISTINCT order_id
FROM order_detail
WHERE product_id IN

(-- Returns the products in the
-- specified shopping cart
SELECT product_id
FROM shopping_cart
WHERE cart_id = inCartId))

-- Must not include products that already
-- exist in the visitor's cart
AND product_id NOT IN
(-- Returns the products in the specified
-- shopping cart
SELECT product_id
FROM shopping_cart
WHERE cart_id = inCartId)

-- Group the product_id so we can calculate the rank
GROUP BY product_id
-- Order descending by rank
ORDER BY COUNT(product_id) DESC
LIMIT 5)

LOOP
IF char_length(outProductRecommendationRow.description) >

inShortProductDescriptionLength THEN
outProductRecommendationRow.description :=
substring(outProductRecommendationRow.description, 1,

inShortProductDescriptionLength) || '...';
END IF;
RETURN NEXT outProductRecommendationRow;

END LOOP;
END;

$$;

Implementing the Business Tier
The business tier of the product recommendations system consists of two methods both
named GetRecommendations. One of them is located in the Catalog class and retrieves recom-
mendations for a product details page, and the other one is located in the ShoppingCart class
and retrieves recommendations to be displayed in the visitor’s shopping cart.

CHAPTER 10 ■ PRODUCT RECOMMENDATIONS346

648XCH10.qxd 11/19/06 1:59 PM Page 346

Exercise: Implementing the Business Logic

1. Add the following code to the business/catalog.php file:

// Get product recommendations
public static function GetRecommendations($productId)
{
// Build the SQL query
$sql = 'SELECT * FROM catalog_get_recommendations(

:product_id, :short_product_description_length);';
// Build the parameters array
$params = array (':product_id' => $productId,

':short_product_description_length' =>
SHORT_PRODUCT_DESCRIPTION_LENGTH);

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

2. Open the shopping_cart.php file located in the business folder, and add the following code:

// Get product recommendations for the shopping cart
public static function GetRecommendations()
{
// Build the SQL query
$sql = 'SELECT * FROM shopping_cart_get_recommendations(

:cart_id, :short_product_description_length);';
// Build the parameters array
$params = array (':cart_id' => self::GetCartId(),

':short_product_description_length' =>
SHORT_PRODUCT_DESCRIPTION_LENGTH);

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

Implementing the Presentation Tier
The next exercise shows you how to update the product and cart_details componentized
templates to display the product recommendations.

CHAPTER 10 ■ PRODUCT RECOMMENDATIONS 347

648XCH10.qxd 11/19/06 1:59 PM Page 347

Exercise: Updating the product and cart_details Componentized Templates

1. Open the presentation/smarty_plugins/function.load_product.php file, and add the
$mRecommendation member to the Product class:

// Public variables to be used in Smarty template
public $mProduct;
public $mPageLink = 'index.php';
public $mAddToCartLink;
public $mRecommendations;

2. Now you have to get the recommended products data in $mRecommendations, and create links to their
home pages. Modify the init() method of the Product class as highlighted here:

$this->mAddToCartLink = 'index.php?ProductID=' . $this->_mProductId .
'&CartAction=' . ADD_PRODUCT;

// Get product recommendations
$this->mRecommendations =
Catalog::GetRecommendations($this->_mProductId);

// Create recommended product links
for ($i = 0; $i < count($this->mRecommendations); $i++)
$this->mRecommendations[$i]['link'] = 'index.php?ProductID=' .
$this->mRecommendations[$i]['product_id'];

3. The last step to complete the product recommendations system for the product details page is to update
the product template to display the list of recommendations. Add the following lines at the end of
presentation/templates/product.tpl:

{if $product->mRecommendations}

Customers who bought this also bought:
{section name=m loop=$product->mRecommendations}

{strip}

<a class="product_recommendation"
href="{$product->mRecommendations[m].link|prepare_link:"http"}">
{$product->mRecommendations[m].name}

{/strip}

-
{$product->mRecommendations[m].description}
{/section}

{/if}

CHAPTER 10 ■ PRODUCT RECOMMENDATIONS348

648XCH10.qxd 11/19/06 1:59 PM Page 348

4. Open hatshop.css, and add the following style:

.product_recommendation
{
color: #0000ff;
text-decoration: underline;

}

5. Now let’s modify the cart_details componentized template to show product recommendations. Open
function.load_cart_details.php located in the presentation/smarty_plugins folder to add
the $mRecommendation member to the CartDetails class:

public $mCartReferrer = 'index.php';
public $mCartDetailsTarget;
public $mRecommendations;

6. Now you have to get the recommended products data in $mRecommendations, and create links to their
home pages. Modify the init() method of the CartDetails class as highlighted here:

$this->mSavedCartProducts[$i]['remove'] = 'index.php?ProductID=' .
$this->mSavedCartProducts[$i]['product_id'] .
'&CartAction=' . REMOVE_PRODUCT;

}

// Get product recommendations for the shopping cart
$this->mRecommendations =
ShoppingCart::GetRecommendations();

// Create recommended product links
for ($i = 0; $i < count($this->mRecommendations); $i++)
$this->mRecommendations[$i]['link'] = 'index.php?ProductID=' .
$this->mRecommendations[$i]['product_id'];

}
}
?>

7. And, finally, the last step is to update the cart_details template to display the list of recommendations.
Add the following lines at the end of presentation/templates/cart_details.tpl:

{if $cart_details->mRecommendations}

Customers who bought this also bought:
{section name=m loop=$cart_details->mRecommendations}

{strip}

<a class="product_recommendation"
href="{$cart_details->mRecommendations[m].link|prepare_link:"http"}">
{$cart_details->mRecommendations[m].name}

{/strip}

-
{$cart_details->mRecommendations[m].description}
{/section}

{/if}

CHAPTER 10 ■ PRODUCT RECOMMENDATIONS 349

648XCH10.qxd 11/19/06 1:59 PM Page 349

8. Load HatShop, place some orders, and then check the product and shopping cart details pages display
recommendations based on the ordered products! The results should look like Figures 10-1 and 10-2
shown earlier in this chapter.

Summary
Showing product recommendations is a great way to encourage sales, and we succeeded
in implementing this functionality throughout this short chapter. The greatest challenge was to
build the SQL query that gets the list of recommended products, and we analyzed how to create
it, step by step.

In the next chapter, you’ll enter the third stage of development by adding customer
accounts functionality.

CHAPTER 10 ■ PRODUCT RECOMMENDATIONS350

648XCH10.qxd 11/19/06 1:59 PM Page 350

Phase III of Development

P A R T 3

648XCH11.qxd 11/17/06 3:37 PM Page 351

648XCH11.qxd 11/17/06 3:37 PM Page 352

Managing Customer Details

So far in this book you’ve built a basic, but functional site, and integrated it with PayPal for
accepting payments and confirming orders. In this section of the book, you’ll take things a
little further. By cutting out PayPal from your ordering process, you can obtain much better
control—as well as reduce overhead costs. It isn’t as complicated as you might think, but we
do have to be careful to do things right.

In this chapter, we’ll be laying the groundwork for this by implementing a customer
account system.

To make e-commerce sites more user friendly, you usually store details such as credit
card numbers in a database, so that users don’t have to retype this information each time they
place an order. The customer account system you’ll implement will store this information and
include all of the web pages required for the entry of such details.

As well as implementing these web pages, we’ll need to take several other factors into
account. First, simply placing credit card numbers, expiry dates, and other important infor-
mation into a database in plain text isn’t ideal because it raises the possibility that this data
could be stolen should the server be compromised. This could occur remotely or be perpe-
trated by individuals within our organization. In addition to enforcing a prohibitively
restrictive access policy to such data, it can be a lot easier simply to encrypt sensitive informa-
tion and retrieve it programmatically when required. We’ll create a security library to ease this
functionality.

Secondly, secure communications are important because you’ll be capturing sensitive
information such as credit card details via the web. We can’t just put a form up for people to
access via HTTP and allow them to send it to us because the information could be inter-
cepted. Instead, we’ll use SSL over HTTPS connections. You’ll take the HatShop application to
the point where you can move on and implement your own back-end order pipeline in the
next chapter.

In this chapter, you’ll learn how to

• Store customer accounts

• Implement the security classes

• Add customer accounts functionality to HatShop

• Create the checkout page

353

C H A P T E R 1 1

648XCH11.qxd 11/17/06 3:37 PM Page 353

354 CHAPTER 11 ■ MANAGING CUSTOMER DETAILS

Storing Customer Accounts
You can handle customer account functionality in web sites in many ways. In general, how-
ever, the methods share the following features:

• Customers log in to access secured areas of the web site.

• Once logged in, the web application remembers the customer until the customer logs
out (either manually via a Log Out link, or automatically if the session times out or a
server error occurs).

• All secure pages in a web application need to check whether a customer is logged in
before allowing access.

First, let’s look at the general implementation details for the HatShop e-commerce site.

The HatShop Customer Account Scheme
One simple way to determine whether a customer is logged in is to store the customer ID in
the session state. You can then verify whether a value is present at the start of the secured
pages, and warn the user if not. The login form itself can then authenticate the user and store
a value in the session state if successful, ready for later retrieval. To log a user out, you simply
remove the ID from the session state.

To log in, a customer needs to supply a username (we’ll use the customer’s email address
here because it is guaranteed to be unique) and a password. Sending this information over the
Internet is a sensitive issue because third parties can eavesdrop and capture it. Later in this
chapter, we’ll look at how to enable secure communications over the Internet. For now,
though, we’ll concentrate on the authentication side of things, which is unaffected by the type
of connection used to transmit the email address and password of the customer.

Another issue related to security concerns storing user passwords. It isn’t a good idea to
store user passwords in your database in plain text because this information is a potential tar-
get for attack. Instead, you should store what is known as the hash of the password. A hash is
a unique string that represents the password but cannot be converted back into the password
itself. To validate the password entered by the user, then, you simply need to generate a hash
for the password entered and compare it with the hash stored in your database. If the hashes
match, then the passwords entered match as well, so you can be sure that the customer is gen-
uine.

This leads to another important task—you need to supply a way for new users to register.
The result of registration is to add a new customer to your database, including username and
password hash information.

To implement this scheme in your application, you’ll complete the following tasks:

• Create two new database tables, the first called customer to hold customer details,
and the second called shipping_region, which stores possible shipping regions that
a customer can reside in.

• Implement the associated methods in data and business tiers that add, modify, and
retrieve information from customer and shipping_region.

648XCH11.qxd 11/17/06 3:37 PM Page 354

• Modify the cart_details componentized template, which will now redirect the user to
a checkout page that will be implemented in a new componentized template called
checkout_info.

• Create a componentized template for customer login called customer_login.

• Create a componentized template for customer registration or for editing basic account
details called customer_details.

• Create a componentized template named customer_credit_card that allows customers
to enter credit card details.

• Create a componentized template named customer_address for customers to enter a
shipping address.

Creating customer and shipping_region Tables
Now you can build the customer and shipping_region tables by following the steps in the next
exercise.

Exercise: Creating the Database Tables

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Use the query tool to execute this code, which creates the shipping_region table in your hatshop
database:

-- Create shipping_region table
CREATE TABLE shipping_region
(
shipping_region_id SERIAL NOT NULL,
shipping_region VARCHAR(100) NOT NULL,
CONSTRAINT pk_shipping_region_id PRIMARY KEY (shipping_region_id)

);

4. Now add the values “Please select”, “US / Canada”, “Europe”, and “Rest of the World” to
the shipping_region table. “Please Select” should always have a shipping_region_id value of
1—this is important! Execute the following SQL code using the query tool to add the mentioned values to
the shipping_region table:

-- Populate shipping_region table
INSERT INTO shipping_region (shipping_region_id, shipping_region)

VALUES (1, 'Please Select');
INSERT INTO shipping_region (shipping_region_id, shipping_region)

VALUES (2, 'US / Canada');
INSERT INTO shipping_region (shipping_region_id, shipping_region)

VALUES (3, 'Europe');

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 355

648XCH11.qxd 11/17/06 3:37 PM Page 355

INSERT INTO shipping_region (shipping_region_id, shipping_region)
VALUES (4, 'Rest of World');

-- Update the sequence
ALTER SEQUENCE shipping_region_shipping_region_id_seq RESTART WITH 5;

5. Use the query tool to execute this code, which creates the customer table in your hatshop database:

-- Create customer table
CREATE TABLE customer
(
customer_id SERIAL NOT NULL,
name VARCHAR(50) NOT NULL,
email VARCHAR(100) NOT NULL,
password VARCHAR(50) NOT NULL,
credit_card TEXT,
address_1 VARCHAR(100),
address_2 VARCHAR(100),
city VARCHAR(100),
region VARCHAR(100),
postal_code VARCHAR(100),
country VARCHAR(100),
shipping_region_id INTEGER NOT NULL DEFAULT 1,
day_phone VARCHAR(100),
eve_phone VARCHAR(100),
mob_phone VARCHAR(100),
CONSTRAINT pk_customer_id PRIMARY KEY (customer_id),
CONSTRAINT fk_shipping_region_id FOREIGN KEY (shipping_region_id)

REFERENCES shipping_region (shipping_region_id)
ON UPDATE RESTRICT ON DELETE RESTRICT,

CONSTRAINT uk_email UNIQUE (email)
);

Customers’ credit card information will be stored in an encrypted format so that no one will be able to access this
information. However, unlike with passwords, you need to be able to retrieve this credit card information when
required by the order pipeline, so you can’t simply use a hash (the hash algorithm is one-way). You’ll implement
the credit card data encryption functionality using a number of business tier classes, which you’ll see next.

Implementing the Security Classes
So far, the following two areas need security functionality:

• Password hashing

• Credit card encryption

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS356

648XCH11.qxd 11/17/06 3:37 PM Page 356

Both these tasks are carried out by business tier classes that you’ll save in the business
directory in the following files:

password_hasher.php: Contains the PasswordHasher class, which contains the static
method Hash() that returns the hash value for the password supplied.

secure_card.php: Contains the SecureCard class, which represents a credit card. This
class can be supplied with credit card information, which is then accessible in encrypted
format. This class can also take encrypted credit card data and supply access to the
decrypted information.

symmetric_crypt.php: The class contained in this file, SymmetricCrypt, is used by
SecureCard to encrypt and decrypt data. This means that if you ever want to change the
encryption method, you only need to modify the code here, leaving the SecureCard class
untouched.

We’ll look at the code for hashing first, followed by encryption.

Implementing Hashing Functionality in the Business Tier
Hashing is a means by which you can obtain a unique value that represents an object. The
algorithm used to convert the source byte array into a hashed byte array varies. The most used
hashing algorithm is called MD5 (Message Digest, another name for the hash code generated),
which generates a 128-bit hash value. Unfortunately, many kinds of attacks are based on word
dictionaries constructed against MD5 hashes. Another popular hashing algorithm is called
SHA1 (Secure Hash Algorithm), which generates a 160-bit hash value. SHA1 is generally agreed
to be more secure (although slower) than MD5.

In the HatShop implementation, you’ll use SHA1, although it is easy to change this if you
require another type of security. Now, you’ll implement the PasswordHasher class in the follow-
ing exercise.

■Note PHP doesn’t come by default with support for mhash and mcrypt, the libraries we’re using in this
chapter for hashing and encryption. See Appendix A to learn how to enable support for mhash and mcrypt.

Exercise: Implementing the PasswordHasher Class

To implement the PasswordHasher class, follow these steps:

1. Add the following line at the end of the include/config.php file. This defines a random value (feel free
to change it) to add to the passwords before hashing them.

// Random value used for hashing
define('HASH_PREFIX', 'K1-');

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 357

648XCH11.qxd 11/17/06 3:37 PM Page 357

2. Create a new file named password_hasher.php in the business directory, and write the
PasswordHasher class in it:

<?php
class PasswordHasher
{
public static function Hash($password, $withPrefix = true)
{
if ($withPrefix)
$hashed_password = sha1(HASH_PREFIX . $password);

else
$hashed_password = sha1($password);

return $hashed_password;
}

}
?>

3. Next, write a simple test page to test the PasswordHasher class. Create a new file named
test_hasher.php in the hatshop folder with the following code in it:

<?php
if (isset ($_GET['to_be_hashed']))
{
require_once 'include/config.php';
require_once BUSINESS_DIR . 'password_hasher.php';

$original_string = $_GET['to_be_hashed'];

echo 'The hash of "' . $original_string . '" is ' .
PasswordHasher::Hash($original_string, false);

echo '
';

echo '... and the hash of "' . HASH_PREFIX . $original_string .
'" (secret prefix concateneted with password) is ' .
PasswordHasher::Hash($original_string, true);

}
?>

<form action="test_hasher.php">
Write your password:
<input type="text" name="to_be_hashed" />

<input type="submit" value="Hash it" />

</form>

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS358

648XCH11.qxd 11/17/06 3:37 PM Page 358

4. Load the test_hasher.php file in your favorite browser, enter a password to hash, and admire the results
as shown in Figure 11-1.

Figure 11-1. Testing the password hashing functionality

How It Works: The Hashing Functionality

The code in the PasswordHasher class is pretty simple. By default, the static Hash() method returns the hash
of a string representing the secret prefix concatenated with the password.

You might be wondering what the secret prefix is all about. As you might have already guessed, it has to do with
security. If your database is stolen, the thief could try to match the hashed password values with a large dictionary
of hashed values that looks something like this:

word1 sha1(word1)
word2 sha1(word2)
...
word10000 sha1(word10000)

If two hash values match, it means the original strings (which, in our case, are the customers’ passwords) also
match.

Appending a secret prefix to the password before hashing it reduces the risk of dictionary attacks on the hashed
passwords database because the resulting string being hashed (secret prefix + password) is less likely to be found
in a large dictionary of “password – hash value” pairs.

The test_hasher.php page tests your newly created PasswordHasher class.

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 359

648XCH11.qxd 11/17/06 3:37 PM Page 359

■Note You can also handle hashing at the database level by using PostgreSQL cryptographic functions.
First, you need to add cryptographic functions to PostgreSQL. Unix users should look in the contrib/
pgcrypto directory from PostgreSQL sources and follow the instructions (for detailed instructions please
see Appendix A). Then, for example, you could execute the following PostgreSQL statement to see the
PostgreSQL SHA1 in action:

SELECT ENCODE(DIGEST('freedom', 'sha1'), 'hex');

Of course, when relying on PostgreSQL’s hashing functionality, the passwords travel in “plain format” to your
PostgreSQL server, so if the PostgreSQL server is on another network (which is quite unlikely, however), you
must secure the connection between your web server and the PostgreSQL server by using SSL connections.
This can be avoided by handling hashing in the PHP code, which also offers better portability because it
doesn’t rely on PostgreSQL-specific functions. Remember that for the same portability reason, we chose to
use PDO instead of using PHP PostgreSQL-specific functions.

Implementing the Encryption Functionality in the Business Tier
Encryption comes in many shapes and sizes and continues to be a hot topic. There is no
definitive solution to encrypting data, although there is plenty of advice on the subject. In
general, the two forms of encryption are

Symmetric encryption: A single key is used both to encrypt and decrypt data.

Asymmetric encryption: Separate keys are used to encrypt and decrypt data. The encryp-
tion key is commonly known as the public key, and anyone can use it to encrypt
information. The decryption key is known as the private key because it can only be used
to decrypt data that has been encrypted using the public key. The encryption key (public
key) and the decryption key (private key) are mathematically related and are always gen-
erated in pairs. The public key and private key can’t be obtained one from another. If you
have a public key/private key pair, you can send the public key to parties that need to
encrypt information for you. You will be the only one who knows the private key associ-
ated with that public key, thus the only one able to decrypt the information.

Although asymmetric encryption is more secure, it also requires much more processing
power. Symmetric encryption is faster but can be less secure because both the encryptor and
decryptor have knowledge of a single key. With symmetric encryption, the encryptor needs to
send the key to the decryptor. With Internet communications, there is often no way of ensur-
ing that this key remains a secret from third parties when it is sent to the encryptor.

Asymmetric encryption gets around this by using key pairs. There is never a need for the
decryption key to be divulged, so it’s much more difficult for a third party to break the encryp-
tion. Because it requires a lot more processing power, however, the practical method of
operation is to use asymmetric encryption to exchange a symmetric key over the Internet,
which is then used for symmetric encryption safe in the knowledge that this key has not been
exposed to third parties.

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS360

648XCH11.qxd 11/17/06 3:37 PM Page 360

In the HatShop application, things are much simpler than with Internet communications.
You just need to encrypt data for storage in the database and decrypt it again when required,
so you can use a symmetric encryption algorithm.

■Note Behind the scenes, some asymmetric encryption is also going on, however, because that is the
method implemented by HTTPS communication.

As with hashing, several algorithms can be used for both symmetric and asymmetric
encryption. PHP’s mcrypt library contains implementations of the most important symmetric
algorithms. No library in PHP deals with asymmetric encryption, but if you ever need to do
asymmetric encryption, you can use the PGP (Pretty Good Privacy) family of software (for
more information, see http://www.pgp.com) and GnuPG (http://www.gnupg.org).

Two of the more commonly used asymmetric algorithms are DSA (Digital Signature
Algorithm) and RSA (Rivest-Shamir-Adleman, from the names of its inventors, Ronald Rivest,
Adi Shamir, and Leonard Adleman). Of these, DSA can only be used to “sign” data so that its
authenticity can be verified, whereas RSA is more versatile (although slower than DSA when
used to generate digital signatures). DSA is the current standard for digital authentication
used by the U.S. government. Both the DSA and the RSA asymmetric algorithms are imple-
mented in the PGP family of software (PGP and GnuPG).

Some popular symmetric algorithms found in the mcrypt library are DES (Data Encryp-
tion Standard), Triple DES (3DES), RC2 (Ron’s Code, or Rivest’s Cipher, depending on who you
ask, also from Ronald Rivest), and Rijndael (from the names of its inventors, Joan Daemen and
Vincent Rijmen).

DES AND RIJNDAEL

DES has been the standard for some time now, although this is gradually changing. It uses a 64-bit key, how-
ever, in practice only 56 of these bits are used (8 bits are “parity” bits), which are not strong enough to avoid
being broken using today’s computers.

Both Triple DES and RC2 are variations of DES. Triple DES effectively encrypts data using three separate
DES encryptions with three keys totaling 168 bits when parity bits are subtracted. The RC2 variant can have
key lengths up to 128 bits (longer keys are also possible using RC3, RC4, and so on), so it can be made
weaker or stronger than DES depending on the key size.

Rijndael is a completely separate encryption method and has now been accepted as the new AES
(Advanced Encryption Standard) standard (several competing algorithms were considered before Rijndael
was chosen). This standard is intended to replace DES and is gradually becoming the most used (and secure)
symmetric encryption algorithm.

The tasks associated with encrypting and decrypting data are a little more involved than
hashing. The mcrypt functions are optimized to work with raw data, so you have some work to
do with data conversion. You also have to define both a key and an initialization vector (IV) to
perform encryption and decryption. The IV is required due to the nature of encryption: the

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 361

648XCH11.qxd 11/17/06 3:37 PM Page 361

data blocks are usually encrypted in sequence, and calculating the encrypted values for one
sequence of bits involves using some data from the preceding sequence of bits. Because there
are no such values at the start of encryption, an IV is used instead. For AES encryption
(Rijndael_128), the IV and the key must be 32 bytes long.

■Note At http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation, you can learn
more about the various modes of encryption.

The general steps required for encrypting a string are as follows:

1. Create a 32-byte random IV.

2. Convert the IV (which you keep as a hexadecimal string) into a byte array.

3. Encrypt the string using AES encryption by supplying the IV in byte array format.

4. Convert the resulting encrypted data from a byte array into a hexadecimal string.

Decryption follows a similar scheme:

1. Convert the IV (which you keep as a hexadecimal string) into a byte array (the same
with the encryption first step).

2. Convert the string to decrypt into a byte array.

3. Decrypt the binary string from the previous step by supplying the IV in a byte array.

In your code, you’ll use AES, but the code in the SymmetricCrypt class can be modified to
use any of the supported encryption algorithms.

Exercise: Implementing the SymmetricCrypt Class

1. Add a new file in the business directory called symmetric_crypt.php with the following code in it:

<?php
class SymmetricCrypt
{
// Encryption/decryption key
private static $_msSecretKey = 'From Dusk Till Dawn';

// The initialization vector
private static $_msHexaIv = 'c7098adc8d6128b5d4b4f7b2fe7f7f05';

// Use the Rijndael Encryption Algorithm
private static $_msCipherAlgorithm = MCRYPT_RIJNDAEL_128;

/* Function encrypts plain-text string received as parameter
and returns the result in hexadecimal format */

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS362

648XCH11.qxd 11/17/06 3:37 PM Page 362

public static function Encrypt($plainString)
{
// Pack SymmetricCrypt::_msHexaIv into a binary string
$binary_iv = pack('H*', self::$_msHexaIv);

// Encrypt $plainString
$binary_encrypted_string = mcrypt_encrypt(

self::$_msCipherAlgorithm,
self::$_msSecretKey,
$plainString,
MCRYPT_MODE_CBC,
$binary_iv);

// Convert $binary_encrypted_string to hexadecimal format
$hexa_encrypted_string = bin2hex($binary_encrypted_string);

return $hexa_encrypted_string;
}

/* Function decrypts hexadecimal string received as parameter
and returns the result in hexadecimal format */

public static function Decrypt($encryptedString)
{
// Pack Symmetric::_msHexaIv into a binary string
$binary_iv = pack('H*', self::$_msHexaIv);

// Convert string in hexadecimal to byte array
$binary_encrypted_string = pack('H*', $encryptedString);

// Decrypt $binary_encrypted_string
$decrypted_string = mcrypt_decrypt(

self::$_msCipherAlgorithm,
self::$_msSecretKey,
$binary_encrypted_string,
MCRYPT_MODE_CBC,
$binary_iv);

return $decrypted_string;
}

}
?>

2. Add a test file in the hatshop folder called test_encryption.php with the following code:

<?php
if (isset ($_GET['my_string']))
{
require_once 'include/config.php';

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 363

648XCH11.qxd 11/17/06 3:37 PM Page 363

require_once BUSINESS_DIR . 'symmetric_crypt.php';

$string = $_GET['my_string'];

echo 'The string is:
' . $string . '

';

$encrypted_string = SymmetricCrypt::Encrypt($string);

echo 'Encrypted string:
' . $encrypted_string . '

';

$decrypted_string = SymmetricCrypt::Decrypt($encrypted_string);

echo 'Decrypted string:
' . $decrypted_string;
}
?>

<form action="test_encryption.php">
Enter string to encrypt:
<input type="text" name="my_string" />

<input type="submit" value="Encrypt" />

</form>

3. Load the newly created test_encryption.php file in your favorite browser and give a string to
encrypt/decrypt (see Figure 11-2).

■Note If the mcrypt library wasn’t installed or configured correctly, you’ll receive a fatal error about the
call to mcrypt_encrypt(). If that happens, check the installation instructions in Appendix A.

Figure 11-2. Testing encryption

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS364

648XCH11.qxd 11/17/06 3:37 PM Page 364

■Caution As you might have noticed after running the test page, the decrypted string always has a length
that is a multiple of 32 bytes. If the original string is less than 32 bytes, null characters are appended until
the string’s length becomes a multiple of 32 bytes. You need to be careful with this detail because it means
the decrypted value of the string may not be identical to the encrypted value. For our HatShop project,
because we’ll encrypt XML data and the values of interest are between XML tags, we won’t need to worry
about having additional void characters at the end of the string.

How It Works: Encryption Functionality in the Business Tier

The SymmetricCrypt class has two static methods, Encrypt() and Decrypt(), which encrypt and decrypt
data, and a number of encryption configurations parameters stored as static members:

// Encryption/decryption key
private static $_msSecretKey = 'From Dusk Till Dawn';

// The initialization vector
private static $_msHexaIv = 'c7098adc8d6128b5d4b4f7b2fe7f7f05';

// Use the Rijndael Encryption Algorithm
private static $_msCipherAlgorithm = MCRYPT_RIJNDAEL_128;

The secret key is 16 characters (bytes) long for AES algorithms. Using a smaller key is allowed by the mcrypt
library but will reduce the encryption security. The IV should be exactly 16 bytes long for AES and will be kept as a
hexadecimal string (2x16=32 chars long). Both $_msSecretKey and $_msHexaIv variables are set to temporary
values here. They could just as easily take any other values, depending on the key you want to use.

Encrypt() starts by converting the IV from its hexadecimal value to a byte array because this is the format
expected by the mcrypt_encrypt function (the one that does the actual encryption):

// Pack SymmetricCrypt::_msHexaIv into a binary string
$binary_iv = pack('H*', self::$_msHexaIv);

The conversion is done using PHP’s pack function (learn more about it at http://www.php.net/pack).

The call to mcrypt_encrypt follows:

// Encrypt $plainString
$binary_encrypted_string = mcrypt_encrypt(

self::$_msCipherAlgorithm,
self::$_msSecretKey,
$plainString,
MCRYPT_MODE_CBC,
$binary_iv);

This is the call that performs the actual encryption. Its parameters are obvious, and you can find more detail about
the mcrypt_encrypt function at http://www.php.net/mcrypt. The MCRYPT_MODE_CBC specifies the
“cipher block chaining” encryption method; this method uses a chaining mechanism in which the encryption of

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 365

648XCH11.qxd 11/17/06 3:37 PM Page 365

each block of data depends on the encryption results of preceding blocks, except for the first block in which the IV
is used instead.

At the end, the encrypted string is transformed into hexadecimal format, which is easier to work with (for example,
to save in the database or in a configuration file):

// Convert $binary_encrypted_string to hexadecimal format
$hexa_encrypted_string = bin2hex($binary_encrypted_string);

The Decrypt() method is very similar to the Encrypt() method. First, you need the IV to be in a binary form
(the same first step you took in the Encrypt() method).

As the Encrypt() method returns the encrypted string as a hexadecimal string, the input parameter of
Decrypt() is also a hexadecimal string. You must convert this string to a byte array, which is the format that
mcrypt_decrypt needs:

// Convert string in hexadecimal to byte array
$binary_encrypted_string = pack('H*', $encryptedString);

// Decrypt $binary_encrypted_string
$decrypted_string = mcrypt_decrypt(

self::$_msCipherAlgorithm,
self::$_msSecretKey,
$binary_encrypted_string,
MCRYPT_MODE_CBC,
$binary_iv);

return $decrypted_string;

The test_encryption.php test file for this class simply encrypts and decrypts data, demonstrating that things
are working properly. The code for this is very simple, so we won’t detail it here.

Now that you have the SymmetricCrypt class code, the last step in creating the security-related classes is to
add the SecureCard class.

Storing Credit Cart Information Using the SecureCard Class
In the following exercise, you’ll build the SecureCard class, which represents the credit card of
a customer. This class will use the functionality you implemented in the previous two exer-
cises to ensure that its data will be stored securely in the database.

Exercise: Implementing the SecureCard Class

1. Create a new file named secure_card.php in the business folder, and add the following code to it:

<?php
// Represents a credit card
class SecureCard
{

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS366

648XCH11.qxd 11/17/06 3:37 PM Page 366

// Private members containing credit card's details
private $_mIsDecrypted = false;
private $_mIsEncrypted = false;
private $_mCardHolder;
private $_mCardNumber;
private $_mIssueDate;
private $_mExpiryDate;
private $_mIssueNumber;
private $_mCardType;
private $_mEncryptedData;
private $_mXmlCardData;

// Class constructor
public function __construct()
{
// Nothing here

}

// Decrypt data
public function LoadEncryptedDataAndDecrypt($newEncryptedData)
{
$this->_mEncryptedData = $newEncryptedData;
$this->DecryptData();

}

// Encrypt data
public function LoadPlainDataAndEncrypt($newCardHolder, $newCardNumber,

$newIssueDate, $newExpiryDate,
$newIssueNumber, $newCardType)

{
$this->_mCardHolder = $newCardHolder;
$this->_mCardNumber = $newCardNumber;
$this->_mIssueDate = $newIssueDate;
$this->_mExpiryDate = $newExpiryDate;
$this->_mIssueNumber = $newIssueNumber;
$this->_mCardType = $newCardType;
$this->EncryptData();

}

// Create XML with credit card information
private function CreateXml()
{
// Encode card details as XML document
$xml_card_data = &$this->_mXmlCardData;
$xml_card_data = new DOMDocument();

$document_root = $xml_card_data->createElement('CardDetails');

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 367

648XCH11.qxd 11/17/06 3:37 PM Page 367

$child = $xml_card_data->createElement('CardHolder');
$child = $document_root->appendChild($child);
$value = $xml_card_data->createTextNode($this->_mCardHolder);
$value = $child->appendChild($value);

$child = $xml_card_data->createElement('CardNumber');
$child = $document_root->appendChild($child);
$value = $xml_card_data->createTextNode($this->_mCardNumber);
$value = $child->appendChild($value);

$child = $xml_card_data->createElement('IssueDate');
$child = $document_root->appendChild($child);
$value = $xml_card_data->createTextNode($this->_mIssueDate);
$value = $child->appendChild($value);

$child = $xml_card_data->createElement('ExpiryDate');
$child = $document_root->appendChild($child);
$value = $xml_card_data->createTextNode($this->_mExpiryDate);
$value = $child->appendChild($value);

$child = $xml_card_data->createElement('IssueNumber');
$child = $document_root->appendChild($child);
$value = $xml_card_data->createTextNode($this->_mIssueNumber);
$value = $child->appendChild($value);

$child = $xml_card_data->createElement('CardType');
$child = $document_root->appendChild($child);
$value = $xml_card_data->createTextNode($this->_mCardType);
$value = $child->appendChild($value);

$document_root = $xml_card_data->appendChild($document_root);
}

// Extract information from XML credit card data
private function ExtractXml($decryptedData)
{
$xml = simplexml_load_string($decryptedData);
$this->_mCardHolder = (string) $xml->CardHolder;
$this->_mCardNumber = (string) $xml->CardNumber;
$this->_mIssueDate = (string) $xml->IssueDate;
$this->_mExpiryDate = (string) $xml->ExpiryDate;
$this->_mIssueNumber = (string) $xml->IssueNumber;
$this->_mCardType = (string) $xml->CardType;

}

// Encrypts the XML credit card data
private function EncryptData()
{

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS368

648XCH11.qxd 11/17/06 3:37 PM Page 368

// Put data into XML doc
$this->CreateXml();

// Encrypt data
$this->_mEncryptedData =
SymmetricCrypt::Encrypt($this->_mXmlCardData->saveXML());

// Set encrypted flag
$this->_mIsEncrypted = true;

}

// Decrypts XML credit card data
private function DecryptData()
{
// Decrypt data
$decrypted_data = SymmetricCrypt::Decrypt($this->_mEncryptedData);

// Extract data from XML
$this->ExtractXml($decrypted_data);

// Set decrypted flag
$this->_mIsDecrypted = true;

}

public function __get($name)
{
if ($name == 'EncryptedData')
{
if ($this->_mIsEncrypted)
return $this->_mEncryptedData;

else
throw new Exception('Data not encrypted');

}
elseif ($name == 'CardNumberX')
{
if ($this->_mIsDecrypted)
return 'XXXX-XXXX-XXXX-' .
substr($this->_mCardNumber, strlen($this->_mCardNumber) - 4, 4);

else
throw new Exception('Data not decrypted');

}
elseif (in_array($name, array ('CardHolder', 'CardNumber', 'IssueDate',

'ExpiryDate', 'IssueNumber', 'CardType')))
{
$name = '_m' . $name;

if ($this->_mIsDecrypted)

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 369

648XCH11.qxd 11/17/06 3:37 PM Page 369

return $this->$name;
else
throw new Exception('Data not decrypted');

}
else
{
throw new Exception('Property ' . $name . ' not found');

}
}

}
?>

2. Create a new file named test_card.php file in the hatshop folder:

<?php
require_once 'include/config.php';
require_once BUSINESS_DIR . 'symmetric_crypt.php';
require_once BUSINESS_DIR . 'secure_card.php';

$card_holder = 'Mihai Bucica';
$card_number = '1234567890123456';
$expiry_date = '01/09';
$issue_date = '01/01';
$issue_number = 100;
$card_type = 'Mastercard';

echo '
Credit card data:
' .
$card_holder . ', ' . $card_number . ', ' .
$issue_date . ', ' . $expiry_date . ', ' .
$issue_number . ', ' . $card_type . '
';

$credit_card = new SecureCard();

try
{
$credit_card->LoadPlainDataAndEncrypt($card_holder, $card_number,

$issue_date, $expiry_date, $issue_number, $card_type);

$encrypted_data = $credit_card->EncryptedData;
}
catch(Exception $e)
{
echo 'Exception: ' . $e->getMessage() . '';

exit;
}

echo '
Encrypted data:
' . $encrypted_data . '
';

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS370

648XCH11.qxd 11/17/06 3:37 PM Page 370

$our_card = new SecureCard();

try
{
$our_card->LoadEncryptedDataAndDecrypt($encrypted_data);

echo '
Decrypted data:
' .
$our_card->CardHolder . ', ' . $our_card->CardNumber . ', ' .
$our_card->IssueDate . ', ' . $our_card->ExpiryDate . ', ' .
$our_card->IssueNumber . ', ' . $our_card->CardType;

}
catch(Exception $e)
{
echo 'Exception: ' . $e->getMessage() . '';

exit;
}
?>

3. Load test_card.php file in your favorite browser to see the results (see Figure 11-3). You may change the
data from this file as you want.

Figure 11-3. Encrypting and decrypting credit card information

How It Works: The SecureCard Class

There’s a bit more code here than in previous examples, but it’s all quite simple. First you have the private member
variables to hold the card details as individual strings, as an encrypted string, and in an intermediate XML docu-
ment. You also have Boolean flags indicating whether the data has been successfully encrypted or decrypted:

<?php
// Represents a credit card

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 371

648XCH11.qxd 11/17/06 3:37 PM Page 371

class SecureCard
{
// Private members containing credit card's details
private $_mIsDecrypted = false;
private $_mIsEncrypted = false;
private $_mCardHolder;
private $_mCardNumber;
private $_mIssueDate;
private $_mExpiryDate;
private $_mIssueNumber;
private $_mCardType;
private $_mEncryptedData;
private $_mXmlCardData;

Next you have two important public methods. Public members are part of the public interface of the class, which
provides the functionality for external clients. LoadEncryptedDataAndDecrypt receives an encrypted string
and performs the decryption; LoadPlainDataAndEncrypt receives the credit card data in plain format and
encrypts it:

// Decrypt data
public function LoadEncryptedDataAndDecrypt($newEncryptedData)
{
$this->_mEncryptedData = $newEncryptedData;
$this->DecryptData();

}

// Encrypt data
public function LoadPlainDataAndEncrypt($newCardHolder, $newCardNumber,

$newIssueDate, $newExpiryDate,
$newIssueNumber, $newCardType)

{
$this->_mCardHolder = $newCardHolder;
$this->_mCardNumber = $newCardNumber;
$this->_mIssueDate = $newIssueDate;
$this->_mExpiryDate = $newExpiryDate;
$this->_mIssueNumber = $newIssueNumber;
$this->_mCardType = $newCardType;
$this->EncryptData();

}

The main work is carried out by the private EncryptData() and DecryptData() methods, which you’ll come
to shortly. First, you have two utility methods for packaging and unpackaging data in XML format (which makes it
easier to get at the bits you want when exchanging data with the encrypted format).

XML is a very powerful, tag-based format in which you can store various kinds of information. The SecureCard
class stored a customer’s credit card data in a structure like the following:

<?xml version="1.0"?>
<CardDetails>
<CardHolder>Mihai Bucica</CardHolder>

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS372

648XCH11.qxd 11/17/06 3:37 PM Page 372

<CardNumber>1234567890123456</CardNumber>
<IssueDate>01/04</IssueDate>
<ExpiryDate>01/07</ExpiryDate>
<IssueNumber>100</IssueNumber>
<CardType>Mastercard</CardType>

</CardDetails>

The DOMDocument class is used to work with XML data; this class knows how to create, read, and manipulate
XML documents without much effort from the developer. DOM (Document Object Model) is the most important and
versatile tree model XML parsing API (Application Programming Interface).

■Tip The World Wide Web Consortium manages the DOM standard; its official web page is
http://www.w3.org/DOM/.

With the new PHP 5 DOM extension, reading, creating, editing, saving, and searching XML documents from PHP
has never been easier. The DOM extension in PHP 5 was entirely rewritten from scratch to fully comply with the
DOM specifications. You can see this extension in action in the CreateXml() method, which creates an XML
document with the structure shown earlier by creating nodes and setting their values:

// Create XML with credit card information
private function CreateXml()
{
// Encode card details as XML document
$xml_card_data = &$this->_mXmlCardData;
$xml_card_data = new DOMDocument();

$document_root = $xml_card_data->createElement('CardDetails');

$child = $xml_card_data->createElement('CardHolder');
$child = $document_root->appendChild($child);
$value = $xml_card_data->createTextNode($this->_mCardHolder);
$value = $child->appendChild($value);

...

$document_root = $xml_card_data->appendChild($document_root);
}

For reading the XML document, you can use the DOMDocument object, but in the ExtractXml() method, we
preferred to use a new and unique feature of PHP 5 called SimpleXML. Although less complex and powerful than
DOMDocument, the SimpleXML extension makes parsing XML data a piece of cake by transforming it into a data
structure you can simply iterate through:

// Extract information from XML credit card data
private function ExtractXml($decryptedData)
{

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 373

648XCH11.qxd 11/17/06 3:37 PM Page 373

$xml = simplexml_load_string($decryptedData);
$this->_mCardHolder = (string) $xml->CardHolder;
$this->_mCardNumber = (string) $xml->CardNumber;
$this->_mIssueDate = (string) $xml->IssueDate;
$this->_mExpiryDate = (string) $xml->ExpiryDate;
$this->_mIssueNumber = (string) $xml->IssueNumber;
$this->_mCardType = (string) $xml->CardType;

}

The EncryptData() method starts by using the CreateXml() method to package the details supplied in the
SecureCard constructor into XML format:

// Encrypts the XML credit card data
private function EncryptData()
{
// Put data into XML doc
$this->CreateXml();

Next, the XML string contained in the resultant XML document is encrypted into a single string and stored in the
_mEncryptedData member:

// Encrypt data
$this->_mEncryptedData =
SymmetricCrypt::Encrypt($this->_mXmlCardData->saveXML());

Finally, the _mIsEncrypted flag is set to true to indicate that the credit card data has been encrypted:

// Set encrypted flag
$this->_mIsEncrypted = true;

}

The DecryptData() method gets the XML credit card data from its encrypted form, decrypts it, and populates
class attributes with the ExtractXml() method:

// Decrypts XML credit card data
private function DecryptData()
{
// Decrypt data
$decrypted_data = SymmetricCrypt::Decrypt($this->_mEncryptedData);

// Extract data from XML
$this->ExtractXml($decrypted_data);

// Set decrypted flag
$this->_mIsDecrypted = true;

}

Next, we define a few properties for the class. Starting with PHP 5, you can define a public __get function that is
called automatically whenever you try to call a method or read a member that isn’t defined in the class. Take, for
example, this code snippet:

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS374

648XCH11.qxd 11/17/06 3:37 PM Page 374

$card = new SecureCard();
$encrypted = $card->EncryptedData;

Because there’s no member named EncryptedData in the SecureCard class, the __get function is called. In
__get, you can check which property is accessed, and you can include code that returns the value for that prop-
erty. This technique is particularly useful when you want to define “virtual” members of the class whose values
need to be calculated on the spot, as an alternative to using get functions, such as getEncryptedData().

In our case, the __get function handles eight “virtual” members. The first is EncryptedData, whose value is
returned only if _mIsEncrypted is true:

public function __get($name)
{
if ($name == 'EncryptedData')
{
if ($this->_mIsEncrypted)
return $this->_mEncryptedData;

else
throw new Exception('Data not encrypted');

}

Then there’s CardNumberX, which needs to return a version of the card number where all digits are obfuscated
(replaced with ‘X’) except the last four. This is handy when showing a user existing details and is becoming
standard practice because it lets customers know what card they have stored without exposing the details to
prying eyes:

elseif ($name == 'CardNumberX')
{
if ($this->_mIsDecrypted)
return 'XXXX-XXXX-XXXX-' .
substr($this->_mCardNumber, strlen($this->_mCardNumber) - 4, 4);

else
throw new Exception('Data not decrypted');

}

The last six properties (CardHolder, CardNumber, IssueDate, ExpiryDate, IssueNumber, and CardType)
are handled in a single block:

elseif (in_array($name, array ('CardHolder', 'CardNumber', 'IssueDate',
'ExpiryDate', 'IssueNumber', 'CardType')))

{
$name = '_m' . $name;

if ($this->_mIsDecrypted)
return $this->$name;

else
throw new Exception('Data not decrypted');

}
else
{

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 375

648XCH11.qxd 11/17/06 3:37 PM Page 375

throw new Exception('Property ' . $name . ' not found');
}

}

Note that in all cases, the data is only accessible when _mIsDecrypted is true; otherwise, an exception is
thrown.

Also, note that the data isn’t accessible after encryption—the data used to initialize a SecureCard object is only
accessible in encrypted form. This is more a use-case decision than anything else because this class is only really
intended for encryption and decryption, not for persistently representing credit card details. After a SecureCard
instance has been used to encrypt card details, we shouldn’t subsequently need access to the unencrypted data,
only the encrypted string.

■Note Before moving on to the client code, it is worth explaining and emphasizing one important design
consideration that you have probably already noticed. At no point are any of the card details validated. In
fact, this class will work perfectly well with empty strings for any properties. This is so the class can remain
as versatile as possible. It is more likely that credit card details will be validated as part of the UI used to
enter them, or even not at all. This isn’t at all dangerous—if invalid details are used, then the credit card
transaction will simply fail, and we handle that using very similar logic to that required to deal with lack of
funds (that is, we notify the customer of failure and ask them to try another card). Of course, there are also
simple data-formatting issues (dates are usually MM/YY for example), but as noted, these can be dealt with
externally to the SecureCard class.

The test page (test_cart.php) for this class simply allows you to see how an encrypted card looks. As you can
see, quite a lot of data is generated, hence the rather large column size in the customer database. You can also
see that both encryption and decryption are working perfectly, so you can now move on to the customer account
section of this chapter.

Adding Customer Accounts Functionality to
HatShop
Before implementing the visual bits of the customer accounts functionality, let’s preview what
we’re going to do in the final part of this chapter.

First, we want to have a login form on the front of the site. We also want to let users regis-
ter on the site and edit their profiles. You’ll create a componentized template for the login
form and place it just on top of the departments list, as shown in Figure 11-4.

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS376

648XCH11.qxd 11/17/06 3:37 PM Page 376

Figure 11-4. HatShop with a login box

The new user registration page looks like Figure 11-5.

Figure 11-5. The new user registration page in HatShop

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 377

648XCH11.qxd 11/17/06 3:37 PM Page 377

After the user logs in to the site, a new componentized template appears on top of the
departments list to display the logged user’s name and a number of links for manipulating his
or her account (see Figure 11-6).

Figure 11-6. Sample HatShop page for a logged-in user

Clicking the Add CC Details link leads you to the page shown in Figure 11-7.

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS378

648XCH11.qxd 11/17/06 3:37 PM Page 378

Figure 11-7. Adding credit card information

A similar form will be shown to you when clicking the Add Address Details link. When
the user already has a credit card and an address listed, the Add... links in the Welcome box
change into Change... links.

You’ll start implementing the new functionality by writing the data tier code that will
support the UI.

Implementing the Data Tier
You’ll create the usual data tier functions supporting customer accounts functionality in the
following exercise, and we’ll comment on each one.

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 379

648XCH11.qxd 11/17/06 3:37 PM Page 379

Exercise: Creating the Database Functions

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Use the query tool to execute this code, which creates the customer_login type and
customer_get_login_info function in your hatshop database:

-- Create customer_login_info type
CREATE TYPE customer_login_info AS
(
customer_id INTEGER,
password VARCHAR(50)

);

-- Create customer_get_login_info function
CREATE FUNCTION customer_get_login_info(VARCHAR(100))
RETURNS customer_login_info LANGUAGE plpgsql AS $$
DECLARE
inEmail ALIAS FOR $1;
outCustomerLoginInfoRow customer_login_info;

BEGIN
SELECT INTO outCustomerLoginInfoRow

customer_id, password
FROM customer
WHERE email = inEmail;
RETURN outCustomerLoginInfoRow;

END;
$$;

When a user logs in to the site, you must check his or her password. The customer_get_login_info
function returns the customer ID and the hashed password for a user with a specific email.

4. Use the query tool to execute this code, which creates the customer_add function in your hatshop
database:

-- Create customer_add function
CREATE FUNCTION customer_add(

VARCHAR(50), VARCHAR(100), VARCHAR(50))
RETURNS INTEGER LANGUAGE plpgsql AS $$
DECLARE
inName ALIAS FOR $1;
inEmail ALIAS FOR $2;
inPassword ALIAS FOR $3;
outCustomerId INTEGER;

BEGIN
INSERT INTO customer (name, email, password)

VALUES (inName, inEmail, inPassword);
SELECT INTO outCustomerId

currval('customer_customer_id_seq');

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS380

648XCH11.qxd 11/17/06 3:37 PM Page 380

RETURN outCustomerId;
END;

$$;

The customer_add function is called when a user registers on the site. This method returns the customer
ID for that user to be saved in the session.

5. Use the query tool to execute this code, which creates the customer_get_customer function in your
hatshop database:

-- Create customer_get_customer function
CREATE FUNCTION customer_get_customer(INTEGER)
RETURNS customer LANGUAGE plpgsql AS $$
DECLARE
inCustomerId ALIAS FOR $1;
outCustomerRow customer;

BEGIN
SELECT INTO outCustomerRow

customer_id, name, email, password, credit_card,
address_1, address_2, city, region, postal_code, country,
shipping_region_id, day_phone, eve_phone, mob_phone

FROM customer
WHERE customer_id = inCustomerId;
RETURN outCustomerRow;

END;
$$;

The customer_get_customer function returns full customer details for a given customer ID.

6. Use the query tool to execute this code, which creates the customer_update_account function in your
hatshop database:

-- Create customer_update_account function
CREATE FUNCTION customer_update_account(INTEGER, VARCHAR(50), VARCHAR(100),

VARCHAR(50), VARCHAR(100), VARCHAR(100), VARCHAR(100))
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inCustomerId ALIAS FOR $1;
inName ALIAS FOR $2;
inEmail ALIAS FOR $3;
inPassword ALIAS FOR $4;
inDayPhone ALIAS FOR $5;
inEvePhone ALIAS FOR $6;
inMobPhone ALIAS FOR $7;

BEGIN
UPDATE customer
SET name = inName, email = inEmail,

password = inPassword, day_phone = inDayPhone,
eve_phone = inEvePhone, mob_phone = inMobPhone

WHERE customer_id = inCustomerId;
END;

$$;

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 381

648XCH11.qxd 11/17/06 3:37 PM Page 381

The customer_update_account function updates the customer’s account details in the database.

7. Use the query tool to execute this code, which creates the customer_update_credit_card function
in your hatshop database:

-- Create customer_update_credit_card function
CREATE FUNCTION customer_update_credit_card(INTEGER, TEXT)
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inCustomerId ALIAS FOR $1;
inCreditCard ALIAS FOR $2;

BEGIN
UPDATE customer
SET credit_card = inCreditCard
WHERE customer_id = inCustomerId;

END;
$$;

The customer_update_credit_card function updates the customer’s credit card information in the
database. It only updates the credit_card column for the customer, which contains the encrypted version
of the XML document containing the customer’s complete credit card details.

8. Use the query tool to execute this code, which creates the customer_get_shipping_regions function
in your hatshop database:

-- Create customer_get_shipping_regions function
CREATE FUNCTION customer_get_shipping_regions()
RETURNS SETOF shipping_region LANGUAGE plpgsql AS $$
DECLARE
outShippingRegion shipping_region;

BEGIN
FOR outShippingRegion IN
SELECT shipping_region_id, shipping_region
FROM shipping_region

LOOP
RETURN NEXT outShippingRegion;

END LOOP;
RETURN;

END;
$$;

The customer_get_shipping_regions function returns the shipping regions in the database for the
customer address details page.

9. Use the query tool to execute this code, which creates the customer_update_address function in your
hatshop database:

-- Create customer_update_address function
CREATE FUNCTION customer_update_address(INTEGER, VARCHAR(100),

VARCHAR(100), VARCHAR(100), VARCHAR(100),
VARCHAR(100), VARCHAR(100), INTEGER)

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS382

648XCH11.qxd 11/17/06 3:37 PM Page 382

RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inCustomerId ALIAS FOR $1;
inAddress1 ALIAS FOR $2;
inAddress2 ALIAS FOR $3;
inCity ALIAS FOR $4;
inRegion ALIAS FOR $5;
inPostalCode ALIAS FOR $6;
inCountry ALIAS FOR $7;
inShippingRegionId ALIAS FOR $8;

BEGIN
UPDATE customer
SET address_1 = inAddress1, address_2 = inAddress2, city = inCity,

region = inRegion, postal_code = inPostalCode,
country = inCountry, shipping_region_id = inShippingRegionId

WHERE customer_id = inCustomerId;
END;

$$;

The customer_update_address function updates the customer’s address in the database.

Implementing the Business Tier
In the business folder, create a new file named customer.php that will contain the Customer
class. The Customer class is a little longer, and it mainly accesses the data tier functionality to
respond to requests that come from the presentation tier. Write the following code in the
business/customer.php file:

<?php
// Business tier class that manages customer accounts functionality
class Customer
{
// Checks if a customer_id exists in session
public static function IsAuthenticated()
{
if (!(isset ($_SESSION['hatshop_customer_id'])))
return 0;

else
return 1;

}

// Returns customer_id and password for customer with email $email
public static function GetLoginInfo($email)
{
// Build the SQL query
$sql = 'SELECT * FROM customer_get_login_info(:email);';

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 383

648XCH11.qxd 11/17/06 3:37 PM Page 383

// Build the parameters array
$params = array (':email' => $email);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetRow($result, $params);

}

public static function IsValid($email, $password)
{
$customer = self::GetLoginInfo($email);

if (empty ($customer['customer_id']))
return 2;

$customer_id = $customer['customer_id'];
$hashed_password = $customer['password'];

if (PasswordHasher::Hash($password) != $hashed_password)
return 1;

else
{
$_SESSION['hatshop_customer_id'] = $customer_id;

return 0;
}

}

public static function Logout()
{
unset($_SESSION['hatshop_customer_id']);

}

public static function GetCurrentCustomerId()
{
if (self::IsAuthenticated())
return $_SESSION['hatshop_customer_id'];

else
return 0;

}

/* Adds a new customer account, log him in if $addAndLogin is true
and returns customer_id */

public static function Add($name, $email, $password, $addAndLogin = true)
{
$hashed_password = PasswordHasher::Hash($password);

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS384

648XCH11.qxd 11/17/06 3:37 PM Page 384

// Build the SQL query
$sql = 'SELECT customer_add(:name, :email, :password);';
// Build the parameters array
$params = array (':name' => $name, ':email' => $email,

':password' => $hashed_password);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and get the customer_id
$customer_id = DatabaseHandler::GetOne($result, $params);

if ($addAndLogin)
$_SESSION['hatshop_customer_id'] = $customer_id;

return $customer_id;
}

public static function Get($customerId = null)
{
if (is_null($customerId))
$customerId = self::GetCurrentCustomerId();

// Build the SQL query
$sql = 'SELECT * FROM customer_get_customer(:customer_id);';
// Build the parameters array
$params = array (':customer_id' => $customerId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetRow($result, $params);

}

public static function UpdateAccountDetails($name, $email, $password,
$dayPhone, $evePhone, $mobPhone,
$customerId = null)

{
if (is_null($customerId))
$customerId = self::GetCurrentCustomerId();

$hashed_password = PasswordHasher::Hash($password);

// Build the SQL query
$sql = 'SELECT customer_update_account(:customer_id, :name, :email,

:password, :day_phone, :eve_phone, :mob_phone);';
// Build the parameters array

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 385

648XCH11.qxd 11/17/06 3:37 PM Page 385

$params = array (':customer_id' => $customerId, ':name' => $name,
':email' => $email, ':password' => $hashed_password,
':day_phone' => $dayPhone, ':eve_phone' => $evePhone,
':mob_phone' => $mobPhone);

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

public static function DecryptCreditCard($encryptedCreditCard)
{
$secure_card = new SecureCard();
$secure_card->LoadEncryptedDataAndDecrypt($encryptedCreditCard);

$credit_card = array();
$credit_card['card_holder'] = $secure_card->CardHolder;
$credit_card['card_number'] = $secure_card->CardNumber;
$credit_card['issue_date'] = $secure_card->IssueDate;
$credit_card['expiry_date'] = $secure_card->ExpiryDate;
$credit_card['issue_number'] = $secure_card->IssueNumber;
$credit_card['card_type'] = $secure_card->CardType;
$credit_card['card_number_x'] = $secure_card->CardNumberX;

return $credit_card;
}

public static function GetPlainCreditCard()
{
$customer_data = self::Get();

if (!(empty ($customer_data['credit_card'])))
return self::DecryptCreditCard($customer_data['credit_card']);

else
return array('card_holder' => '', 'card_number' => '',

'issue_date' => '', 'expiry_date' => '',
'issue_number' => '', 'card_type' => '',
'card_number_x' => '');

}

public static function UpdateCreditCardDetails($plainCreditCard,
$customerId = null)

{
if (is_null($customerId))
$customerId = self::GetCurrentCustomerId();

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS386

648XCH11.qxd 11/17/06 3:37 PM Page 386

$secure_card = new SecureCard();
$secure_card->LoadPlainDataAndEncrypt($plainCreditCard['card_holder'],
$plainCreditCard['card_number'], $plainCreditCard['issue_date'],
$plainCreditCard['expiry_date'], $plainCreditCard['issue_number'],
$plainCreditCard['card_type']);

$encrypted_card = $secure_card->EncryptedData;

// Build the SQL query
$sql = 'SELECT customer_update_credit_card(

:customer_id, :credit_card);';
// Build the parameters array
$params = array (':customer_id' => $customerId,

':credit_card' => $encrypted_card);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

public static function GetShippingRegions()
{
// Build the SQL query
$sql = 'SELECT * FROM customer_get_shipping_regions();';
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result);

}

public static function UpdateAddressDetails($address1, $address2, $city,
$region, $postalCode, $country,
$shippingRegionId, $customerId = null)

{
if (is_null($customerId))
$customerId = self::GetCurrentCustomerId();

// Build the SQL query
$sql = 'SELECT customer_update_address(:customer_id, :address_1,

:address_2, :city, :region, :postal_code, :country,
:shipping_region_id);';

// Build the parameters array
$params = array (':customer_id' => $customerId,

':address_1' => $address1, ':address_2' => $address2,
':city' => $city, ':region' => $region,
':postal_code' => $postalCode,

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 387

648XCH11.qxd 11/17/06 3:37 PM Page 387

':country' => $country,
':shipping_region_id' => $shippingRegionId);

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}
}
?>

Implementing the Presentation Tier
The presentation tier for the HatShop customer account system consists of the following
componentized templates:

customer_login: The login box.

customer_logged: After a user is logged in, this componentized template takes the place of
the customer_login componentized template to show the currently logged-in user and
displays account management and logout links.

customer_details: For registering a new user or for editing the basic details of an existing
user.

customer_address: Allows a user to add/edit address information.

customer_credit_card: Allows a user to add/edit credit card information.

Now follow the steps of the exercise to implement these new componentized templates.

Exercise: Implementing the Componentized Templates

1. Create a new template file named customer_login.tpl in the presentation/templates folder, and
add the following code to it:

{* customer_login.tpl *}
{load_customer_login assign="customer_login"}
<div class="left_box" id="login_box">
<p>Login</p>
<form method="post"
action="{$customer_login->mCustomerLoginTarget|prepare_link:"https"}">
{if $customer_login->mLoginMessage}

{$customer_login->mLoginMessage}

{/if}
E-mail address:

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS388

648XCH11.qxd 11/17/06 3:37 PM Page 388

<input type="text" maxlength="50" name="email"
size="25" value="{$customer_login->mEmail}" />

Password:

<input type="password" maxlength="50"
name="password" size="25" />

<input type="submit" name="Login" value="Login" />
(
{strip}
mRegisterUser|prepare_link:"https"}">
Register user

{/strip})

</form>

</div>

2. Create a new plugin file named function.load_customer_login.php in the
presentation/smarty_plugins folder, and add the following to it:

<?php
/* Smarty plugin function that gets called when the

load_customer_login function plugin is loaded from a template */
function smarty_function_load_customer_login($params, $smarty)
{
// Create CustomerLogin object
$customer_login = new CustomerLogin();
$customer_login->init();

// Assign template variable
$smarty->assign($params['assign'], $customer_login);

}

class CustomerLogin
{
// Public stuff
public $mLoginMessage;
public $mCustomerLoginTarget;
public $mRegisterUser;
public $mEmail = '';

// Private stuff
private $_mHaveData = 0;

// Class constructor
public function __construct()
{
// Decide if we have submitted

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 389

648XCH11.qxd 11/17/06 3:37 PM Page 389

if (isset ($_POST['Login']))
$this->_mHaveData = 1;

}

public function init()
{
$url_base = substr(getenv('REQUEST_URI'),

strrpos(getenv('REQUEST_URI'), '/') + 1,
strlen(getenv('REQUEST_URI')) - 1);

$url_parameter_prefix = (count($_GET) == 0 ? '?' : '&');

$this->mCustomerLoginTarget = $url_base;

if (strpos($url_base, 'RegisterCustomer', 0) === false)
$this->mRegisterUser = $url_base . $url_parameter_prefix .

'RegisterCustomer';
else
$this->mRegisterUser = $url_base;

if ($this->_mHaveData)
{
// Get login status
$login_status = Customer::IsValid($_POST['email'], $_POST['password']);

switch ($login_status)
{
case 2:
$this->mLoginMessage = 'Unrecognized Email.';
$this->mEmail = $_POST['email'];

break;
case 1:
$this->mLoginMessage = 'Unrecognized password.';
$this->mEmail = $_POST['email'];

break;
case 0:
// Valid login... build redirect link and redirect
if (isset($_GET['Checkout']) && USE_SSL != 'no')
{
$redirect_link = 'https://' . getenv('SERVER_NAME');

}
else
{
$redirect_link = 'http://' . getenv('SERVER_NAME');

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS390

648XCH11.qxd 11/17/06 3:37 PM Page 390

// If HTTP_SERVER_PORT is defined and different than default
if (defined('HTTP_SERVER_PORT') && HTTP_SERVER_PORT != '80')
{
// Append server port
$redirect_link .= ':' . HTTP_SERVER_PORT;

}
}

$redirect_link .= VIRTUAL_LOCATION . $this->mCustomerLoginTarget;

header('Location:' . $redirect_link);

exit;
}

}
}

}
?>

3. Create a new template file named customer_logged.tpl in the presentation/templates folder, and
add the following code to it:

{* customer_logged.tpl *}
{load_customer_logged assign="customer_logged"}
<div class="left_box" id="login_box">
<p>Welcome, {$customer_logged->mCustomerName}</p>

mUpdateAccount|prepare_link:"https"}">
» Change Account Details

mUpdateCreditCard|prepare_link:"https"}">
» {$customer_logged->mCreditCardAction} CC Details

mUpdateAddress|prepare_link:"https"}">
» {$customer_logged->mAddressAction} Address Details

mLogout|prepare_link}">
» Log Out

</div>

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 391

648XCH11.qxd 11/17/06 3:37 PM Page 391

4. Create a new plugin file named function.load_customer_logged.php in the
presentation/smarty_plugins folder, and add the following to it:

<?php
/* Smarty plugin function that gets called when the

load_customer_logged function plugin is loaded from a template */
function smarty_function_load_customer_logged($params, $smarty)
{
// Create CustomerLogged object
$customer_logged = new CustomerLogged();
$customer_logged->init();

// Assign template variable
$smarty->assign($params['assign'], $customer_logged);

}

class CustomerLogged
{
// Public attributes
public $mCustomerName;
public $mCreditCardAction = 'Add';
public $mAddressAction = 'Add';
public $mUpdateAccount;
public $mUpdateCreditCard;
public $mUpdateAddress;
public $mLogout;

// Class constructor
public function __construct()
{
}

public function init()
{
$url_base = substr(getenv('REQUEST_URI'),

strrpos(getenv('REQUEST_URI'), '/') + 1,
strlen(getenv('REQUEST_URI')) - 1);

$url_parameter_prefix = (count($_GET) == 1 ? '?' : '&');

if (isset($_GET['Logout']))
$url_base = str_replace($url_parameter_prefix . 'Logout', '',

$url_base);
elseif (isset($_GET['UpdateAccountDetails']))
$url_base = str_replace($url_parameter_prefix .

'UpdateAccountDetails', '', $url_base);
elseif (isset($_GET['UpdateCreditCardDetails']))
$url_base = str_replace($url_parameter_prefix .

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS392

648XCH11.qxd 11/17/06 3:37 PM Page 392

'UpdateCreditCardDetails', '', $url_base);
elseif (isset($_GET['UpdateAddressDetails']))
$url_base = str_replace($url_parameter_prefix .

'UpdateAddressDetails', '', $url_base);

if (strpos($url_base, '?', 0) === false)
$url_parameter_prefix = '?';

else
$url_parameter_prefix = '&';

if (isset($_GET['Logout']))
{
Customer::Logout();

// Redirect
if (isset($_GET['Checkout']) && USE_SSL != 'no')
{
$redirect_link = 'https://' . getenv('SERVER_NAME');

}
else
{
$redirect_link = 'http://' . getenv('SERVER_NAME');

// If HTTP_SERVER_PORT is defined and different than default
if (defined('HTTP_SERVER_PORT') && HTTP_SERVER_PORT != '80')
{
// Append server port
$redirect_link .= ':' . HTTP_SERVER_PORT;

}
}

$redirect_link .= VIRTUAL_LOCATION . $url_base;

header('Location:' . $redirect_link);

exit;
}

$url_base .= $url_parameter_prefix;
$this->mUpdateAccount = $url_base . 'UpdateAccountDetails';
$this->mUpdateCreditCard = $url_base . 'UpdateCreditCardDetails';
$this->mUpdateAddress = $url_base . 'UpdateAddressDetails';
$this->mLogout = $url_base . 'Logout';

$customer_data = Customer::Get();
$this->mCustomerName = $customer_data['name'];

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 393

648XCH11.qxd 11/17/06 3:37 PM Page 393

if (!(empty($customer_data['credit_card'])))
$this->mCreditCardAction = 'Change';

if (!(empty($customer_data['address_1'])))
$this->mAddressAction = 'Change';

}
}
?>

5. Create a new template file named customer_details.tpl in the presentation/templates folder,
and add the following code to it:

{* customer_details.tpl *}
{load_customer_details assign="customer_details"}
<form method="post"
action="{$customer_details->mCustomerDetailsTarget|prepare_link:"https"}">
Please enter your details:
{if $customer_details->mEmailAlreadyTaken}

A user with that e-mail address already exists.

{/if}

<table class="form_table">
<tr>
<td>E-mail Address:</td>
<td>
<input type="text" name="email"
value="{$customer_details->mEmail}"
{if $customer_details->mEditMode}readonly="readonly"{/if} />

</td>
<td>
{if $customer_details->mEmailError}

You must enter an e-mail address.

{/if}
</td>

</tr>
<tr>
<td>Name:</td>
<td>
<input type="text" name="name"
value="{$customer_details->mName}" />

</td>
<td>
{if $customer_details->mNameError}

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS394

648XCH11.qxd 11/17/06 3:37 PM Page 394

You must enter your name.
{/if}

</td>
</tr>
<tr>
<td>Password:</td>
<td><input type="password" name="password" /></td>
<td>
{if $customer_details->mPasswordError}
You must enter a password.
{/if}

</td>
</tr>
<tr>
<td>Re-enter Password:</td>
<td><input type="password" name="passwordConfirm" /></td>
<td>
{if $customer_details->mPasswordConfirmError}

You must re-enter your password.

{elseif $customer_details->mPasswordMatchError}

You must re-enter the same password.

{/if}

</td>
</tr>
{if $customer_details->mEditMode}
<tr>
<td>Day phone:</td>
<td>
<input type="text" name="dayPhone"
value="{$customer_details->mDayPhone}" />

</td>
</tr>
<tr>
<td>Eve phone:</td>
<td>
<input type="text" name="evePhone"
value="{$customer_details->mEvePhone}" />

</td>
</tr>
<tr>
<td>Mob phone:</td>
<td>
<input type="text" name="mobPhone"

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 395

648XCH11.qxd 11/17/06 3:37 PM Page 395

value="{$customer_details->mMobPhone}" />
</td>

</tr>
{/if}

</table>

<input type="submit" name="sended" value="Confirm" />
<input type="button" value="Cancel"
onclick="window.location='{
$customer_details->mReturnLink|prepare_link:$customer_details->➥

mReturnLinkProtocol}';" />
</form>

6. Create a new plugin file named function.load_customer_details.php in the
presentation/smarty_plugins folder, and add the following to it:

<?php
/* Smarty plugin function that gets called when the

load_customer_details function plugin is loaded from a template */
function smarty_function_load_customer_details($params, $smarty)
{
// Create CustomerDetails object
$customer_details = new CustomerDetails();
$customer_details->init();

// Assign template variable
$smarty->assign($params['assign'], $customer_details);

}

class CustomerDetails
{
// Public attributes
public $mEditMode = 0;
public $mCustomerDetailsTarget;
public $mReturnLink;
public $mReturnLinkProtocol = 'http';
public $mEmail;
public $mName;
public $mPassword;
public $mDayPhone = null;
public $mEvePhone = null;
public $mMobPhone = null;
public $mNameError = 0;
public $mEmailError = 0;
public $mPasswordError = 0;
public $mPasswordConfirmError = 0;
public $mPasswordMatchError = 0;
public $mEmailAlreadyTaken = 0;

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS396

648XCH11.qxd 11/17/06 3:37 PM Page 396

// Private attributes
private $_mErrors = 0;
private $_mHaveData = 0;

// Class constructor
public function __construct()
{
// Check if we have new user or editing existing customer details
if (Customer::IsAuthenticated())
$this->mEditMode = 1;

$url_base = substr(getenv('REQUEST_URI'),
strrpos(getenv('REQUEST_URI'), '/') + 1,
strlen(getenv('REQUEST_URI')) - 1);

$url_parameter_prefix = (count($_GET) == 1 ? '?' : '&');

$this->mCustomerDetailsTarget = $url_base;

if ($this->mEditMode == 0)
$this->mReturnLink = str_replace($url_parameter_prefix .

'RegisterCustomer', '', $url_base);
else
$this->mReturnLink = str_replace($url_parameter_prefix .

'UpdateAccountDetails', '', $url_base);

if (isset($_GET['Checkout']) && USE_SSL != 'no')
$this->mReturnLinkProtocol = 'https';

// Check if we have submitted data
if (isset ($_POST['sended']))
$this->_mHaveData = 1;

if ($this->_mHaveData == 1)
{
// Name cannot be empty
if (empty ($_POST['name']))
{
$this->mNameError = 1;
$this->_mErrors++;

}
else
$this->mName = $_POST['name'];

if ($this->mEditMode == 0 && empty ($_POST['email']))
{

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 397

648XCH11.qxd 11/17/06 3:37 PM Page 397

$this->mEmailError = 1;
$this->_mErrors++;

}
else
$this->mEmail = $_POST['email'];

// Password cannot be empty
if (empty ($_POST['password']))
{
$this->mPasswordError = 1;
$this->_mErrors++;

}
else
$this->mPassword = $_POST['password'];

// Password confirm cannot be empty
if (empty ($_POST['passwordConfirm']))
{
$this->mPasswordConfirmError = 1;
$this->_mErrors++;

}
else
$password_confirm = $_POST['passwordConfirm'];

// Password and password confirm should be the same
if (!isset ($password_confirm) ||

$this->mPassword != $password_confirm)
{
$this->mPasswordMatchError = 1;
$this->_mErrors++;

}

if ($this->mEditMode == 1)
{
if (!empty ($_POST['dayPhone']))
$this->mDayPhone = $_POST['dayPhone'];

if (!empty ($_POST['evePhone']))
$this->mEvePhone = $_POST['evePhone'];

if (!empty ($_POST['mobPhone']))
$this->mMobPhone = $_POST['mobPhone'];

}
}

}

public function init()

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS398

648XCH11.qxd 11/17/06 3:37 PM Page 398

{
// If we have submitted data and no errors in submitted data
if (($this->_mHaveData == 1) && ($this->_mErrors == 0))
{
// Check if we have any customer with submitted email...
$customer_read = Customer::GetLoginInfo($this->mEmail);

/* ...if we have one and we are in 'new user' mode then
email already taken error */

if ((!(empty ($customer_read['customer_id']))) &&
($this->mEditMode == 0))

{
$this->mEmailAlreadyTaken = 1;

return;
}

// We have a new user or we are updating an exisiting user details
if ($this->mEditMode == 0)
Customer::Add($this->mName, $this->mEmail, $this->mPassword);

else
Customer::UpdateAccountDetails($this->mName, $this->mEmail,
$this->mPassword, $this->mDayPhone, $this->mEvePhone,
$this->mMobPhone);

// Redirect
if (isset($_GET['Checkout']) && USE_SSL != 'no')
{
$redirect_link = 'https://' . getenv('SERVER_NAME');

}
else
{
$redirect_link = 'http://' . getenv('SERVER_NAME');

// If HTTP_SERVER_PORT is defined and different than default
if (defined('HTTP_SERVER_PORT') && HTTP_SERVER_PORT != '80')
{
// Append server port
$redirect_link .= ':' . HTTP_SERVER_PORT;

}
}

$redirect_link .= VIRTUAL_LOCATION . $this->mReturnLink;

header('Location:' . $redirect_link);

exit;

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 399

648XCH11.qxd 11/17/06 3:37 PM Page 399

}

if ($this->mEditMode == 1 && $this->_mHaveData == 0)
{
// We are editing an existing customer’s details
$customer_data = Customer::Get();

$this->mName = $customer_data['name'];
$this->mEmail = $customer_data['email'];
$this->mDayPhone = $customer_data['day_phone'];
$this->mEvePhone = $customer_data['eve_phone'];
$this->mMobPhone = $customer_data['mob_phone'];

}
}

}
?>

7. Create a new template file named customer_address.tpl in the presentation/templates folder,
and add the following code to it:

{* customer_address.tpl *}
{load_customer_address assign="customer_address"}
<form method="post"
action="{$customer_address->mCustomerAddressTarget|prepare_link:"https"}">
Please enter your address details:

<table class="form_table">
<tr>
<td>Address 1:</td>
<td>
<input type="text" name="address1"
value="{$customer_address->mAddress1}" />

</td>
<td>
{if $customer_address->mAddress1Error}
You must enter an address.
{/if}

</td>
</tr>
<tr>
<td>Address 2:</td>
<td>
<input type="text" name="address2"
value="{$customer_address->mAddress2}" />

</td>
</tr>
<tr>
<td>Town/City:</td>

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS400

648XCH11.qxd 11/17/06 3:37 PM Page 400

<td>
<input type="text" name="city"
value="{$customer_address->mCity}" />

</td>
<td>
{if $customer_address->mCityError}
You must enter a city.
{/if}

</td>
</tr>
<tr>
<td>Region/State:</td>
<td>
<input type="text" name="region"
value="{$customer_address->mRegion}" />

</td>
<td>
{if $customer_address->mRegionError}
You must enter a region/state.
{/if}

</td>
</tr>
<tr>
<td>Postal Code/ZIP:</td>
<td>
<input type="text" name="postalCode"
value="{$customer_address->mPostalCode}" />

</td>
<td>
{if $customer_address->mPostalCodeError}
You must enter a postal code/ZIP.
{/if}

</td>
</tr>
<tr>
<td>Country:</td>
<td>
<input type="text" name="country"
value="{$customer_address->mCountry}" />

</td>
<td>
{if $customer_address->mCountryError}
You must enter a country.
{/if}

</td>
</tr>
<tr>

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 401

648XCH11.qxd 11/17/06 3:37 PM Page 401

<td>Shipping region:</td>
<td>
<select name="shippingRegion">
{html_options options=$customer_address->mShippingRegions
selected=$customer_address->mShippingRegion}

</select>
</td>
<td>
{if $customer_address->mShippingRegionError}
You must select a shipping region.
{/if}

</td>
</tr>

</table>

<input type="submit" name="sended" value="Confirm" />
<input type="button" value="Cancel"
onclick="window.location='{
$customer_address->mReturnLink|prepare_link:$customer_address->➥

mReturnLinkProtocol}';" />
</form>

8. Create a new plugin file named function.load_customer_address.php in the
presentation/smarty_plugins folder, and add the following to it:

<?php
/* Smarty plugin function that gets called when the

load_customer_address function plugin is loaded from a template */
function smarty_function_load_customer_address($params, $smarty)
{
// Create CustomerAddress object
$customer_address = new CustomerAddress();
$customer_address->init();

// Assign template variable
$smarty->assign($params['assign'], $customer_address);

}

class CustomerAddress
{
// Public attributes
public $mCustomerAddressTarget;
public $mReturnLink;
public $mReturnLinkProtocol = 'http';
public $mAddress1 = '';
public $mAddress2 = '';
public $mCity = '';
public $mRegion = '';

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS402

648XCH11.qxd 11/17/06 3:37 PM Page 402

public $mPostalCode = '';
public $mCountry = '';
public $mShippingRegion = '';
public $mShippingRegions = array ();
public $mAddress1Error = 0;
public $mCityError = 0;
public $mRegionError = 0;
public $mPostalCodeError = 0;
public $mCountryError = 0;
public $mShippingRegionError = 0;

// Private attributes
private $_mErrors = 0;
private $_mHaveData = 0;

// Class constructor
public function __construct()
{
$url_base = substr(getenv('REQUEST_URI'),

strrpos(getenv('REQUEST_URI'), '/') + 1,
strlen(getenv('REQUEST_URI')) - 1);

$url_parameter_prefix = (count($_GET) == 1 ? '?' : '&');

// Set form action target
$this->mCustomerAddressTarget = $url_base;

// Set the return page
$this->mReturnLink = str_replace($url_parameter_prefix .

'UpdateAddressDetails', '', $url_base);

if (isset($_GET['Checkout']) && USE_SSL != 'no')
$this->mReturnLinkProtocol = 'https';

if (isset ($_POST['sended']))
$this->_mHaveData = 1;

if ($this->_mHaveData == 1)
{
// Address 1 cannot be empty
if (empty ($_POST['address1']))
{
$this->mAddress1Error = 1;
$this->_mErrors++;

}
else
$this->mAddress1 = $_POST['address1'];

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 403

648XCH11.qxd 11/17/06 3:37 PM Page 403

if (isset ($_POST['address2']))
$this->mAddress2 = $_POST['address2'];

if (empty ($_POST['city']))
{
$this->mCityError = 1;
$this->_mErrors++;

}
else
$this->mCity = $_POST['city'];

if (empty ($_POST['region']))
{
$this->mRegionError = 1;
$this->_mErrors++;

}
else
$this->mRegion = $_POST['region'];

if (empty ($_POST['postalCode']))
{
$this->mPostalCodeError = 1;
$this->_mErrors++;

}
else
$this->mPostalCode = $_POST['postalCode'];

if (empty ($_POST['country']))
{
$this->mCountryError = 1;
$this->_mErrors++;

}
else
$this->mCountry = $_POST['country'];

if ($_POST['shippingRegion'] == 1)
{
$this->mShippingRegionError = 1;
$this->_mErrors++;

}
else
$this->mShippingRegion = $_POST['shippingRegion'];

}
}

public function init()
{
$shipping_regions = Customer::GetShippingRegions();

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS404

648XCH11.qxd 11/17/06 3:37 PM Page 404

foreach ($shipping_regions as $item)
$this->mShippingRegions[$item['shipping_region_id']] =
$item['shipping_region'];

if ($this->_mHaveData == 0)
{
$customer_data = Customer::Get();

if (!(empty ($customer_data)))
{
$this->mAddress1 = $customer_data['address_1'];
$this->mAddress2 = $customer_data['address_2'];
$this->mCity = $customer_data['city'];
$this->mRegion = $customer_data['region'];
$this->mPostalCode = $customer_data['postal_code'];
$this->mCountry = $customer_data['country'];
$this->mShippingRegion = $customer_data['shipping_region_id'];

}
}
elseif ($this->_mErrors == 0)
{
Customer::UpdateAddressDetails($this->mAddress1, $this->mAddress2,
$this->mCity, $this->mRegion, $this->mPostalCode,
$this->mCountry, $this->mShippingRegion);

if (isset($_GET['Checkout']) && USE_SSL != 'no')
{
$redirect_link = 'https://' . getenv('SERVER_NAME');

}
else
{
$redirect_link = 'http://' . getenv('SERVER_NAME');

// If HTTP_SERVER_PORT is defined and different than default
if (defined('HTTP_SERVER_PORT') && HTTP_SERVER_PORT != '80')
{
// Append server port
$redirect_link .= ':' . HTTP_SERVER_PORT;

}
}

$redirect_link .= VIRTUAL_LOCATION . $this->mReturnLink;

header('Location:' . $redirect_link);

exit;
}

}
}
?>

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 405

648XCH11.qxd 11/17/06 3:37 PM Page 405

9. Create a new template file named customer_credit_card.tpl in the presentation/templates
folder, and add the following code to it:

{* customer_credit_card.tpl *}
{load_customer_credit_card assign="customer_credit_card"}
<form method="post"
action="{$customer_credit_card-
>mCustomerCreditCardTarget|prepare_link:"https"}">

Please enter your credit card details:

<table class="form_table">
<tr>
<td>Card Holder:</td>
<td>
<input type="text" name="cardHolder"
value="{$customer_credit_card->mPlainCreditCard.card_holder}" />

</td>
<td>
{if $customer_credit_card->mCardHolderError}
You must enter a card holder.
{/if}

</td>
</tr>
<tr>
<td>Card Number (digits only):</td>
<td>
<input type="text" name="cardNumber"
value="{$customer_credit_card->mPlainCreditCard.card_number}" />

</td>
<td>
{if $customer_credit_card->mCardNumberError}
You must enter a card number.
{/if}

</td>
</tr>
<tr>
<td>Expiry Date (MM/YY):</td>
<td>
<input type="text" name="expDate"
value="{$customer_credit_card->mPlainCreditCard.expiry_date}" />

</td>
<td>
{if $customer_credit_card->mExpDateError}
You must enter an expiry date
{/if}

</td>

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS406

648XCH11.qxd 11/17/06 3:37 PM Page 406

</tr>
<tr>
<td>Issue Date (MM/YY if applicable):</td>
<td>
<input type="text" name="issueDate"
value="{$customer_credit_card->mPlainCreditCard.issue_date}" />

</td>
</tr>
<tr>
<td>Issue Number (if applicable):</td>
<td>
<input type="text" name="issueNumber"
value="{$customer_credit_card->mPlainCreditCard.issue_number}" />

</td>
</tr>
<tr>
<td>Card Type:</td>
<td>
<select name="cardType">
{html_options options=$customer_credit_card->mCardTypes
selected=$customer_credit_card->mPlainCreditCard.card_type}

</select>
</td>
<td>
{if $customer_credit_card->mCardTypesError}
You must enter a card type.
{/if}

</td>
</tr>

</table>

<input type="submit" name="sended" value="Confirm" />
<input type="button" value="Cancel"
onclick="window.location='{
$customer_credit_card->mReturnLink|prepare_link:$customer_credit_card->➥

mReturnLinkProtocol}';" />
</form>

10. Create a new plugin file named function.load_customer_credit_card.php in the
presentation/smarty_plugins folder, and add the following to it:

<?php
/* Smarty plugin function that gets called when the

load_customer_credit_card function plugin is loaded from a template */
function smarty_function_load_customer_credit_card($params, $smarty)
{
// Create CustomerCreditCard object
$customer_credit_card = new CustomerCreditCard();

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 407

648XCH11.qxd 11/17/06 3:37 PM Page 407

$customer_credit_card->init();

// Assign template variable
$smarty->assign($params['assign'], $customer_credit_card);

}

class CustomerCreditCard
{
// Public attributes
public $mCustomerCreditCardTarget;
public $mReturnLink;
public $mReturnLinkProtocol = 'http';
public $mCardHolderError;
public $mCardNumberError;
public $mExpDateError;
public $mCardTypesError;
public $mPlainCreditCard;
public $mCardTypes;

// Private attributes
private $_mErrors = 0;
private $_mHaveData = 0;

public function __construct()
{
$this->mPlainCreditCard = array('card_holder' => '',
'card_number' => '', 'issue_date' => '', 'expiry_date' => '',
'issue_number' => '', 'card_type' => '', 'card_number_x' => '');

$url_base = substr(getenv('REQUEST_URI'),
strrpos(getenv('REQUEST_URI'), '/') + 1,
strlen(getenv('REQUEST_URI')) - 1);

$url_parameter_prefix = (count($_GET) == 1 ? '?' : '&');

// Set form action target
$this->mCustomerCreditCardTarget = $url_base;

// Set the return page
$this->mReturnLink = str_replace($url_parameter_prefix .

'UpdateCreditCardDetails', '', $url_base);

if (isset($_GET['Checkout']) && USE_SSL != 'no')
$this->mReturnLinkProtocol = 'https';

if (!(empty ($_POST['sended'])))
$this->_mHaveData = 1;

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS408

648XCH11.qxd 11/17/06 3:37 PM Page 408

$this->mCardTypes = array ('Mastercard' => 'Mastercard',
'Visa' => 'Visa', 'Mastercard' => 'Mastercard',
'Switch' => 'Switch', 'Solo' => 'Solo',
'American Express' => 'American Express');

if ($this->_mHaveData == 1)
{
// Initialization/validation stuff
if (empty ($_POST['cardHolder']))
{
$this->mCardHolderError = 1;
$this->_mErrors++;

}
else
$this->mPlainCreditCard['card_holder'] = $_POST['cardHolder'];

if (empty ($_POST['cardNumber']))
{
$this->mCardNumberError = 1;
$this->_mErrors++;

}
else
$this->mPlainCreditCard['card_number'] = $_POST['cardNumber'];

if (empty ($_POST['expDate']))
{
$this->mExpDateError = 1;
$this->_mErrors++;

}
else
$this->mPlainCreditCard['expiry_date'] = $_POST['expDate'];

if (isset ($_POST['issueDate']))
$this->mPlainCreditCard['issue_date'] = $_POST['issueDate'];

if (isset ($_POST['issueNumber']))
$this->mPlainCreditCard['issue_number'] = $_POST['issueNumber'];

$this->mPlainCreditCard['card_type'] = $_POST['cardType'];

if (empty ($this->mPlainCreditCard['card_type']))
{
$this->mCardTypeError = 1;
$this->_mErrors++;

}
}

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 409

648XCH11.qxd 11/17/06 3:37 PM Page 409

}

public function init()
{
if ($this->_mHaveData == 0)
{
// Get credit card information
$this->mPlainCreditCard = Customer::GetPlainCreditCard();

}
elseif ($this->_mErrors == 0)
{
// Update credit card information
Customer::UpdateCreditCardDetails($this->mPlainCreditCard);

if (isset($_GET['Checkout']) && USE_SSL != 'no')
{
$redirect_link = 'https://' . getenv('SERVER_NAME');

}
else
{
$redirect_link = 'http://' . getenv('SERVER_NAME');

// If HTTP_SERVER_PORT is defined and different than default
if (defined('HTTP_SERVER_PORT') && HTTP_SERVER_PORT != '80')
{
// Append server port
$redirect_link .= ':' . HTTP_SERVER_PORT;

}
}

$redirect_link .= VIRTUAL_LOCATION . $this->mReturnLink;

header('Location:' . $redirect_link);

exit;
}

}
}
?>

11. Update include/app_top.php by adding a reference to the symmetric crypting, secure card, and
customer accounts business tier classes as highlighted:

// Load Business Tier
require_once BUSINESS_DIR . 'catalog.php';
require_once BUSINESS_DIR . 'shopping_cart.php';

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS410

648XCH11.qxd 11/17/06 3:37 PM Page 410

require_once BUSINESS_DIR . 'orders.php';
require_once BUSINESS_DIR . 'password_hasher.php';
require_once BUSINESS_DIR . 'symmetric_crypt.php';
require_once BUSINESS_DIR . 'secure_card.php';
require_once BUSINESS_DIR . 'customer.php';

12. Update index.php by adding the new interface elements:

// Load search result page if we're searching the catalog
if (isset ($_GET['Search']))
$pageContentsCell = 'search_results.tpl';

// Load product details page if visiting a product
if (isset ($_GET['ProductID']))
$pageContentsCell = 'product.tpl';

if (isset ($_GET['CartAction']))
{
$pageContentsCell = 'cart_details.tpl';

}
else
$cartSummaryCell = 'cart_summary.tpl';

// Customer account functionality
$customerLoginOrLogged = 'customer_login.tpl';

if (Customer::IsAuthenticated())
$customerLoginOrLogged = 'customer_logged.tpl';

if (isset($_GET['RegisterCustomer']) || isset($_GET['UpdateAccountDetails']))
$pageContentsCell = 'customer_details.tpl';

elseif (isset($_GET['UpdateAddressDetails']))
$pageContentsCell = 'customer_address.tpl';

elseif (isset($_GET['UpdateCreditCardDetails']))
$pageContentsCell = 'customer_credit_card.tpl';

$page->assign('customerLoginOrLogged', $customerLoginOrLogged);

// Assign a template file to the cart summary cell
$page->assign('cartSummaryCell', $cartSummaryCell);

// Assign a template file to the page contents cell
$page->assign('pageContentsCell', $pageContentsCell);
$page->assign('categoriesCell', $categoriesCell);

// Display the page
$page->display('index.tpl');

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 411

648XCH11.qxd 11/17/06 3:37 PM Page 411

13. Update presentation/templates/index.tpl by adding the following:

{include file="$customerLoginOrLogged"}
{include file="departments_list.tpl"}
{include file="$categoriesCell"}

14. Add the following styles to hatshop.css:

#login_box
{
border: 1px solid #dc143c;

}
#login_box p
{
background: #dc143c;

}
.error_text
{
color: #ff0000;
font-style: italic;

}
.form_table
{
width: auto;

}
.form_table tr td
{
background: #ffffff;
border: none;

}

15. You can now load the web site to check that the functionality shown in Figures 11-4 through 11-7 works.

Creating the Checkout Page
You are now ready to add the checkout page. This page will look similar to the cart_details
componentized template because you are displaying the items ordered, but it will also display
additional information such as the shipping address or the type of the credit card. For new
customers, neither address nor credit card information will be available yet, so you can also
disable the order button until this information has been added.

Let’s take a look now at what you’ll be doing (see Figure 11-8).

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS412

648XCH11.qxd 11/17/06 3:37 PM Page 412

Figure 11-8. The Checkout Page

If you try to check out without entering all of your personal data, the Place Order button
won’t be active, and you’ll be notified through an error message such as the one you can see in
Figure 11-9.

Figure 11-9. Customers with incomplete details cannot place orders

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 413

648XCH11.qxd 11/17/06 3:37 PM Page 413

At this point, the customer also has the option to change the credit card or address
details, using the functionality you implemented earlier.

Let’s implement the checkout_info componentized template that you saw in Figure 11-9.

Exercise: Implementing the checkout_info Componentized Template

1. Create a new file named checkout_info.tpl in the presentation/templates folder, and add the
following code to it:

{* cart_details.tpl *}
{load_checkout_info assign="checkout_info"}

Your order consists of the following items:

<form method="post"
action="{$checkout_info->mCheckoutInfoLink|prepare_link:"https"}">
<table>
<tr>
<th>Product Name</th>
<th>Price</th>
<th>Quantity</th>
<th>Subtotal</th>

</tr>
{section name=cCartItems loop=$checkout_info->mCartItems}
<tr>
<td>{$checkout_info->mCartItems[cCartItems].name}</td>
<td>{$checkout_info->mCartItems[cCartItems].price}</td>
<td>{$checkout_info->mCartItems[cCartItems].quantity}</td>
<td>{$checkout_info->mCartItems[cCartItems].subtotal}</td>

</tr>
{/section}
</table>

Total amount:
${$checkout_info->mTotalAmountLabel}

{if $checkout_info->mNoCreditCard == 'yes'}
No credit card details stored.
{else}
{$checkout_info->mCreditCardNote}
{/if}

{if $checkout_info->mNoShippingAddress == 'yes'}
Shipping address required to place order.
{else}

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS414

648XCH11.qxd 11/17/06 3:37 PM Page 414

Shipping address:

 {$checkout_info->mCustomerData.address_1}

{if $checkout_info->mCustomerData.address_2}
 {$checkout_info->mCustomerData.address_2}

{/if}
 {$checkout_info->mCustomerData.city}

 {$checkout_info->mCustomerData.region}

 {$checkout_info->mCustomerData.postal_code}

 {$checkout_info->mCustomerData.country}

Shipping region: {$checkout_info->mShippingRegion}

{/if}

<input type="submit" name="sended" value="Place Order"
{$checkout_info->mOrderButtonVisible} />
<input type="button" value="Edit Shopping Cart"
onclick="window.location='{
$checkout_info->mEditCart|prepare_link:"http"}';" />

<input type="button" value="Continue Shopping"
onclick="window.location='{
$checkout_info->mContinueShopping|prepare_link:"http"}';" />

</form>

2. Create the presentation/smarty_plugins/function.load_checkout_info.php file, and fill it
with the following code:

<?php
/* Smarty plugin function that gets called when the

load_checkout_info function plugin is loaded from a template */
function smarty_function_load_checkout_info($params, $smarty)
{
// Create CheckoutInfo object
$checkout_info = new CheckoutInfo();
$checkout_info->init();

// Assign template variable
$smarty->assign($params['assign'], $checkout_info);

}

// Class that supports the checkout page
class CheckoutInfo
{
// Public attributes
public $mCartItems;
public $mTotalAmountLabel;
public $mCreditCardNote;
public $mEditCart = 'index.php?CartAction';
public $mOrderButtonVisible;

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 415

648XCH11.qxd 11/17/06 3:37 PM Page 415

public $mNoShippingAddress = 'no';
public $mNoCreditCard = 'no';
public $mContinueShopping;
public $mCheckoutInfoLink;
public $mPlainCreditCard;
public $mShippingRegion;

// Private attributes
private $_mPlaceOrder = 0;

// Class constructor
public function __construct()
{
if (isset ($_POST['sended']))
$this->_mPlaceOrder = 1;

}

public function init()
{
// If the Place Order button was clicked, save the order to database
if ($this->_mPlaceOrder == 1)
{
$order_id = ShoppingCart::CreateOrder();

// Redirect to index.php
$redirect_link = 'http://' . getenv('SERVER_NAME');

// If HTTP_SERVER_PORT is defined and different than default
if (defined('HTTP_SERVER_PORT') && HTTP_SERVER_PORT != '80')
{
// Append server port
$redirect_link .= ':' . HTTP_SERVER_PORT;

}

$redirect_link .= VIRTUAL_LOCATION . 'index.php';

header('Location:' . $redirect_link);

exit;
}

$this->mCheckoutInfoLink = substr(getenv('REQUEST_URI'),
strrpos(getenv('REQUEST_URI'), '/') + 1,
strlen(getenv('REQUEST_URI')) - 1);

// Set members for use in the Smarty template
$this->mCartItems = ShoppingCart::GetCartProducts(GET_CART_PRODUCTS);

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS416

648XCH11.qxd 11/17/06 3:37 PM Page 416

$this->mTotalAmountLabel = ShoppingCart::GetTotalAmount();
$this->mContinueShopping = $_SESSION['page_link'];
$this->mCustomerData = Customer::Get();

// We allow placing orders only if we have complete customer details
if (empty ($this->mCustomerData['credit_card']))
{
$this->mOrderButtonVisible = 'disabled="disabled"';
$this->mNoCreditCard = 'yes';

}
else
{
$this->mPlainCreditCard = Customer::DecryptCreditCard(

$this->mCustomerData['credit_card']);

$this->mCreditCardNote = 'Credit card to use: ' .
$this->mPlainCreditCard['card_type'] .
'
Card number: ' .
$this->mPlainCreditCard['card_number_x'];

}

if (empty ($this->mCustomerData['address_1']))
{
$this->mOrderButtonVisible = 'disabled="disabled"';
$this->mNoShippingAddress = 'yes';

}
else
{
$shipping_regions = Customer::GetShippingRegions();

foreach ($shipping_regions as $item)
if ($item['shipping_region_id'] ==

$this->mCustomerData['shipping_region_id'])
$this->mShippingRegion = $item['shipping_region'];

}
}

}
?>

3. Create the checkout_not_logged.tpl file in the presentation/templates folder, and add the
following code:

{* checkout_not_logged.tpl *}
<h3>
You must be logged in to CHECKOUT

If you don't have an account please register

</h3>

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 417

648XCH11.qxd 11/17/06 3:37 PM Page 417

4. Modify index.php to load the checkout_info componentized template and the
checkout_not_logged template by adding the highlighted code:

// Customer account functionality
$customerLoginOrLogged = 'customer_login.tpl';

if (Customer::IsAuthenticated())
$customerLoginOrLogged = 'customer_logged.tpl';

$hide_boxes = false;

if (isset ($_GET['Checkout']))
{
if (Customer::IsAuthenticated())
$pageContentsCell = 'checkout_info.tpl';

else
$pageContentsCell = 'checkout_not_logged.tpl';

$hide_boxes = true;
}

if (isset($_GET['RegisterCustomer']) || isset($_GET['UpdateAccountDetails']))
$pageContentsCell = 'customer_details.tpl';

elseif (isset($_GET['UpdateAddressDetails']))
$pageContentsCell = 'customer_address.tpl';

elseif (isset($_GET['UpdateCreditCardDetails']))
$pageContentsCell = 'customer_credit_card.tpl';

$page->assign('hide_boxes', $hide_boxes);
$page->assign('customerLoginOrLogged', $customerLoginOrLogged);

5. Modify presentation/templates/index.tpl to show only the login or logged box on the left when
showing the checkout page by adding the highlighted code:

{if !$hide_boxes}
{include file="departments_list.tpl"}
{include file="$categoriesCell"}
{include file="search_box.tpl"}
{include file="$cartSummaryCell"}

{/if}
{include file="header.tpl"}

6. Modify your presentation/templates/cart_details.tpl file to redirect the user to the
checkout_info page instead of PayPal. The Place Order button becomes the Checkout button:

...
<td class="cart_total" align="right">
<input type="submit" name="update" value="Update" />

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS418

648XCH11.qxd 11/17/06 3:37 PM Page 418

<input type="button" name="Checkout" value="Checkout"
{if $cart_details->mTotalAmount eq 0}disabled="disabled"{/if}
onclick="window.location='{
$cart_details->mCheckoutLink|prepare_link:"https"}';" />

</td>
...

7. Modify the constructor of the CartDetails class in presentation/smarty_plugins/
function.load_cart_details.php to add checkout functionality as highlighted:

...
public $mRecommendations;
public $mCheckoutActive = false;
public $mCheckoutLink;

// Private attributes
private $_mProductId;

...
// Class constructor
public function __construct()
{
$url_base = substr(getenv('REQUEST_URI'),

strrpos(getenv('REQUEST_URI'), '/') + 1,
strlen(getenv('REQUEST_URI')) - 1);

$url_parameter_prefix = (empty ($_GET) ? '?' : '&');

$this->mCheckoutLink = $url_base . $url_parameter_prefix . 'Checkout';

// Setting the "Continue shopping" button target
if (isset ($_SESSION['page_link']))
$this->mCartReferrer = $_SESSION['page_link'];

8. Update the init() method of the CartDetails class in presentation/smarty_plugins/
function.load_cart_details.php as highlighted:

...
// Calculate the total amount for the shopping cart
$this->mTotalAmount = ShoppingCart::GetTotalAmount();

if ($this->mTotalAmount != 0 && Customer::IsAuthenticated())
$this->mCheckoutActive = true;

// Get shopping cart products
$this->mCartProducts =
ShoppingCart::GetCartProducts(GET_CART_PRODUCTS);

...

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 419

648XCH11.qxd 11/17/06 3:37 PM Page 419

9. Now everything is in its place, and you can see the results. Log in to your site, add some products to your
shopping cart, and then click the Checkout button on your shopping cart page. Your page will look something
like Figure 11-9 shown earlier.

How It Works: The checkout_info Componentized Template

In the init() method of the CheckoutInfo class, you start by checking whether the customer clicked the
Place Order button. If so, you save the order into the database and redirect the customer to the home page:

// If the Place Order button was clicked, save the order to database
if ($this->_mPlaceOrder == 1)
{
$order_id = ShoppingCart::CreateOrder();

// Redirect to index.php
$redirect_link = 'http://' . getenv('SERVER_NAME');

// If HTTP_SERVER_PORT is defined and different than default
if (defined('HTTP_SERVER_PORT') && HTTP_SERVER_PORT != '80')
{
// Append server port
$redirect_link .= ':' . HTTP_SERVER_PORT;

}

$redirect_link .= VIRTUAL_LOCATION . 'index.php';

header('Location:' . $redirect_link);

exit;
}

You then need to set up some variables for the template to use:

// Set members for use in the Smarty template
$this->mCartItems = ShoppingCart::GetCartProducts(GET_CART_PRODUCTS);
$this->mTotalAmountLabel = ShoppingCart::GetTotalAmount();
$this->mContinueShopping = $_SESSION['page_link'];
$this->mCustomerData = Customer::Get();

If the customer didn’t enter credit card information or a shipping address yet, a notice is displayed, and the Place
Order button is disabled. If credit card information exists for the customer, you decrypt it and prepare to display
the credit card type and the last four digits of its number:

// We allow placing orders only if we have complete customer details
if (empty ($this->mCustomerData['credit_card']))
{
$this->mOrderButtonVisible = 'disabled="disabled"';
$this->mNoCreditCard = 'yes';

}

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS420

648XCH11.qxd 11/17/06 3:37 PM Page 420

else
{
$this->mPlainCreditCard = Customer::DecryptCreditCard(

$this->mCustomerData['credit_card']);

$this->mCreditCardNote = 'Credit card to use: ' .
$this->mPlainCreditCard['card_type'] .
'
Card number: ' .
$this->mPlainCreditCard['card_number_x'];

}

if (empty ($this->mCustomerData['address_1']))
{
$this->mOrderButtonVisible = 'disabled="disabled"';
$this->mNoShippingAddress = 'yes';

}

The rest of the code is straightforward.

Enforcing SSL Connections
When building the catalog admin pages, you also learned that it’s good to use SSL for securing
the data that passes between your server and the client’s browser. Back then, SSL was semi-
optional because the administrative pages could have been restricted for local access only.

However, now that you have customers sending you extremely sensitive data, using SSL
isn’t optional anymore! Depending on the settings you’ve implemented in Chapter 7, the cus-
tomer details pages should be protected already. Remember that you have the config.php file
that you can use to set the behavior of your site regarding SSL.

You still need to force the sensitive pages to be accessed through SSL. Say, if someone
tried to access http://localhost/hatshop/index.php?UpdateCreditCardDetails, the visitor
should be redirected automatically to https://localhost/hatshop/index.
php?UpdateCreditCardDetails.

Obviously, you don’t need SSL connections for all areas of the site, and you shouldn’t
enforce it in all places because that reduces performance. However, you do want to make sure
that the checkout, customer login, customer registration, and customer detail modification
pages are accessible only via SSL.

Assuming that your site is working correctly with SSL, you should make some updates to
ensure that the pages can’t be accessed via HTTP. Add the following code at the beginning of
index.php:

// Load Smarty library and config files
require_once 'include/app_top.php';

// Is the page being accessed through an HTTPS connection?
if (getenv('HTTPS') != 'on')
$is_https = false;

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 421

648XCH11.qxd 11/17/06 3:37 PM Page 421

else
$is_https = true;

// Visiting a sensitive page?
if (isset($_GET['RegisterCustomer']) ||

isset($_GET['UpdateAccountDetails']) ||
isset($_GET['UpdateAddressDetails']) ||
isset($_GET['UpdateCreditCardDetails']) ||
isset($_GET['Checkout']) ||
isset($_POST['Login']))

$is_sensitive_page = true;
else
$is_sensitive_page = false;

// Use HTTPS when accessing sensitive pages
if ($is_sensitive_page && $is_https == false && USE_SSL != 'no')
{

header ('Location: https://' . getenv('SERVER_NAME') .
getenv('REQUEST_URI'));

exit;
}

// Don't use HTTPS for nonsensitive pages
if (!$is_sensitive_page && $is_https == true)
{

$link = 'http://' . getenv('SERVER_NAME');

// If HTTP_SERVER_PORT is defined and different than default
if (defined('HTTP_SERVER_PORT') && HTTP_SERVER_PORT != '80')
{
// Append server port
$link .= ':' . HTTP_SERVER_PORT;

}

$link .= getenv('REQUEST_URI');

header ('Location: ' . $link);

exit;
}

/* If not visiting a product page, save the link to the current page
in the page_link session variable; it will be used to create the
Continue Shopping link in the product details page and the links
to product details pages */

if (!isset ($_GET['ProductID']) && !isset ($_GET['CartAction']))

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS422

648XCH11.qxd 11/17/06 3:37 PM Page 422

Right now, trying to load http://localhost/hatshop/index.php?UpdateCreditCardDetails
would redirect you to https://localhost/hatshop/index.php?UpdateCreditCardDetails,
provided that you’re logged in.

Summary
In this chapter, you’ve implemented a customer account system that customers can use to
store their details for use during order processing. You’ve looked at many aspects of the cus-
tomer account system, including encrypting sensitive data and securing web connections for
obtaining it.

You started by looking at a new table in your database, customer, with fields for storing
customer information.

Next, you created the security classes in your business tier, which handle hashing and
encrypting strings, and a secure credit card representation that makes it easy to exchange
credit card details between the encrypted and decrypted format.

After this, you used these classes to create the login, registration, and customer detail
editing web pages. This required a bit more code, but the result turned out to be simple to
understand.

In the next chapter, we’ll be looking at how to create the framework for the order-
processing pipeline, enabling you to automate even more of the supply process.

CHAPTER 11 ■ MANAGING CUSTOMER DETAILS 423

648XCH11.qxd 11/17/06 3:37 PM Page 423

648XCH11.qxd 11/17/06 3:37 PM Page 424

Storing Customer Orders

The HatShop e-commerce application is shaping up nicely. You’ve added customer account
management capabilities, and you’re keeping track of customer addresses and credit card
information, which is stored in a secure way. However, you’re not currently using this
information—you’re delegating responsibility to PayPal.

In this chapter, you’ll make the modifications required for customers to place orders
that are associated with their user profiles. The main modification here is that the customer
associated with an order will be identified by a new piece of information in the orders table,
and much of the rest of the modifications will be made to use this information.

Also in this chapter, you’ll take a look at dealing with another common feature of
e-commerce sites: tax and shipping charges. Many options are available for implementing
this functionality, but we’ll just examine a simple way of doing things and lay the groundwork
for your own further development.

This chapter is divided into three parts as follows:

• Enable customers to place orders through their accounts.

• Modify the orders admin section to integrate the new features.

• Add tax and shipping charges.

In the next chapter, you’ll start to implement a more sophisticated order system, and the
code you’ll write in this chapter will facilitate this. Because of this, you’ll be making some
modifications that won’t seem necessary at this stage, but they’ll make your life easier later on.

Adding Orders to Customer Accounts
To enable customers to place orders, you need to make several modifications. You’ll modify
the database and business tier to enable customer orders to be placed and provide new code
in the presentation tier to expose this functionality.

First, we’ll modify the database to make it ready to hold information about customer
orders. You’ll first modify the orders table and then the shopping_cart_create_order function.

Currently the orders table doesn’t allow for as much information as you’ll need to imple-
ment customer orders. You’ll also make some modifications in later chapters, so you need to
add new columns to the orders table.

425

C H A P T E R 1 2

648XCH12.qxd 11/17/06 3:44 PM Page 425

426 CHAPTER 12 ■ STORING CUSTOMER ORDERS

■Caution The new orders table isn’t totally compatible with the previous data in this table, and you’ll be
required to delete all the existing data. You need to back up your database and eventually save your current
data before making these changes.

More specifically, these are the changes you’ll make to the orders table:

• Clear all the existing data.

• Remove the customer_name, shipping_address, and customer_email fields.

• Add customer_id, auth_code, and reference fields. The customer_id field references the
customer table, specifying the customer who made the order. The other two fields are
related to processing credit card data, and will be discussed in Chapter 14.

You’ll also modify the shopping_cart_create_order function to reflect the changes in
the orders table.

Follow the steps in the following exercise to change your orders table and the
shopping_cart_create_order function.

Exercise: Adding Orders to Customer Accounts

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Be sure to back up your data. Then use the query tool to execute this code, which deletes the data stored in
the order_details and orders tables from your hatshop database.

-- Delete all records from order_detail table
DELETE FROM order_detail;

-- Delete all records from orders table
DELETE FROM orders;

4. Drop the customer_name, shipping_address, and customer_email fields from the orders table,
which are no longer required. This data is now held in the customer table.

-- Drop customer_name field from orders table
ALTER TABLE orders DROP COLUMN customer_name;

-- Drop shipping_address field from orders table
ALTER TABLE orders DROP COLUMN shipping_address;

-- Drop customer_email field from orders table
ALTER TABLE orders DROP COLUMN customer_email;

5. Add the new fields (customer_id, auth_code, and reference), and a constraint that checks the value in
the customer_id field will reference an existing customer.

648XCH12.qxd 11/17/06 3:44 PM Page 426

-- Adding a new field named customer_id to orders table
ALTER TABLE orders ADD COLUMN customer_id INTEGER;

-- Adding a new field named auth_code to orders table
ALTER TABLE orders ADD COLUMN auth_code VARCHAR(50);

-- Adding a new field named reference to orders table
ALTER TABLE orders ADD COLUMN reference VARCHAR(50);

-- Adding a new foreign key constraint to orders table
ALTER TABLE orders
ADD CONSTRAINT fk_customer_id FOREIGN KEY (customer_id)

REFERENCES customer (customer_id)
ON UPDATE RESTRICT ON DELETE RESTRICT;

6. Delete the old shopping_cart_create_order function and create a new one by executing the following
code:

-- Drop shopping_cart_create_order function
DROP FUNCTION shopping_cart_create_order(CHAR(32));

-- Create shopping_cart_create_order function
CREATE FUNCTION shopping_cart_create_order(CHAR(32), INTEGER)
RETURNS INTEGER LANGUAGE plpgsql AS $$
DECLARE
inCartId ALIAS FOR $1;
inCustomerId ALIAS FOR $2;
outOrderId INTEGER;
cartItem cart_product;
orderTotalAmount NUMERIC(10, 2);

BEGIN
-- Insert a new record into orders
INSERT INTO orders (created_on, customer_id)

VALUES (NOW(), inCustomerId);
-- Obtain the new Order ID
SELECT INTO outOrderId

currval('orders_order_id_seq');
orderTotalAmount := 0;
-- Insert order details in order_detail table
FOR cartItem IN
SELECT p.product_id, p.name,

COALESCE(NULLIF(p.discounted_price, 0), p.price) AS price,
sc.quantity,
COALESCE(NULLIF(p.discounted_price, 0), p.price) * sc.quantity
AS subtotal

FROM shopping_cart sc
INNER JOIN product p

ON sc.product_id = p.product_id

CHAPTER 12 ■ STORING CUSTOMER ORDERS 427

648XCH12.qxd 11/17/06 3:44 PM Page 427

WHERE sc.cart_id = inCartId AND sc.buy_now
LOOP
INSERT INTO order_detail (order_id, product_id, product_name,

quantity, unit_cost)
VALUES (outOrderId, cartItem.product_id, cartItem.name,

cartItem.quantity, cartItem.price);
orderTotalAmount := orderTotalAmount + cartItem.subtotal;

END LOOP;
-- Save the order's total amount
UPDATE orders
SET total_amount = orderTotalAmount
WHERE order_id = outOrderId;
-- Clear the shopping cart
PERFORM shopping_cart_empty(inCartId);
-- Return the Order ID
RETURN outOrderId;

END;
$$;

7. Modify the CreateOrder method from the ShoppingCart class in business/shopping_cart.php as
follows:

// Create a new order
public static function CreateOrder($customerId)
{
// Build the SQL query
$sql = 'SELECT shopping_cart_create_order(:cart_id, :customer_id);';
// Build the parameters array
$params = array (':cart_id' => self::GetCartId(),

':customer_id' => $customerId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetOne($result, $params);

}

8. Modify the init() method in presentation/smarty_plugins/function.
load_checkout_info.php as highlighted:

public function init()
{
// If the Place Order button was clicked, save the order to database
if ($this->_mPlaceOrder == 1)
{
$order_id =
ShoppingCart::CreateOrder(Customer::GetCurrentCustomerId());

// Redirect to index.php
$redirect_link = 'http://' . getenv('SERVER_NAME');

CHAPTER 12 ■ STORING CUSTOMER ORDERS428

648XCH12.qxd 11/17/06 3:44 PM Page 428

9. Place an order or two using the new system to check that the code works. You’ll need to log on to do this
and supply enough details to get past the validation on the checkout page.

■Note At this stage, the orders administration page isn’t functional anymore. We’ll need to update
it as well.

How It Works: Adding Customer Orders to HatShop

The code added in this exercise is very simple and hardly merits much discussion. The orders handling functions
in the data and business tiers now take as parameter a customer ID, which is assigned to the order.

After you’ve implemented more of the new ordering code, you’ll be able to provide more information to customers,
such as sending them confirmation emails. For now, however, this is as far as we can take things.

Administering Customer Orders
After orders have been placed, you’ll need to access them. This involves various modifications
to the database and business tiers to provide new data structures and access code in the
admin orders we developed in Chapter 9. Although essential in the next chapter and beyond,
for now, you’ll implement a simple (admin only) test form to access customer order data.
Because the changes are extensive, we’ll deal with them separately for the data, business,
and presentation tiers.

Database Modifications
You only need to make several changes here. You’ll update these database functions:

• orders_get_most_recent_orders

• orders_get_orders_between_dates

• orders_get_orders_by_status

• orders_get_order_info

You’ll create three new functions:

• orders_get_by_customer_id

• orders_get_order_short_details

• customer_get_customers_list

You’ll also drop the orders_update_order function, which we don’t need anymore.

CHAPTER 12 ■ STORING CUSTOMER ORDERS 429

648XCH12.qxd 11/17/06 3:44 PM Page 429

Exercise: Modifying the Data Tier

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Update the orders_get_most_recent_orders function:

-- Update orders_get_most_recent_orders function
CREATE OR REPLACE FUNCTION orders_get_most_recent_orders(INTEGER)
RETURNS SETOF order_short_details LANGUAGE plpgsql AS $$
DECLARE
inHowMany ALIAS FOR $1;
outOrderShortDetailsRow order_short_details;

BEGIN
FOR outOrderShortDetailsRow IN
SELECT o.order_id, o.total_amount, o.created_on,

o.shipped_on, o.status, c.name
FROM orders o
INNER JOIN customer c

ON o.customer_id = c.customer_id
ORDER BY o.created_on DESC
LIMIT inHowMany

LOOP
RETURN NEXT outOrderShortDetailsRow;

END LOOP;
END;

$$;

4. Update the orders_get_orders_between_dates function:

-- Update orders_get_orders_between_dates function
CREATE OR REPLACE FUNCTION orders_get_orders_between_dates(TIMESTAMP, TIMESTAMP)
RETURNS SETOF order_short_details LANGUAGE plpgsql AS $$
DECLARE
inStartDate ALIAS FOR $1;
inEndDate ALIAS FOR $2;
outOrderShortDetailsRow order_short_details;

BEGIN
FOR outOrderShortDetailsRow IN
SELECT o.order_id, o.total_amount, o.created_on,

o.shipped_on, o.status, c.name
FROM orders o
INNER JOIN customer c

ON o.customer_id = c.customer_id
WHERE o.created_on >= inStartDate AND o.created_on <= inEndDate
ORDER BY o.created_on DESC

LOOP
RETURN NEXT outOrderShortDetailsRow;

END LOOP;
END;

$$;

CHAPTER 12 ■ STORING CUSTOMER ORDERS430

648XCH12.qxd 11/17/06 3:44 PM Page 430

5. Update the orders_get_orders_by_status function:

-- Update orders_get_orders_by_status function
CREATE OR REPLACE FUNCTION orders_get_orders_by_status(INTEGER)
RETURNS SETOF order_short_details LANGUAGE plpgsql AS $$
DECLARE
inStatus ALIAS FOR $1;
outOrderShortDetailsRow order_short_details;

BEGIN
FOR outOrderShortDetailsRow IN
SELECT o.order_id, o.total_amount, o.created_on,

o.shipped_on, o.status, c.name
FROM orders o
INNER JOIN customer c

ON o.customer_id = c.customer_id
WHERE o.status = inStatus
ORDER BY o.created_on DESC

LOOP
RETURN NEXT outOrderShortDetailsRow;

END LOOP;
END;

$$;

6. Update the orders_get_order_info function:

-- Update orders_get_order_info function
CREATE OR REPLACE FUNCTION orders_get_order_info(INTEGER)
RETURNS orders LANGUAGE plpgsql AS $$
DECLARE
inOrderId ALIAS FOR $1;
outOrdersRow orders;

BEGIN
SELECT INTO outOrdersRow

order_id, total_amount, created_on, shipped_on, status,
comments, customer_id, auth_code, reference

FROM orders
WHERE order_id = inOrderId;
RETURN outOrdersRow;

END;
$$;

7. Create the orders_get_orders_by_customer_id function:

-- Create orders_get_by_customer_id function
CREATE FUNCTION orders_get_by_customer_id(INTEGER)
RETURNS SETOF order_short_details LANGUAGE plpgsql AS $$
DECLARE
inCustomerId ALIAS FOR $1;
outOrderShortDetailsRow order_short_details;

BEGIN

CHAPTER 12 ■ STORING CUSTOMER ORDERS 431

648XCH12.qxd 11/17/06 3:44 PM Page 431

FOR outOrderShortDetailsRow IN
SELECT o.order_id, o.total_amount, o.created_on,

o.shipped_on, o.status, c.name
FROM orders o
INNER JOIN customer c

ON o.customer_id = c.customer_id
WHERE o.customer_id = inCustomerId
ORDER BY o.created_on DESC

LOOP
RETURN NEXT outOrderShortDetailsRow;

END LOOP;
END;

$$;

8. Create the orders_get_order_short_details function:

-- Create orders_get_order_short_details function
CREATE FUNCTION orders_get_order_short_details(INTEGER)
RETURNS order_short_details LANGUAGE plpgsql AS $$
DECLARE
inOrderId ALIAS FOR $1;
outOrderShortDetailsRow order_short_details;

BEGIN
SELECT INTO outOrderShortDetailsRow

o.order_id, o.total_amount, o.created_on,
o.shipped_on, o.status, c.name

FROM orders o
INNER JOIN customer c

ON o.customer_id = c.customer_id
WHERE o.order_id = inOrderId;
RETURN outOrderShortDetailsRow;

END;
$$;

9. Create the customer_list type and the customer_get_customers_list function:

-- Create customer_list type
CREATE TYPE customer_list AS
(
customer_id INTEGER,
name VARCHAR(50)

);

-- Create customer_get_customers_list function
CREATE FUNCTION customer_get_customers_list()
RETURNS SETOF customer_list LANGUAGE plpgsql AS $$

CHAPTER 12 ■ STORING CUSTOMER ORDERS432

648XCH12.qxd 11/17/06 3:44 PM Page 432

DECLARE
outCustomerListRow customer_list;

BEGIN
FOR outCustomerListRow IN
SELECT customer_id, name FROM customer ORDER BY name ASC

LOOP
RETURN NEXT outCustomerListRow;

END LOOP;
END;

$$;

10. Delete the old orders_update_order function, and create a new one:

-- Drop orders_update_order function
DROP FUNCTION orders_update_order(INTEGER, INTEGER, VARCHAR(255),

VARCHAR(50), VARCHAR(255), VARCHAR(50));

-- Create orders_update_order function
CREATE FUNCTION orders_update_order(INTEGER, INTEGER, VARCHAR(255),

VARCHAR(50), VARCHAR(50))
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inOrderId ALIAS FOR $1;
inStatus ALIAS FOR $2;
inComments ALIAS FOR $3;
inAuthCode ALIAS FOR $4;
inReference ALIAS FOR $5;
currentStatus INTEGER;

BEGIN
SELECT INTO currentStatus

status
FROM orders
WHERE order_id = inOrderId;
IF inStatus != currentStatus AND (inStatus = 0 OR inStatus = 1) THEN
UPDATE orders SET shipped_on = NULL WHERE order_id = inOrderId;

ELSEIF inStatus != currentStatus AND inStatus = 2 THEN
UPDATE orders SET shipped_on = NOW() WHERE order_id = inOrderId;

END IF;
UPDATE orders
SET status = inStatus, comments = inComments,

auth_code = inAuthCode, reference = inReference
WHERE order_id = inOrderId;

END;
$$;

CHAPTER 12 ■ STORING CUSTOMER ORDERS 433

648XCH12.qxd 11/17/06 3:44 PM Page 433

Business Layer Modifications
We need to make a few changes to the business tier as well. We need to modify the
UpdateOrder method of the Orders class, and add three new methods to the same class:

• GetByCustomerId

• GetOrderShortDetails

• GetCustomersList

These new methods support the new administrative functionality you’ll need in the
admin_orders.tpl presentation tier template.

Exercise: Modifying the Business Tier

1. Add a new method named GetByCustomerId to the Orders class in business/Orders.php:

// Gets all orders placed by a specified customer
public static function GetByCustomerId($customerId)
{
// Build the SQL query
$sql = 'SELECT * FROM orders_get_by_customer_id(:customer_id);';
// Build the parameters array
$params = array (':customer_id' => $customerId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

2. Add a new method named GetOrderShortDetails to the Orders class:

// Get short details for an order
public static function GetOrderShortDetails($orderId)
{
// Build the SQL query
$sql = 'SELECT * FROM orders_get_order_short_details(:order_id);';
// Build the parameters array
$params = array (':order_id' => $orderId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

CHAPTER 12 ■ STORING CUSTOMER ORDERS434

648XCH12.qxd 11/17/06 3:44 PM Page 434

3. Modify the UpdateOrder method of the Orders class as follows:

// Updates order details
public static function UpdateOrder($orderId, $status, $comments,

$authCode, $reference)
{
// Build the SQL query
$sql = 'SELECT orders_update_order(:order_id, :status, :comments,

:auth_code, :reference);';
// Build the parameters array
$params = array (':order_id' => $orderId,

':status' => $status,
':comments' => $comments,
':auth_code' => $authCode,
':reference' => $reference);

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

4. Add a new method named GetCustomersList to the Customer class in business/customer.php:

// Gets all customers names with their associated id
public static function GetCustomersList()
{
// Build the SQL query
$sql = 'SELECT * FROM customer_get_customers_list();';
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result);

}

Presentation Tier Modifications
Now you need to update the presentation tier to make use of the new data tier and business
tier features. You’re not going to implement massive changes to the order administration code
at this stage because you’ll just end up modifying it later after you’ve finished the new order-
processing system.

Figure 12-1 shows the admin_orders template. This page gives administrators various
means of filtering current orders.

CHAPTER 12 ■ STORING CUSTOMER ORDERS 435

648XCH12.qxd 11/17/06 3:44 PM Page 435

Figure 12-1. The orders_admin template in action

No matter what selection method you use, you’ll get a list with the orders that match the
criteria. In Figure 12-2, you can see the two orders I’ve just placed.

Figure 12-2. The orders admin page

The admin_order_details template looks like Figure 12-3. Notice also the Tax and
Shipping data, which you’ll add later in this chapter.

CHAPTER 12 ■ STORING CUSTOMER ORDERS436

648XCH12.qxd 11/17/06 3:44 PM Page 436

Figure 12-3. Administering order details

Exercise: Modifying the Presentation Tier

1. Add the highlighted piece of code to presentation/templates/admin_orders.tpl:

<form action="{"admin.php"|prepare_link:"https"}" method="get">
<input name="Page" type="hidden" value="Orders" />
Show orders by customer
<select name="customer_id">
{section name=cCustomers loop=$admin_orders->mCustomers}
<option value="{$admin_orders->mCustomers[cCustomers].customer_id}"
{if $admin_orders->mCustomers[cCustomers].customer_id ==

$admin_orders->mCustomerId}selected="selected"{/if}>
{$admin_orders->mCustomers[cCustomers].name}

</option>
{/section}
</select>

CHAPTER 12 ■ STORING CUSTOMER ORDERS 437

648XCH12.qxd 11/17/06 3:44 PM Page 437

<input type="submit" name="submitByCustomer" value="Go!" />

Get by order ID
<input name="orderId" type="text"
value="{$admin_orders->mOrderId}" />
<input type="submit" name="submitByOrderId" value="Go!" />

Show the most recent
<input name="recordCount" type="text" value="{$admin_orders->mRecordCount}" />

2. Add the highlighted members to the AdminOrders class in presentation/smarty_plugins/
function.load_admin_orders.php:

public $mErrorMessage = '';
public $mCustomers;
public $mCustomerId;
public $mOrderId;

3. Add the highlighted code to the init() method of the AdminOrders class in
presentation/smarty_plugins/function.load_admin_orders.php:

// If "Show orders by status" filter is in action ...
if (isset ($_GET['submitOrdersByStatus']))
{
$this->mSelectedStatus = $_GET['status'];
$this->mOrders = Orders::GetOrdersByStatus($this->mSelectedStatus);

}

// If the "Show orders by customer ID" filter is in action ...
if (isset ($_GET['submitByCustomer']))
{
if (empty ($_GET['customer_id']))
$this->mErrorMessage = 'No customer has been selected';

else
{
$this->mCustomerId = $_GET['customer_id'];
$this->mOrders = Orders::GetByCustomerId($this->mCustomerId);

}
}

// If the "Get order by ID" filter is in action ...
if (isset ($_GET['submitByOrderId']))
{
if (empty ($_GET['orderId']))
$this->mErrorMessage = 'You must enter an order ID.';

else
{
$this->mOrderId = $_GET['orderId'];
$this->mOrders = Orders::GetOrderShortDetails($this->mOrderId);

CHAPTER 12 ■ STORING CUSTOMER ORDERS438

648XCH12.qxd 11/17/06 3:44 PM Page 438

}
}

$this->mCustomers = Customer::GetCustomersList();

// Build View Details link
for ($i = 0; $i < count($this->mOrders); $i++)

4. Add a new member to the AdminOrderDetails class in presentation/smarty_plugins/
function.load_admin_order_details.php:

public $mCustomerInfo;

5. Modify the line that updates an order in the init() function of AdminOrderDetails as highlighted:

if (isset ($_GET['submitUpdate']))
{
Orders::UpdateOrder($this->mOrderId, $_GET['status'],
$_GET['comments'], $_GET['authCode'], $_GET['reference']);

}

6. Also in AdminOrderDetails, add a line that reads the data of the customer who made the order:

$this->mOrderInfo = Orders::GetOrderInfo($this->mOrderId);
$this->mOrderDetails = Orders::GetOrderDetails($this->mOrderId);
$this->mCustomerInfo = Customer::Get($this->mOrderInfo['customer_id']);

7. Modify presentation/templates/admin_order_details.tpl like this:

<tr>
<td class="admin_page_text">Status: </td>
<td>
<select name="status"
{if ! $admin_order_details->mEditEnabled}
disabled="disabled"
{/if} >
{html_options options=$admin_order_details->mOrderStatusOptions
selected=$admin_order_details->mOrderInfo.status}

</select>
</td>

</tr>
<tr>
<td class="admin_page_text">Authorization Code: </td>
<td>
<input name="authCode" type="text" size="50"
value="{$admin_order_details->mOrderInfo.auth_code}"
{if ! $admin_order_details->mEditEnabled}
disabled="disabled"
{/if} />

<td>
</tr>

CHAPTER 12 ■ STORING CUSTOMER ORDERS 439

648XCH12.qxd 11/17/06 3:44 PM Page 439

<tr>
<td class="admin_page_text">Reference Number: </td>
<td>
<input name="reference" type="text" size="50"
value="{$admin_order_details->mOrderInfo.reference}"
{if ! $admin_order_details->mEditEnabled}
disabled="disabled"
{/if} />

<td>
</tr>
<tr>
<td class="admin_page_text">Comments: </td>
<td>
<input name="comments" type="text" size="50"
value="{$admin_order_details->mOrderInfo.comments}"
{if ! $admin_order_details->mEditEnabled}
disabled="disabled"
{/if} />

<td>
</tr>
<tr>
<td class="admin_page_text">Customer Name: </td>
<td>
{$admin_order_details->mCustomerInfo.name}

<td>
</tr>
<tr>
<td class="admin_page_text" valign="top">Shipping Address: </td>
<td>
{$admin_order_details->mCustomerInfo.address_1}

{if $admin_order_details->mCustomerInfo.address_2}
{$admin_order_details->mCustomerInfo.address_2}

{/if}
{$admin_order_details->mCustomerInfo.city}

{$admin_order_details->mCustomerInfo.region}

{$admin_order_details->mCustomerInfo.postal_code}

{$admin_order_details->mCustomerInfo.country}

</td>
</tr>
<tr>
<td class="admin_page_text">Customer Email: </td>
<td>
{$admin_order_details->mCustomerInfo.email}

</td>
</tr>

</table>

CHAPTER 12 ■ STORING CUSTOMER ORDERS440

648XCH12.qxd 11/17/06 3:44 PM Page 440

How It Works: Presentation Tier Changes

This was a long exercise, wasn’t it? And yet, to make the most out of it, you still need to go through a few more
exercises to implement tax and shipping charges. At that moment, all your customer-handling functionality will be
completed, and you’ll only be left with adding an order pipeline and credit card processing support.

Load your web site to make sure your newly added code works, and then proceed by adding tax and shipping
charges support.

Handling Tax and Shipping Charges
One feature that is common to many e-commerce web sites is adding charges for tax and/or
shipping. Obviously, this isn’t always the case—digital download sites have no need to charge
for shipping, for example, because no physical shipment is involved. However, you’ll probably
want to include additional charges of one kind or another in your orders.

In fact, this can be very simple, although not always. It really depends on how compli-
cated you want to make things. In this chapter, we’ll keep things simple and provide basic but
extensible functionality for both tax and shipping charges. First, let’s discuss the issues.

Tax Issues
The subject of tax and e-commerce web sites has a complicated history. Early on, you could
usually get away with anything. Taxing was poorly enforced, and many sites simply ignored
tax completely. This was especially true for international orders, where it was often possible
for customers to avoid paying tax much of the time—unless orders were intercepted by cus-
toms officers!

Then more people started to become aware of e-commerce web sites, taxation bodies
such as the IRS realized that they were losing a lot of money—or at least not getting all that
they could. A flurry of activity ensued as various organizations worldwide attempted to hook
into this revenue stream. A range of solutions was proposed; some solutions were imple-
mented with mixed results. Now, things are becoming a little more settled.

The key concept to be aware of when thinking about tax is a nexus. A nexus is a “a suffi-
cient presence in the taxing jurisdiction to justify the collection of tax.” Effectively, this means
that when shipping internationally, you may, in most situations, not be responsible for what
happens unless your company has a significant presence in the destination country. When
shipping internally to a country (or within, say, the European Union), you probably will be
responsible. The legislation is a little unclear, and we certainly haven’t examined the laws for
every country in the world, but this general rule tends to hold true.

The other key issues can be summed up by the following:

• Taxation depends on where you are shipping from and where you are shipping to.

• National rules apply.

• The type of product you are selling is important.

Some countries have it easier than others. Within the United Kingdom, for example, you
can charge the current VAT rate on all purchases where it applies (some types of product are

CHAPTER 12 ■ STORING CUSTOMER ORDERS 441

648XCH12.qxd 11/17/06 3:44 PM Page 441

exempt or charged at a reduced rate) and be relatively happy that you’ve done all you can. If
you want to take things one step further, you can consider an offshore business to ship your
goods (Amazon does it, so why shouldn’t you?). The United States (and other countries) has
a much more complex system to deal with. Within the United States, sales tax varies not just
from state to state, but often within states as well. In fact, pretty much the only time you’ll
know exactly what to do is when you are shipping goods to a customer in the same tax area
as your business. At other times...well, to be perfectly honest, your guess is as good as ours.

Many states are aware of the issue, and may well have resolved things by the time
you read this, but this is far from certain. Recent estimates (from http://www.
offshore-e-com.com/) put the loss of revenue from e-commerce trading at between $300 mil-
lion and $3.8 billion annually; the margin of error here probably informs you that the officials
are as confused about all this as we are. Calls have gone out to provide a “taxation calculator”
where a source and target ZIP code could be used to obtain a tax rate, but as far as we know,
no such service exists yet.

In this book, the taxation scheme you add is as simple as possible. A database table will
include information concerning various tax rates that can be applied, and the choice of these
will for now depend on the shipping region of the customer. All products are considered to be
taxable at the same rate. This does leave a lot to be desired, but at least tax will be calculated
and applied. You can replace it with your own system later.

Shipping Issues
Shipping is somewhat simpler to deal with than tax, although again you can make things
as complicated as you want. Because sending out orders from a company that trades via an
e-commerce front end is much the same as sending out orders from, say, a mail-order com-
pany, the practices are very much in place and relatively easy to come to understand. There
may be new ways of doing things at your disposal, but the general principles are well known.

You may have an existing relationship with a postal service from pre-online trading times,
in which case, it’s probably easiest to keep things as close to the “old” way of doing things as
possible. However, if you’re just starting out or revising the way you do things, you have plenty
of options to consider.

The simplest option is not to worry about shipping costs at all, which makes sense if there
are no costs, for example, in the case of digital downloads. Alternatively, you could simply
include the cost of shipping in the cost of your products. Or you could impose a flat fee
regardless of the items ordered or the destination. However, some of these options could
involve customers either overpaying or underpaying, which isn’t ideal.

The other extreme involved is accounting for the weight and dimensions of all the prod-
ucts ordered and calculating the exact cost yourself. This can be simplified slightly because
some shipping companies (including FedEx, and others) provide useful APIs to help you. In
some cases, you can use a dynamic system to calculate the shipping options available
(overnight, three to four days, and so on) based on a number of factors, including package
weight and delivery location. The exact methods for doing this, however, can vary a great deal
among shipping companies, and we’ll leave it to you to implement such a solution if you
require it.

In this book, we’ll again take a simple line. For each shipping region in the database, you’ll
provide a number of shipping options for the user to choose from, each of which will have an
associated cost. This cost is simply added to the cost of the order. This is the reason why, in
Chapter 11, you included a shipping_region table—its use will soon become apparent.

CHAPTER 12 ■ STORING CUSTOMER ORDERS442

648XCH12.qxd 11/17/06 3:44 PM Page 442

Implementing Tax and Shipping Charges
As expected, you need to make several modifications to HatShop to enable the tax and
shipping schemes outlined previously. You have two more database tables to add, tax and
shipping, as well as modifications to make to the orders table. You’ll need to add new data-
base functions and make some modifications to existing ones. Some of the business tier
classes need modifications to account for these changes, and the presentation tier must
include a method for users to select a shipping method (the taxing scheme is selected
automatically).

So, let’s get started.

Database Modifications
In this section, you’ll add the new tables and modify the orders table and database functions.

Exercise: Adding the Database Structures

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Use the query tool to execute this code, which adds the shipping table to your hatshop database:

-- Create shipping table
CREATE TABLE shipping
(
shipping_id SERIAL NOT NULL,
shipping_type VARCHAR(100) NOT NULL,
shipping_cost NUMERIC(10, 2) NOT NULL,
shipping_region_id INTEGER NOT NULL,
CONSTRAINT pk_shipping_id PRIMARY KEY (shipping_id),
CONSTRAINT fk_shipping_region_id FOREIGN KEY (shipping_region_id)

REFERENCES shipping_region (shipping_region_id)
ON UPDATE RESTRICT ON DELETE RESTRICT

);

4. Use the query tool to execute this code, which populates the shipping table from your hatshop database:

-- Populate shipping table
INSERT INTO shipping (shipping_id, shipping_type,

shipping_cost, shipping_region_id)
VALUES(1, 'Next Day Delivery ($20)', 20.00, 2);

INSERT INTO shipping (shipping_id, shipping_type,
shipping_cost, shipping_region_id)

VALUES(2, '3-4 Days ($10)', 10.00, 2);

INSERT INTO shipping (shipping_id, shipping_type,
shipping_cost, shipping_region_id)

VALUES(3, '7 Days ($5)', 5.00, 2);

CHAPTER 12 ■ STORING CUSTOMER ORDERS 443

648XCH12.qxd 11/17/06 3:44 PM Page 443

INSERT INTO shipping (shipping_id, shipping_type,
shipping_cost, shipping_region_id)

VALUES(4, 'By air (7 days, $25)', 25.00, 3);

INSERT INTO shipping (shipping_id, shipping_type,
shipping_cost, shipping_region_id)

VALUES(5, 'By sea (28 days, $10)', 10.00, 3);

INSERT INTO shipping (shipping_id, shipping_type,
shipping_cost, shipping_region_id)

VALUES(6, 'By air (10 days, $35)', 35.00, 4);

INSERT INTO shipping (shipping_id, shipping_type,
shipping_cost, shipping_region_id)

VALUES(7, 'By sea (28 days, $30)', 30.00, 4);

5. Use the query tool to execute this code, which adds the tax table to your hatshop database:

-- Create tax table
CREATE TABLE tax
(
tax_id SERIAL NOT NULL,
tax_type VARCHAR(100) NOT NULL,
tax_percentage NUMERIC(10, 2) NOT NULL,
CONSTRAINT pk_tax_id PRIMARY KEY (tax_id)

);

6. Use the query tool to execute this code, which populates the tax table from your hatshop database:

-- Populate tax table
INSERT INTO tax (tax_id, tax_type, tax_percentage)

VALUES(1, 'Sales Tax at 8.5%', 8.50);

INSERT INTO tax (tax_id, tax_type, tax_percentage)
VALUES(2, 'No Tax', 0.00);

7. Execute this code, which adds the shipping_id column and a new constraint to the orders table from
your hatshop database:

-- Adding a new field named shipping_id to orders table
ALTER TABLE orders ADD COLUMN shipping_id INTEGER;

-- Adding a new foreign key constraint to orders table
ALTER TABLE orders
ADD CONSTRAINT fk_shipping_id FOREIGN KEY (shipping_id)

REFERENCES shipping (shipping_id)
ON UPDATE RESTRICT ON DELETE RESTRICT;

CHAPTER 12 ■ STORING CUSTOMER ORDERS444

648XCH12.qxd 11/17/06 3:44 PM Page 444

8. Use the query tool to execute this code, which adds the tax_id column and a new constraint to the
orders table from your hatshop database:

-- Adding a new field named tax_id to orders table
ALTER TABLE orders ADD COLUMN tax_id INTEGER;

-- Adding a new foreign key constraint to orders table
ALTER TABLE orders
ADD CONSTRAINT fk_tax_id FOREIGN KEY (tax_id)

REFERENCES tax (tax_id)
ON UPDATE RESTRICT ON DELETE RESTRICT;

9. Delete the current shopping_cart_create_order function, and create a new one that takes into
consideration the new changes made to the orders table:

-- Drop shopping_cart_create_order function
DROP FUNCTION shopping_cart_create_order(CHAR(32), INTEGER);

-- Create shopping_cart_create_order function
CREATE FUNCTION shopping_cart_create_order(CHAR(32), INTEGER,

INTEGER, INTEGER)
RETURNS INTEGER LANGUAGE plpgsql AS $$
DECLARE
inCartId ALIAS FOR $1;
inCustomerId ALIAS FOR $2;
inShippingId ALIAS FOR $3;
inTaxId ALIAS FOR $4;
outOrderId INTEGER;
cartItem cart_product;
orderTotalAmount NUMERIC(10, 2);

BEGIN
-- Insert a new record into orders
INSERT INTO orders (created_on, customer_id, shipping_id, tax_id)

VALUES (NOW(), inCustomerId, inShippingId, inTaxId);
-- Obtain the new Order ID
SELECT INTO outOrderId

currval('orders_order_id_seq');
orderTotalAmount := 0;
-- Insert order details in order_detail table
FOR cartItem IN
SELECT p.product_id, p.name,

COALESCE(NULLIF(p.discounted_price, 0), p.price) AS price,
sc.quantity,
COALESCE(NULLIF(p.discounted_price, 0), p.price) * sc.quantity
AS subtotal

FROM shopping_cart sc
INNER JOIN product p

ON sc.product_id = p.product_id
WHERE sc.cart_id = inCartId AND sc.buy_now

CHAPTER 12 ■ STORING CUSTOMER ORDERS 445

648XCH12.qxd 11/17/06 3:44 PM Page 445

LOOP
INSERT INTO order_detail (order_id, product_id, product_name,

quantity, unit_cost)
VALUES (outOrderId, cartItem.product_id, cartItem.name,

cartItem.quantity, cartItem.price);
orderTotalAmount := orderTotalAmount + cartItem.subtotal;

END LOOP;
-- Save the order's total amount
UPDATE orders
SET total_amount = orderTotalAmount
WHERE order_id = outOrderId;
-- Clear the shopping cart
PERFORM shopping_cart_empty(inCartId);
-- Return the Order ID
RETURN outOrderId;

END;
$$;

10. Create order_info type, and modify the orders_get_order_info function by deleting the old version
and creating a new one. We can’t simply replace it because the return data type is different.

-- Create order_info type
CREATE TYPE order_info AS
(
order_id INTEGER,
total_amount NUMERIC(10, 2),
created_on TIMESTAMP,
shipped_on TIMESTAMP,
status VARCHAR(9),
comments VARCHAR(255),
customer_id INTEGER,
auth_code VARCHAR(50),
reference VARCHAR(50),
shipping_id INTEGER,
shipping_type VARCHAR(100),
shipping_cost NUMERIC(10, 2),
tax_id INTEGER,
tax_type VARCHAR(100),
tax_percentage NUMERIC(10, 2)

);

-- Drop orders_get_order_info function
DROP FUNCTION orders_get_order_info(INTEGER);

-- Create orders_get_order_info function
CREATE FUNCTION orders_get_order_info(INTEGER)
RETURNS order_info LANGUAGE plpgsql AS $$
DECLARE

CHAPTER 12 ■ STORING CUSTOMER ORDERS446

648XCH12.qxd 11/17/06 3:44 PM Page 446

inOrderId ALIAS FOR $1;
outOrderInfoRow order_info;

BEGIN
SELECT INTO outOrderInfoRow

o.order_id, o.total_amount, o.created_on, o.shipped_on,
o.status, o.comments, o.customer_id, o.auth_code,
o.reference, o.shipping_id, s.shipping_type, s.shipping_cost,
o.tax_id, t.tax_type, t.tax_percentage

FROM orders o
INNER JOIN tax t

ON t.tax_id = o.tax_id
INNER JOIN shipping s

ON s.shipping_id = o.shipping_id
WHERE o.order_id = inOrderId;
RETURN outOrderInfoRow;

END;
$$;

11. Add the orders_get_shipping_info function to your hatshop database:

-- Create orders_get_shipping_info function
CREATE FUNCTION orders_get_shipping_info(INTEGER)
RETURNS SETOF shipping LANGUAGE plpgsql AS $$
DECLARE
inShippingRegionId ALIAS FOR $1;
outShippingRow shipping;

BEGIN
FOR outShippingRow IN
SELECT shipping_id, shipping_type, shipping_cost, shipping_region_id
FROM shipping
WHERE shipping_region_id = inShippingRegionId

LOOP
RETURN NEXT outShippingRow;

END LOOP;
END;

$$;

Business Layer Modifications
To work with the new database tables and stored procedures, you need to make several
changes to business/shopping_cart.php. You must modify CreateOrder in ShoppingCart to
configure tax and shipping for new orders as well.

CHAPTER 12 ■ STORING CUSTOMER ORDERS 447

648XCH12.qxd 11/17/06 3:44 PM Page 447

Exercise: Modifying the Business Tier

1. Modify the CreateOrder method in business/shopping_cart.php like this:

// Create a new order
public static function CreateOrder($customerId, $shippingId, $taxId)
{
// Build the SQL query
$sql = 'SELECT shopping_cart_create_order(:cart_id, :customer_id,

:shipping_id, :tax_id);';
// Build the parameters array
$params = array (':cart_id' => self::GetCartId(),

':customer_id' => $customerId,
':shipping_id' => $shippingId,
':tax_id' => $taxId);

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetOne($result, $params);

}

2. Add the GetShippingInfo method to the Orders class in business/orders.php:

// Retrieves the shipping details for a given $shippingRegionId
public static function GetShippingInfo($shippingRegionId)
{
// Build the SQL query
$sql = 'SELECT * FROM orders_get_shipping_info(:shipping_region_id);';
// Build the parameters array
$params = array (':shipping_region_id' => $shippingRegionId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

Presentation Layer Modifications
Finally, we come to the presentation layer. In fact, due to the changes we’ve made, the only
changes to make here are to the checkout and the orders admin pages.

CHAPTER 12 ■ STORING CUSTOMER ORDERS448

648XCH12.qxd 11/17/06 3:44 PM Page 448

Exercise: Modifying the Presentation Tier

1. Modify presentation/templates/checkout_info.tpl:

Shipping region: {$checkout_info->mShippingRegion}

{/if}

{if $checkout_info->mNoCreditCard!= 'yes' &&

$checkout_info->mNoShippingAddress != 'yes'}
Shipping type:
<select name="shipping">
{section name=cShippings loop=$checkout_info->mShippings}
<option value="{$checkout_info->mShippings[cShippings].shipping_id}">
{$checkout_info->mShippings[cShippings].shipping_type}

</option>
{/section}
</select>

{/if}
<input type="submit" name="sended" value="Place Order"
{$checkout_info->mOrderButtonVisible} />
<input type="button" value="Edit Shopping Cart"

2. Add a new member to the CheckoutInfo class in presentation/smarty_plugins/
function.load_checkout_info.php as follows:

public $mPlainCreditCard;
public $mShippingRegion;
public $mShippings;

3. Modify the init() method in the CheckoutInfo class in function.load_checkout_info.php:

// If the Place Order button was clicked, save the order to database
if ($this->_mPlaceOrder == 1)
{
$this->mCustomerData = Customer::Get();
$tax_id = '';

switch ($this->mCustomerData ['shipping_region_id'])
{
case 2:
$tax_id = 1;

break;
default:
$tax_id = 2;

}

CHAPTER 12 ■ STORING CUSTOMER ORDERS 449

648XCH12.qxd 11/17/06 3:44 PM Page 449

$order_id = ShoppingCart::CreateOrder(
$this->mCustomerData['customer_id'],
(int)$_POST['shipping'], $tax_id);

// Redirect to index.php
$redirect_link = 'http://' . getenv('SERVER_NAME');

4. In the same method, make this change:

foreach ($shipping_regions as $item)
if ($item['shipping_region_id'] ==

$this->mCustomerData['shipping_region_id'])
$this->mShippingRegion = $item['shipping_region'];

}

if ($this->mNoCreditCard == 'no' && $this->mNoShippingAddress == 'no')
{
$this->mShippings = Orders::GetShippingInfo(

$this->mCustomerData['shipping_region_id']);
}

}
}
?>

5. Continue modifying the AdminOrderDetails class from the presentation/smarty_plugins/
function.load_admin_order_details.php file by adding two members:

public $mCustomerInfo;
public $mTotalCost;
public $mTaxCost = 0.0;

6. Add these lines to the AdminOrderDetails class in the init() method:

$this->mOrderDetails = Orders::GetOrderDetails($this->mOrderId);
$this->mCustomerInfo = Customer::Get($this->mOrderInfo['customer_id']);
$this->mTotalCost = $this->mOrderInfo['total_amount'];

if ($this->mOrderInfo['tax_percentage'] !== 0.0)
$this->mTaxCost = round((float)$this->mTotalCost *

(float)$this->mOrderInfo['tax_percentage'], 2)
/ 100.00;

$this->mTotalCost += $this->mOrderInfo['shipping_cost'];
$this->mTotalCost += $this->mTaxCost;

// Format the values
$this->mTotalCost = number_format($this->mTotalCost, 2, '.', '');
$this->mTaxCost = number_format($this->mTaxCost, 2, '.', '');

// Value which specifies whether to enable or disable edit mode
if (isset ($_GET['submitEdit']))

CHAPTER 12 ■ STORING CUSTOMER ORDERS450

648XCH12.qxd 11/17/06 3:44 PM Page 450

7. Modify the presentation/templates/admin_order_details.tpl template as highlighted:

<form action="{"admin.php"|prepare_link:"https"}" method="get">
<input type="hidden" name="Page" value="OrderDetails" />
<input type="hidden" name="OrderId"
value="{$admin_order_details->mOrderInfo.order_id}" />
<table class="edit">
<tr>
<td class="admin_page_text">Total Amount: </td>
<td class="price">
${$admin_order_details->mTotalCost}

</td>
</tr>
<tr>
<td class="admin_page_text">Tax: </td>
<td class="price">
{$admin_order_details->mOrderInfo.tax_type}
${$admin_order_details->mTaxCost}

</td>
</tr>
<tr>
<td class="admin_page_text">Shipping: </td>
<td class="price">
{$admin_order_details->mOrderInfo.shipping_type}

</td>
</tr>
<tr>
<td class="admin_page_text">Date Created: </td>
<td>
{$admin_order_details->mOrderInfo.created_on|date_format:"%Y-%m-%d %T"}

How It Works: Handling Tax and Shipping Issues

Note that this is one of the most crucial pieces of code in this chapter. Here, you’ll most likely make any
modifications to the tax and shipping systems if you decide to add your own system because choices are made
on this page. The database and business layer changes are far more generic—although that’s not to say that
modifications wouldn’t be necessary.

Before testing that the new system is working for tax and shipping charges, use the orders admin page to check
that old orders are unaffected. The information retrieved for an old order should be unaffected because the data is
unchanged.

Place a new order, preferably with a customer in the United States/Canada shipping region (as this is currently the
only region where tax is applied). Notice that on the checkout page, you must select a shipping option.

After placing the order, check the new order in the database. The result is shown in Figure 12-3.

In this chapter leading up to this example, you’ve pretty much examined how the tax and shipping charges
operate, but let’s recap.

CHAPTER 12 ■ STORING CUSTOMER ORDERS 451

648XCH12.qxd 11/17/06 3:44 PM Page 451

First, the customer is required to select a shipping region for his or her address. Without this shipping region being
selected, visitors cannot place orders because they cannot select a shipping option. When a visitor places an order,
the shipping region selected is attached to the order in the orders table. The tax requirement for the order is also
attached, although this requires no user input and is currently selected using a very simple algorithm (although
this wouldn’t be difficult to change).

Further Development
There are several ways to proceed from here. Perhaps the first might be to add an administra-
tion system for tax and shipping options. This hasn’t been implemented here partly because it
would be trivial given the experience you’ve had so far in this book and partly because the
techniques laid out here are more of a template for development than a fully developed way
of doing things. There are so many options to choose from for both tax and shipping calcula-
tions that only the basics are discussed here.

Hooking into online services for tax and shipping cost calculations is an attractive option;
for shipping services, this is very much a possibility. In fact, the services offered by shipping
companies such as FedEx use a similar process to the credit card gateway companies we’ll
look at later in this book. Much of the code you would have to write to access these services
will be very similar to that for credit card processing, although, of course, you’ll have to adapt
it to get the specifics right. Sadly, there may be more major changes required, such as adding
weights and dimensions to products, but that very much depends on what products you are
selling. For items in the HatShop catalog, many products are lighter than air, so shipping
could be very cheap.

Summary
In this chapter, you’ve extended the HatShop site to enable customers to place orders using all
the new data and techniques introduced in Chapter 11. Much of the modification made in this
chapter lays the groundwork for the order pipeline to be used in the rest of this book. You’ve
also included a quick way to examine customer orders, although this is by no means a fully
fleshed-out administration tool—that will come later.

You also implemented a simple system for adding tax and shipping charges to orders.
This system is far from being a universal solution, but it works, and it’s simple. More impor-
tantly, the techniques can easily be built on to introduce more complex algorithms and user
interaction to select tax and shipping options and price the order accordingly.

From the next chapter onward, you’ll be expanding on the customer ordering system
even more by starting to develop a professional order pipeline for order processing.

CHAPTER 12 ■ STORING CUSTOMER ORDERS452

648XCH12.qxd 11/17/06 3:44 PM Page 452

Implementing the Order Pipeline:
Part I

Your e-commerce application is shaping up nicely. You have added customer account func-
tionality, and you are keeping track of customer addresses and credit card information, which
is stored securely. However, you are not currently using this information—instead, you are
delegating responsibility for this to PayPal.

In this and the next chapter, you’ll build your own order-processing pipeline that deals
with credit card authorization, stock checking, shipping, email notification, and so on. We’ll
leave the credit card processing specifics until Chapter 15, but in this chapter, we’ll show you
where this process fits into the picture.

Order pipeline functionality is an extremely useful capability for an e-commerce site.
Order pipeline functions let you keep track of orders at every stage in the process and provide
auditing information that you can refer to later or if something goes wrong during the order
processing. You can do all this without relying on a third-party accounting system, which can
also reduce costs. The first section of this chapter discusses what an order pipeline is and the
specifics that apply to the HatShop application.

The bulk of this chapter deals with constructing the order pipeline system, which also
involves a small amount of modification to the way things currently work, and some additions
to the database you’ve been using. However, the code in this chapter isn’t much more compli-
cated than the code you’ve already been using. The real challenges are in designing your
system.

By the end of the next chapter, customers will be able to place orders into your pipeline,
and you’ll be able to follow the progress of these orders as they pass through various stages.
Although no real credit card processing will take place, you’ll end up with a fairly complete
system, including a new administration web page that can be used by suppliers to confirm
that they have items in stock and to confirm that orders have been shipped. To start with,
however, you need a bit more background about what you’re actually trying to achieve.

What Is an Order Pipeline?
Any commercial transaction, whether in a shop on the street, over the Internet, or anywhere
else, has several related tasks that must be carried out before it can be considered complete.
For example, you can’t simply remove an item of clothing from a fashion boutique (without
paying) and say that you’ve bought it—remuneration is an integral part of any purchase. In
addition, a transaction only completes successfully if each of the tasks carried out completes 453

C H A P T E R 1 3

648XCH13.qxd 11/17/06 3:46 PM Page 453

454 CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I

successfully. If a customer’s credit card is rejected, for example, then no funds can be taken
from it, so a purchase can’t be made.

The sequence of tasks in a transaction is often thought of in terms of a pipeline. In this
analogy, orders start at one end of the pipe and come out of the other end when they are
completed. Along the way, they must pass through several pipeline sections, each of which is
responsible for a particular task or a related group of tasks. If any pipeline section fails to com-
plete, then the order “gets stuck” and might require outside interaction before it can move
further along the pipeline, or it might be canceled completely.

For example, the simple pipeline shown in Figure 13-1 applies to transactions in a brick-
and-mortar store.

Figure 13-1. Transactions for a brick-and-mortar store

The last section might be optional and might involve additional tasks such as gift-wrapping.
The payment stage might also take one of several methods of operation because the customer
could pay using cash, a credit card, gift certificates, and so on.

When you consider e-commerce purchasing, the pipeline becomes longer, but it isn’t
really any more complicated.

Designing the Order Pipeline
In the HatShop e-commerce application, the pipeline will look like the one in Figure 13-2.

Figure 13-2. The HatShop order pipeline

The tasks carried out in these pipeline sections are as follows:

Customer Notification: An email notification is sent to the customer stating that order
processing has started and confirming the items to be sent and the address that goods
will be sent to.

Credit Card Authorization: The credit card used for purchasing is checked, and the total
order amount is set aside (although no payment is taken at this stage).

Stock Check: An email is sent to the supplier with a list of the items that have been
ordered. Processing continues when the supplier confirms that the goods are available.

648XCH13.qxd 11/17/06 3:46 PM Page 454

Payment: The credit card transaction is completed using the funds set aside earlier.

Shipping: An email is sent to the supplier confirming that payment for the items ordered
has been taken. Processing continues when the supplier confirms that the goods have
been shipped.

Customer Notification: An email is sent notifying the customer that the order has been
shipped and thanking the customer for using the HatShop web site.

■Note In terms of implementation, as you’ll see shortly, there are more stages than this because the stock
check and shipping stages actually consist of two pipeline sections—one for sending the email and one that
waits for confirmation.

As orders flow through this pipeline, entries are added to a new database table called
audit. These entries can be examined to see what has happened to an order and are an
excellent way to identify problems if they occur. Each entry in the orders table is also flagged
with a status, identifying which point in the pipeline it has reached.

To process the pipeline, you’ll create classes representing each stage. These classes carry
out the required processing and then modify the status of the order in the orders table to
advance the order. You’ll also need a coordinating class (or processor), which can be called
for any order and executes the appropriate pipeline stage class. This processor is called once
when the order is placed and, in normal operation, is called twice more—once for stock
confirmation and once for shipping confirmation.

To make life easier, you’ll also define a common interface supported by each pipeline
stage class. This enables the order processor class to access each stage in a standard way.
You’ll also define several utility functions and expose several common properties in the order
processor class, which will be used as necessary by the pipeline stages. For example, the ID
of the order should be accessible to all pipeline stages, so to save code duplication, you’ll put
that information in the order processor class.

Now, let’s get on to the specifics. You’ll build a number of files in the business folder con-
taining all the new classes, which you’ll reference from HatShop. The new files you’ll create are
the following:

OrderProcessor: Main class for processing orders.

IPipelineSection: Interface definition for pipeline sections.

PsInitialNotification, PsCheckFunds, PsCheckStock, PsStockOk, PsTakePayment,
PsShipGoods, PsShipOk, PsFinalNotification: Pipeline section classes. We’ll create
these classes in Chapter 14; here we’ll use a dummy (PsDummy) class instead.

The progress of an order through the pipeline as mediated by the order processor relates
to the pipeline shown earlier (see Figure 13-3).

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I 455

648XCH13.qxd 11/17/06 3:46 PM Page 455

Figure 13-3. Pipeline processing

The process shown in this diagram is divided into three sections:

• Customer places order.

• Supplier confirms stock.

• Supplier confirms shipping.

Stock
Check

Credit Card
Authorization

Custom
er

Notification
Custom

er
Notification

Shipping
Paym

ent
PsInitialNotification

PsCheckFunds

PsTakePayment

PsFinalNotification

PsCheckStock

PsStockOk

PsShipGoods

PsShipOk

OrderProcessor

OrderProcessor

OrderProcessor

Checkout page

Orders admin page

Orders admin page

Order Placed

Confirmation

In Stock

Shipped

HatShop interface Order pipeline processing

Confirmation

Confirmation

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I456

648XCH13.qxd 11/17/06 3:46 PM Page 456

The first stage is as follows:

1. When the customer confirms an order, presentation/smarty_plugins/function.
load_checkout_info.php creates the order in the database and calls OrderProcessor
to begin order processing.

2. OrderProcessor detects that the order is new and calls PsInitialNotification.

3. PsInitialNotification sends an email to the customer confirming the order and
advances the order stage. It also instructs OrderProcessor to continue processing.

4. OrderProcessor detects the new order status and calls PsCheckFunds.

5. PsCheckFunds checks that funds are available on the customer’s credit card and stores
the details required to complete the transaction if funds are available. If this is
successful, then the order stage is advanced, and OrderProcessor is told to continue.

6. OrderProcessor detects the new order status and calls PsCheckStock.

7. PsCheckStock sends an email to the supplier with a list of the items ordered, instructs
the supplier to confirm via ORDERS ADMIN from the admin section, and advances the
order status.

8. OrderProcessor terminates.

The second stage is as follows:

1. When the supplier logs in to the orders admin page to confirm that stock is available,
presentation/smarty_plugins/function.load_admin_order_details.php calls
OrderProcessor to continue order processing.

2. OrderProcessor detects the new order status and calls PsStockOk.

3. PsStockOk advances the order status and tells OrderProcessor to continue.

4. OrderProcessor detects the new order status and calls PsTakePayment.

5. PsTakePayment uses the transaction details stored earlier by PsCheckFunds to complete
the transaction, then advances the order status, and tells OrderProcessor to continue.

6. OrderProcessor detects the new order status and calls PsShipGoods.

7. PsShipGoods sends an email to the supplier with a confirmation of the items ordered,
instructs the supplier to ship these goods to the customer, and advances the order
status.

8. OrderProcessor terminates.

The third stage is as follows:

1. When the supplier confirms that the goods have been shipped, presentation/
smarty_plugins/function.load_admin_order_details.php calls OrderProcessor
to continue order processing.

2. OrderProcessor detects the new order status and calls PsShipOk.

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I 457

648XCH13.qxd 11/17/06 3:46 PM Page 457

3. PsShipOk enters the shipment date in the database, advances the order status, and tells
OrderProcessor to continue.

4. OrderProcessor detects the new order status and calls PsFinalNotification.

5. PsFinalNotification sends an email to the customer confirming that the order has
been shipped and advances the order stage.

6. OrderProcessor terminates.

If anything goes wrong at any point in the pipeline processing, such as a credit card being
declined, an email is sent to an administrator. The administrator then has all the information
necessary to check what has happened, get in contact with the customer involved, and cancel
or replace the order if necessary.

No point in this process is particularly complicated; it’s just that a lot of code is required
to put this into action!

Laying the Groundwork
Before you start building the components just described, you need to make a few modifications
to the HatShop database and web application.

During order processing, one of the most important functions of the pipeline is to main-
tain an up-to-date audit trail. The implementation of this audit trail involves adding records
to a new database table called audit. We’ll add the audit table in the following exercise.

To implement the functionality just described, you’ll also need to add a new function
named orders_create_audit to the hatshop database. The orders_create_audit function adds
an entry to the audit table.

We’ll also create the OrderProcessor class (the class responsible for moving an order
through the pipeline), which contains a lot of code. However, you can start simply, and
build up additional functionality as needed. To start with, you’ll create a version of the
OrderProcessor class with the following functionality:

• Dynamically selects a pipeline section supporting the IPipelineSection interface

• Adds basic auditing data

• Gives access to the current order details

• Gives access to the customer for the current order

• Gives access to administrator mailing

• Mails the administrator in case of error

You’ll create a single pipeline section, PsDummy, which uses some of this functionality.
PsDummy is used in the code of this chapter in place of the real pipeline section classes, which
you’ll implement in the next chapter.

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I458

648XCH13.qxd 11/17/06 3:46 PM Page 458

Exercise: Implementing the Skeleton of the Order-Processing Functionality

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Use the query tool to execute this code, which creates the audit table in your hatshop database:

-- Create audit table
CREATE TABLE audit
(
audit_id SERIAL NOT NULL,
order_id INTEGER NOT NULL,
created_on TIMESTAMP NOT NULL,
message TEXT NOT NULL,
message_number INTEGER NOT NULL,
CONSTRAINT pk_audit_id PRIMARY KEY (audit_id),
CONSTRAINT fk_order_id FOREIGN KEY (order_id)

REFERENCES orders (order_id)
ON UPDATE RESTRICT ON DELETE RESTRICT

);

4. Use the query tool to execute this code, which creates the orders_create_audit function in your
hatshop database:

-- Create orders_create_audit function
CREATE FUNCTION orders_create_audit(INTEGER, TEXT, INTEGER)
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inOrderId ALIAS FOR $1;
inMessage ALIAS FOR $2;
inMessageNumber ALIAS FOR $3;

BEGIN
INSERT INTO audit (order_id, created_on, message, message_number)

VALUES (inOrderId, NOW(), inMessage, inMessageNumber);
END;

$$;

5. Moving to the business tier, add the following method to the Orders class from business/orders.php:

// Creates audit record
public static function CreateAudit($orderId, $message, $messageNumber)
{
// Build the SQL query
$sql = 'SELECT orders_create_audit(:order_id, :message,

:message_number);';
// Build the parameters array
$params = array (':order_id' => $orderId,

':message' => $message,
':message_number' => $messageNumber);

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I 459

648XCH13.qxd 11/17/06 3:46 PM Page 459

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

6. Add a new file to the business directory called order_processor.php with the following code:

<?php
/* Main class, used to obtain order information,

run pipeline sections, audit orders, etc. */
class OrderProcessor
{
public $mOrderInfo;
public $mOrderDetailsInfo;
public $mCustomerInfo;
public $mContinueNow;

private $_mCurrentPipelineSection;
private $_mOrderProcessStage;

// Class constructor
public function __construct($orderId)
{
// Get order
$this->mOrderInfo = Orders::GetOrderInfo($orderId);

if (empty ($this->mOrderInfo['shipping_id']))
$this->mOrderInfo['shipping_id'] = -1;

if (empty ($this->mOrderInfo['tax_id']))
$this->mOrderInfo['tax_id'] = -1;

// Get order details
$this->mOrderDetailsInfo = Orders::GetOrderDetails($orderId);

// Get customer associated with the processed order
$this->mCustomerInfo = Customer::Get($this->mOrderInfo['customer_id']);

$credit_card = new SecureCard();
$credit_card->LoadEncryptedDataAndDecrypt(
$this->mCustomerInfo['credit_card']);

$this->mCustomerInfo['credit_card'] = $credit_card;
}

/* Process is called from

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I460

648XCH13.qxd 11/17/06 3:46 PM Page 460

presentation/smarty_plugins/function.load_checkout_info.php and
presentation/smarty_plugins/function.load_admin_orders.php
to process an order */

public function Process()
{
// Configure processor
$this->mContinueNow = true;

// Log start of execution
$this->CreateAudit('Order Processor started.', 10000);

// Process pipeline section
try
{
while ($this->mContinueNow)
{
$this->mContinueNow = false;

$this->GetCurrentPipelineSection();
$this->_mCurrentPipelineSection->Process($this);

}
}
catch(Exception $e)
{
$this->MailAdmin('Order Processing error occurred.',

'Exception: "' . $e->getMessage() . '" on ' .
$e->getFile() . ' line ' . $e->getLine(),
$this->_mOrderProcessStage);

$this->CreateAudit('Order Processing error occurred.', 10002);

throw new Exception('Error occurred, order aborted. ' .
'Details mailed to administrator.');

}

$this->CreateAudit('Order Processor finished.', 10001);
}

// Adds audit message
public function CreateAudit($message, $messageNumber)
{
Orders::CreateAudit($this->mOrderInfo['order_id'], $message,

$messageNumber);
}

// Builds email message
public function MailAdmin($subject, $message, $sourceStage)

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I 461

648XCH13.qxd 11/17/06 3:46 PM Page 461

{
$to = ADMIN_EMAIL;
$headers = 'From: ' . ORDER_PROCESSOR_EMAIL . "\r\n";
$body = 'Message: ' . $message . "\n" .

'Source: ' . $sourceStage . "\n" .
'Order ID: ' . $this->mOrderInfo['order_id'];

$result = mail($to, $subject, $body, $headers);

if ($result === false)
{
throw new Exception ('Failed sending this mail to administrator:' .

"\n" . $body);
}

}

// Gets current pipeline section
private function GetCurrentPipelineSection()
{
$this->_mOrderProcessStage = 100;
$this->_mCurrentPipelineSection = new PsDummy();

}
}
?>

7. Create the IPipelineSection interface in a new file named business/i_pipeline_section.php
as follows:

<?php
interface IPipelineSection
{
public function Process($processor);

}
?>

8. Add a new file in the business directory called ps_dummy.php with the following code. The PsDummy
class is used in this chapter for testing purposes in place of the real pipeline sections that you’ll implement
in the next chapter.

<?php
class PsDummy implements IPipelineSection
{
public function Process($processor)
{
$processor->CreateAudit('PsDoNothing started.', 99999);

$processor->CreateAudit('Customer: ' .
$processor->mCustomerInfo['name'], 99999);

$processor->CreateAudit('Order subtotal: ' .

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I462

648XCH13.qxd 11/17/06 3:46 PM Page 462

$processor->mOrderInfo['total_amount'], 99999);

$processor->MailAdmin('Test.', 'Test mail from PsDummy.', 99999);

$processor->CreateAudit('PsDoNothing finished', 99999);
}

}
?>

9. Add the following code to include/config.php, customizing the data with your own email addresses:

// Constant definitions for order handling related messages
define('ADMIN_EMAIL', 'Admin@example.com');
define('CUSTOMER_SERVICE_EMAIL', 'CustomerService@example.com');
define('ORDER_PROCESSOR_EMAIL', 'OrderProcessor@example.com');
define('SUPPLIER_EMAIL', 'Supplier@example.com');

■Note The values of ADMIN_EMAIL and SUPPLIER_EMAIL will actually be used to send emails to. In
other words, these must be existing, real email addresses that you can verify. You can leave
CUSTOMER_SERVICE_EMAIL and ORDER_PROCESSOR_EMAIL as they are because they’re used in the
FROM field of the emails, and they don’t need to be valid email addresses.

10. Add the highlighted lines to the app_top.php file located in the include folder:

// Load Business Tier
...
require_once BUSINESS_DIR . 'customer.php';
require_once BUSINESS_DIR . 'i_pipeline_section.php';
require_once BUSINESS_DIR . 'ps_dummy.php';
require_once BUSINESS_DIR . 'order_processor.php';

11. Modify presentation/templates/admin_order_details.tpl by adding the highlighted line:

<input type="submit" name="submitCancel" value="Cancel"
{if ! $admin_order_details->mEditEnabled}
disabled="disabled"
{/if} />
<input type="submit" name="submitProcessOrder" value="Process Order" />

Order contains these products:

12. Modify presentation/smarty_plugins/function.load_admin_order_details.php as
highlighted here:

// Initializes class members
public function init()
{

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I 463

648XCH13.qxd 11/17/06 3:46 PM Page 463

if (isset ($_GET['submitUpdate']))
{
Orders::UpdateOrder($this->mOrderId, $_GET['status'],
$_GET['comments'], $_GET['authCode'], $_GET['reference']);

}

if (isset ($_GET['submitProcessOrder']))
{
$processor = new OrderProcessor($this->mOrderId);
$processor->Process();

}

$this->mOrderInfo = Orders::GetOrderInfo($this->mOrderId);
$this->mOrderDetails = Orders::GetOrderDetails($this->mOrderId);
$this->mCustomerInfo = Customer::Get($this->mOrderInfo['customer_id']);
$this->mTotalCost = $this->mOrderInfo['total_amount'];

13. Load the admin orders section in your browser, and select an order to view its details. In the order details
page, click the Process Order button (see Figure 13-4).

Figure 13-4. Clicking the Process Order button in HatShop Order Admin

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I464

648XCH13.qxd 11/17/06 3:46 PM Page 464

■Note If you haven’t configured your SMTP server correctly, you’ll get an error when the code tries to send
the email. If that happens, check Appendix A for installation and configuration instructions.

14. Check your inbox for a new email that should read “Test mail from PsDummy.”

15. Examine the audit table in the database to see the new entries (see Figure 13-5).

Figure 13-5. Audit table entries from PsDummy

How It Works: The Skeleton of the Order-Processing Functionality

Entries will be added by OrderProcessor and by individual pipeline stages to indicate successes and failures.
These entries can then be examined to see what has happened to an order, which is an important function when
it comes to error checking.

The message number column is interesting because it allows you to associate specific messages with an identifying
number. You can have another database table that matches these message numbers with descriptions, although this
isn’t really necessary because the scheme used for numbering (as you’ll see later in the chapter) is quite descriptive.
In addition, you have the message column, which already provides human-readable information.

For demonstration purposes, we set the administrator and supplier email addresses to fictive email address, which
should also be the address of the customer used to generate test orders. You should do this to ensure everything is
working properly before sending mail to the outside world.

Let’s now look at the OrderProcessor class. The main body of the OrderProcessor class is the Process()
method, which is now called from function.load_admin_order_details.php to process an order.

public function Process()
{
// Configure processor
$this->mContinueNow = true;

Next you used the CreateAudit() method to add an audit entry indicating that OrderProcessor has started:

// Log start of execution
$this->CreateAudit('Order Processor started.', 10000);

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I 465

648XCH13.qxd 11/17/06 3:46 PM Page 465

■Note 10000 is the message number to store for the audit entry. We'll look at these codes in more detail
shortly.

Next you come to the order processing itself. The model used here is to check the Boolean $mContinueNow field
before processing a pipeline section. This allows sections to specify either that processing should continue when
they’re finished with the current task (by setting $mContinueNow to true) or that processing should pause (by
setting $mContinueNow to false). This is necessary because you need to wait for external input at certain points
along the pipeline when checking whether the products are in stock and whether the funds are available on the
customer’s credit card.

The pipeline section to process is selected by the private GetCurrentPipelineSection method, which eventu-
ally returns a pipeline section class (you’ll build these classes in the next chapter) corresponding to the current
status of the order. However, at this moment, the GetCurrentPipelineSection has the job of setting the
process stage and returning an instance of PsDummy. In the next chapter, you’ll implement classes representing
each pipeline section, and you’ll return one of those classes instead of PsDummy.

// Gets current pipeline section
private function GetCurrentPipelineSection()
{
$this->_mOrderProcessStage = 100;
$this->_mCurrentPipelineSection = new PsDummy();

}

Back to Process(), you see this method being called in a try block:

// Process pipeline section
try
{
while ($this->mContinueNow)
{
$this->mContinueNow = false;

$this->GetCurrentPipelineSection();
$this->_mCurrentPipelineSection->Process($this);

}
}

Note that $mContinueNow is set to false in the while loop—the default behavior is to stop after each pipeline
section. However, the call to the Process method of the current pipeline section class (which receives a parame-
ter of the current OrderProcessor instance, thus having access to the $mContinueNow member) changes the
value of $mContinueNow back to true, in case processing should go to the next pipeline section without waiting
for user interaction.

Note that in the previous code snippet, the Process method is called without knowing what kind of object
$this->_mCurrentPipelineSection references. Each pipeline section is represented by a different class, but
all these classes need to expose a method named Process. When such behavior is needed, the standard tech-
nique is to create an interface that defines the common behavior you need in that set of classes.

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I466

648XCH13.qxd 11/17/06 3:46 PM Page 466

All order pipeline section classes support the simple IPipelineSection interface, defined as follows:

<?php
interface IPipelineSection
{
public function Process($processor);

}
?>

■Note An interface is a set of method signatures that serves as a contract for classes that implement that
interface. When a class implements an interface, the class guarantees that it will implement every signature
defined in that interface. An interface cannot be instantiated like a normal class because it doesn’t contain
any method implementations, only their signatures. By implementing IPipelineSection in all order
pipeline section classes (you’ll write them in the next chapter), you guarantee that they all will export a pub-
lic method named Process. This way, you can safely call the Process method on any pipeline section class
from your OrderProcessor class without the risk of generating an error.

All pipeline sections use a Process method to perform their work. This method requires an OrderProcessor
reference as a parameter because the pipeline sections need access to the public fields and methods exposed by
the OrderProcessor class.

The last part of the Process method in OrderProcessor involves catching exceptions. Here, you catch any
exceptions that may be thrown by the order pipeline section classes and react to them by sending an email to the
administrator using the MailAdmin method, adding an audit entry, and throwing a new exception that can be
caught by PHP pages that use the OrderProcessor class:

catch(Exception $e)
{
$this->MailAdmin('Order Processing error occurred.',

'Exception: "' . $e->getMessage() . '" on ' .
$e->getFile() . ' line ' . $e->getLine(),
$this->_mOrderProcessStage);

$this->CreateAudit('Order Processing error occurred.', 10002);

throw new Exception('Error occurred, order aborted. ' .
'Details mailed to administrator.');

}

Regardless of whether processing is successful, you add a final audit entry saying that the processing has com-
pleted:

$this->CreateAudit('Order Processor finished.', 10001);
}

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I 467

648XCH13.qxd 11/17/06 3:46 PM Page 467

Let’s now look at the AdminMail method that simply takes a few parameters for the basic email properties:

// Builds email message
public function MailAdmin($subject, $message, $sourceStage)
{
$to = ADMIN_EMAIL;
$headers = 'From: ' . ORDER_PROCESSOR_EMAIL . "\r\n";
$body = 'Message: ' . $message . "\n" .

'Source: ' . $sourceStage . "\n" .
'Order ID: ' . $this->mOrderInfo['order_id'];

$result = mail($to, $subject, $body, $headers);

if ($result === false)
{
throw new Exception ('Failed sending this mail to administrator:' .

"\n" . $body);
}

}

The CreateAudit method is also a simple one and calls the CreateAudit business tier method shown earlier:

// Adds audit message
public function CreateAudit($message, $messageNumber)
{
Orders::CreateAudit($this->mOrderInfo['order_id'], $message,

$messageNumber);
}

At this point, it’s worth examining the message number scheme we’ve chosen for order-processing audits. In all
cases, the audit message number will be a five-digit number. The first digit of this number is either 1 if an audit is
being added by OrderProcessor or 2 if the audit is added by a pipeline section. The next two digits are used for
the pipeline stage that added the audit (which maps directly to the status of the order when the audit was added).
The final two digits uniquely identify the message within this scope. For example, so far you’ve seen the following
message numbers:

• 10000: Order processor started.

• 10001: Order processor finished.

• 10002: Order processor error occurred.

Later, you’ll see a lot of these numbers that start with 2, as you get on to pipeline sections and include the neces-
sary information for identifying the pipeline section as noted previously. We hope you’ll agree that this scheme
allows for plenty of flexibility, although you can, of course, use whatever numbers you see fit. As a final note, num-
bers ending in 00 and 01 are used for starting and finishing messages for both the order processor and pipeline
stages, whereas 02 and above are for other messages. There is no real reason for this apart from consistency
between the components.

The PsDummy class that is used in this skeleton processor performs some basic functions to check that things are
working correctly:

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I468

648XCH13.qxd 11/17/06 3:46 PM Page 468

<?php
class PsDummy implements IPipelineSection
{
public function Process($processor)
{
$processor->CreateAudit('PsDoNothing started.', 99999);

$processor->CreateAudit('Customer: ' .
$processor->mCustomerInfo['name'], 99999);

$processor->CreateAudit('Order subtotal: ' .
$processor->mOrderInfo['total_amount'], 99999);

$processor->MailAdmin('Test.', 'Test mail from PsDummy.', 99999);

$processor->CreateAudit('PsDoNothing finished', 99999);
}

}
?>

The code here uses the CreateAudit and MailAdmin methods of OrderProcessor to generate something to
show that the code has executed correctly. Note that the numbering schemes outlined previously aren’t used there
because this isn’t a real pipeline section!

That was a lot of code to get through, but it did make the client code very simple.

Short of setting all the configuration details, there is very little to do because OrderProcessor does a lot of the
work for you. Note that the code you have ended up with is, for the most part, a consequence of the design
choices made earlier. This is an excellent example of how a strong design can lead you straight to powerful and
robust code.

Adding More Functionality to OrderProcessor
You need to add a few more bits and pieces to the OrderProcessor class, but it hardly seems
worth going through another “Exercise” section to do so. Instead, we’ll simply go through the
code briefly.

We need to look at the following:

• Updating the status of an order

• Setting credit card authentication details

• Setting the order shipment date

• Sending emails to customers and suppliers

• Retrieving order details and the customer address

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I 469

648XCH13.qxd 11/17/06 3:46 PM Page 469

Updating the Status of an Order
Each pipeline section needs the capability to change the status of an order, advancing it to the
next pipeline section. Rather than simply incrementing the status, this functionality is kept
flexible, just in case you end up with a more complicated branched pipeline. This requires a
new function in the database, named orders_update_status, and a data tier method,
UpdateOrderStatus, which you need to add to the Orders class (located in
business/orders.php):

Start by creating the orders_update_status function in your hatshop database:

-- Create orders_update_status function
CREATE FUNCTION orders_update_status(INTEGER, INTEGER)
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inOrderId ALIAS FOR $1;
inStatus ALIAS FOR $2;

BEGIN
UPDATE orders SET status = inStatus WHERE order_id = inOrderId;

END;
$$;

Then, add the UpdateOrderStatus method to the Orders class in business/order.php:

// Updates the order pipeline status of an order
public static function UpdateOrderStatus($orderId, $status)
{
// Build the SQL query
$sql = 'SELECT orders_update_status(:order_id, :status);';
// Build the parameters array
$params = array (':order_id' => $orderId, ':status' => $status);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

The method in OrderProcessor (in business/order_processor.php) that calls
businessdata tier method is also called UpdateOrderStatus:

// Set order status
public function UpdateOrderStatus($status)
{
Orders::UpdateOrderStatus($this->mOrderInfo['order_id'], $status);
$this->mOrderInfo['status'] = $status;

}

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I470

648XCH13.qxd 11/17/06 3:46 PM Page 470

Setting Credit Card Authentication Details
In the next chapter, when we deal with credit card usage, you’ll need to set data in the
auth_code and reference fields in the orders table.

To support that functionality, first add the orders_set_auth_code function to your
database:

-- Create orders_set_auth_code function
CREATE FUNCTION orders_set_auth_code(INTEGER, VARCHAR(50), VARCHAR(50))
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inOrderId ALIAS FOR $1;
inAuthCode ALIAS FOR $2;
inReference ALIAS FOR $3;

BEGIN
UPDATE orders
SET auth_code = inAuthCode, reference = inReference
WHERE order_id = inOrderId;

END;
$$;

Then, add the SetOrderAuthCodeAndReference method to your Orders class in
business/order.php:

// Sets order's authorization code
public static function SetOrderAuthCodeAndReference ($orderId, $authCode,

$reference)
{
// Build the SQL query
$sql = 'SELECT orders_set_auth_code(:order_id, :auth_code, :reference);';
// Build the parameters array
$params = array (':order_id' => $orderId,

':auth_code' => $authCode,
':reference' => $reference);

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

The code to set these values in the database is the SetOrderAuthCodeAndReference
method, which you need to add to your OrderProcessor class in business/
order_processor.php:

// Set order's authorization code and reference code
public function SetAuthCodeAndReference($authCode, $reference)
{
Orders::SetOrderAuthCodeAndReference($this->mOrderInfo['order_id'], $authCode,

$reference);

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I 471

648XCH13.qxd 11/17/06 3:46 PM Page 471

$this->mOrderInfo['auth_code'] = $authCode;
$this->mOrderInfo['reference'] = $reference;

}

This code also sets the corresponding elements from the $mOrderInfo array, just in case they
are required before OrderProcessor terminates. In this situation, it wouldn’t make much sense to
get these values from the database when we already know what the result will be.

Setting the Order Shipment Date
When an order is shipped, you should update the shipment date in the database, which
can simply be the current date. Add the orders_set_date_shipped function to your hatshop
database:

-- Create orders_set_date_shipped function
CREATE FUNCTION orders_set_date_shipped(INTEGER)
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inOrderId ALIAS FOR $1;

BEGIN
UPDATE orders SET shipped_on = NOW() WHERE order_id = inOrderId;

END;
$$;

Add the new data tier method, SetDateShipped, to your Orders class in
business/orders.php as follows:

// Set order's ship date
public static function SetDateShipped($orderId)
{
// Build the SQL query
$sql = 'SELECT orders_set_date_shipped(:order_id);';
// Build the parameters array
$params = array (':order_id' => $orderId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

Add the following method to the OrderProcessor class in business/order_processor.php:

// Set order's ship date
public function SetDateShipped()
{
Orders::SetDateShipped($this->mOrderInfo['order_id']);

$this->mOrderInfo['shipped_on'] = date('Y-m-d');

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I472

648XCH13.qxd 11/17/06 3:46 PM Page 472

Sending Emails to Customers and Suppliers
We need two methods to handle sending emails to customers and suppliers. Add the
MailCustomer and MailSupplier methods to the OrderProcessor class, located in
business/order_processor.php:

public function MailCustomer($subject, $body)
{
$to = $this->mCustomerInfo['email'];
$headers = 'From: ' . CUSTOMER_SERVICE_EMAIL . "\r\n";
$result = mail($to, $subject, $body, $headers);

if ($result === false)
{
throw new Exception ('Unable to send e-mail to customer.');

}
}

public function MailSupplier($subject, $body)
{
$to = SUPPLIER_EMAIL;
$headers = 'From: ' . ORDER_PROCESSOR_EMAIL . "\r\n";
$result = mail($to, $subject, $body, $headers);

if ($result === false)
{
throw new Exception ('Unable to send email to supplier.');

}
}

Retrieving Order Details and the Customer Address
You’ll need to retrieve a string representation of your order and the customer address.
For these tasks, add the GetCustomerAddressAsString and GetOrderAsString methods to
your OrderProcessor class, located in business/order_processor.php:

public function GetCustomerAddressAsString()
{
$new_line = "\n";

$address_details = $this->mCustomerInfo['name'] . $new_line .
$this->mCustomerInfo['address_1'] . $new_line;

if (!empty ($this->mOrderInfo['address_2']))
$address_details .= $this->mCustomerInfo['address_2'] . $new_line;

$address_details .= $this->mCustomerInfo['city'] . $new_line .
$this->mCustomerInfo['region'] . $new_line .

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I 473

648XCH13.qxd 11/17/06 3:46 PM Page 473

$this->mCustomerInfo['postal_code'] . $new_line .
$this->mCustomerInfo['country'];

return $address_details;
}

public function GetOrderAsString($withCustomerDetails = true)
{
$total_cost = 0.00;
$order_details = '';
$new_line = "\n";

if ($withCustomerDetails)
{
$order_details = 'Customer address:' . $new_line .

$this->GetCustomerAddressAsString() .
$new_line . $new_line;

$order_details .= 'Customer credit card:' . $new_line .
$this->mCustomerInfo['credit_card']->CardNumberX .
$new_line . $new_line;

}

foreach ($this->mOrderDetailsInfo as $order_detail)
{
$order_details .= $order_detail['quantity'] . ' ' .

$order_detail['product_name'] . ' $' .
$order_detail['unit_cost'] . ' each, total cost $' .
number_format($order_detail['subtotal'],

2, '.', '') . $new_line;

$total_cost += $order_detail['subtotal'];
}

// Add shipping cost
if ($this->mOrderInfo['shipping_id'] != -1)
{
$order_details .= 'Shipping: ' . $this->mOrderInfo['shipping_type'] .

$new_line;

$total_cost += $this->mOrderInfo['shipping_cost'];
}

// Add tax
if ($this->mOrderInfo['tax_id'] != -1 &&

$this->mOrderInfo['tax_percentage'] != 0.00)
{

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I474

648XCH13.qxd 11/17/06 3:46 PM Page 474

$tax_amount = round((float)$total_cost *
(float)$this->mOrderInfo['tax_percentage'], 2)
/ 100.00;

$order_details .= 'Tax: ' . $this->mOrderInfo['tax_type'] . ', $' .
number_format($tax_amount, 2, '.', '') .
$new_line;

$total_cost += $tax_amount;
}

$order_details .= $new_line . 'Total order cost: $' .
number_format($total_cost, 2, '.', '');

return $order_details;
}

Summary
You’ve begun to build the backbone of the application, and prepared it for the lion’s share
of the order pipeline processing functionality, which you’ll implement in the next chapter.

Specifically, we’ve covered

• Modifications to the HatShop application to enable your own pipeline processing

• The basic framework for your order pipeline

• The database additions for auditing data and storing additional required data in the
orders table

In the next chapter, you’ll go on to fully implement the order pipeline.

CHAPTER 13 ■ IMPLEMENTING THE ORDER PIPELINE: PART I 475

648XCH13.qxd 11/17/06 3:46 PM Page 475

648XCH13.qxd 11/17/06 3:46 PM Page 476

Implementing the Order Pipeline:
Part II

In the previous chapter, you completed the basic functionality of the OrderProcessor class,
which is responsible for moving orders through the pipeline stages. You’ve seen a quick
demonstration of this using a dummy pipeline section, but you haven’t yet implemented the
pipeline discussed at the beginning of the previous chapter.

In this chapter, you’ll add the required pipeline sections so that you can process orders
from start to finish, although you won’t be adding full credit card transaction functionality
until the next chapter.

We’ll also look at the web administration of orders by modifying the order admin pages
added earlier in the book to take into account the new order-processing system.

Implementing the Pipeline Sections
In the previous chapter, you completed the OrderProcessor class, except for one important
section—the pipeline stage selection. Rather than forcing the processor to use PsDummy (the
class you used instead of the real pipeline section classes that you’ll build in this chapter),
you actually want to select one of the pipeline stages outlined in Chapter 13, depending on
the status of the order.

Let’s run through the code for each of the pipeline sections in turn, which will take you to
the point where the order pipeline will be complete, apart from actual credit card authoriza-
tion that you’ll implement in Chapter 15. You’ll implement eight new classes with the
following names:

• PsInitialNotification

• PsCheckFunds

• PsCheckStock

• PsStockOk

• PsTakePayment

• PsShipGoods

• PsShipOk

• PsFinalNotification
477

C H A P T E R 1 4

648XCH14.qxd 11/17/06 3:47 PM Page 477

478 CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I

We’ll discuss the classes you’re creating as we go. Before moving on, remember that this
code is available in the Source Code/Download section of the Apress web site (http://www.
apress.com).

PsInitialNotification
This is the first pipeline stage, which is responsible for sending an email to the customer con-
firming that the order has been placed. Create a new file named ps_initial_notification.php
in the business folder, and start adding code to it as shown here. This class starts off in what
will soon become a very familiar fashion:

<?php
class PsInitialNotification implements IPipelineSection
{
private $_mProcessor;

public function Process($processor)
{
// Set processor reference
$this->_mProcessor = $processor;

// Audit
$processor->CreateAudit('PsInitialNotification started.', 20000);

The class implements the IPipelineSection interface, then a private field for storing a
reference to OrderProcessor that invoked the PsInitialNotification, and finally the Process
method implementation. This method starts by storing the reference to
OrderProcessor, which some of your pipeline sections will do because using the methods
it exposes (either in the Process method or in other methods) is essential. We also add an
audit entry using the numbering scheme introduced in Chapter 13 (the initial 2 indicates
it’s coming from a pipeline section, the next 00 shows that it’s the first pipeline section, and
the final 00 means that it’s the start message for the pipeline section).

The remainder of the Process method sends the notification email. This requires informa-
tion from the customer, which you have easy access to. You also use a private method to build
a message body, which we’ll look at shortly:

// Send mail to customer
$processor->MailCustomer('HatShop order received.',

$this->GetMailBody());

The mail is sent, you add an audit message and change the status of the order, and tell the
order processor that it’s okay to move straight on to the next pipeline section:

// Audit
$processor->CreateAudit('Notification e-mail sent to customer.', 20002);

// Update order status
$processor->UpdateOrderStatus(1);

// Continue processing

648XCH14.qxd 11/17/06 3:47 PM Page 478

$processor->mContinueNow = true;

If all goes according to plan, the Process method finishes by adding a final audit entry:

// Audit
$processor->CreateAudit('PsInitialNotification finished.', 20001);

}

The GetMailBody method is used to build up an email body to send to the customer. The
text uses customer and order data but follows a generally accepted e-commerce email format.
Continue by adding this method to the PsInitialNotification class:

private function GetMailBody()
{
$body = 'Thank you for your order! ' .

'The products you have ordered are as follows:';
$body.= "\n\n";

$body.= $this->_mProcessor->GetOrderAsString(false);
$body.= "\n\n";

$body.= 'Your order will be shipped to:';
$body.= "\n\n";

$body.= $this->_mProcessor->GetCustomerAddressAsString();
$body.= "\n\n";

$body.= 'Order reference number: ';
$body.= $this->_mProcessor->mOrderInfo['order_id'];
$body.= "\n\n";

$body.= 'You will receive a confirmation e-mail when this order ' .
'has been dispatched. Thank you for shopping at HatShop!';

return $body;
}

}
?>

When this pipeline stage finishes, processing moves straight on to PsCheckFunds.

PsCheckFunds
This pipeline stage is responsible for making sure that the customer has the required funds
available on a credit card. For now, you’ll provide a dummy implementation of this and just
assume that these funds are available. You’ll implement the real functionality in the next
chapter, which deals with credit card transactions.

Add the following code to a new file in the business folder named ps_check_funds.php.
The code of the Process method starts almost in the same way as PsInitialNotification:

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I 479

648XCH14.qxd 11/17/06 3:47 PM Page 479

<?php
class PsCheckFunds implements IPipelineSection
{
public function Process($processor)
{
// Audit
$processor->CreateAudit('PsCheckFunds started.', 20100);

Even though you aren’t actually performing a check, set the authorization and reference
codes for the transaction to make sure that the code in OrderProcessor works properly:

/* Check customer funds assume they exist for now
set order authorization code and reference */

$processor->SetAuthCodeAndReference('DummyAuthCode',
'DummyReference');

You finish up with some auditing and the code required for continuation:

// Audit
$processor->CreateAudit('Funds available for purchase.', 20102);

// Update order status
$processor->UpdateOrderStatus(2);

// Continue processing
$processor->mContinueNow = true;

// Audit
$processor->CreateAudit('PsCheckFunds finished.', 20101);

}
}
?>

When this pipeline stage finishes, processing moves on to PsCheckStock.

PsCheckStock
This pipeline stage sends an email instructing the supplier to check stock availability. Add the
following code to a new file in the business folder named ps_check_stock.php:

<?php
class PsCheckStock implements IPipelineSection
{
private $_mProcessor;

public function Process($processor)
{
// Set processor reference
$this->_mProcessor = $processor;

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I480

648XCH14.qxd 11/17/06 3:47 PM Page 480

// Audit
$processor->CreateAudit('PsCheckStock started.', 20200);

Mail is sent in a similar way to PsInitialNotification, using a private method to build up
the body:

// Send mail to supplier
$processor->MailSupplier('HatShop stock check.',

$this->GetMailBody());

As before, you finish by auditing and updating the status, although this time you don’t tell
the order processor to continue straight away:

// Audit
$processor->CreateAudit('Notification email sent to supplier.', 20202);

// Update order status
$processor->UpdateOrderStatus(3);

// Audit
$processor->CreateAudit('PsCheckStock finished.', 20201);

}

The code for building the message body is simple; it just lists the items in the order and
tells the supplier to confirm via the HatShop web site (using the order administration page,
which you’ll modify later):

private function GetMailBody()
{
$body = 'The following goods have been ordered:';
$body .= "\n\n";

$body .= $this->_mProcessor->GetOrderAsString(false);
$body .= "\n\n";

$body .= 'Please check availability and confirm via ' .
'http://www.hatshop.com/admin.php';

$body .= "\n\n";

$body .= 'Order reference number: ';
$body .= $this->_mProcessor->mOrderInfo['order_id'];

return $body;
}

}
?>

When this pipeline stage finishes, processing pauses. Later, when the supplier confirms
that stock is available, processing moves on to PsStockOk.

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I 481

648XCH14.qxd 11/17/06 3:47 PM Page 481

PsStockOk
This pipeline section just confirms that the supplier has the product in stock and moves on.
Its Process method is called for orders whose stock was confirmed and that need to move on
to the next pipeline section. Add the following code to a new file in the business folder named
ps_stock_ok.php:

<?php
class PsStockOk implements IPipelineSection
{
public function Process($processor)
{
// Audit
$processor->CreateAudit('PsStockOk started.', 20300);

/* The method is called when the supplier confirms that stock is
available, so we don't have to do anything here except audit */

$processor->CreateAudit('Stock confirmed by supplier.', 20302);

// Update order status
$processor->UpdateOrderStatus(4);

// Continue processing
$processor->mContinueNow = true;

// Audit
$processor->CreateAudit('PsStockOk finished.', 20301);

}
}
?>

When this pipeline stage finishes, processing moves straight on to PsTakePayment.

PsTakePayment
This pipeline section completes the transaction started by PsCheckFunds. As with that section,
you only provide a dummy implementation here. Add the following code to a new file in the
business folder named ps_take_payment.php:

<?php
class PsTakePayment implements IPipelineSection
{
public function Process($processor)
{
// Audit
$processor->CreateAudit('PsTakePayment started.', 20400);

// Take customer funds assume success for now

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I482

648XCH14.qxd 11/17/06 3:47 PM Page 482

// Audit
$processor->CreateAudit('Funds deducted from customer credit card account.',

20402);

// Update order status
$processor->UpdateOrderStatus(5);

// Continue processing
$processor->mContinueNow = true;

// Audit
$processor->CreateAudit('PsTakePayment finished.', 20401);

}
}
?>

When this pipeline stage finishes, processing moves straight on to PsShipGoods.

PsShipGoods
This pipeline section is remarkably similar to PsCheckStock, as it sends an email to the
supplier and stops the pipeline until the supplier has confirmed that stock has shipped. This
time you do need customer information, however, because the supplier needs to know where
to ship the order! Add the following code to a new file in the business folder named
ps_ship_goods.php:

<?php
class PsShipGoods implements IPipelineSection
{
private $_mProcessor;

public function Process($processor)
{
// Set processor reference
$this->_mProcessor = $processor;

// Audit
$processor->CreateAudit('PsShipGoods started.', 20500);

// Send mail to supplier
$processor->MailSupplier('HatShop ship goods.',

$this->GetMailBody());

// Audit
$processor->CreateAudit('Ship goods e-mail sent to supplier.', 20502);

// Update order status
$processor->UpdateOrderStatus(6);

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I 483

648XCH14.qxd 11/17/06 3:47 PM Page 483

// Audit
$processor->CreateAudit('PsShipGoods finished.', 20501);

}

As before, a private method called GetMailBody is used to build the message body for the
email sent to the supplier:

private function GetMailBody()
{
$body = 'Payment has been received for the following goods:';
$body.= "\n\n";

$body.= $this->_mProcessor->GetOrderAsString(false);
$body.= "\n\n";

$body.= 'Please ship to:';
$body.= "\n\n";

$body.= $this->_mProcessor->GetCustomerAddressAsString();
$body.= "\n\n";

$body.= 'When goods have been shipped, please confirm via ' .
'http://www.hatshop.com/admin.php';

$body.= "\n\n";

$body.= 'Order reference number: ';
$body.= $this->_mProcessor->mOrderInfo['order_id'];

return $body;
}

}
?>

When this pipeline stage finishes, processing pauses. Later, when the supplier confirms
that the order has been shipped, processing moves on to PsShipOk.

PsShipOk
This pipeline section is very similar to PsStockOk, although it has slightly more to do. Because
you know that items have shipped, you can add a shipment date value to the orders table.
Technically, this isn’t really necessary because all audit entries are dated. However, this
method means that you have all the information easily accessible in one database table.
Add the following code to a new file in the business folder named ps_ship_ok.php:

<?php
class PsShipOk implements IPipelineSection
{
public function Process($processor)

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I484

648XCH14.qxd 11/17/06 3:47 PM Page 484

{
// Audit
$processor->CreateAudit('PsShipOk started.', 20600);

// Set order shipment date
$processor->SetDateShipped();

// Audit
$processor->CreateAudit('Order dispatched by supplier.', 20602);

// Update order status
$processor->UpdateOrderStatus(7);

// Continue processing
$processor->mContinueNow = true;

// Audit
$processor->CreateAudit('PsShipOk finished.', 20601);

}
}
?>

When this pipeline stage finishes, processing moves straight on to PsFinalNotification.

PsFinalNotification
This last pipeline section is very similar to the first because it sends an email to the customer.
This time, you’re confirming that the order has shipped. Add the following code to a new file in
the business folder named ps_final_notification.php:

<?php
class PsFinalNotification implements IPipelineSection
{
private $_mProcessor;

public function Process($processor)
{
// Set processor reference
$this->_mProcessor = $processor;

// Audit
$processor->CreateAudit('PsFinalNotification started.', 20700);

// Send mail to customer
$processor->MailCustomer('HatShop order dispatched.',

$this->GetMailBody());

// Audit

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I 485

648XCH14.qxd 11/17/06 3:47 PM Page 485

$processor->CreateAudit('Dispatch e-mail send to customer.', 20702);

// Update order status
$processor->UpdateOrderStatus(8);

// Audit
$processor->CreateAudit('PsFinalNotification finished.', 20701);

}

It uses a familiar-looking GetMailBody method to build the body of the email:

private function GetMailBody()
{
$body = 'Your order has now been dispatched! ' .

'The following products have been shipped:';
$body .= "\n\n";

$body .= $this->_mProcessor->GetOrderAsString(false);
$body .= "\n\n";

$body .= 'Your order has been shipped to:';
$body .= "\n\n";

$body .= $this->_mProcessor->GetCustomerAddressAsString();
$body .= "\n\n";

$body .= 'Order reference number: ';
$body .= $this->_mProcessor->mOrderInfo['order_id'];
$body .= "\n\n";

$body .= 'Thank you for shopping at HatShop.com!';

return $body;
}

}
?>

When this pipeline section finishes, the order status is changed to 8, which represents a
completed order. Further attempts to process the order using OrderProcessor will result in an
exception being thrown.

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I486

648XCH14.qxd 11/17/06 3:47 PM Page 486

Testing the Pipeline
Now let’s do a simple test to make sure the code you just wrote is working as expected.

Exercise: Testing the Pipeline

1. Add the following highlighted lines in the include/app_top.php file. (Also feel free to remove the
reference to ps_dummy.php, which is no longer required.)

require_once BUSINESS_DIR . 'order_processor.php';
require_once BUSINESS_DIR . 'ps_initial_notification.php';
require_once BUSINESS_DIR . 'ps_check_funds.php';
require_once BUSINESS_DIR . 'ps_check_stock.php';
require_once BUSINESS_DIR . 'ps_stock_ok.php';
require_once BUSINESS_DIR . 'ps_take_payment.php';
require_once BUSINESS_DIR . 'ps_ship_goods.php';
require_once BUSINESS_DIR . 'ps_ship_ok.php';
require_once BUSINESS_DIR . 'ps_final_notification.php';

2. Modify the code of the GetCurrentPipelineSection method in OrderProcessor (inside
business/order_processor.php) as follows:

// Gets current pipeline section
private function GetCurrentPipelineSection()
{
switch($this->mOrderInfo['status'])
{
case 0:
$this->_mOrderProcessStage = $this->mOrderInfo['status'];
$this->_mCurrentPipelineSection = new PsInitialNotification();

break;
case 1:
$this->_mOrderProcessStage = $this->mOrderInfo['status'];
$this->_mCurrentPipelineSection = new PsCheckFunds();

break;
case 2:
$this->_mOrderProcessStage = $this->mOrderInfo['status'];
$this->_mCurrentPipelineSection = new PsCheckStock();

break;
case 3:
$this->_mOrderProcessStage = $this->mOrderInfo['status'];
$this->_mCurrentPipelineSection = new PsStockOk();

break;

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I 487

648XCH14.qxd 11/17/06 3:47 PM Page 487

case 4:
$this->_mOrderProcessStage = $this->mOrderInfo['status'];
$this->_mCurrentPipelineSection = new PsTakePayment();

break;
case 5:
$this->_mOrderProcessStage = $this->mOrderInfo['status'];
$this->_mCurrentPipelineSection = new PsShipGoods();

break;
case 6:
$this->_mOrderProcessStage = $this->mOrderInfo['status'];
$this->_mCurrentPipelineSection = new PsShipOk();

break;
case 7:
$this->_mOrderProcessStage = $this->mOrderInfo['status'];
$this->_mCurrentPipelineSection = new PsFinalNotification();

break;
case 8:
$this->_mOrderProcessStage = 100;
throw new Exception('Order already been completed.');

break;
default:
$this->_mOrderProcessStage = 100;
throw new Exception('Unknown pipeline section requested.');

}
}

3. Open business/orders.php and modify the $mOrdersStatusOptions member of the Orders class
to manage the new order status codes. Note that this change affects the old orders, which used different
status codes:

public static $mOrderStatusOptions = array (
'Order placed, notifying customer', // 0
'Awaiting confirmation of funds', // 1
'Notifying supplier-stock check', // 2
'Awaiting stock confirmation', // 3
'Awaiting credit card payment', // 4
'Notifying supplier-shipping', // 5
'Awaiting shipment confirmation', // 6
'Sending final notification', // 7
'Order completed', // 8
'Order canceled'); // 9

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I488

648XCH14.qxd 11/17/06 3:47 PM Page 488

4. Open presentation/smarty_plugins/function.load_admin_order_details.php, and add the
highlighted new member to the AdminOrderDetails class:

public $mTaxCost = 0.0;
public $mOrderProcessMessage;

5. Modify the code of the init method in the AdminOrderDetails class located in presentation/
smarty_plugins/function.load_admin_order_details.php as highlighted. This will handle the
functionality necessary when the visitor clicks the Process button.

if (isset ($_GET['submitProcessOrder']))
{
$processor = new OrderProcessor($this->mOrderId);

try
{
$processor->Process();
$this->mOrderProcessMessage = 'Order processed, status now: ' .

$processor->mOrderInfo['status'];
}
catch (Exception $e)
{
$this->mOrderProcessMessage = 'Processing error, status now: ' .

$processor->mOrderInfo['status'];
}

}

6. Open the presentation/templates/admin_order_details.tpl file, and add the highlighted code:

Editing details for order ID:
{$admin_order_details->mOrderInfo.order_id} [
{strip}
mAdminOrdersPageLink|prepare_link:"https"}">
back to admin orders...

{/strip}
]

{if $admin_order_details->mOrderProcessMessage}
{$admin_order_details->mOrderProcessMessage}

{/if}
<form action="{"admin.php"|prepare_link:"https"}" method="get">

7. Execute the code, create a new order, and then open that order in the orders admin page. In the orders
admin page, click the Process Order button.

8. You should get a customer notification email (see Figure 14-1).

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I 489

648XCH14.qxd 11/17/06 3:47 PM Page 489

Figure 14-1. Customer order confirmation email

9. Check your supplier email for the stock check email (see Figure 14-2).

Figure 14-2. Stock check email

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I490

648XCH14.qxd 11/17/06 3:47 PM Page 490

10. Continue processing in the admin order details page by clicking the Process Order button again, calling the
Process method of the OrderProcessor class for the second time.

11. Check your email for the ship goods email (see Figure 14-3).

Figure 14-3. Ship goods email

12. Continue processing in the admin order details page by clicking Process and calling the Process method of
the OrderProcessor class for the third and last time.

13. Check your email for the shipping confirmation email (see Figure 14-4).

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I 491

648XCH14.qxd 11/17/06 3:47 PM Page 491

Figure 14-4. Customer shipping notification email (dispatched.png)

14. Examine the new audit entries for the order as shown in Figure 14-5.

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I492

648XCH14.qxd 11/17/06 3:47 PM Page 492

Figure 14-5. Audit entries for completed order

How It Works: The Order Pipeline

We’ve covered how the order pipeline works, so now we only need to explain the new code added to
OrderProcessor. We changed the code in the GetCurrentPipelineSection method, which is responsible
for selecting the pipeline section that needs to be executed.

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I 493

648XCH14.qxd 11/17/06 3:47 PM Page 493

The change is simply a switch block that assigns a pipeline section to the $_mCurrentPipelineSection member:

// Gets current pipeline section
private function GetCurrentPipelineSection()
{
switch($this->mOrderInfo['status'])
{
case 0:
$this->_mOrderProcessStage = $this->mOrderInfo['status'];
$this->_mCurrentPipelineSection = new PsInitialNotification();

break;
case 1:
$this->_mOrderProcessStage = $this->mOrderInfo['status'];
$this->_mCurrentPipelineSection = new PsCheckFunds();

break;
case 2:
$this->_mOrderProcessStage = $this->mOrderInfo['status'];
$this->_mCurrentPipelineSection = new PsCheckStock();

break;
case 3:
$this->_mOrderProcessStage = $this->mOrderInfo['status'];
$this->_mCurrentPipelineSection = new PsStockOk();

break;
case 4:
$this->_mOrderProcessStage = $this->mOrderInfo['status'];
$this->_mCurrentPipelineSection = new PsTakePayment();

break;
case 5:
$this->_mOrderProcessStage = $this->mOrderInfo['status'];
$this->_mCurrentPipelineSection = new PsShipGoods();

break;
case 6:
$this->_mOrderProcessStage = $this->mOrderInfo['status'];
$this->_mCurrentPipelineSection = new PsShipOk();

break;
case 7:
$this->_mOrderProcessStage = $this->mOrderInfo['status'];
$this->_mCurrentPipelineSection = new PsFinalNotification();

break;
case 8:

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I494

648XCH14.qxd 11/17/06 3:47 PM Page 494

$this->_mOrderProcessStage = 100;
throw new Exception('Order already been completed.');

break;
default:
$this->_mOrderProcessStage = 100;
throw new Exception('Unknown pipeline section requested.');

}
}

If the order has been completed or an unknown section is requested, then you generate an exception.

The test code gives you the additional opportunity of testing this exception generation because if you run it again,
you’ll be processing an already completed order. Click the Process Order button for an order that’s already com-
plete (has the status 8), and you should get an error email as shown in Figure 14-6.

Figure 14-6. Order completion error email

The error message mailed to the administrator should be enough to get started on your way to finding out what
happened.

Updating the Checkout Page
In the previous example, you were forced to call the OrderProcessor::Process() method three
times in a row from the order details admin page. In practice, this won’t happen—it will be
called once by presentation/smarty_plugins/function.load_checkout_info.php when a
customer places an order and twice more by the supplier in presentation/smarty_plugin/
function.load_admin_order_details.php. You’ll need to modify these web pages accordingly.

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I 495

648XCH14.qxd 11/17/06 3:47 PM Page 495

You also need to add a reference to your new classes in index.php. Follow the steps in this
exercise to have function.load_checkout_info.php work with the new order pipeline.

Exercise: Updating the Checkout Process

1. Modify the init method in the CheckoutInfo class in presentation/smarty_plugins/
function.load_checkout_info.php by adding the highlighted code:

public function init()
{
// If the Place Order button was clicked, save the order to database
if ($this->_mPlaceOrder == 1)
{
$this->mCustomerData = Customer::Get();
$tax_id = '';

switch ($this->mCustomerData['shipping_region_id'])
{
case 2:
$tax_id = 1;

break;
default:
$tax_id = 2;

}

$order_id = ShoppingCart::CreateOrder(
$this->mCustomerData['customer_id'],
(int)$_POST['shipping'], $tax_id);

$redirect_page = '';

// Create new OrderProcessor instance
$processor = new OrderProcessor($order_id);

try
{
$processor->Process();

}
catch (Exception $e)
{
// If an error occurs, head to an error page
$redirect_page = 'index.php?OrderError';

}

// On success head to an order successful page
$redirect_page = 'index.php?OrderDone';

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I496

648XCH14.qxd 11/17/06 3:47 PM Page 496

// Redirect to index.php
$redirect_link = 'http://' . getenv('SERVER_NAME');

// If HTTP_SERVER_PORT is defined and different than default
if (defined('HTTP_SERVER_PORT') && HTTP_SERVER_PORT != '80')
{
// Append server port
$redirect_link .= ':' . HTTP_SERVER_PORT;

}

$redirect_link .= VIRTUAL_LOCATION . $redirect_page;

header('Location:' . $redirect_link);

exit;
}

...

2. Create a new file named order_done.tpl in the presentation/templates folder, and add the
following code to its body:

{* order_done.tpl *}

Thank you for your order!

A confirmation email should arrive shortly.

3. If an error occurs while ordering, redirect to another page. Create presentation/templates/
order_error.tpl with the following in it:

{* order_error.tpl *}

An error has occurred during the processing of your order.

If you have an enquiry regarding this message please email

CustomerService@example.com

4. Add the following style to hatshop.css:

a.mail
{
color: #0000ff;
font-size: 11px;
text-decoration: underline;

}

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I 497

648XCH14.qxd 11/17/06 3:47 PM Page 497

5. Modify index.php by adding the highlighted code to load either order_done.tpl or order_error.tpl,
depending on whether the order processed successfully or not:

if (isset($_GET['RegisterCustomer']) || isset($_GET['UpdateAccountDetails']))
$pageContentsCell = 'customer_details.tpl';

elseif (isset($_GET['UpdateAddressDetails']))
$pageContentsCell = 'customer_address.tpl';

elseif (isset($_GET['UpdateCreditCardDetails']))
$pageContentsCell = 'customer_credit_card.tpl';

if (isset($_GET['OrderDone']))
$pageContentsCell = 'order_done.tpl';

elseif (isset($_GET['OrderError']))
$pageContentsCell = 'order_error.tpl';

$page->assign('hide_boxes', $hide_boxes);
$page->assign('customerLoginOrLogged', $customerLoginOrLogged);

You can now use the HatShop web store to place orders, but they will pause when it gets to stock confirmation. To
continue, you’ll implement the interface for suppliers and administrators to use to force orders to continue pro-
cessing.

Updating the Orders Admin Page
The basic functionality of this page is to allow suppliers and administrators to view a list of
orders that need attention and advance them in the pipeline manually. This is simply a case
of calling the OrderProcess::Process method as described earlier.

This page could be implemented in many ways. In fact, in some setups, it might be better
to implement this as a standalone application, for example, if your suppliers are in-house and
on the same network. Or, it might be better to combine this approach with Web Services.

To simplify things in this section, you’ll supply a single page for both administrators and
suppliers. This might not be ideal in all situations because you might not want to expose all
order details and audit information to external suppliers. However, for demonstration pur-
poses, this reduces the amount of code you have to get through. You’ll also tie in the security
for this page with the administrator forms-based security used earlier in the book, assuming
that people with permission to edit the site data will also have permission to administer
orders. In a more advanced setup, you could modify this slightly, providing roles for different
types of users and restricting the functionality available to users in different roles.

Implementing the Data Tier
We need to add a new data tier function to the hatshop database, orders_get_audit_trail,
and update an existing function, orders_update_order, to take into account the new status
codes.

Using pgAdmin III, connect to the hatshop database, and use the query tool to execute
this code, which creates the orders_update_order function in your hatshop database:

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I498

648XCH14.qxd 11/17/06 3:47 PM Page 498

-- Update orders_update_order function
CREATE OR REPLACE FUNCTION orders_update_order(INTEGER, INTEGER,

VARCHAR(255), VARCHAR(50), VARCHAR(50))
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inOrderId ALIAS FOR $1;
inStatus ALIAS FOR $2;
inComments ALIAS FOR $3;
inAuthCode ALIAS FOR $4;
inReference ALIAS FOR $5;
currentDateShipped TIMESTAMP;

BEGIN
SELECT INTO currentDateShipped

shipped_on
FROM orders
WHERE order_id = inOrderId;

UPDATE orders
SET status = inStatus, comments = inComments,

auth_code = inAuthCode, reference = inReference
WHERE order_id = inOrderId;

IF inStatus < 7 AND currentDateShipped IS NOT NULL THEN
UPDATE orders SET shipped_on = NULL WHERE order_id = inOrderId;

ELSEIF inStatus > 6 AND currentDateShipped IS NULL THEN
UPDATE orders SET shipped_on = NOW() WHERE order_id = inOrderId;

END IF;
END;

$$;

Then, use the query tool to execute this code, which creates the orders_get_audit_trail
function in your hatshop database:

-- Create orders_get_audit_trail function
CREATE FUNCTION orders_get_audit_trail(INTEGER)
RETURNS SETOF audit LANGUAGE plpgsql AS $$
DECLARE
inOrderId ALIAS FOR $1;
outAuditRow audit;

BEGIN
FOR outAuditRow IN
SELECT audit_id, order_id, created_on, message, message_number
FROM audit
WHERE order_id = inOrderId

LOOP
RETURN NEXT outAuditRow;

END LOOP;
END;

$$;

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I 499

648XCH14.qxd 11/17/06 3:47 PM Page 499

Implementing the Business Tier
You also have to add a new method to the Orders class from business/orders.php to cater to
the new data tier function added in the previous section.

Add the GetAuditTrail method to the Orders class in business/orders.php, as follows:

// Gets the audit table entries associated with a specific order
public static function GetAuditTrail($orderId)
{
// Build the SQL query
$sql = 'SELECT * FROM orders_get_audit_trail(:order_id);';
// Build the parameters array
$params = array (':order_id' => $orderId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

Implementing the Presentation Tier
You need to update the admin_order_details componentized template, which shows the
details of an order. Earlier in the book, this componentized template also included the capa-
bility to test the order process, but we’re removing this here. Instead, you’ll provide the
capability for orders to be pushed along the pipeline when they are stuck at the Awaiting con-
firmation of stock and Awaiting confirmation of shipment stages.

Now, you can also display all the audit information for the order in another new table.
Let’s look at what you’re going to achieve, as shown in Figure 14-7.

You can split the orders admin page into three sections:

• In the first section, we’ll change the Process button to a confirmation button for suppli-
ers.

• In the second section, a table is filled with the items data from the order.

• In the third section, a table shows the audit trail for the order.

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I500

648XCH14.qxd 11/17/06 3:47 PM Page 500

Figure 14-7. The new Order Details Admin page

You implement the new functionality in the next exercise.

Exercise: Modifying the Order Details Admin Section

1. Remove the following lines from presentation/templates/admin_order_details.tpl:

{if $admin_order_details->mOrderProcessMessage}
{$admin_order_details->mOrderProcessMessage}

{/if}

2. Also in presentation/templates/admin_order_details.tpl, replace the Process Order button
code with the highlighted code:

<input type="submit" name="submitCancel" value="Cancel"
{if ! $admin_order_details->mEditEnabled}
disabled="disabled"
{/if} />
{if $admin_order_details->mProcessButtonText}
<input type="submit" name="submitProcessOrder"
value="{$admin_order_details->mProcessButtonText}" />
{/if}

Order contains these products:

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I 501

648XCH14.qxd 11/17/06 3:47 PM Page 501

3. In the presentation/templates/admin_order_details.tpl file, add the following highlighted code:

{section name=cOrder loop=$admin_order_details->mOrderDetails}
<tr>
<td>{$admin_order_details->mOrderDetails[cOrder].product_id}</td>
<td>{$admin_order_details->mOrderDetails[cOrder].product_name}</td>
<td>{$admin_order_details->mOrderDetails[cOrder].quantity}</td>
<td>${$admin_order_details->mOrderDetails[cOrder].unit_cost}</td>
<td>${$admin_order_details->mOrderDetails[cOrder].subtotal}</td>

</tr>
{/section}
</table>

Order audit trail:

<table>
<tr>
<th>Audit ID</th>
<th>Created On</th>
<th>Message Number</th>
<th>Message</th>

</tr>
{section name=cOrder loop=$admin_order_details->mAuditTrail}
<tr>
<td>{$admin_order_details->mAuditTrail[cOrder].audit_id}</td>
<td>{$admin_order_details->mAuditTrail[cOrder].created_on}</td>
<td>{$admin_order_details->mAuditTrail[cOrder].message_number}</td>
<td>{$admin_order_details->mAuditTrail[cOrder].message}</td>

</tr>
{/section}
</table>

</form>

4. Open the presentation/smarty_plugins/function.load_admin_order_details.php file, and
remove the definition of the $mOrderProcessMessage member of the AdminOrderDetails class
shown here:

public $mOrderProcessMessage;

5. Also in the function.load_admin_order_details.php file, add two new members in the
AdminOrderDetails class:

public $mProcessButtonText;
public $mAuditTrail;

6. In the same file, modify the init method of the AdminOrderDetails class by adding the code highlighted
here:

if (isset ($_GET['submitUpdate']))
{
Orders::UpdateOrder($this->mOrderId, $_GET['status'],
$_GET['comments'], $_GET['authCode'], $_GET['reference']);

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I502

648XCH14.qxd 11/17/06 3:47 PM Page 502

}

if (isset ($_GET['submitProcessOrder']))
{
$processor = new OrderProcessor($this->mOrderId);
$processor->Process();

}
...

$this->mOrderInfo = Orders::GetOrderInfo($this->mOrderId);
$this->mOrderDetails = Orders::GetOrderDetails($this->mOrderId);
$this->mAuditTrail = Orders::GetAuditTrail($this->mOrderId);
$this->mCustomerInfo = Customer::Get($this->mOrderInfo['customer_id']);
$this->mTotalCost = $this->mOrderInfo['total_amount'];

...
// Format the values
$this->mTotalCost = number_format($this->mTotalCost, 2, '.', '');
$this->mTaxCost = number_format($this->mTaxCost, 2, '.', '');

if ($this->mOrderInfo['status'] == 3)
$this->mProcessButtonText = 'Confirm Stock for Order';

elseif ($this->mOrderInfo['status'] == 6)
$this->mProcessButtonText = 'Confirm Shipment for Order';

// Value which specifies whether to enable or disable edit mode
if (isset ($_GET['submitEdit']))
$this->mEditEnabled = true;

else
$this->mEditEnabled = false;

6. Load HatShop, make a new order, and then load the order details admin page to test the new changes.

How It Works: Order Details Admin

The init method found in AdminOrderDetails advances the pipeline to the next section if the Process button
is clicked; the presence of this button on the page depends on the value of the mProcessButtonText member.
This value is set to “Confirm Stock” if the current pipeline section is 3 (awaiting stock confirmation), or to “Confirm
Shipment” if the current pipeline section is 6 (awaiting shipment confirmation). If the current pipeline section is not
set to 3 or 6, it means that the order has been completed successfully, and the button is not shown. The adminis-
trator can always check what happened to the order by checking the audit trail that is displayed on the page.

All that remains now is to check that everything is working properly. To do this, use the web interface to place an
order, and then check it out via the orders details admin section. You should see that the order is awaiting confir-
mation of stock, as shown earlier in Figure 14-7.

Click the Confirm Stock for Order button and the order is processed. Because this happens very quickly, you are
soon presented with the next stage, where the Confirm Stock for Order button is replaced by a new button named
Confirm Shipment, and the audit trail shows a new set of data.

Clicking the Confirm Shipment button completes the order. If you scroll down the page, you can see all audit trail
messages that have been stored in the database concerning this order.

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I 503

648XCH14.qxd 11/17/06 3:47 PM Page 503

Summary
You’ve taken giant strides toward completing the HatShop e-commerce application in this
chapter. Now you have a fully audited, secure backbone for the application.

Specifically, we’ve covered

• Modifications to the HatShop application to enable your own pipeline processing

• The basic framework for your order pipeline

• The database additions for auditing data and storing additional required data in the
orders table

• The implementation of most of the order pipeline, apart from those sections that deal
with credit cards

The only thing missing that you need to add before delivering this application to the out-
side world is credit card processing functionality, which we’ll look at in the next chapter.

CHAPTER 14 ■ I IMPLEMENTING THE ORDER PIPELINE: PART I I504

648XCH14.qxd 11/17/06 3:47 PM Page 504

Credit Card Transactions

The last thing you need to do before launching the e-commerce site is to enable credit card
processing. In this chapter, we examine how you can build this into the pipeline you created
in the previous chapter.

We’ll start by looking at the theory behind credit card transactions, the sort of organiza-
tions that help you achieve credit card processing, and the sort of transactions that are
possible. Moving on, we’ll take two example organizations and discuss the specifics of their
transaction APIs (Application Program Interfaces, the means by which you access credit card
transaction functionality). After this, you’ll build a new class library that helps you use one of
these transaction APIs via some simple test code.

Finally, you’ll integrate the API with the HatShop e-commerce application and order-
processing pipeline.

Credit Card Transaction Fundamentals
Banks and other financial institutions use secure networks for their transactions based on the
X.25 protocol rather than TCP/IP (Transmission Control Protocol/Internet Protocol, the pri-
mary means by which data is transmitted across the Internet). X.25 isn’t something you need
to know anything about, apart from the fact that it’s a different protocol for networking and
isn’t compatible with TCP/IP. As such, X.25 networks are completely separate from the Inter-
net, and although it’s possible to get direct access to them, this isn’t likely to be a reasonable
option. To do so, you might have to enter into some serious negotiation with the owner of the
network you want to use. The owner will want to be completely sure that you are a reliable
customer who is capable of enforcing the necessary safeguards to prevent an attack on their
system. Accordingly, the network owner won’t be handing out these licenses to just anyone
because most people can’t afford the security measures required (which include locking your
servers in a cage, sending daily backup tapes down a secure chute, having three individuals
with separate keys to access these tapes, and so on).

The alternative is to access these networks via a gateway provider. This enables you to
perform your side of the credit card transaction protocol over the Internet (using a secure
protocol), while relying on your chosen gateway to communicate with X.25 networks.
Although there is likely to be a cost involved with this, the provider should have a deal with
financial institutions to keep costs low and pass the savings on to you (after the gateway takes
its share), so it’s likely to be much cheaper than having your own X.25 connection. This
method is also likely to be cheaper than using a third party such as PayPal because you only
need the minimum functionality when you are handling your own order pipeline. There is no
need, for example, to use all the order-auditing functionality offered by a company such as
PayPal because you already built all this functionality in the previous chapter. 505

C H A P T E R 1 5

648XCH15.qxd 11/15/06 6:21 PM Page 505

506 CHAPTER 15 ■ CREDIT CARD TRANSACTIONS

Working with Credit Card Payment Gateways
To work with a gateway organization, you first need to open a merchant bank account. This
can be done at most banks, and will get you a merchant ID that you can use when signing up
with the gateway. The next step is to find a suitable gateway. Unfortunately, this can be a lot of
hard work!

Although it isn’t hard to find a gateway, the challenge lies in finding a competent one that
offers services at a price and quality acceptable to you. Literally hundreds of companies are
eager to take a cut of your sales. A quick search on the Internet for “credit card gateway” will
produce a long list. The web sites of these companies are for the most part pure brochure-
ware—you’ll find yourself reading through pages of text about how they are the best and most
secure at what they do, only to end up with a form to fill in so that a customer service repre-
sentative can call you to “discuss your needs.” In the long run, you can rest assured that at
least you will probably only have to go through the procedure once.

You’ll probably find that most of the organizations offering this service offer similar pack-
ages. However, key points to look for include the banks they do business with (your merchant
bank account will have to be at one of these), the currencies they deal in, and, of course, the
costs.

In this chapter, we’ll look at two of the few organizations that are easy to deal with—
DataCash and Authorize.net.

Table 15-1 shows some of the gateway services available.

Table 15-1. Gateway Services

United States URL United Kingdom URL

Authorize.net http://www.authorize.net/ Arcot http://www.arcot.com/

First Data http://www.firstdata.com/ WorldPay http://www.worldpay.com/

Cardservice http://cardservice.com/ DataCash http://www.datacash.com/

ICVerify http://www.icverify.com/

DataCash and Authorize.net
In this chapter, we’ll demonstrate implementing credit card transactions with two online
services: DataCash and Authorize.net.

DataCash is a UK-based credit card gateway organization. You’ll need a UK merchant
bank account if you want to use it in your final application. However, you don’t have to worry
about this for now: it’s very easy to get access to a rather useful test account—you don’t even
need a merchant bank account.

Authorize.net, as mentioned on its official web site at http://www.authorize.net,
“provides Internet Protocol (IP) payment gateway services that enable merchants to authorize,
settle and manage credit card or electronic check transactions anytime, anywhere.” In other
words, Authorize.net also offers the services that you need to process the credit cards yourself
when someone buys one of your hats.

The important point to remember is that the techniques covered in this chapter apply to
every credit card gateway. The specifics might change slightly if you switch to a different
organization, but you’ll have done most of the hard work already.

648XCH15.qxd 11/15/06 6:21 PM Page 506

As you’ll see later in this chapter, both Authorize.net and DataCash let you perform test
transactions using so-called “magic” credit card numbers (supplied separately by
Authorize.net and DataCash), which will accept or decline transactions without performing
any actual financial transactions. This is fantastic for development purposes because you
don’t want to use your own credit cards for testing!

■Note The authors of this book are in no way affiliated with Authorize.net or DataCash.

Understanding Credit Card Transactions
Whichever gateway you use, the basic principles of credit card transactions are the same. First,
the sort of transactions you’ll be dealing with in an e-commerce web site are known as Card
Not Present (CNP) transactions, which means you don’t have the credit card in front of you,
and you can’t verify the customer signature. This isn’t a problem; after all you’ve probably been
performing CNP transactions for some time now online, over the phone, by mail, and so on.
It’s just something to be aware of should you see the CNP acronym.

Several advanced services are offered by various gateways, including cardholder address
verification, security code checking, fraud screening, and so on. Each of these adds an addi-
tional layer of complexity to your credit card processing, and we’re not covering those details
here. Rather, this chapter provides a starting point from which you can add these services if
required. Whether to choose these optional extra services depends on how much money is
passing through your system and the trade-off between the costs of implementing the services
and the potential costs if something goes wrong that could have been prevented by these
extra services. If you are interested in these services, the “customer service representative”
mentioned previously will be happy to explain things.

You can perform several types of transactions, including

Authorization: Checks card for adequate funds and performs deduction.

Pre-authorization: Checks cards for funds and allocates them if available, but doesn’t
deduct them immediately.

Fulfillment: Completes a pre-authorization transaction, deducting the funds already
allocated.

Refund: Refunds a completed transaction or simply puts money on a credit card.

Again, the specifics vary, but these are the basic types.
In this chapter, you’ll use the pre/fulfill model, which means you don’t take payment until

just before you instruct your supplier to ship goods. This has been hinted at previously by the
structure of the pipeline you created in the previous chapter.

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS 507

648XCH15.qxd 11/15/06 6:21 PM Page 507

Working with DataCash
Now that we’ve covered the basics, let’s consider how you’ll get things working in the HatShop
application using the DataCash system. The first thing to do is to get a test account with
DataCash by following these steps:

1. Go to http://www.datacash.com/.

2. Head to the Support – Integration Info section of the web site.

3. Enter your details and submit.

4. From the email you receive, make a note of your account username and password,
as well as the additional information required for accessing the DataCash reporting
system.

Normally, the next step would be to download one of DataCash’s toolkits for easy integra-
tion. However, because DataCash doesn’t provide a PHP-compatible implementation, you
need to use the XML API for performing transactions. Basically, this involves sending XML
requests to a certain URL using an SSL connection and then deciphering the XML result. This
is easy to do in PHP if you have the CURL (Client URL Library Functions) library installed on
your computer, and PHP is aware of it (see Appendix A).

You’ll be doing a lot of XML manipulation when communicating with DataCash because
you’ll need to create XML documents to send to DataCash and to extract data from XML
responses. In the following few pages, we’ll take a quick look at the XML required for the
operations you’ll be performing and the responses you can expect.

Pre-Authentication Request
When you send a pre-authentication request to DataCash, you need to include the following
information:

• DataCash username (known as the DataCash Client)

• DataCash password

• A unique transaction reference number (explained later in this section)

• The amount of money to be debited

• The currency used for the transaction (USD, GBP, and so on)

• The type of transaction (the code pre for pre-authentication, and the code fulfil
for fulfillment)

• The credit card number

• The credit card expiry date

• The credit card issue date (if applicable to the type of credit card being used)

• The credit card issue number (if applicable to the type of credit card being used)

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS508

648XCH15.qxd 11/15/06 6:21 PM Page 508

The unique transaction reference number must be a number between 6 and 12 digits
long, which you choose to uniquely identify the transaction with an order. Because you can’t
use a short number, you can’t just use the order ID values you’ve been using until now for
orders. However, you can use this order ID as the starting point for creating a reference num-
ber simply by adding a high number, such as 1,000,000. You can’t duplicate the reference
number in any future transactions, so you can be sure that after a transaction is completed,
it won’t execute again, which might otherwise result in charging the customer twice. This does
mean, however, that if a credit card is rejected, you might need to create a whole new order for
the customer, but that shouldn’t be a problem if required.

The XML request is formatted in the following way, with the values detailed previously
shown in bold:

<?xml version="1.0" encoding="UTF-8"?>
<Request>
<Authentication>
<password>DataCash password</password>
<client>DataCash client</client>

</Authentication>
<Transaction>
<TxnDetails>
<merchantreference>Unique reference number</merchantreference>
<amount currency='Currency Type'>Cash amount</amount>

</TxnDetails>
<CardTxn>
<method>pre</method>
<Card>
<pan>Credit card number</pan>
<expirydate>Credit card expiry date</expirydate>

</Card>
</CardTxn>

</Transaction>
</Request>

Response to Pre-Authentication Request
The response to a pre-authentication request includes the following information:

• A status code number indicating what happened; 1 if the transaction was successful,
or one of several other codes if something else happens. For a complete list of return
codes for a DataCash server, see https://testserver.datacash.com/software/
returncodes.shtml.

• A reason for the status, which is basically a string explaining the status in English.
For a status of 1, this string is ACCEPTED.

• An authentication code and a reference number that will be used to fulfill the
transaction in the fulfillment request stage (discussed next).

• The time that the transaction was processed.

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS 509

648XCH15.qxd 11/15/06 6:21 PM Page 509

• The mode of the transaction, which is TEST when using the test account.

• Confirmation of the type of credit card used.

• Confirmation of the country that the credit card was issued in.

• The authorization code used by the bank (for reference only).

The XML for this is formatted as follows:

<?xml version="1.0" encoding="utf-8"?>
<Response>
<status>Status code</status>
<reason>Reason</reason>
<merchantreference>Authentication code</merchantreference>
<datacash_reference>Reference number</datacash_reference>
<time>Time</time>
<mode>TEST</mode>
<CardTxn>
<card_scheme>Card Type</card_scheme>
<country>Country</country>
<issuer>Card issuing bank</issuer>
<authcode>Bank authorization code</authcode>

</CardTxn>
</Response>

Fulfillment Request
For a fulfillment request, you need to send the following information:

• DataCash username (the DataCash Client)

• DataCash password

• The type of the transaction (for fulfillment, the code fulfil)

• The authentication code received earlier

• The reference number received earlier

Optionally, you can include additional information, such as a confirmation of the amount
to be debited from the credit card, although this isn’t really necessary.

This is formatted as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Request>
<Authentication>
<password>DataCash password</password>
<client>DataCash client</client>

</Authentication>
<Transaction>
<HistoricTxn>

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS510

648XCH15.qxd 11/15/06 6:21 PM Page 510

<reference>Reference Number</reference>
<authcode>Authentication code</authcode>
<method>fulfil</method>

</HistoricTxn>
</Transaction>

</Request>

Fulfillment Response
The response to a fulfillment request includes the following information:

• A status code number indicating what happened; 1 if the transaction was successful,
or one of several other codes if something else happens. Again, for a complete list of
the codes, see https://testserver.datacash.com/software/returncodes.shtml.

• A reason for the status, which is basically a string explaining the status in English.
For a status of 1, this string is FULFILLED OK.

• Two copies of the reference code for use by DataCash.

• The time that the transaction was processed.

• The mode of the transaction, which is TEST when using the test account.

The XML for this is formatted as follows:

<?xml version="1.0" encoding="utf-8"?>
<Response>
<status>Status code</status>
<reason>Reason</reason>
<merchantreference>Reference Code</merchantreference>
<datacash_reference>Reference Code</datacash_reference>
<time>Time</time>
<mode>TEST</mode>

</Response>

Exchanging XML Data with DataCash
Because the XML data you need to send to DataCash has a simple and standard structure,
we’ll build it manually in a string, without using the XML support offered by PHP 5. We will,
however, take advantage of PHP 5’s SimpleXML extension, which makes reading simple XML
data a piece of cake.

Although less complex and powerful than DOMDocument, the SimpleXML extension
makes parsing XML data easy by transforming it into a data structure you can simply iterate
through. You first met the SimpleXML extension in Chapter 11.

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS 511

648XCH15.qxd 11/15/06 6:21 PM Page 511

■Note For the code that communicates with DataCash, we use the CURL library (http://curl.
haxx.se/). Read Appendix A for complete installation instructions. Under Linux, the process can be more
complicated, but if you are running PHP under Windows, you just need to copy libeay32.dll and
ssleay32.dll from the PHP package to the System32 folder of your Windows installation and uncomment
the following line in php.ini (by default, located in your Windows installation folder) by removing the lead-
ing semicolon, and then restarting Apache: extension=php_curl.dll.

For more details about the CURL library, check out the excellent tutorial at http://www.zend.com/
pecl/tutorials/curl.php. The official documentation of PHP’s CURL support is located at
http://www.php.net/curl.

Exercise: Communicating with DataCash

1. Create a new file named datacash_request.php in the business folder, and add the following
code to it:

<?php
class DataCashRequest
{
// DataCash Server URL
private $_mUrl;

// Will hold the current XML document to be sent to DataCash
private $_mXml;

// Constructor initializes the class with URL of DataCash
public function __construct($url)
{
// Datacash URL
$this->_mUrl = $url;

}

/* Compose the XML structure for the pre-authentication
request to DataCash */

public function MakeXmlPre($dataCashClient, $dataCashPassword,
$merchantReference, $amount, $currency,
$method, $cardNumber, $expiryDate,
$startDate = '', $issueNumber = '')

{
$this->_mXml =
"<?xml version=\"1.0\" encoding=\"UTF-8\"\x3F>
<Request>
<Authentication>
<password>$dataCashPassword</password>

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS512

648XCH15.qxd 11/15/06 6:21 PM Page 512

<client>$dataCashClient</client>
</Authentication>
<Transaction>
<TxnDetails>
<merchantreference>$merchantReference</merchantreference>
<amount currency=\"$currency\">$amount</amount>

</TxnDetails>
<CardTxn>
<method>pre</method>
<Card>
<pan>$cardNumber</pan>
<expirydate>$expiryDate</expirydate>
<startdate>$startDate</startdate>
<issuenumber>$issueNumber</issuenumber>

</Card>
</CardTxn>

</Transaction>
</Request>";

}

// Compose the XML structure for the fulfillment request to DataCash
public function MakeXmlFulfill($dataCashClient, $dataCashPassword,

$method, $authCode, $reference)
{
$this->_mXml =
"<?xml version=\"1.0\" encoding=\"UTF-8\"\x3F>
<Request>
<Authentication>
<password>$dataCashPassword</password>
<client>$dataCashClient</client>

</Authentication>
<Transaction>
<HistoricTxn>
<reference>$reference</reference>
<authcode>$authCode</authcode>
<method>$method</method>

</HistoricTxn>
</Transaction>

</Request>";
}

// Get the current XML
public function GetRequest()
{
return $this->_mXml;

}

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS 513

648XCH15.qxd 11/15/06 6:21 PM Page 513

// Send an HTTP POST request to DataCash using CURL
public function GetResponse()
{
// Initialize a CURL session
$ch = curl_init();

// Prepare for an HTTP POST request
curl_setopt($ch, CURLOPT_POST, 1);

// Prepare the XML document to be POSTed
curl_setopt($ch, CURLOPT_POSTFIELDS, $this->_mXml);

// Set the URL where we want to POST our XML structure
curl_setopt($ch, CURLOPT_URL, $this->_mUrl);

/* Do not verify the Common name of the peer certificate in the SSL
handshake */

curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, 0);

// Prevent CURL from verifying the peer's certificate
curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);

/* We want CURL to directly return the transfer instead of
printing it */

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

// Perform a CURL session
$result = curl_exec($ch);

// Close a CURL session
curl_close ($ch);

// Return the response
return $result;

}
}
?>

2. Define the DataCash URL and login data at the end of your include/config.php file:

// Constant definitions for datacash
define('DATACASH_URL', 'https://testserver.datacash.com/Transaction');
define('DATACASH_CLIENT', 'your account client number');
define('DATACASH_PASSWORD', 'your account password');

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS514

648XCH15.qxd 11/15/06 6:21 PM Page 514

3. Create the test_datacash.php file in your project’s home (the hatshop folder), and add the following
in it:

<?php
session_start();

if (empty ($_GET['step']))
{
require_once 'include/config.php';
require_once BUSINESS_DIR . 'datacash_request.php';

$request = new DataCashRequest(DATACASH_URL);
$request->MakeXmlPre(DATACASH_CLIENT, DATACASH_PASSWORD,

8880000 + rand(0, 10000), 49.99, 'GBP',
'pre', '3528000000000007', '11/08');

$request_xml = $request->GetRequest();
$_SESSION['pre_request'] = $request_xml;

$response_xml = $request->GetResponse();
$_SESSION['pre_response'] = $response_xml;

$xml = simplexml_load_string($response_xml);
$request->MakeXmlFulfill(DATACASH_CLIENT, DATACASH_PASSWORD,

'fulfill', $xml->merchantreference,
$xml->datacash_reference);

$response_xml = $request->GetResponse();
$_SESSION['fulfill_response'] = $response_xml;

}
else
{
header('Content-type: text/xml');

switch ($_GET['step'])
{
case 1:
print $_SESSION['pre_request'];

break;
case 2:
print $_SESSION['pre_response'];

break;
case 3:

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS 515

648XCH15.qxd 11/15/06 6:21 PM Page 515

print $_SESSION['fulfill_response'];

break;
}
exit;

}
?>
<frameset cols="33%, 33%, 33%">
<frame src="test_datacash.php?step=1">
<frame src="test_datacash.php?step=2">
<frame src="test_datacash.php?step=3">

</frameset>

4. Load the test_datacash.php file in your browser to see the results. If you use Opera, the output should
look like Figure 15-1 because Opera only shows the contents of the XML elements. If you use another web
browser, you would see properly formatted XML documents.

Figure 15-1. DataCash transaction results

5. Log on to https://testserver.datacash.com/reporting2 to see the transaction log for your
DataCash account (note that this view takes a while to update, so you might not see the transaction right
away). This report is shown in Figure 15-2.

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS516

648XCH15.qxd 11/15/06 6:21 PM Page 516

Figure 15-2. DataCash transaction report details

How It Works: The Code That Communicates with DataCash

The DataCashRequest class is quite simple. First the constructor sets the HTTPS address where you send your
requests:

// Constructor initializes the class with URL of DataCash
public function __construct($url)
{
// Datacash URL
$this->_mUrl = $url;

}

When you want to make a pre-authentication request, you first need to call the MakeXmlPre method to create the
required XML for this kind of request. Some XML elements are optional (such as startdate or issuenumber,
which get default values in case you don’t provide your own—have a look at the definition of the MakeXmlPre
method), but the others are mandatory.

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS 517

648XCH15.qxd 11/15/06 6:21 PM Page 517

■Note If you want to see exactly which elements are mandatory and which are optional for each kind of
request, check the XML API FAQ document from DataCash.

The next kind of request you must be able to make to the DataCash system is a fulfill request. The XML for this
kind of request is prepared in the MakeXmlFulfill method.

You then have the GetRequest method that returns the last XML document built by either MakeXmlPre or
MakeXmlFulfill:

// Get the current XML
public function GetRequest()
{
return $this->_mXml;

}

Finally, the GetResponse method actually sends the latest XML request file, built by a call to either
MakeXmlPre or MakeXmlFulfill, and returns the response XML. Let’s take a closer look at this method.

GetResponse starts by initializing a CURL session and setting the POST method to send your data:

// Send an HTTP POST request to DataCash using CURL
public function GetResponse()
{
// Initialize a CURL session
$ch = curl_init();

// Prepare for an HTTP POST request
curl_setopt($ch, CURLOPT_POST, 1);

// Prepare the XML document to be POSTed
curl_setopt($ch, CURLOPT_POSTFIELDS, $this->_mXml);

// Set the URL where we want to POST our XML structure
curl_setopt($ch, CURLOPT_URL, $this->_mUrl);

/* Do not verify the Common name of the peer certificate in the SSL
handshake */

curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, 0);

// Prevent CURL from verifying the peer's certificate
curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);

To return the transfer into a PHP variable, we set the CURLOPT_RETURNTRANSFER parameter to 1, send the
request, and close the CURL session:

/* We want CURL to directly return the transfer instead of
printing it */

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS518

648XCH15.qxd 11/15/06 6:21 PM Page 518

// Perform a CURL session
$result = curl_exec($ch);

// Close a CURL session
curl_close ($ch);

// Return the response
return $result;

}

The test_datacash.php file acts like this. When you load it in the browser, the script makes a pre-authentication
request and a fulfill request and then saves the pre-authentication request XML, the pre-authentication response
XML, and the fulfill response XML data in the session:

session_start();

if (empty ($_GET['step']))
{
require_once 'include/config.php';
require_once BUSINESS_DIR . 'datacash_request.php';

$request = new DataCashRequest(DATACASH_URL);
$request->MakeXmlPre(DATACASH_CLIENT, DATACASH_PASSWORD,

8880000 + rand(0, 10000), 49.99, 'GBP',
'pre', '3528000000000007', '11/08');

$request_xml = $request->GetRequest();
$_SESSION['pre_request'] = $request_xml;

$response_xml = $request->GetResponse();
$_SESSION['pre_response'] = $response_xml;

$xml = simplexml_load_string($response_xml);
$request->MakeXmlFulfill(DATACASH_CLIENT, DATACASH_PASSWORD,

'fulfill', $xml->merchantreference,
$xml->datacash_reference);

$response_xml = $request->GetResponse();
$_SESSION['fulfill_response'] = $response_xml;

}

The test_datacash.php page will be loaded three more times because you have three frames that you want to
fill with data:

<frameset cols="33%, 33%, 33%">
<frame src="test_datacash.php?step=1">
<frame src="test_datacash.php?step=2">
<frame src="test_datacash.php?step=3">

</frameset>

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS 519

648XCH15.qxd 11/15/06 6:21 PM Page 519

Depending on the value, you decide which of the XMLs that you previously saved in the user session should be
displayed as follows:

else
{
header('Content-type: text/xml');

switch ($_GET['step'])
{
case 1:
print $_SESSION['pre_request'];

break;
case 2:
print $_SESSION['pre_response'];

break;
case 3:
print $_SESSION['fulfill_response'];

break;
}
exit;

}

Integrating DataCash with HatShop
Now that you have a new class that performs credit card transactions, all you need to do is
integrate its functionality into the order pipeline you built in the previous chapters. To fully
integrate DataCash with HatShop, you’ll need to update the existing PsCheckFunds and
PsTakePayments classes.

You need to modify the pipeline section classes that deal with credit card transactions.
We’ve already included the infrastructure for storing and retrieving authentication codes and
reference information, via the OrderProcessor.SetOrderAuthCodeAndReference method.

Exercise: Implementing the Order Pipeline Classes

1. First modify business/ps_check_funds.php to work with DataCash:

<?php
class PsCheckFunds implements IPipelineSection
{
public function Process($processor)
{
// Audit
$processor->CreateAudit('PsCheckFunds started.', 20100);

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS520

648XCH15.qxd 11/15/06 6:21 PM Page 520

$order_total_cost = $processor->mOrderInfo['total_amount'];
$order_total_cost += $processor->mOrderInfo['shipping_cost'];
$order_total_cost +=
round((float)$order_total_cost *

(float)$processor->mOrderInfo['tax_percentage'], 2) / 100.00;

$request = new DataCashRequest(DATACASH_URL);
$request->MakeXmlPre(DATACASH_CLIENT, DATACASH_PASSWORD,
$processor->mOrderInfo['order_id'] + 1000006,
$order_total_cost, 'GBP', 'pre',
$processor->mCustomerInfo['credit_card']->CardNumber,
$processor->mCustomerInfo['credit_card']->ExpiryDate,
$processor->mCustomerInfo['credit_card']->IssueDate,
$processor->mCustomerInfo['credit_card']->IssueNumber);

$responseXml = $request->GetResponse();
$xml = simplexml_load_string($responseXml);

if ($xml->status == 1)
{
$processor->SetAuthCodeAndReference(
$xml->merchantreference, $xml->datacash_reference);

// Audit
$processor->CreateAudit('Funds available for purchase.', 20102);

// Update order status
$processor->UpdateOrderStatus(2);

// Continue processing
$processor->mContinueNow = true;

}
else
{
// Audit
$processor->CreateAudit('Funds not available for purchase.', 20103);

throw new Exception('Credit card check funds failed for order ' .
$processor->mOrderInfo['order_id'] . "\n\n" .
'Data exchanged:' . "\n" .
$request->GetResponse() . "\n" . $responseXml);

}

// Audit
$processor->CreateAudit('PsCheckFunds finished.', 20101);

}
}
?>

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS 521

648XCH15.qxd 11/15/06 6:21 PM Page 521

2. Modify the business/ps_take_payment.php file as follows:

<?php
class PsTakePayment implements IPipelineSection
{
public function Process($processor)
{
// Audit
$processor->CreateAudit('PsTakePayment started.', 20400);

$request = new DataCashRequest(DATACASH_URL);
$request->MakeXmlFulFill(DATACASH_CLIENT, DATACASH_PASSWORD, 'fulfill',

$processor->mOrderInfo['auth_code'],
$processor->mOrderInfo['reference']);

$responseXml = $request->GetResponse();
$xml = simplexml_load_string($responseXml);

if ($xml->status == 1)
{
// Audit
$processor->CreateAudit(
'Funds deducted from customer credit card account.', 20402);

// Update order status
$processor->UpdateOrderStatus(5);

// Continue processing
$processor->mContinueNow = true;

}
else
{
// Audit
$processor->CreateAudit('Could not deduct funds from credit card.',

20403);

throw new Exception('Credit card take payment failed for order ' .
$processor->mOrderInfo['order_id'] . "\n\n" .
'Data exchanged:' . "\n" .
$request->GetResponse() . "\n" . $responseXml);

}

// Audit
$processor->CreateAudit('PsTakePayment finished.', 20401);

}
}
?>

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS522

648XCH15.qxd 11/15/06 6:21 PM Page 522

3. Add a reference to the business/datacash_request.php file in include/app_top.php as high-
lighted:

require_once BUSINESS_DIR . 'ps_ship_ok.php';
require_once BUSINESS_DIR . 'ps_final_notification.php';
require_once BUSINESS_DIR . 'datacash_request.php';

Testing DataCash Integration
Now that you have all this in place, it’s important to test with a few orders. You can do this
easily by making sure you create a customer with “magic” credit card details. As mentioned
earlier in the chapter, DataCash supplies these numbers for testing purposes and to obtain
specific responses from DataCash. A sample of these numbers is shown in Table 15-2; a full
list is available on the DataCash web site.

Table 15-2. DataCash Credit Card Test Numbers

Card Type Card Number Return Code Description Sample Message

Switch 4936000000000000001 1 Authorized with AUTH CODE ??????
random auth code.

4936000000000000019 7 Decline the DECLINED
transaction.

6333000000000005 1 Authorized with AUTH CODE ??????
random auth code.

6333000000000013 7 Decline the DECLINED
transaction.

6333000000123450 1 Authorized with AUTH CODE ??????
random auth code.

Visa 4242424242424242 7 Decline the DECLINED
transaction.

4444333322221111 1 Authorized with AUTH CODE ??????
random auth code.

4546389010000131 1 Authorized with AUTH CODE ??????
random auth code.

At this moment, you can experiment with your new fully featured e-commerce web site
by placing orders with the test credit card numbers, checking the emails the web site sends,
and finding out how it reacts in certain situation, such as how it logs errors, how orders are
administered using the orders administration page, and so on.

Going Live
Moving from the test account to the live one is now simply a matter of replacing the DataCash
login info in include/config.php. After you set up a merchant bank account, you can use the
new details to set up a new DataCash account, obtaining new client and password data along
the way. You also need to change the URL for the DataCash server that you send data to

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS 523

648XCH15.qxd 11/15/06 6:21 PM Page 523

because it needs to be the production server instead of the testing server. Other than removing
the test user accounts from the database and moving your web site to an Internet location (see
Appendix B for more details), this is all you need to do before exposing your newly completed
e-commerce application to customers.

Working with Authorize.net
To use Authorize.net, you need to sign up for a developer test account via http://developer.
authorize.net/testaccount/. The main page where developers can get information on
Authorize.net integration is http://developer.authorize.net/.

Communicating with Authorize.net is different from communicating with DataCash.
Instead of sending and receiving XML files, you send strings consisting of name-value pairs,
separated by ampersands. Effectively, you use a similar syntax to query strings appended to
URLs.

Authorize.net returns the transaction results in the form of a string that contains the
return values (without their names) separated by a character that you specify when making
the initial request. In our examples, we’ll use the pipe (|) character. The return values come in
a predetermined order, and their significance is given by their position in the returned string.

■Note The complete documentation for the Authorize.net API can be found in the Advanced Integration
Method (AIM) Implementation Guide Card-Not-Present Transactions at http://www.authorize.net/
support/AIM_guide.pdf. Even more documents are available in the document library at
http://www.authorize.net/resources/documentlibrary/.

The default transaction type is AUTH_CAPTURE, where you request and deduct the funds
from the credit card using a single request. For HatShop, we’ll use two other transaction
types: AUTH_ONLY, which checks if the necessary funds are available (this happened in the
PsCheckFunds pipeline stage), and PRIOR_AUTH_CAPTURE, which deducts the amount of money
that was previously checked using AUTH_ONLY (this happens in the PsTakePayment pipeline
stage).

To perform an AUTH_ONLY transaction, you’ll first create an array such as the following,
which contains the necessary transaction data.

// Auth
$transaction = array ('x_invoice_num' => '99999', // Invoice number

'x_amount' => '45.99', // Amount
'x_card_num' => '4007000000027', // Credit card number
'x_exp_date' => '1209', // Expiration date
'x_method' => 'CC', // Payment method
'x_type' => 'AUTH_ONLY'); // Transaction type

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS524

648XCH15.qxd 11/15/06 6:21 PM Page 524

For PRIOR_AUTH_CAPTURE transactions, you don’t need to specify all this information again;
instead, you only need to pass the transaction ID that was returned in response of the
AUTH_ONLY request.

// Capture
$transaction = array (
'x_ref_trans_id' => $ref_trans_id, // Transaction id
'x_method' => 'CC', // Payment method
'x_type' => 'PRIOR_AUTH_CAPTURE'); // Transaction type

We’ll transform these arrays into a string of name-value pairs and submit them to the
Authorize.net server. The response comes in the form of a string whose values are separated
by a configurable character. In Figure 15-3, you can see a sample response for an AUTH_ONLY
request (left part of the window) and a sample response for a PRIOR_AUTH_CAPTURE request
(right part of the window).

We’ll write a simple test with this transaction type before implementing any modifica-
tions to HatShop. Follow the steps in the exercise to test Authorize.net.

Exercise: Testing Authorize.net

1. Create a new file named authorize_net_request.php in the business folder, and add the following
code to it:

<?php
class AuthorizeNetRequest
{
// Authorize Server URL
private $_mUrl;

// Will hold the current request to be sent to Authorize.net
private $_mRequest;

// Constructor initializes the class with URL of Authorize.net
public function __construct($url)
{
// Authorize.net URL
$this->_mUrl = $url;

}

public function SetRequest($request)
{
$this->_mRequest = '';

$request_init = array ('x_login' => AUTHORIZE_NET_LOGIN_ID,
'x_tran_key' =>
AUTHORIZE_NET_TRANSACTION_KEY,
'x_version' => '3.1',
'x_test_request' => AUTHORIZE_NET_TEST_REQUEST,
'x_delim_data' => 'TRUE',

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS 525

648XCH15.qxd 11/15/06 6:21 PM Page 525

'x_delim_char' => '|',
'x_relay_response' => 'FALSE');

$request = array_merge($request_init, $request);

foreach($request as $key => $value)
$this->_mRequest .= $key . '=' . urlencode($value) . '&';

}

// Send an HTTP POST request to Authorize.net using CURL
public function GetResponse()
{

// Initialize a CURL session
$ch = curl_init();

// Prepare for an HTTP POST request
curl_setopt($ch, CURLOPT_POST, 1);

// Prepare the request to be POSTed
curl_setopt($ch, CURLOPT_POSTFIELDS, rtrim($this->_mRequest, '& '));

// Set the URL where we want to POST our data
curl_setopt($ch, CURLOPT_URL, $this->_mUrl);

/* Do not verify the Common name of the peer certificate in the SSL
handshake */

curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, 0);

// Prevent CURL from verifying the peer's certificate
curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);

/* We want CURL to directly return the transfer instead of
printing it */

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

// Perform a CURL session
$result = curl_exec($ch);

// Close a CURL session
curl_close ($ch);

// Return the response
return $result;

}
}
?>

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS526

648XCH15.qxd 11/15/06 6:21 PM Page 526

2. Add the following at the end of the include/config.php file, modifying the constant data with the details
of your Authorize.net account:

// Constant definitions for authorize.net
define('AUTHORIZE_NET_URL', 'https://test.authorize.net/gateway/transact.dll');
define('AUTHORIZE_NET_LOGIN_ID', '[Your Login ID]');
define('AUTHORIZE_NET_TRANSACTION_KEY', '[Your Transaction Key]');
define('AUTHORIZE_NET_TEST_REQUEST', 'FALSE');

3. Add the following test_authorize_net.php test file in your site root folder:

<?php
session_start();

if (empty ($_GET['step']))
{
require_once 'include/config.php';
require_once BUSINESS_DIR . 'authorize_net_request.php';

$request = new AuthorizeNetRequest(AUTHORIZE_NET_URL);

// Auth
$transaction = array ('x_invoice_num' => '99999', // Invoice number

'x_amount' => '45.99', // Amount
'x_card_num' => '4007000000027', // Credit card no
'x_exp_date' => '1209', // Expiration date
'x_method' => 'CC', // Payment method
'x_type' => 'AUTH_ONLY'); // Transaction type

$request->SetRequest($transaction);
$auth_only_response = $request->GetResponse();

$_SESSION['auth_only_response'] = $auth_only_response;

$auth_only_response = explode('|', $auth_only_response);

// Read the transaction ID, which will be necessary for taking the payment
$ref_trans_id = $auth_only_response[6];

// Capture
$transaction = array ('x_ref_trans_id' => $ref_trans_id, // Transaction id

'x_method' => 'CC', // Payment method
'x_type' => 'PRIOR_AUTH_CAPTURE'); //
Transaction type

$request->SetRequest($transaction);
$prior_auth_capture_response = $request->GetResponse();

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS 527

648XCH15.qxd 11/15/06 6:21 PM Page 527

$_SESSION['prior_auth_capture_response'] = $prior_auth_capture_response;
}
else
{
switch ($_GET['step'])
{
case 1:
print $_SESSION['auth_only_response'];

break;
case 2:
print $_SESSION['prior_auth_capture_response'];

break;
}

exit;
}
?>
<frameset cols="50%, 50%">
<frame src="test_authorize_net.php?step=1">
<frame src="test_authorize_net.php?step=2">

</frameset>

4. Load the test_authorize_net.php page in your favorite browser to see the results (see Figure 15-3).

Figure 15-3. Authorize.net transaction results

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS528

648XCH15.qxd 11/15/06 6:21 PM Page 528

5. Go to Authorize.net, log in to Merchant Interface (https://test.authorize.net/), and you can see the
transaction you just performed in the Unsettled Transactions section under the Search tab. This report is
shown in Figure 15-4.

Figure 15-4. Authorize.net Unsettled Transactions

How It Works: Authorize.net Transactions

The hard work is done by the AuthorizeNetRequest class, which has two important methods: SetRequest is
used to set up transaction details, and GetResponse is used to send the request to, and retrieve the response
from, Authorize.net. The following code snippet shows how they are used:

// Auth
$transaction = array ('x_invoice_num' => '99999', // Invoice number

'x_amount' => '45.99', // Amount
'x_card_num' => '4007000000027', // Credit card number
'x_exp_date' => '1209', // Expiration date
'x_method' => 'CC', // Payment method

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS 529

648XCH15.qxd 11/15/06 6:21 PM Page 529

'x_type' => 'AUTH_ONLY'); // Transaction type

$request->SetRequest($transaction);
$response = $request->GetResponse();

■Note The credit card data mentioned in this transaction is one of the “magic card numbers” provided by
Authorize.net for testing purposes. Review the AIM Implementation Guide for the complete list of such credit
card numbers.

We send an array with transaction details as a parameter to SetRequest. SetRequest then joins this array with
another array that contains the Authorize.net account details:

public function SetRequest($request)
{
$this->_mRequest = '';

$request_init = array ('x_login' => AUTHORIZE_NET_LOGIN_ID,
'x_tran_key' => AUTHORIZE_NET_TRANSACTION_KEY,
'x_version' => '3.1',
'x_test_request' => AUTHORIZE_NET_TEST_REQUEST,
'x_delim_data' => 'TRUE',
'x_delim_char' => '|',
'x_relay_response' => 'FALSE');

$request = array_merge($request_init, $request);

The array data is merged into a name-value string that can be sent to Authorize.net. The values are encoded for
inclusion in the URL using the urlencode() function:

foreach($request as $key => $value)
$this->_mRequest .= $key . '=' . urlencode($value) . '&';

}

The GetResponse() method of AuthorizeNetRequest does the actual request, using the CURL library.

// Send an HTTP POST request to Authorize.net using CURL
public function GetResponse()
{
...

// Perform a CURL session
$result = curl_exec($ch);

// Close a CURL session
curl_close ($ch);

// Return the response

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS530

648XCH15.qxd 11/15/06 6:21 PM Page 530

return $result;
}

}
?>

When executing the GetResponse() function to perform an AUTH_ONLY transaction, the response will contain a
transaction ID. If the authorization is successful, we can then use this transaction ID to perform a
PRIOR_AUTH_CAPTURE transaction, which effectively takes the money from the customer’s account.

As explained earlier, the response from Authorize.net comes in the form of a string that contains values delimited
by a configurable character, which in our case is the pipe character (|). To read a particular value from the string,
we transform the string into an array using the explode() PHP function (http://www.php.net/manual/
en/function.explode.php):

$auth_only_response = $request->GetResponse();

$_SESSION['auth_only_response'] = $auth_only_response;

$auth_only_response = explode('|', $auth_only_response);

After this piece of code executes, $auth_only_response will contain an array whose elements are the values
that were delimited by the pipe character in the original string. From this array, we’re interested in the seventh ele-
ment, which, according to the Authorize.net documentation, is the transaction ID. (Read the Gateway Response API
details from http://www.authorize.net/support/AIM_guide.pdf for the complete details about the
Authorize.net response.)

// Read the transaction ID, which will be necessary for taking the payment
$ref_trans_id = $auth_only_response[6];

■Note The $auth_only_response array created by explode() is zero-based, so
$auth_only_response[6] represents the seventh element of the array.

The code that takes the money using this transaction ID is straightforward. Because the transaction has already been
authorized, we only need to specify the transaction ID received after authorization to complete the transaction:

// Capture
$transaction = array ('x_ref_trans_id' => $ref_trans_id, // Transaction id

'x_method' => 'CC', // Payment method
'x_type' => 'PRIOR_AUTH_CAPTURE'); // Transaction
type

$request->SetRequest($transaction);
$prior_auth_capture_response = $request->GetResponse();

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS 531

648XCH15.qxd 11/15/06 6:21 PM Page 531

Integrating Authorize.net with HatShop
As with DataCash, you’ll have to modify the PsCheckFunds and PsTakePayment classes to use the
new Authorize.net functionality.

Remember that you can use the files from the Source Code Download section of the
Apress web site (http://www.apress.com/) instead of typing the code yourself.

The final modifications involve changing the pipeline section classes that deal with
credit card transactions (PsCheckFunds and PsTakePayment). We’ve already included the
infrastructure for storing and retrieving authentication code and reference information via
the OrderProcessor::SetOrderAuthCodeAndReference method.

Exercise: Implementing the Order Pipeline Classes

1. First, modify business/ps_check_funds.php to work with Authorize.net:

<?php
class PsCheckFunds implements IPipelineSection
{
public function Process($processor)
{
// Audit
$processor->CreateAudit('PsCheckFunds started.', 20100);

$order_total_cost = $processor->mOrderInfo['total_amount'];
$order_total_cost += $processor->mOrderInfo['shipping_cost'];
$order_total_cost +=
round((float)$order_total_cost *

(float)$this->mOrderInfo['tax_percentage'], 2) / 100.00;

$exp_date = str_replace('/', '',
$processor->mCustomerInfo['credit_card']->ExpiryDate);

$transaction =
array (
'x_invoice_num' => $processor->mOrderInfo['order_id'],
'x_amount' => $order_total_cost, // Amount to charge
'x_card_num' => $processor->mCustomerInfo['credit_card']->CardNumber,
'x_exp_date' => $exp_date, // Expiry (MMYY)
'x_method' => 'CC',
'x_type' => 'AUTH_ONLY');

// Process Transaction
$request = new AuthorizeNetRequest(AUTHORIZE_NET_URL);
$request->SetRequest($transaction);

$response = $request->GetResponse();

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS532

648XCH15.qxd 11/15/06 6:21 PM Page 532

$response = explode('|', $response);

if ($response[0] == 1)
{
$processor->SetAuthCodeAndReference($response[4], $response[6]);

// Audit
$processor->CreateAudit('Funds available for purchase.', 20102);

// Update order status
$processor->UpdateOrderStatus(2);

// Continue processing
$processor->mContinueNow = true;

}
else
{
// Audit
$processor->CreateAudit('Funds not available for purchase.', 20103);

throw new Exception('Credit card check funds failed for order ' .
$processor->mOrderInfo['order_id'] . ".\n\n" .
'Data exchanged:' . "\n" .
var_export($transaction, true) . "\n" .
var_export($response, true));

}

// Audit
$processor->CreateAudit('PsCheckFunds finished.', 20101);

}
}
?>

2. Modify business/ps_take_payment.php as follows:

<?php
class PsTakePayment implements IPipelineSection
{
public function Process($processor)
{
// Audit
$processor->CreateAudit('PsTakePayment started.', 20400);

$transaction =
array ('x_ref_trans_id' => $processor->mOrderInfo['reference'],

'x_method' => 'CC',
'x_type' => 'PRIOR_AUTH_CAPTURE');

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS 533

648XCH15.qxd 11/15/06 6:21 PM Page 533

// Process Transaction
$request = new AuthorizeNetRequest(AUTHORIZE_NET_URL);
$request->SetRequest($transaction);

$response = $request->GetResponse();

$response = explode('|', $response);

if ($response[0] == 1)
{
// Audit
$processor->CreateAudit(
'Funds deducted from customer credit card account.',
20402);

// Update order status
$processor->UpdateOrderStatus(5);

// Continue processing
$processor->mContinueNow = true;

// Audit
$processor->CreateAudit('PsTakePayment finished.', 20401);

}
else
{
// Audit
$processor->CreateAudit(
'Error taking funds from customer credit card.', 20403);

throw new Exception('Credit card take payment failed for order ' .
$processor->mOrderInfo['order_id'] . ".\n\n" .
'Data exchanged:' . "\n" .
var_export($transaction, true) . "\n" .
var_export($response, true));

}
}

}
?>

3. Add a reference to the business/authorize_net_request.php file in include/app_top.php as
highlighted:

require_once BUSINESS_DIR . 'ps_ship_ok.php';
require_once BUSINESS_DIR . 'ps_final_notification.php';
require_once BUSINESS_DIR . 'authorize_net_request.php';

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS534

648XCH15.qxd 11/15/06 6:21 PM Page 534

Testing Authorize.net Integration
All you have to do now is run some tests with your new web site. Retrieve the list of “magic”
Authorize.net credit card numbers from the Advanced Integration Method (AIM) Imple-
mentation Guide, and experiment doing transactions with them.

Summary
In this chapter, you have completed your e-commerce application by integrating it with credit
card authorization. Short of putting your own products in, hooking it up with your suppliers,
getting a merchant bank account, and putting it on the web, you’re ready to go. Okay, so that’s
still quite a lot of work, but none of it is particularly difficult. The hard work is behind you now.

Specifically, in this chapter, we have looked at the theory behind credit card transactions on
the web and looked at one full implementation—DataCash. We created a library that can be
used to access DataCash and integrated it with our application. We also looked at Authorize.net.

CHAPTER 15 ■ CREDIT CARD TRANSACTIONS 535

648XCH15.qxd 11/15/06 6:21 PM Page 535

648XCH15.qxd 11/15/06 6:21 PM Page 536

Product Reviews

At this point, you have a complete and functional e-commerce web site. However, this
doesn’t stop you from adding even more features to it, making it more useful and pleasant
for visitors.

By adding a product review system to your web site, you increase the chances that
visitors will get back to your site, either to write a review for a product they bought, or to see
what other people think about that product.

A review system can also help you learn your customers’ tastes, which enables you to
improve the product recommendations, and even make changes in the web site or the struc-
ture of the product catalog based on customer feedback.

To make things easy for both you and the customer, you’ll add the list of product reviews
and the form to add a new product review to the products’ details pages. The form to add a
new product shows up only for registered users because we decided not to allow anonymous
reviews (however, you can easily change this if you like). You’ll create the code for this new fea-
ture in the usual way, starting from the database and finishing with the user interface (UI). The
final result of your work in this chapter will look like Figure 16-1.

537

C H A P T E R 1 6

648XCH16.qxd 11/19/06 12:31 PM Page 537

538 CHAPTER 16 ■ PRODUCT REVIEWS

Figure 16-1. The product details page containing product reviews

Implementing the Data Tier
For your review system, you have to create a review table and two data tier functions in your
hatshop database. The catalog_get_product_reviews function retrieves the reviews for a spe-
cific product, and the catalog_create_product_review method adds a review to a product.

Exercise: Adding Support for Customer Reviews to the Database

1. Load pgAdmin III, and connect to the hatshop database.

2. Click Tools ➤ Query tool (or click the SQL button on the toolbar). A new query window should appear.

3. Use the query tool to execute this code, which adds the review table in your hatshop database:

-- Create review table
CREATE TABLE review
(
review_id SERIAL NOT NULL,
customer_id INTEGER NOT NULL,
product_id INTEGER NOT NULL,

648XCH16.qxd 11/19/06 12:31 PM Page 538

review TEXT NOT NULL,
rating SMALLINT NOT NULL,
created_on TIMESTAMP NOT NULL,
CONSTRAINT pk_review_id PRIMARY KEY (review_id),
CONSTRAINT fk_customer_id FOREIGN KEY (customer_id)

REFERENCES customer (customer_id)
ON UPDATE RESTRICT ON DELETE RESTRICT,

CONSTRAINT fk_product_id FOREIGN KEY (product_id)
REFERENCES product (product_id)
ON UPDATE RESTRICT ON DELETE RESTRICT

);

4. Execute the following code, which creates the review_info type and the
catalog_get_product_review function in your hatshop database:

-- Create review_info type
CREATE TYPE review_info AS
(
customer_name VARCHAR(50),
review TEXT,
rating SMALLINT,
created_on TIMESTAMP

);

-- Create catalog_get_product_reviews function
CREATE FUNCTION catalog_get_product_reviews(INTEGER)
RETURNS SETOF review_info LANGUAGE plpgsql AS $$
DECLARE
inProductId ALIAS FOR $1;
outReviewInfoRow review_info;

BEGIN
FOR outReviewInfoRow IN
SELECT c.name, r.review, r.rating, r.created_on
FROM review r
INNER JOIN customer c

ON c.customer_id = r.customer_id
WHERE r.product_id = inProductId
ORDER BY r.created_on DESC

LOOP
RETURN NEXT outReviewInfoRow;

END LOOP;
END;

$$;

The catalog_get_product_review function retrieves the reviews for the product identified by the
inProductId parameter. You also need the name of the reviewer so we made an INNER JOIN with the
customer table.

CHAPTER 16 ■ PRODUCT REVIEWS 539

648XCH16.qxd 11/19/06 12:31 PM Page 539

5. Use the query tool to execute this code, which adds the catalog_create_product_review function in
your hatshop database:

-- Create catalog_create_product_review function
CREATE FUNCTION catalog_create_product_review(INTEGER, INTEGER, TEXT,

SMALLINT)
RETURNS VOID LANGUAGE plpgsql AS $$
DECLARE
inCustomerId ALIAS FOR $1;
inProductId ALIAS FOR $2;
inReview ALIAS FOR $3;
inRating ALIAS FOR $4;

BEGIN
INSERT INTO review (customer_id, product_id, review, rating, created_on)

VALUES (inCustomerId, inProductId, inReview, inRating, NOW());
END;

$$;

When a registered visitor adds a product review, the catalog_create_product_review function is
called.

Implementing the Business Tier
Add the corresponding business tier methods to the Catalog class from the business/
catalog.php file:

// Gets the reviews for a specific product
public static function GetProductReviews($productId)
{
// Build the SQL query
$sql = 'SELECT * FROM catalog_get_product_reviews(:product_id);';
// Build the parameters array
$params = array (':product_id' => $productId);
// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query and return the results
return DatabaseHandler::GetAll($result, $params);

}

// Creates a product review
public static function CreateProductReview($customer_id, $productId,

$review, $rating)
{
// Build the SQL query
$sql = 'SELECT catalog_create_product_review(:customer_id, :product_id,

CHAPTER 16 ■ PRODUCT REVIEWS540

648XCH16.qxd 11/19/06 12:31 PM Page 540

:review, :rating);';
// Build the parameters array
$params = array (':customer_id' => $customer_id,

':product_id' => $productId,
':review' => $review,
':rating' => $rating);

// Prepare the statement with PDO-specific functionality
$result = DatabaseHandler::Prepare($sql);

// Execute the query
return DatabaseHandler::Execute($result, $params);

}

Implementing the User Interface
Now it’s time to see the code you’ve written so far in action. The UI consists of the reviews
componentized template that will be placed on the product details page. You’ll create it in the
following exercise.

Exercise: Creating the reviews Componentized Template

1. Create the file presentation/templates/reviews.tpl, and add the following to it:

{* reviews.tpl *}
{load_reviews assign="reviews"}
{if $reviews->mTotalReviews != 0}
Customer reviews:

{section name=cReviews loop=$reviews->mReviews}

Review by
{$reviews->mReviews[cReviews].customer_name} on
{$reviews->mReviews[cReviews].created_on|date_format:"%A, %B %e, %Y"}

{$reviews->mReviews[cReviews].review}

Rating: [{$reviews->mReviews[cReviews].rating} of 5]

{/section}

{else}

Be the first person to voice your opinion!

CHAPTER 16 ■ PRODUCT REVIEWS 541

648XCH16.qxd 11/19/06 12:31 PM Page 541

{/if}
{if $reviews->mEnableAddProductReviewForm}
{* add review form *}
 Add a review:

<form method="post"
action="{$reviews->mAddProductReviewTarget|prepare_link:"http"}">
<table class="add_review">
<tr>
<td>
From: {$reviews->mReviewerName}

</td>
</tr>
<tr>
<td>
<textarea name="review"
rows="3" cols="65">[Add your review here]</textarea>

</td>
</tr>
<tr>
<td>
<table class="add_review">
<tr>
<td>
Your Rating:
<input type="radio" name="rating" value="1" /> 1
<input type="radio" name="rating" value="2" /> 2
<input type="radio" name="rating" value="3" checked="checked" /> 3
<input type="radio" name="rating" value="4" /> 4
<input type="radio" name="rating" value="5" /> 5

</td>
<td align="right">
<input type="submit" name="AddProductReview" value="Add review" />

</td>
</tr>

</table>
</td>

</tr>
</table>

</form>
{else}

You must log in to add a review.

CHAPTER 16 ■ PRODUCT REVIEWS542

648XCH16.qxd 11/19/06 12:31 PM Page 542

{/if}

2. Create the presentation/smarty_plugins/function.load_reviews.php file, and add the
following in it:

<?php
// Plugin functions inside plugin files must be named: smarty_type_name
function smarty_function_load_reviews($params, $smarty)
{
// Create Reviews object
$reviews = new Reviews();
$reviews->init();

// Assign template variable
$smarty->assign($params['assign'], $reviews);

}

// Class that handles product reviews
class Reviews
{
public $mProductId;
public $mReviews;
public $mTotalReviews;
public $mReviewerName;
public $mEnableAddProductReviewForm = false;
public $mAddProductReviewTarget = 'index.php';

public function __construct()
{
if (isset ($_GET['ProductID']))
$this->mProductId = (int)$_GET['ProductID'];

else
trigger_error('ProductID not set', E_USER_ERROR);

$this->mAddProductReviewTarget .= '?ProductID=' . $this->mProductId;
}

public function init()
{
// If visitor is logged in ...
if (Customer::IsAuthenticated())
{
// Check if visitor is adding a review
if (isset($_POST['AddProductReview']))
Catalog::CreateProductReview(Customer::GetCurrentCustomerId(),

$this->mProductId, $_POST['review'],
$_POST['rating']);

CHAPTER 16 ■ PRODUCT REVIEWS 543

648XCH16.qxd 11/19/06 12:31 PM Page 543

// Display "add review" form because visitor is registered
$this->mEnableAddProductReviewForm = true;

// Get visitor's (reviewer's) name
$customer_data = Customer::Get();
$this->mReviewerName = $customer_data['name'];

}

// Get reviews for this product
$this->mReviews = Catalog::GetProductReviews($this->mProductId);

// Get the number of the reviews
$this->mTotalReviews = count($this->mReviews);

}
}
?>

3. Open presentation/templates/product.tpl, and add the following lines at the end of it:

{include file="reviews.tpl"}

4. Add the following styles at the end of hatshop.css:

ul
{
list-style-type: none;
padding: 0px;

}
li span
{
background: #ccddff;
display: block;
padding: 5px;

}
.add_review tr td
{
background: #e6e6e6;
border: none;

}

CHAPTER 16 ■ PRODUCT REVIEWS544

648XCH16.qxd 11/19/06 12:31 PM Page 544

5. Load index.php in your browser, click on a product to view its product details page, and admire the results
(refer to Figure 16-1 at the beginning of this chapter). You must be logged in to add new reviews.

How It Works: The reviews Componentized Template

The reviews componentized template takes care of both displaying the reviews and adding a new review. The first
part of the reviews.tpl file determines whether you have any reviews to display for the current product. If you
don’t, a short message appears encouraging your visitor to write the first review.

{if $reviews->mTotalReviews != 0}
Customer reviews:

[a list with reviews]
{else}

Be the first person to voice your opinion!

{/if}

The second part of the template displays a form to add a review or a message that invites your visitor to “log in” to
be able to add a review:

{if $reviews->mEnableAddProductReviewForm}
{* add review form *}
 Add a review:

[add review form]
{else}

You must log in to add a review.

{/if}

The code from the function plugin is pretty straightforward and should not be a problem for you.

Summary
Yep, it was that simple. Although you might want to add certain improvements for your own
solution (for example, allow the visitors to edit their reviews, or forbid them from adding more
reviews), the base is there, and it works as expected.

You’re now all set to proceed to the final chapter of this book, where you’ll learn how to
sell items to your customer from Amazon.com by using XML Web Services.

CHAPTER 16 ■ PRODUCT REVIEWS 545

648XCH16.qxd 11/19/06 12:31 PM Page 545

648XCH16.qxd 11/19/06 12:31 PM Page 546

Connecting to Web Services

In the dynamic world of the Internet, sometimes it isn’t enough to just have an important
web presence; you also need to interact with functionality provided by third parties to achieve
your goals. So far in this book, you already saw how to integrate external functionality to
process payments from your customers.

In this chapter, you’ll learn new possibilities for integrating features from an external
source through a Web Service. A Web Service is a piece of functionality that is exposed
through a web interface using standard Internet protocols such as HTTP. The messages
exchanged by the client and the server are encoded using an XML-based protocol named
SOAP (Simple Object Access Protocol) or by using REST (Representational State Transfer).
These messages are sent over HTTP. You’ll learn more about these technologies a bit later.

The beauty of using Web Services is that the client and the server can use any technology,
any language, and any platform. As long as they exchange information with a standard proto-
col such as SOAP over HTTP, there is no problem if the client is a cell phone, and the server is a
Java application running on Solaris, for example.

The possibilities are exciting, and we recommend you purchase a book that specializes in
Web Services to discover more about their world. Have a look at the list of public Web Services
at http://www.xmethods.net/ to get an idea of the kinds of external functionality you can inte-
grate into your application.

In this chapter, you’ll learn how to integrate the Amazon E-Commerce Service (ECS; Web
Services interface provided by Amazon.com, formerly known as Amazon Web Services—AWS)
to sell Amazon.com products through your HatShop web site.

You already have an e-commerce web site that sells hats to its customers. You can go fur-
ther and make some more money from their passion for hats by incorporating some other
kinds of hats-related gifts from Amazon.com into your site. For free? Oh no . . . You’ll display
Amazon.com’s details on your site, but the final checkout will be processed by Amazon.com,
and Amazon.com will deliver in your bank account a small commission fee for purchases
made from your web site. Sounds like easy money, doesn’t it?

In this chapter, you’ll learn how to use ECS to add a special department called Amazon
Super Hats to your web store, which you can see in Figure 17-1. This will be a “special” depart-
ment in that it will be handled differently from others—for example, payment is handled
directly by Amazon when the visitor wants to buy a product. This chapter explores just a small
subset of ECS’s capabilities, so if you really want to make a fortune from this service, you
should dig deeper to find more substance.

547

C H A P T E R 1 7

648XCH17a.qxd 11/22/06 5:41 AM Page 547

548 CHAPTER 17 ■ CONNECT ING TO WEB SERV ICES

Figure 17-1. Integrating the Amazon Super Hats department into HatShop

The rest of the chapter is divided into two parts. In the first part, you’ll learn how to
access the Amazon E-Commerce Service (ECS); in the second part, you’ll integrate ECS into
the HatShop web site.

■Ti p The code in this chapter is independent of the rest of the site, so all you need to get started integrat-

ing Amazon functionality is the code from the first four chapters (so you have a working product catalog).

Of course, with minor adjustments you can also adapt this code to your own personal solutions.

648XCH17a.qxd 11/22/06 5:41 AM Page 548

Accessing the Amazon E-Commerce Serv i c e
Most service providers (including Amazon.com) use SOAP or REST (or both) to expose Web
Services to Internet client programs. You can choose to make a Web Service request by using
either REST or SOAP, and you get the exact same results with both options. In this chapter,
you’ll learn how to access ECS 4.0 using both REST and SOAP.

REST (Representational State Transfer) uses carefully crafted URLs with specific name-
value pairs to call specific methods on the servers. You can find two useful articles about
REST at http://www.xml.com/pub/a/2004/08/11/rest.html and http://www.onlamp.com/
pub/a/php/2003/10/30/amazon_rest.html.

REST is considered to be the easiest way to communicate with the Web Services that
expose this interface. Nonofficial sources say that 85% of ECS clients went the REST way.
When using REST, all you have to do to perform an Amazon search is to make a classical
HTTP GET request, and you’ll receive the response in XML format.

SOAP (Simple Object Access Protocol) is an XML-based standard for encoding the infor-
mation transferred in a Web Service request or response. SOAP is fostered by a number of
organizations, including powerful companies such as Microsoft, IBM, and Sun.

When accessing ECS, you can send the request either through REST or by sending a
SOAP message. The Web Service will return an XML response with the data you requested.

You’ll learn more about REST and SOAP by playing with ECS.

■N o t e You need to understand that in this chapter we’ll touch just a bit of the functionality provided by the

Amazon ECS. A serious discussion on the subject would probably need a separate book, but what you’ll see

in this chapter is enough to get you on the right track. Also, be aware that in this chapter we integrate func-

tionality from Amazon.com, but using the same Amazon ECS account, you can access services from

Amazon.fr, Amazon.ca, Amazon.de, Amazon.co.jp, and Amazon.co.uk.

Creating Your Amazon E-Commerce Service Account
The official ECS web site is located at http://www.amazon.com/webservices. You can find the
latest version of the documentation at http://developer.amazonwebservices.com/connect/—
be sure to bookmark this URL because you’ll find it very useful.

Before moving on, you need to create your account with the Amazon ECS. To access
ECS, you need an Access Key ID, which identifies your account in the ECS system. If you
don’t already have one, apply now at http://www.amazon.com/gp/aws/registration/
registration-form.html. The Access Key ID is a 20-character alphanumeric string.

■N o t e Before October 11, 2005, Amazon used to provide something called a Subscription ID, instead of an

Access Key ID. The purpose is similar, and if you already have a Subscription ID, you may continue using it.

For any new applications, Amazon encourages you to use the Access Key ID.

CHAPTER 17 ■ CONNECTING TO WEB SERVICES 549

648XCH17a.qxd 11/22/06 5:41 AM Page 549

The Access Key ID gives you access to more Amazon Web Services and Alexa Web Services
(Alexa is a service owned by Amazon), as you can see in Figure 17-2. To access some of these
services, you’ll also need a Secret Access Key, which you also get upon registration, but the
Secret Access Key isn’t required when working with ECS.

Figure 17-2. Amazon Web Services

Obtaining an Amazon Associate ID
T h e Access Key ID you created earlier is your key to re t rieving data through the Amazon ECS. T h i s
data allows you to compose the Amazon Super Hats department that you saw in Fi g u re 17-1.

CHAPTER 17 ■ CONNECT ING TO WEB SERV ICES550

648XCH17a.qxd 11/22/06 5:41 AM Page 550

What the Access Key ID can’t do is give you a commission from the Amazon.com products
that you sell through your web site. To obtain your money, you need to apply for an Associate
ID. The Associate ID is used in the Buy From Amazon links you’ll display in your special Amazon
department, and it’s the key that Amazon uses to identify you as the origin of that sale.

The Associate ID can even be used in the static web pages that contain links to
Amazon.com products, and it doesn’t require you to also have an ECS Access Key ID, which
has different purposes.

So before moving further, if you want to make any money out of your Amazon Super Hats
department, go get your Associate ID from http://associates.amazon.com/gp/associates/
apply/main.html. Otherwise, if at the moment you’re just interested in learning about the ECS,
feel free to skip this step now.

Accessing Amazon E-Commerce Service Using REST
REST Web Services are accessed by requesting a properly formed URL. Try the following link in
your browser (don’t forget to replace the string [Your Access Key ID] with your real Access
Key ID that you obtained earlier):

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService
&AWSAccessKeyId=[Your Access Key ID]
&Operation=ItemLookup
&IdType=ASIN
&ItemId=159059648X

■Ti p Make sure you type the entire URL on a single line; we’ve broken it down to individual elements to

make them easier to read.

Your browser will display an XML structure with information about the book you are
reading now. Figure 17-3 shows this XML structure in Firefox, which nicely displays the XML
document tree.

CHAPTER 17 ■ CONNECTING TO WEB SERVICES 551

648XCH17a.qxd 11/22/06 5:41 AM Page 551

Figure 17-3. The XML response of a Web Service request

Pretty cool, huh? You have just seen REST in action. Every product in the Amazon data-
base has a unique identifier called an ASIN (Amazon.com Standard Item Number). For books,
the ASIN is the book’s ISBN (this book has the ASIN 159059648X).

The Web Service request you just made tells ECS the following: I have an Access Key ID
(AWSAccessKeyId=[Your Access Key ID]), and I want to make an item lookup operation
(&Operation=ItemLookup) to learn more about the product with the 159059648X ASIN
(&IdType=ASIN&ItemId=159059648X).

You didn’t get much information about this book in this example—no price or availability
information and no links to the cover picture or customer reviews. ECS 4.0 introduced a finer
control of the data you want to receive using response groups (a response group is a set of
information about the product).

■N o t e At the time of writing, ECS offers a list of more than 35 possible response groups. In this book, we’ll

only explain the purpose of the response groups we’re using for HatShop; for the complete list, visit the ECS

documentation.

CHAPTER 17 ■ CONNECT ING TO WEB SERV ICES552

648XCH17a.qxd 11/22/06 5:41 AM Page 552

So let’s ask for some more data by using response groups. At the end of the link you’ve
composed earlier, add the following string to get more specific information about the book:
&ResponseGroup=Request,SalesRank,Small,Images,OfferSummary. The complete link should
look like this:

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService
&AWSAccessKeyId=[Your Access Key ID]
&Operation=ItemLookup
&IdType=ASIN
&ItemId=159059648X
&ResponseGroup=Request,SalesRank,Small,Images,OfferSummary

The new XML response from Amazon.com includes more details about the Amazon.com
item, as shown in Figure 17-4.

Figure 17-4. The XML response of a Web Service request

We have just mixed five response groups: Request, SalesRank, Small, Images, and
OfferSummary. To learn more about the response groups, go to http://developer.
amazonwebservices.com/connect/kbcategory.jspa?categoryID=5, and click the Latest Tech.
Docs button. Alternatively, you can click the Technical Documentation link, and then click

CHAPTER 17 ■ CONNECTING TO WEB SERVICES 553

648XCH17a.qxd 11/22/06 5:41 AM Page 553

the link of the latest documentation version. You can download the documentation in PDF
format, or you can read it online here: http://docs.amazonwebservices.com/
AWSEcommerceService/2006-09-13/.

In the ECS documentation, find the response groups details under the API Reference,
Response Groups section. Here’s the description for the five response groups used in the
previous example:

• Request response group is a default response group in every kind of operation, and it
returns the list of name-value pairs you used to make the request.

• Sales Rank response group returns data about the current Amazon.com sales rank of
the product.

• Small response group returns general item data (ASIN, item name, URL, and so on)
about items included in the response. This is a default response group for an Item-
Lookup operation (like we have in this example).

• Images response group gives you the addresses for the three pictures (small, medium,
and large) for each item in the response.

• OfferSummary response group returns price information for each item in the response.

Let’s continue by learning how to make a REST request from PHP. To populate the future
Amazon Super Hats department, you’ll search the Amazon.com Apparel department for the
“super hats” keywords. One trivial way is to use the PHP file_get_contents function, as you
can see in the following script.

To test accessing Web Services using REST, create a new file named test_rest.php in your
hatshop directory, and write the following code in it:

<?php
// Tell the browser it is going to receive an XML document.
header('Content-type: text/xml');

/* DON'T FORGET to replace the string '[Your Access Key ID]' with your
Access Key ID in the following line */

$url = 'http://webservices.amazon.com/onca/xml?Service=AWSECommerceService' .
'&AWSAccessKeyId=[Your Access Key ID]' .
'&Operation=ItemSearch' .
'&Keywords=super+hats' .
'&SearchIndex=Apparel' .
'&ResponseGroup=Request,Medium';

echo file_get_contents($url);
?>

CHAPTER 17 ■ CONNECT ING TO WEB SERV ICES554

648XCH17a.qxd 11/22/06 5:41 AM Page 554

■N o t e Some PHP installations and web hosting providers may not allow this code to run by default. In that

case, you can change this setting in php.ini:

allow_url_fopen = On

Alternatively, you can add the following line to include/config.php. This second solution is preferred

because it only affects your application, and it remains set if you need to move the application to another

server.

ini_set('allow_url_fopen', 'On');

Loading http://localhost/hatshop/test_rest.php will show you XML data about Ama-
zon’s Super Hats (see Figure 17-5).

Figure 17-5. Super Hats from Amazon

CHAPTER 17 ■ CONNECTING TO WEB SERVICES 555

648XCH17a.qxd 11/22/06 5:42 AM Page 555

To exercise and build more XML links, just study the examples in the “API Reference”
section of the ECS 4.0 documentation. The material will show you how to do a variety of
Amazon operations using REST.

Accessing Amazon E-Commerce Service Using SOAP
Using SOAP, you use a complex API to access the needed Amazon.com functionality. The
following code, which performs the same search operation for hats that you did earlier with
REST, is using the AWSECommerceService, ItemSearch, and ItemSearchRequest objects from the
Amazon API to perform the operation.

■Ti p To access the Amazon server using SOAP, we use the PHP SOAP extension. The documentation of the

PHP SOAP functionality can be found at http://www.php.net/soap/. Consult Appendix A to ensure you

have SOAP support enabled in your PHP installation.

To test accessing Web Services using SOAP, create a new file named test_soap.php in your
hatshop directory, and write the following code in it:

<?php
try
{
// Initialize SOAP client object
$client = new SoapClient(

'http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl');

/* DON'T FORGET to replace the string '[Your Access Key ID]' with your
subscription ID in the following line */

$request = array ('Service' => 'AWSECommerceService',
'AWSAccessKeyId' => '[Your Access Key ID]',
'Request' => array ('Operation' => 'ItemSearchRequest',

'Keywords' => 'super+hats',
'SearchIndex' => 'Apparel',
'ResponseGroup' => array ('Request',

'Medium')));

$result = $client->ItemSearch($request);

echo '<pre>';
print_r($result);
echo '</pre>';

}
catch (SoapFault $fault)
{
trigger_error('SOAP Fault: (faultcode: ' . $fault->faultcode . ', ' .

'faultstring: ' . $fault->faultstring . ')', E_USER_ERROR);
}
?>

CHAPTER 17 ■ CONNECT ING TO WEB SERV ICES556

648XCH17a.qxd 11/22/06 5:42 AM Page 556

CHAPTER 17 ■ CONNECTING TO WEB SERVICES 557

The whole SOAP request code is enclosed in a try block. If the SOAP request fails, it
throws an exception of the SoapFault type, which we transform into an error using the
trigger_error() function. Read more on the SOAP exception at http://www.php.net/manual/
en/function.is-soap-fault.php.

The result of the SOAP request is an object containing the requested data. If you load
test_soap.php in your browser (don’t forget to put your Access Key ID in it), it should display
the data in a text format that’s not easy to read by the human eye.

The code starts by creating a SOAP client object to the Amazon SOAP Web Service:

// Initialize SOAP client object
$client = new SoapClient(

'http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl');

The referenced WSDL (Web Services Definition Language) file describes all the functions
and their parameters’ types that Amazon SOAP server understands. The earlier created Ama-
zon SOAP client object knows about all these functions, and you can call them now using
something like this:

$result = $client->ItemSearch($request);

Alternatively, you can make the exact same call, and implicitly obtain the same results, by
using the __soapCall function (http://www.php.net/manual/en/function.
soap-soapclient-soapcall.php), like this:

$result->__soapCall('ItemSearch', array ($request));

The Web Service request does an ItemSearch operation on the “super+hats” keywords in
the “Apparel” store. The whole request is placed in a try-catch block that catches any potential
exceptions and generates an error. Read more on the SoapFault exception class, which con-
tains the details of the SOAP error, at http://www.php.net/manual/en/function.
is-soap-fault.php. Loading test_soap.php would generate the result shown in Figure 17-6.

648XCH17a.qxd 11/22/06 5:42 AM Page 557

CHAPTER 17 ■ CONNECT ING TO WEB SERV ICES558

Figure 17-6. The results of the SOAP request

Integrating Amazon E-Commerce Service with

H a t S h o p
The goal is to bring some books related to “super hats” from Amazon to your store. You’ll build
a special department with no categories that will display some book info (cover image, title,
authors, and price). Each book will have a Buy from Amazon link that allows your visitor to buy
the book from Amazon.com. If you apply for an Amazon Associates ID account, you’ll get a
small commission from this. After following the exercises, you’ll implement the Amazon inte-
gration as shown earlier in Figure 17-1.

The following link engages a REST search for Amazon Books on the “super hats” keywords
and returns the first ten products’ data sorted by their sales rank:

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService
&Operation=ItemSearch
&AWSAccessKeyId=[Your Access Key ID]
&Keywords=super+hat

648XCH17a.qxd 11/22/06 5:42 AM Page 558

&SearchIndex=Apparel
&ResponseGroup=Request%2CMedium%2CImages%2COffers&Sort=salesrank

From these products, we will place on our site only the ones available for purchase and
with cover images.

Implementing the Business Tier
In the business tier, you’ll add the code that accesses the ECS system.

Exercise: Adding ECS Communication Code to the Business Tier

1. Add the following code in your include/config.php file:

// Amazon E-Commerce Service
// define('AMAZON_METHOD', 'REST');
define('AMAZON_METHOD', 'SOAP');
define('AMAZON_WSDL',

'http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl');
define('AMAZON_REST_BASE_URL',

'http://webservices.amazon.com/onca/xml?Service=AWSECommerceService');

// Set Amazon Access Key ID
define('AMAZON_ACCESS_KEY_ID', '[Your Access Key ID]');

// Set Amazon Associates ID
define('AMAZON_ASSOCIATES_ID', '[Your amazon associates ID]');

// Set Amazon request options
define('AMAZON_SEARCH_KEYWORDS', 'super hat');
define('AMAZON_SEARCH_NODE', 'Apparel');
define('AMAZON_RESPONSE_GROUPS', 'Request,Medium');

2. Create a new file named amazon.php in the business folder, and add the following code to it. The single

public method, which will be called from the upper tiers, is GetProducts, whereas the others are private

methods for internal use that support the functionality of GetProducts.

<?php
// Class for accessing ECS
class Amazon
{

public function Amazon()
{
}

// Retrieves Amazon products for sending to presentation tier
public function GetProducts()
{

CHAPTER 17 ■ CONNECTING TO WEB SERVICES 559

648XCH17a.qxd 11/22/06 5:42 AM Page 559

// Use SOAP to get data
if (AMAZON_METHOD == 'SOAP')

$result = $this->GetDataWithSoap();
// Use REST to get data
else

$result = $this->GetDataWithRest();

// Initializes Array object
$results = array ();

// Format results
$results = $this->DataFormat($result);

// Returns results
return $results;

}

// Call ECS using REST
private function GetDataWithRest()
{
$params = array ('Operation' => 'ItemSearch',

'SubscriptionId' => AMAZON_ACCESS_KEY_ID,
'Keywords' => AMAZON_SEARCH_KEYWORDS,
'SearchIndex' => AMAZON_SEARCH_NODE,
'ResponseGroup' => AMAZON_RESPONSE_GROUPS,
'Sort' => 'salesrank');

$query_string = '&';
foreach ($params as $key => $value)

$query_string .= $key . '=' . urlencode($value) . '&';

$amazon_url = AMAZON_REST_BASE_URL . $query_string;

// Get the XML response using REST
$amazon_xml = file_get_contents($amazon_url);

// Unserialize the XML and return
return simplexml_load_string($amazon_xml);

}

// Call ECS using SOAP
private function GetDataWithSoap()
{
try
{

$client = new SoapClient(AMAZON_WSDL);

CHAPTER 17 ■ CONNECT ING TO WEB SERV ICES560

648XCH17a.qxd 11/22/06 5:42 AM Page 560

/* Set up an array containing input parameters to be
passed to the remote procedure */

$request = array ('SubscriptionId' => AMAZON_ACCESS_KEY_ID,
'Request' => array ('Operation' => 'ItemSearchRequest',

'Keywords' =>
AMAZON_SEARCH_KEYWORDS,

'SearchIndex' => AMAZON_SEARCH_NODE,
'ResponseGroup' =>

AMAZON_RESPONSE_GROUPS,
'Sort' => 'salesrank'));

// Invoke the method
$result = $client->ItemSearch($request);

return $result;
}
catch (SoapFault $fault)
{

trigger_error('SOAP Fault: (faultcode: ' . $fault->faultcode . ', ' .
'faultstring: ' . $fault->faultstring . ')', E_USER_ERROR);

}
}

/* Places an "image not available" picture for products with no image,
and saves the results in an array with a simple structure for easier
handling at the upper levels */

private function DataFormat($result)
{
/* Variable k is the index of the $new_result array, which will

contain the Amazon products to be displayed in HatShop */
$k = 0;

$new_result = array ();

/* Analyze all products retrieved from ECS
and save them into the $new_result array */

for ($i = 0; $i < count($result->Items->Item); $i++)
{

// Make a temporary copy for product data
$temp = $result->Items->Item[$i];

/* Set product's image to images/not_available.jpg,
if image url is empty */

if (property_exists($temp, 'SmallImage') &&
((string) $temp->SmallImage->URL) != '')

$new_result[$k]['image'] = (string) $temp->SmallImage->URL;
else

CHAPTER 17 ■ CONNECTING TO WEB SERVICES 561

648XCH17a.qxd 11/22/06 5:42 AM Page 561

$new_result[$k]['image'] = 'images/not_available.jpg';

// Save asin, brand, name, and price into the $new_result array
$new_result[$k]['asin'] = (string) $temp->ASIN;
$new_result[$k]['brand'] = (string) $temp->ItemAttributes->Brand;
$new_result[$k]['item_name'] = (string) $temp->ItemAttributes->Title;

if (property_exists($temp->OfferSummary, 'LowestNewPrice'))
$new_result[$k]['price'] =

(string) $temp->OfferSummary->LowestNewPrice->FormattedPrice;
elseif (property_exists($temp->ItemAttributes, 'ListPrice'))
$new_result[$k]['price'] =

(string) $temp->ItemAttributes->ListPrice->FormattedPrice;
else
$new_result[$k]['price'] = '';

$k++;
}

return $new_result;
}

}
?>

How It Works: Communicating with ECS

The only public Amazon business tier method is GetProducts() that takes care to retrieve data. Its functionality

is quite clear, as it uses a number of helper methods to get the work done. First, it decides whether it should use

SOAP or REST depending on the configuration setting you’ve added to include/config.php.

The AMAZON_METHOD constant you defined in include/config.php instructs whether ECS will be contacted

through REST or SOAP. The value of that constant (which should be REST or SOAP) decides whether

GetDataWithRest() or GetDataWithSoap() will be used to contact Amazon. No matter which method you

choose, the results should be the same:

// Retrieves Amazon products for sending to presentation tier
public function GetProducts()
{

// Use SOAP to get data
if (AMAZON_METHOD == 'SOAP')
$result = $this->GetDataWithSoap();

// Use REST to get data
else
$result = $this->GetDataWithRest();

GetDataWithSoap() and GetDataWithRest() return the list of products as an object. Then, we use the

DataFormat() method to parse the data from this object and return that data in the form of an associative array.

The DataFormat() method also places an “image not available” image for the Amazon products that don’t have

a product image.

CHAPTER 17 ■ CONNECT ING TO WEB SERV ICES562

648XCH17a.qxd 11/22/06 5:42 AM Page 562

// Initializes Array object
$results = array ();

// Format results
$results = $this->DataFormat($result);

// Returns results
return $results;

}

Let’s have a look now at GetAmazonDataWithRest() and GetAmazonDataWithSoap(), which are the meth-

ods that do the actual communication with ECS. GetAmazonDataWithRest() retrieves Web Service data using

REST. It starts by constructing the required query string by joining the individual parameters you want to send to

Amazon:

// Call ECS using REST
private function GetDataWithRest()
{

$params = array ('Operation' => 'ItemSearch',
'SubscriptionId' => AMAZON_ACCESS_KEY_ID,
'Keywords' => AMAZON_SEARCH_KEYWORDS,
'SearchIndex' => AMAZON_SEARCH_NODE,
'ResponseGroup' => AMAZON_RESPONSE_GROUPS,
'Sort' => 'salesrank');

$query_string = '&';
foreach ($params as $key => $value)
$query_string .= $key . '=' . urlencode($value) . '&';

The complete Amazon URL that you need to call is composed of the base URL (which you saved as a constant in

include/config.php) to which you append the query string you just built:

$amazon_url = AMAZON_REST_BASE_URL . $query_string;

Using the file_get_contents() function, you make a simple HTTP GET request to Amazon. It's just like typing

the address in your browser:

// Get the XML response using REST
$amazon_xml = file_get_contents($amazon_url);

The $amazon_xml variable will contain a string with the returned XML data. To further process it, we use the

simplexml_load_string() function that parses the XML text and returns a SimpleXMLElement object repre-

senting the XML document. Read more details at http://www.php.net/manual/en/
function.simplexml-load-string.php.

// Unserialize the XML and return
return simplexml_load_string($amazon_xml);

}

The GetAmazonDataWithSoap() method has similar functionality as GetAmazonDataWithRest(), but it

makes the ItemSearch operation using SOAP. The logic this method uses to contact ECS is the same as in the

page you wrote earlier in this chapter.

CHAPTER 17 ■ CONNECTING TO WEB SERVICES 563

648XCH17a.qxd 11/22/06 5:42 AM Page 563

Implementing the Presentation Tier
Let’s create the componentized template that will display the hats and then modify the
departments_list componentized template to include this new department.

Exercise: Displaying Amazon.com Products in HatShop

1. Add a new file named amazon_products_list.tpl in the presentation/templates folder of your

project, and add the following code in it:

{* amazon_products_list.tpl *}
{load_amazon_products_list assign="amazon_products_list"}
<p class="title">{$amazon_products_list->mDepartmentName}</p>

<p class="description">{$amazon_products_list->mDepartmentDescription}</p>
{section name=k loop=$amazon_products_list->mProducts}

{assign var=direction_p value="left"}
{if $smarty.section.k.index != 0 &&

($smarty.section.k.index + 1) % 2 == 0}
{assign var=direction_p value="right"}

{else}

{/if}
<p class="{$direction_p}">

mProducts[k].image}"
border="0" height="70" alt="Product image" class="product_image" />

{$amazon_products_list->mProducts[k].item_name}

by {$amazon_products_list->mProducts[k].brand}

{if $amazon_products_list->mProducts[k].price}
Price:

{$amazon_products_list->mProducts[k].price}

{/if}

<a class="small_link" target="_blank"
href="{$amazon_products_list->mProducts[k].link}">
Buy From Amazon

</p>

{/section}

CHAPTER 17 ■ CONNECT ING TO WEB SERV ICES564

648XCH17a.qxd 11/22/06 5:42 AM Page 564

2. Create a new file named function.load_amazon_products_list.php in the

presentation/smarty_plugins folder, and add the following code in it:

<?php
// Plugin functions inside plugin files must be named: smarty_type_name
function smarty_function_load_amazon_products_list($params, $smarty)
{

// Create AmazonProductsList object
$amazon_products_list = new AmazonProductsList();
$amazon_products_list->init();

// Assign template variable
$smarty->assign($params['assign'], $amazon_products_list);

}

// Class that handles receiving ECS data
class AmazonProductsList
{

// Public variables available in smarty template
public $mProducts;
public $mDepartmentName;
public $mDepartmentDescription;

// Constructor
public function __construct()
{
$this->mDepartmentName = AMAZON_DEPARTMENT_TITLE;
$this->mDepartmentDescription = AMAZON_DEPARTMENT_DESCRIPTION;

}

public function init()
{
$amazon = new Amazon();
$this->mProducts = $amazon->GetProducts();

for ($i = 0;$i < count($this->mProducts); $i++)
$this->mProducts[$i]['link'] =
'http://www.amazon.com/exec/obidos/ASIN/' .
$this->mProducts[$i]['asin'] .
'/ref=nosim/' . AMAZON_ASSOCIATES_ID;

}
}
?>

3. Add the following styles at the end of hatshop.css:

.small_title
{

font-family: arial, tahoma, verdana;

CHAPTER 17 ■ CONNECTING TO WEB SERVICES 565

648XCH17a.qxd 11/22/06 5:42 AM Page 565

CHAPTER 17 ■ CONNECT ING TO WEB SERV ICES566

font-size: 12px;
font-weight: bold;

}
a.small_link
{

color: #0000ff;
font-family: arial, tahoma, verdana;
font-size: 11px;
text-decoration: underline;

}
a.small_link:hover
{

color: #0000ff;
font-family: arial, tahoma, verdana;
font-size: 11px;

}

4. Add the following two configuration lines at the end of your include/config.php file:

// Amazon.com department configuration options
define('AMAZON_DEPARTMENT_TITLE', 'Amazon Super Hats');
define('AMAZON_DEPARTMENT_DESCRIPTION',

'Browse these super hats that Amazon.com offers');

5. Modify the presentation/templates/departments_list.tpl template file to add the Amazon Super

Hats department. Add the highlighted code as shown here:

{* Generate a link for a new department in the list *}
<a {$selected_d}
href="{$departments_list->mDepartments[i].link|prepare_link:"http"}">
» {$departments_list->mDepartments[i].name}

{/section}
{assign var=selected_d value=""}
{if $departments_list->mAmazonSelected}

{assign var=selected_d value="class=\"selected\""}
{/if}

<a {$selected_d}
href="{$departments_list->mAmazonDepartmentLink|prepare_link:"http"}">
» {$departments_list->mAmazonDepartmentName}

</div>
{* End departments list *}

648XCH17a.qxd 11/22/06 5:42 AM Page 566

CHAPTER 17 ■ CONNECTING TO WEB SERVICES 567

6. Update presentation/smarty_plugins/function.load_departments_list.php as highlighted

in this code snippet:

...
// Manages the departments list
class DepartmentsList
{

/* Public variables available in departments_list.tpl Smarty template */
public $mDepartments;
public $mSelectedDepartment;
public $mAmazonSelected = false;
public $mAmazonDepartmentName;
public $mAmazonDepartmentLink;

// Constructor reads query string parameter
public function __construct()
{
/* If DepartmentID exists in the query string, we're visiting a

department */
if (isset ($_GET['DepartmentID']))

$this->mSelectedDepartment = (int)$_GET['DepartmentID'];
else

$this->mSelectedDepartment = -1;

// Set Amazon department name and build the link for department
$this->mAmazonDepartmentName = AMAZON_DEPARTMENT_TITLE;
$this->mAmazonDepartmentLink = 'index.php?DepartmentID=' .

AMAZON_DEPARTMENT_TITLE;

// Check if the Amazon department is selected
if ((isset ($_GET['DepartmentID'])) &&

((string) $_GET['DepartmentID'] == AMAZON_DEPARTMENT_TITLE))
$this->mAmazonSelected = true;

}
...

7. Update include/app_top.php to reference the new business tier class by adding the following code at

the end of the file:

require_once BUSINESS_DIR . 'amazon.php';

8. Modify the index.php file to load the newly created componentized template:

...
// Load department details if visiting a department
if (isset ($_GET['DepartmentID']))
{

if ((string) $_GET['DepartmentID'] == AMAZON_DEPARTMENT_TITLE)
$pageContentsCell = 'amazon_products_list.tpl';

648XCH17a.qxd 11/22/06 5:42 AM Page 567

CHAPTER 17 ■ CONNECT ING TO WEB SERV ICES568

else
{
$pageContentsCell = 'department.tpl';
$categoriesCell = 'categories_list.tpl';

}
}
...

9. Load index.php in your browser, and then click on your newly created Amazon Super Hats department.

How It Works: Displaying Amazon.com Products in HatShop

In this exercise, you simply updated HatShop to display Amazon.com products by employing the techniques you

studied in the first part of the chapter. The new functionality isn’t especially complex, but the possibilities are

exciting.

To change the access method, modify the following in include/config.php:

// Amazon E-Commerce Service
define('AMAZON_METHOD', 'REST');

//define('AMAZON_METHOD', 'SOAP');

When Buy From Amazon links are clicked, Amazon.com associates that customer and what he or she purchases

to your Associate ID (which is mentioned in the links). In the init method from the AmazonProductsList class,

the GetProducts method from the Amazon class is called to get the data to populate the list of products. This

data is read to build the Amazon links to the retrieved products:

public function init()
{

$amazon = new Amazon();
$this->mProducts = $amazon->GetProducts();

for ($i = 0;$i < count($this->mProducts); $i++)
$this->mProducts[$i]['link'] =

'http://www.amazon.com/exec/obidos/ASIN/' .
$this->mProducts[$i]['asin'] .
'/ref=nosim/' . AMAZON_ASSOCIATES_ID;

}

However, you must know that Amazon offers many ways in which you can allow your visitors to buy their products.

If you log in to the Associates page, you’ll see a number of link types you can build and integrate into your web

site.

Perhaps the most interesting and powerful is the possibility to create and manage Amazon shopping carts from

your PHP code by using the Amazon API. If you’re really into integrating Amazon.com into your web site, you should

study the ECS documentation carefully and make the most of it.

648XCH17a.qxd 11/22/06 5:42 AM Page 568

S u m m a ry
In this chapter, you learned how to access Amazon E-Commerce Service using REST and
SOAP. You will be able to use the same techniques when accessing any kind of external func-
tionality exposed through these protocols.

Congratulations, you have just finished your journey into learning about building
e-commerce web sites with PHP and PostgreSQL. You have the knowledge to build your own
customized solutions, perhaps even more interesting and powerful than what we showed you
in this book. We hope you enjoyed reading this book, and we wish you good luck with your
own personal PHP and PostgreSQL projects!

CHAPTER 17 ■ CONNECTING TO WEB SERVICES 569

648XCH17a.qxd 11/22/06 5:42 AM Page 569

648XCH17a.qxd 11/22/06 5:42 AM Page 570

648XAppA.qxd 11/19/06 1:45 PM Page 571

Installing Apache, PHP, and
PostgreSQL

In this appendix, you’ll learn how to install

• Apache 2.2

• PHP 5.1 and the extra modules required for this book

• PostgreSQL 8.1

These are the software versions this appendix has been tested with. You should, however,
install the latest version of all software packages, understanding that the installation steps
might slightly differ. We’ll discuss installation under Windows and under Linux separately.

The HatShop application you’ll develop in the book may work with older versions of the
software too. It is very important that the PHP version is PHP 5.0 or more recent; the code uses
OOP syntax that isn’t recognized by older versions of PHP.

Because highly sensitive data such as credit card information must travel safely over the
Web, it’s critical to host your application on an SSL-powered web server. Also, the PHP instal-
lation must have these modules installed: CURL, mcrypt, mhash, SOAP, PDO, and PDO driver
for PostgreSQL.

Preparing Your Windows Playground
In this section, you’ll learn how to install Apache 2.2, PHP 5.1, and PostgreSQL 8.1 on your
development machine.

In Windows, installing an SSL-enabled Apache is a little bit more complicated than
installing Apache without SSL. You can follow this book even if you don’t have an SSL-enabled
Apache; if you choose to do so, you can skip to the upcoming “Installing Apache (No SSL)”
section.

Installing SSL-Enabled Apache
The steps that follow will install Apache on port 80, so you must make sure you don’t have
another web server, such as IIS, running on port 80.

571

A P P E N D I X A

572 APPENDIX A ■ INSTALLING APACHE, PHP, AND POSTGRESQL

1. Download httpd-2.2.3-win32-x86-ssl.zip, or a more recent version, from
http://www.apachelounge.com/download/.

2. Unpack the archive, and follow the steps in Read Me First.txt. Your Apache installa-
tion will reside in C:\Apache2, but https://localhost will not respond yet—there are
still a few steps to follow.

3. Copy ssleay32.dll and libeay32.dll from C:\Apache2\bin to the System32 folder of
your Windows installation. (Typically, the full path to it is C:\Windows\System32).

4. Open a command prompt window, and navigate to the C:\Apache2\bin folder of your
Apache installation, with a command that looks like

cd C:\Apache2\bin

5. Execute the following command, eventually replacing hatshop.csr with another name
(but be sure to keep the .csr extension):

openssl req -config C:\Apache2\conf\openssl.cnf -new -out hatshop.csr

6. When asked for “Common Name (that is, your web site’s domain name),” give the exact
domain name of your web server (for example, www.example.com). If the name in the
certificate doesn’t match with the URL perfectly, the browsers will alert the users with
a warning message.

7. Execute the following command:

openssl rsa -in privkey.pem -out hatshop.key

8. Execute the following command:

openssl x509 -in hatshop.csr -out hatshop.crt -req -signkey hatshop.key -days
365

9. Create a directory in the Apache folder named C:\Apache2\conf\ssl, and move
hatshop.key and hatshop.crt to it.

10. Open C:\Apache2\conf\httpd.conf, and uncomment the following lines:

LoadModule ssl_module modules/mod_ssl.so
Include conf/extra/httpd-ssl.conf

11. Open C:\Apache2\conf\extra\httpd-ssl.conf, find

SSLCertificateFile c:/Apache2/conf/server.crt

and change it to

SSLCertificateFile c:/Apache2/conf/ssl/hatshop.crt

648XAppA.qxd 11/19/06 1:45 PM Page 572

12. Also in httpd-ssl.conf, find

SSLCertificateKeyFile c:/Apache2/conf/server.key

and change it to

SSLCertificateKeyFile c:/Apache2/conf/ssl/hatshop.key

12. Restart Apache, and load https://localhost. You should get a simple “It Works” page.

Installing Apache (No SSL)
If you already have an SSL-enabled Apache installation, you don’t need to go through these
steps; instead, simply skip to installing PHP, in the next section.

Download the latest Win32 Binary (MSI Installer) version of the Apache HTTP Server
from http://httpd.apache.org/download.cgi. The file will be named something like
apache_2.x.y-win32-x86-no_ssl.msi. Execute the file.

At install time, you’ll be given the option to choose the location to which your Apache
web server should be installed. By default, this location is C:\Program Files\
Apache Software Foundation\Apache2.2\, but you can choose a more convenient location
(such as C:\Apache2) that will make your life working with Apache a tad easier.

After accepting the license agreement and reading the introductory text, you’re asked
to enter your server’s information (see Figure A-1).

Figure A-1. Installing Apache

If you’re not sure about how to complete the form, just use localhost for the first two
fields, and enter an email address for the last. You can change this information later by editing
the httpd.conf file (located in C:\Program Files\Apache Software Foundation\ApacheX.Y\
conf\httpd.conf by default).

APPENDIX A ■ INSTALLING APACHE, PHP, AND POSTGRESQL 573

648XAppA.qxd 11/19/06 1:45 PM Page 573

If you already have a web server (such as IIS) working on port 80, you’ll need to install
Apache on a different port. During installation, you have an option that specifies Apache
should work “only for Current User, on Port 8080, when started manually.” If you choose that
option, you will need to start the Apache service manually by going to the folder you installed
Apache to (by default, C:\Program Files\Apache Software Foundation\Apache2.2\bin), and
typing the following:

apache -k install

You can use the default options in the other screens.
After installing the Apache service, you’ll be able to see it in the Apache Service Monitor

program (accessible from the taskbar), which also allows you to start, stop, or restart the
Apache service. You’ll need to restart (or stop and then start) the service after making changes
to the httpd.conf configuration file.

After making sure the Apache2 service is started and running, test to make sure it works
okay. If you installed it on port 80, browse to http://localhost/. If you installed it on 8080, go to
http://localhost:8080/. You should see a welcome message that, for Apache 2.2, reads “It works!”

Installing PHP 5
Start by downloading the Windows binaries of the latest version of PHP from
http://www.php.net/downloads.php. Don’t use a PHP installer because it won’t include the
external extensions needed for HatShop.

■Caution The code doesn’t work with PHP 4 or older versions!

After you download the Windows binaries, follow these steps to install PHP:

1. Unzip the file (which should be named something like php-5.x.y-win32.zip) into a
folder named C:\PHP. You can choose another name or location for this folder if you
want.

2. Copy php5ts.dll from C:\PHP to C:\Windows\System32 (or to your System32 folder, if it
has a different location).

3. Copy php.ini-recommended from C:\PHP to your Windows folder, renaming it as
php.ini.

4. Uncomment the following lines from php.ini to enable the mhash, mcrypt, curl, pdo,
and soap extensions. If any of these lines isn’t present in the file, simply add it.

extension=php_mhash.dll
extension=php_mcrypt.dll
extension=php_curl.dll

extension=php_pdo.dll
extension=php_pdo_pgsql.dll
extension=php_soap.dll

APPENDIX A ■ INSTALLING APACHE, PHP, AND POSTGRESQL574

648XAppA.qxd 11/19/06 1:45 PM Page 574

5. Also in php.ini, find this line:

extension_dir = "./"

and change it to

extension_dir = "C:\PHP\ext"

6. Copy libmhash.dll, libeay32.dll, ssleay32.dll, and libmcrypt.dll from your PHP
folder to the Windows System32 folder.

7. Open for editing, with any text editor (even Notepad), the Apache configuration file.
The default location of this file is conf\httpd.conf under the Apache installation folder.

8. In httpd.conf, find the portion with many LoadModule entries, and add the following
lines (the names may vary depending on your specific Apache and PHP versions):

LoadModule php5_module c:/php/php5apache2_2.dll
AddType application/x-httpd-php .php

■Note If you don’t have the php5apach2_2.dll file in your PHP folder, you can get it in the packages you
can download from http://snaps.php.net/.

9. Also in httpd.conf, find the DirectoryIndex entry, and add index.php at the end of the
line, like this:

DirectoryIndex index.html index.php

10. Save your changes in httpd.conf, then restart Apache 2. If you get any errors at this
stage, you should check that you correctly implemented the previous steps.

11. To test that your PHP installation works, create a file named test.php in the htdocs
folder of your Apache installation with a call to PHP’s phpinfo() function:

<?php
phpinfo();
?>

12. Point your web browser to http://localhost/test.php (or http://localhost:8080/
test.php if you installed Apache to work on port 8080) to test whether everything went
okay with the installation. You should get a PHP information page similar to Figure 2-7
from Chapter 2.

APPENDIX A ■ INSTALLING APACHE, PHP, AND POSTGRESQL 575

648XAppA.qxd 11/19/06 1:45 PM Page 575

Installing PostgreSQL
To install PostgreSQL, follow these simple steps. We tested these steps with PostgreSQL 8.1,
but you should download the latest available version of PostgreSQL.

1. Visit http://www.postgresql.org/, and click the Downloads link from the menu.

3. Under the Download Core Distribution box, click Via FTP.

4. Select the binary directory from the list.

5. Select the folder for the latest available stable version.

6. Select win32.

7. Download the installer file, which is named something like postgresql-version.zip.
You will then probably be asked to select a mirroring location. Choose one close to
your current location.

8. Unzip the downloaded file, and execute the installer executable file.

9. In the first setup screen, choose your language, and click Start.

10. Use the default options in the first setup screens, but be sure to set the Account
password in the Service configuration screen (see Figure A-2).

Figure A-2. Testing the PHP installation

11. After clicking Next, confirm the creation of the postgres user account in Windows. If
you are warned about your password being weak, it’s probably safe to say No when
asked about replacing it with a random password during development on your local
machine.

APPENDIX A ■ INSTALLING APACHE, PHP, AND POSTGRESQL576

648XAppA.qxd 11/19/06 1:45 PM Page 576

12. In the next screen, you’re asked to configure the database cluster. Choose the settings
depending on your particular requirements. For example, it may be safe to choose the
default encoding to UTF-8 if you intend to store text that’s not supported by the default
encoding.

13. Click Next, make sure the selected procedural language PL/pgsql is selected, and click
Next again.

14. In the Enable Contrib Modules screen, select TSearch2, which will be used for full-text
searching, and click Next twice to install PostgreSQL.

Preparing Your Unix Playground
Almost all the Linux distributions include Apache, PHP, and PostgreSQL, however, you may
have out-of-date versions of these programs. Before trying to download anything, you should
check first whether you can find what you need on your system, online, or on the installation
CDs of your Linux distribution. We don’t have high requirements for Apache and PostgreSQL,
so you can do a binary installation for them, but you’ll have to compile PHP from sources to
enable all the libraries you will need.

Installing Apache 2
The most common way to create an SSL-powered web server is to use Apache and OpenSSL.
You probably have them installed on your system.

You should first check whether you have OpenSSL RPMs installed on your system with
the following command:

rpm -qa | grep openssl

If you don’t have OpenSSL, grab the following RPMs from a resource such as
http://www.rpmfind.net/, and install them. Be sure to take the latest available versions.

openssl-version.rpm
openssl-devel-version.rpm

We decided to build the latest Apache Web Server (version 2.2.3 at the moment of writing)
from sources. First, you should download the latest Unix Apache source from
http://httpd.apache.org/download.cgi, and uncompress it with something like this:

tar -zxvf httpd-2.2.3.tar.gz

Now you can move on to actually compile and install the Apache Web Server on your
system. Go to the root of the Apache sources, and execute the following commands (you need
to be logged in as root when executing make install):

./configure --prefix=/usr/local/apache2 --enable-so --enable-ssl --with-ssl --
enable-auth-digest
make
make install

APPENDIX A ■ INSTALLING APACHE, PHP, AND POSTGRESQL 577

648XAppA.qxd 11/19/06 1:45 PM Page 577

To enable SSL, you’ll need to install an SSL certificate into Apache. If you host your
application with a hosting company that offers SSL, you can do all testing on your develop-
ment machine with a “fake” SSL certificate that you generate on your own. You can do this by
making yourself a certificate authority. To generate your own certificate, you should follow
some of the excellent tutorials you can find on the Internet, such as the one at
http://www.linux.com/howtos/SSL-Certificates-HOWTO/index.shtml (you can also find many
more using a simple web search). Otherwise, if you want to install an SSL certificate for pro-
duction, you’ll need to get a “real” SSL certificate from a certification authority such as
VeriSign, as explained in Chapter 7.

Make any changes you need in the httpd.conf configuration file, and then start your
Apache server with

/usr/local/apache2/bin/apachectl start

■Note If you get errors such as “module access_module is built in and can’t be loaded,” try to comment
out the LoadModule line from the httpd.conf that corresponds to the module that generated the error.
An even better method is to try to comment out every module that you don’t need.

Now load http://localhost/ in your browser to make sure your Apache Web Server is up
and running, and then browse to https://localhost/ to test that you can also access Apache
through SSL.

Installing PostgreSQL 8
Follow these steps to install PostgreSQL on your system:

1. Download the PostgreSQL source code from http://www.postgresql.org/ftp/source/.
For the purposes of this installation guide, we’re using postgresql-8.1.5.tar.gz, but
you should download the latest available version instead.

2. Unpack the archive with a command such as the following:

tar -zxvf postgresql-8.1.5.tar.gz

3. Change context to the postgresq-8.1.5 folder:

cd postgresql-8.1.5

4. Execute the following command to prepare PostgreSQL to install to /usr/local/pgsql:

./configure --prefix=/usr/local/pgsql

5. Make sure you’re logged in as root (use the su command if necessary), and execute:

make install

APPENDIX A ■ INSTALLING APACHE, PHP, AND POSTGRESQL578

648XAppA.qxd 11/19/06 1:45 PM Page 578

6. For security reasons, PostgreSQL won’t allow root to start the server. Execute the fol-
lowing command to change the owner of all the files to postgres:

chown -R postgres:postgres /usr/local/pgsql

7. Log in as postgres, or use the su command, and then change the directory to
/usr/local/pgsql:

cd /usr/local/pgsql

8. Initialize a database cluster with this command:

bin/initdb -D ./data

9. Start PostgreSQL with this command:

bin/pg_ctl -D ./data -l data/logfile start

10. Now that PostgreSQL is started, you need to create a database and another user before
going any further. You should use a separate database for each of the projects to make
things a little cleaner and easier to understand. You should also use separate users for
each database. This keeps everything separate and “project a” won't be able to modify
any of “project b’s” data. To create a new user in PostgreSQL, it’s pretty simple. Just use
the following command and then follow the prompts:

/usr/local/pgsql/bin/createuser

The new user should not be able to create new databases or create new users. To create a
database, it's a little different:

/usr/local/pgsql/bin/createdb --owner=username databasename

Installing pgAdmin III
pgAdmin III doesn’t ship with the Linux version of PostgreSQL, as it does with the Windows
version. Keeping in mind to replace the file names with the actual ones in case you use newer
versions, here are the steps you should follow to install pgAdmin III on your Linux machine.

1. Download the source code for the pgAdmin III dependency wxWidgets from
http://wxwidgets.org/downloads/#latest_stable (currently the version for
pgAdmin III v1.4.3 is wxWidgets 2.6.3).

2. Unpack, build, and install the source code:

tar –zvxf wxWidgets*
cd wxWidgets*
./configure --with-gtk --enable-gtk2 --enable-unicode --enable-mimetype=no
make
make install

APPENDIX A ■ INSTALLING APACHE, PHP, AND POSTGRESQL 579

648XAppA.qxd 11/19/06 1:45 PM Page 579

Install wxWidgets contrib modules.
cd contrib/
make
make install

3. Download the latest version of pgAdmin III source code from http://
www.postgresql.org/ftp/pgadmin3/release.

4. Unpack, build, and install the source code:

tar -zvxf pgadmin3-1.4.3.tar.gz
cd pgadmin3-1.4.3
./configure
make all
make install

Installing PHP 5
Every time you want to get a new PHP library working on Linux, you need to recompile the
PHP module. That’s why it’s recommended to make a “good” compilation, with all the needed
libraries, from the start.

Go to http://www.php.net/downloads.php, get the complete source code archive of
PHP 5.x, and extract the contents in a directory.

Before compiling PHP and making Apache aware of it (by updating Apache’s configura-
tion file httpd.conf), you need to install the extra modules you’ll need to work under PHP.
Let’s deal with them one by one.

mhash
The mhash library provides a uniform interface to a large number of hashing algorithms. You
used it to hash customers’ passwords in Chapter 11. Refer to that chapter to learn more about
hashing.

Download mhash from http://mhash.sourceforge.net/, unpack it (using tar -zxvf), and
install it by executing the following commands:

./configure

./make

./make install

Alternatively, if you use Red Hat, you can download the RPMs from http://
www.ottolander.nl/opensource/mhash/libmhash.html and install them. We installed both
libmhash-0.8.18-2a.i386.rpm and libmhash-devel-0.8.18-2a.i386.rpm RPMs.

mcrypt
This library allows you to use a wide range of encryption functions. You’ll need it to encrypt
highly sensitive information such as credit card details as discussed in Chapter 11. (Refer to
Chapter 11 for more details about this.)

APPENDIX A ■ INSTALLING APACHE, PHP, AND POSTGRESQL580

648XAppA.qxd 11/19/06 1:45 PM Page 580

APPENDIX A ■ INSTALLING APACHE, PHP, AND POSTGRESQL 581

Download mcrypt from http://mcrypt.sourceforge.net/, unpack it (using tar -zxvf),
and install it by executing the following commands:

./configure

./make

./make install

Alternatively, you can find the RPMs for Red Hat at http://www.ottolander.nl/
opensource/mcrypt/mcrypt.html. We installed both libmcrypt-2.5.7-1a.i386.rpm and
libmcrypt-devel-2.5.7-1a.i386.rpm RPMs.

Alternatively, you can use the source code from http://mcrypt.sourceforge.net.

CURL (Client URL Library) Functions
You’ll use libcurl, a library that allows you to connect and communicate to many different
types of servers with many different types of protocols. You need it to communicate through
SSL with the payment gateways in Chapter 14. You can take a fresh version of the curl library
from http://curl.haxx.se/download.html, but you can also use http://www.rpmfind.net to
find the RPM packages for your system.

libxml2
PHP 5 requires a libxml2 library version 2.5.10 or greater. If your Unix or Linux system doesn’t
have a recent enough version, go get fresh RPMs of libxml2 and libxml2-devel from
http://xmlsoft.org/ and install them.

You can check for your libxml2 library with the following command:

rpm -qa | grep libxml2

Compiling and Installing PHP 5
To compile and install PHP 5, follow these steps:

1. Go to the folder where you extracted the PHP source and execute the following
commands:

./configure --with-config-file-path=/etc
--with-pdo-pgsql=/usr/local/pgsql/bin/pg_config
--with-apxs2=/usr/local/apache2/bin/apsx2
--with-mcrypt --with-mhash
--with-openssl-dir --with-curl --with-zlib
--with-pdo --enable-soap

make
make install

648XAppA.qxd 11/19/06 1:45 PM Page 581

2. Copy php.ini-recommended to /etc/php.ini by executing the following command:

cp php.ini-recommended /etc/php.ini

3. In httpd.conf, find the portion with many LoadModule entries, and add the following
lines (the names may vary depending on your specific Apache and PHP versions):

LoadModule php5_module modules/libphp5.so
AddType application/x-httpd-php .php

4. Open the Apache configuration file (httpd.conf), find the DirectoryIndex entry, and
make sure you have index.php at the end of the line:

DirectoryIndex index.html index.html.var index.php

5. Restart your Apache Web Server, and everything should be okay. To make sure your
PHP installation works, create a file named test.php in the htdocs folder (by default,
/usr/local/apache2/htdocs/), with the following content:

<?php
phpinfo();
?>

Finally, point your web browser to http://localhost/test.php to ensure PHP was
correctly installed under Apache.

582 APPENDIX A ■ INSTALLING APACHE, PHP, AND POSTGRESQL

648XAppA.qxd 11/19/06 1:45 PM Page 582

Project Management
Considerations

It feels great to finish building a complete e-commerce store, doesn’t it? For the purposes of
this book, we dealt with many design issues on a chapter-by-chapter basis, while also covering
the theory concepts. However, in real-world projects, many times, you’ll need to consider the
complete picture from the very start. This appendix discusses how to effectively manage
building complete solutions.

Maybe it seems easier to just start coding without any upfront design, and with some
luck, you might even create something that works on the second day; however, when it comes
to large projects, you’ll face a lot of problems in the long term by taking this route.

A project’s life cycle includes much more than simply coding—it should not be done
hastily. For example, for almost any real-world software project, a critical part of its success is
the database design, even if it only counts for a small part of the project’s development cycle.
This makes perfect sense if you consider that e-commerce sites, web portals, search engines,
and customer interfaces for service providers (banking, IT, insurance, and so on) are all basi-
cally interfaces to a backend database.

Of course, the way you display the data and the reports you present to the client also plays
an important role in the success of the software. However, you can think of the database as the
foundation of a house; if you make mistakes in the foundation, no matter how nice or trendy
the house looks, it will still be torn down by the first gust of wind.

Developing Software Solutions
In fact, the software solution’s technical design is only a part of the software project’s life cycle.
To give you an idea of the steps involved in managing a complete software solution, imagine a
real-world example, such as building an ERP (Enterprise Resource Planning) application for a
clothing factory.

For starters, you need to know exactly what the client requires from the software, so you
talk to the client about the goals of implementing such software in the network. This involves
gathering both system requirements and software requirements for the application you will
eventually build.

After you (as the project manager) fully understand the customer’s requirements and dis-
cuss a budget allocation and a timeline for the project, a team of analysts works with the
customer to compile information about the tasks performed in the factory, the work schedule,
and the manufacturing equipment. Your analysts must become knowledgeable of the region’s 583

A P P E N D I X B

648XAppB.qxd 11/19/06 1:55 PM Page 583

584 APPRENDIX B ■ PROJECT MANAGEMENT CONSIDERATIONS

economic regime, the employer’s legal obligations, the import-export conditions, and so on—
facts that are clarified with the commercial, economic, and personnel departments of the
company. The analysts build the database and describe the reports and the operations that
the software must accomplish.

After the customer reviews and comments upon this assemblage of material, the analyti-
cal stage ends with the addition of a written annex to the contract with all these features and a
timeline that is agreed to by the customer. After this, any modifications in the database struc-
ture, the reports, or software functionality are typically handled with additional charges to the
customer.

Next, the design team creates a user-friendly, attractive interface that can be presented to
the customer and changed to fit the customer’s artistic taste. After this phase is completed, the
coding stage begins. This shouldn’t take long because the programmers know exactly what
they need to do. When they finish coding, the software is installed on a test platform at the
customer site, and the customer team simulates using the software for a definite period of
time. During the testing period, the eventual programming and design bugs are revealed and
fixed by the programmers. At the end of this phase, the customer should have a software
application that runs by the agreed specifications and deploys on the production machines.
That’s the end of the project; the final payments are made, and every modification the
customer asks for in the future is billed.

That was a short version of a story about commercial software. Of course, the theory
doesn’t apply the same for all software projects. For smaller projects, such as many
e-commerce sites, several, if not all, the tasks can be performed by a single person.

Considering the Theory Behind Project
Management
Many theories exist about how to manage the software development life cycle (SDLC). No
model can be deemed a silver bullet because choosing an SDLC model depends on the partic-
ularities of your project. You’ll learn about the most popular project-management theories in
the following pages.

The Waterfall (or Traditional) Method
The Waterfall method, also known as the traditional method, is the father of all methodolo-
gies. Now, it’s considered by many to be a rather outdated development technology for
software, but it’s still the cornerstone of modern software development. It consists of breaking
the software project into six or seven phases that must be processed in sequential order to
deliver the final product. The input of each phase consists of the output of the preceding
phase (see Figure B-1).

Establishing the requirements is the first phase and can be divided in two as shown in
Figure B-1. First, you must establish the system requirements of the project; at the end of this
phase, you have a paper describing all the hardware needed for implementing, testing, and
deploying the application. You also need the software platforms your application will be devel-
oped and tested on. The first two phases must include an opportunity study at the beginning
and a feasibility study at the end. Basically, the first question is “Do we really need this from

648XAppB.qxd 11/19/06 1:55 PM Page 584

the business point of view?” After you establish the requirements, the feasibility study pro-
vides a high-level cost and benefit analysis so that a ROI (return on investment) can be
estimated.

Figure B-1. The Waterfall model

In the Analysis phase, the analysts work with the customer to fully understand the
customer needs. They have to spend time with the customer’s staff to define the software
functionalities, transcribing them in a professional analysis for the software engineers.

In the Program Design phase, the design team reads the specifications of the analysis and
develops some prototypes that the customer must agree on. Usually, that is throwaway code.

In the Coding phase, programmers effectively code the application. This happens after
the customer agrees on the software design delivered by the Program Design phase.

If a testing platform is provided, the programmers install the application there and test all
the functionalities of the software. All the bugs discovered are corrected, and at the end of the
Testing phase, the software must be ready to go into production. If a testing platform is not
provided, the programmers have to simulate or conduct the testing on the actual platform the
software will run on; however, at the end of the testing phase, the programmers have to install
a fresh copy of the bug-free software they created.

Everything is completed after deployment at the beginning of the Operations phase.

■Note Every phase has a feedback to the preceding phase where new ideas can be added and errors are
corrected.

APPENDIX B ■ PROJECT MANAGEMENT CONSIDERATIONS 585

648XAppB.qxd 11/19/06 1:55 PM Page 585

Advantages of the Waterfall Method
The main advantages of the Waterfall method are its simplicity and the fact that everything is
documented and agreed upon with the customer. This leads to some important benefits:

• Because everything is planned from the start, it’s easy for the project manager to cor-
rectly estimate project costs and timelines.

• The rigorous initial planning makes the project goals clear.

• All requirements are analyzed and validated by the customer, so the customer can
estimate the benefits incurred by the software application before it’s actually imple-
mented.

Disadvantages of the Waterfall Method
The disadvantages of the Waterfall method are

• The customer is not able to see the product until it’s completely finished. At that stage,
it can be very expensive to make any changes to the project.

• It has little flexibility for scope changes during the project’s development.

• The architecture limitations are often not discovered until late in the development
cycle.

• Because testing happens at the end of the Coding phase, unexpected problems with
the code might force developers to find quick fixes at the expense of the planned
architecture.

• The Waterfall method doesn’t work on projects whose requirements can’t be rigorously
planned from the start.

The Spiral Method
As a development of the Waterfall method, the Spiral method is more suitable for large, expen-
sive, and complicated projects. Barry Boehm first described it in 1988 as an iterative waterfall
in which every iteration provides increased software capability (see Figure B-2, which repre-
sents the diagram created by Barry Boehm).

The diagram consists of a spiral divided into four quadrants. Each quadrant represents a
management process: Identify, Design, Construct, and Evaluate. The system goes through four
cycles of these four processes:

Proof-of-concept cycle: Define the business goals, capture the requirements, develop a
conceptual design, construct a “proof-of-concept,” establish test plans, and conduct a
risk analysis. Share results with user.

First-build cycle: Derive system requirements, develop logic design, construct first build,
and evaluate results. Share results with user.

Second-build cycle: Derive subsystem requirements, produce physical design, construct
second build, and evaluate results. Share results with user.

APPRENDIX B ■ PROJECT MANAGEMENT CONSIDERATIONS586

648XAppB.qxd 11/19/06 1:55 PM Page 586

Final-build cycle: Derive unit requirements, produce final design, construct final build,
and test all levels. Seek user acceptance.

Figure B-2. The Spiral model

The main advantages of the Spiral method proposed by Boehm are

• The entire application is built on working with the client.

• Any gaps in the Requirement phase of the Waterfall method are identified as work pro-
gresses.

• The spiral representation conveys very clearly the cyclic nature of the project and the
progression through its lifespan.

APPENDIX B ■ PROJECT MANAGEMENT CONSIDERATIONS 587

648XAppB.qxd 11/19/06 1:55 PM Page 587

However, the Spiral method has some disadvantages as well:

• Requires serious discipline on the part of the client.

• Executive control can be difficult because in most projects, the client is not responsible
for the schedule and budget.

■Note The Spiral method is more suitable for software in which the entire problem is well defined from
the start, such as modeling and simulating software.

The Rapid Application Development (RAD) Method
RAD is another common project-management method that is, in essence, “try before you
buy.” Whereas in the Waterfall and even Spiral methods, the client was working with a lot of
documentation, in the RAD approach, the client works with the software as it’s being devel-
oped. The belief is that the client can produce better feedback when working with a live
system as opposed to working strictly with documentation. When using RAD as a project-
management method, customer rejection cases are significantly less when going into
production.

The RAD method consists of the following phases:

• Business modeling

• Data modeling

• Process modeling

• Application generation

• Testing and turnover

The RAD approach allows rapid generation and change of UI features. The client works
with the software just like in the production environment.

The main disadvantage of RAD is that the client will always want more enhancements to
the software—not always important ones—and the developer must try to satisfy the client’s
needs. This can result in an unending cycle of requirements, going away from the main pur-
pose of the project.

Extreme Programming (XP) Methodology
Extreme Programming (XP) is a controversial method because it eliminates a lot of phases
from the traditional Waterfall methodology. XP, an agile development methodology, is simple
and based on communication, feedback, and courage.

APPRENDIX B ■ PROJECT MANAGEMENT CONSIDERATIONS588

648XAppB.qxd 11/19/06 1:55 PM Page 588

■Note XP is one of the agile development methodologies, but there are more. These methodologies try to
overcome the essential problem of the Waterfall method: you can’t always predict the evolution of a project
from the beginning. If you don’t have previous exposure to agile methods, I recommend you start by reading
the great article at http://www.martinfowler.com/articles/newMethodology.html.

The professional analysts are replaced with the client, who is very active in the process.
The client writes a document named “User Stories,” which is a simple description of the
desired functionality of the software. The programmers read the document and give an esti-
mated time frame for implementing each functionality. After receiving the time estimates, the
customer chooses a group of functionalities to be developed first. This is called an iteration.

The developers use a test-driven design in the implementation phase, meaning that a
testing method for the desired functionality is conceived before the code is actually written.
Usually, every piece of code is written by a programmer under the supervision of another pro-
grammer who tests the functionality of the code.

After the code for the entire iteration is complete, it’s then given an acceptance test with
the customer, who approves (or disapproves) the iteration. The programmer keeps developing
or improving code for that iteration until it passes the acceptance test.

The software is deployed in a number of releases, composed of one or more iterations;
the software gets to the final release when all iterations that contain all the functionalities
described in the User Stories document pass the acceptance test.

Picking a Method
More project management methods are available to you than the ones described so far. Because
no single method is best, a good project manager must know in theory a little about all of them
to choose the best one for the current project. Choosing the wrong tactic for a project might lead
to failure, so the project manager needs to carefully consider all options before choosing how to
deal with a particular project. A strategy like this will never work: “Okay, we have to build an
e-commerce site. Let’s do XP with this one, and maybe we’ll spiral the next one!”

In many cases, it’s best to use a mix of methods to suit your project. For example, if the
client doesn’t know for sure what she wants, you can use bits of XP and collaborate closely
with the client during the development based on a User Stories document, add a few steps
from the Waterfall method, and do some RAD on the way.

Anyway, it’s very important to keep some of these procedures in mind for your next
projects because the way you manage your projects can save you time, money, and stress.

Understanding the E-Commerce Project Cycle
If you have some knowledge about management and a good artistic spirit for web design, after
you read this book, the e-commerce project can be a “one man show.” First of all, you need to
organize the tasks so that they take place in a logical, sequential order.

Understanding the customer needs should not be difficult. The customer wants an
e-store where a range of products can be advertised and bought. You need to know the type

APPENDIX B ■ PROJECT MANAGEMENT CONSIDERATIONS 589

648XAppB.qxd 11/19/06 1:55 PM Page 589

of products the customer wants on the site and a little about future strategy (today the cus-
tomer is only selling hardware components, but in the future, the customer might want to sell
laptops). This is very important because the database and the whole architecture must be
designed from the start to support future changes. You might also want to find out about how
the shipping department is organized to optimize the handling and shipping process.

Most customers require artistic and functional design, so, in most cases, the next phase
is creating a web prototype. Whether you do it yourself or hire a web designer, the prototype
should be only a web site template—only HTML code with something like “Product name
Here” instead of an actual product, without the need for any databases. Depending on the
artistic taste of the customer, you might have to build several prototypes until you agree on
a design.

Designing the database is, as I said, a critical phase of the project. The logical database
design is developed from the Requirements gathering phase, and is agreed on with the cus-
tomer. The database’s logical design describes what data you need to store and the
relationships between different entities of data (such as the relationship between products
and departments), but it doesn’t include strict implementation details such as the associate
table used to physically implement Many-to-Many relationships. If you’re an advanced data-
base designer, you’ll create an optimal physical database structure yourself.

A number of tools (such as the ones presented at http://www.infogoal.com/dmc/
dmcdmd.htm) enable you to design the database visually. (You can find even more useful links
with a Google search on “data modeling.”) These tools have very powerful features for design-
ing relational database structures and even generate the SQL code to turn them into real
databases. Regardless of the database engine you’re using, design your tables in a visual way
(even with a pen and paper) rather than start by writing SQL queries.

Next, you implement the data tier objects. This is the place you start playing with your
database because you need to implement the data access logic that will support the other tiers
in your application. In the process, you’ll probably want to populate the database with some
fictive examples to have a base for testing your queries. Before writing the queries as data tier
objects, test them using a visual interface to the database engine that allows executing and
debugging SQL queries. This will make your life easier when debugging the SQL code because,
as all SQL developers know, the code doesn’t always work as you expect it to the first time.

After the data tier is in place, you can continue by building the middle tier of your appli-
cation. In this book, you learned some techniques about implementing the middle tier for
various parts of the site, but you might want to choose other techniques for your particular
project.

Building the user interface is obviously the next step. You already have a prototype that is
usable only for design because, at the stage you created the prototypes, you didn’t have a func-
tional foundation. Usually, interface prototypes in software projects are throwaway code, but
here you build the UI logic (preferably using Smarty or another templating engine) that gener-
ates the actual look of your web site with the design the customer agreed on.

A final testing phase is very important at the end of the project. The database will be
populated with real records, and a simulation is made to test the efficiency of the ordering
process. Every process should be tested before production, so you must give your customer
enough time to test every functionality of the site, to make some test orders, and to evaluate
the shipping process. During this stage, any programming errors should be revealed for you to
correct.

APPRENDIX B ■ PROJECT MANAGEMENT CONSIDERATIONS590

648XAppB.qxd 11/19/06 1:55 PM Page 590

After the code is ready and tested on your local machine, the next step is to find/provide a
hosting solution. Perhaps the best strategy is to host the project at a specialized provider, and
if the site proves to be successful, the customer can invest in its own hosting solution.

Maintaining Relationships with Your Customers
In the ideal project, you include all the possible clauses in a contract; after you deliver the site
and finish the project, you never want to hear from the customer again, except for developing
new functionalities or changing the design, in which case, you charge the customer extra.

The most unwanted thing would be for the customer to ask you to make changes without
paying for them, which is possible if you are not careful with the contract and with the tools
you provide the customer for administration.

For example, many e-commerce sites have poor catalog admin pages, which are night-
mares for the programmers. Avoiding such a nightmare can be possible by providing proper
tools and interfaces for the customer and, most importantly, describing how they work (even-
tually a user’s manual). Many programmers don’t take this detail seriously and prefer to bring
the site up with an incomplete or hard-to-use catalog admin page, not knowing what’s coming.

If the database is complicated, you must describe in a manual all the fields and how they
must be completed; if an error occurs when the customer tries to submit a form to a database,
you have to make the error page as eloquent as possible. Also, try to work with those who will
use the tools you provide in the Design phase, and take a couple of hours to instruct them per-
sonally on how to use the tools. This will save you a lot of explanations over the phone or even
going to the customer’s office without being paid.

Summary
Different kinds of projects require different kinds of approaches. The methodology you and
your team are using for a software project can significantly affect the team efficiency, espe-
cially in large projects. Building a small e-commerce web site such as HatShop can be a “one
man show” for an experienced Web Developer, but it’s always good to be prepared for the
more challenging experiences!

APPENDIX B ■ PROJECT MANAGEMENT CONSIDERATIONS 591

648XAppB.qxd 11/19/06 1:55 PM Page 591

648XAppB.qxd 11/19/06 1:55 PM Page 592

■Symbols and numerics
character, 43
$_FILES superglobal variable, 253
% wildcard character, 171
& character, 140
* wildcard character, 75
3DES (Triple DES), 361

■A
absolute links

linking to secured/unsecured pages, 105
Access Key ID

ECS (Amazon E-Commerce Service), 549
accessing ECS using REST, 551

Add to Cart button
adding products to custom shopping

cart, 286
implementing custom shopping cart, 267
integrating PayPal shopping cart and

checkout, 192, 193, 195
shopping cart presentation tier, 284, 285
three-tier architecture, 17

AddDepartment method, 222
added_on field, shopping_cart table, 271, 297
admin template

implementing skeleton of admin.php, 211
previewing catalog administration

page, 200
admin.php page

enforcing SSL connections, 206
implementing admin_categories

template, 240
implementing admin_departments

template, 221
implementing admin_product template,

251
implementing admin_products template,

240
implementing skeleton of, 208–215
previewing catalog administration page,

200
AdminCategories class, 230
AdminDepartments class, 222
administration

see also order administration
authenticating administrators, 207–215
building shopping cart administration

page, 296–301

categories and products, 226–244
custom shopping cart administration, 296
department administration, 215–226
product detail administration, 244–262
setting up catalog administration page,

202–215
AdminLogin class, 214
AdminMail method, 468
AdminOrderDetails class

modifying, 450
testing order pipeline, 489
updating Orders Admin page, 502, 503

AdminOrders class, 438
AdminProduct class, 252
AdminProducts class, 235
admin_cart template, 300
admin_categories template, 200, 202,

227–229, 244
admin_departments template, 200, 216–222
ADMIN_EMAIL value, 463
admin_login template, 200, 212, 214
admin_menu template, 200, 213, 215
admin_orders template, 314, 316, 320–324,

435
admin_order_details template, 314, 325,

327–334, 436
implementing order pipeline, 463
testing order pipeline, 489
updating Orders Admin page, 500, 501,

502
admin_product template, 200, 246–253
admin_products template, 200, 232–234
advertising e-commerce site, 4
agile development methodologies, 589
AIM_guide.pdf, 531
aliases (for column names), 122
aliases (for table names), 124
all-words searches

searching product catalog, 169
using search vectors for searching, 173,

174
allow_url_fopen setting, 555
AllWords query string parameter

creating search_box template, 183
Amazon Associate ID, ECS, 550
Amazon E-Commerce Service see ECS
Amazon.com

displaying products in HatShop, 564–568

Index

593

648XIndex.qxd 11/22/06 2:46 PM Page 593

amazon.php
adding ECS communication code to

business tier, 559
AmazonProductsList class, 565, 568
AMAZON_METHOD constant, 562
amazon_products_list template, 564
Analysis phase

Waterfall method, project management,
585

AND (&) Boolean operator, 173
any-words searches

searching product catalog, 169
using search vectors for searching, 173,

174
Apache

installing on Unix/Linux, 577–578
installing on Windows, 573–574

SSL-enabled Apache, 571–573
preparing hatshop virtual folder, 29
setting up, 203
XAMPP package, 204

application logic, 22
app_bottom.php file, 93
app_top.php file

building first HatShop page, 39
creating departments_list template, 100
creating products_list template, 159
defining product list constants, 135
displaying Amazon.com products in

HatShop, 567
how Smarty template engine works, 41
implementing ErrorHandler class, 48, 49
implementing order pipeline, 463
implementing skeleton of admin.php, 210
integrating Authorize.net with HatShop,

534
integrating DataCash with HatShop, 523
shopping cart business tier, 277
testing order pipeline, 487
using DatabaseHandler class, 92

architecture
client-server (two-tier) architecture, 20
designing for growth, 14
flexible architecture, 15
PostgreSQL and three-tier architecture, 26
scalable architecture, 15
three-tier architecture, 15–20

design considerations, 215
using Smarty to separate layout from

code, 21
why not use fewer tiers, 20
why not use n-Tier Architecture, 19

argument naming conventions, 28
AS keyword, 122
ASIN (Amazon.com Standard Item Number),

552

AssignProductToCategory method, 254
associate tables

many-to-many relationship, 111
asymmetric encryption, 360

common algorithms, 361
attribute naming conventions, 27
audit table

designing order pipeline, 455
implementing order pipeline, 458, 459
testing order pipeline, 492

audits
orders_get_audit_trail function, 498

authentication
authenticating administrators, 207–215
digital signatures, 203
HTTP authentication, 207
setting credit card authentication details,

471–472
authorization

credit card authorization, 454
credit card transaction type, 507
description, 207

Authorize.net, 524–535
credit card payment gateways, 506
integrating with HatShop, 532–535
testing Authorize.net, 525, 529

AuthorizeNetRequest class, 525, 529
authorize_net_request.php

integrating Authorize.net with HatShop,
534

testing Authorize.net, 525
AUTH_CAPTURE transaction type, 524
AUTH_ONLY transaction type, 524, 525, 531
autonumbered columns, 68–69

■B
backups, 6
BEGIN keyword, 81
Boolean operators, 173
buffering

implementing skeleton of admin.php, 210
business folder

implementing ErrorHandler class, 46
business tier

adding customer accounts functionality,
383–388

adding shopping cart recommendations,
346, 347

administering departments, 222–224
administering product details, 254–257
Catalog class, 81
connecting to PostgreSQL, 82
DatabaseHandler class, 81
description, 15
displaying order details, 327, 328–334
displaying pending orders, 319, 320
e-commerce project cycle, 590

■INDEX594

648XIndex.qxd 11/22/06 2:46 PM Page 594

implementing encryption functionality,
360–363, 365–366

implementing hashing functionality,
357–360

implementing tax and shipping charges,
447–448

integrating ECS with HatShop, 559–563
introduction, 81
modifying for order administration,

434–435
paging, 125
product reviews, 540
searching product catalog, 179–181
shopping cart, 277–283
shopping cart administration page, 298
storing orders, 312
updating Orders Admin page, 500
using PDO methods directly from, 87
writing code for, 87–95, 135

button generators, PayPal, 192
Buy From Amazon links, 568
buy_now field, shopping_cart table, 271
by reference

passing parameters by reference, 140

■C
caching

building first HatShop page, 40
Card Not Present (CNP) transactions, 507
CartAction parameter, 284, 286, 287, 295
cart_details template, 290, 293

updating, 347–350
cart_id field, shopping_cart table, 271
cart_saved_product type, 275
cart_summary template, 287, 289
CASCADE keyword, 115
catalog see product catalog
catalog administration page

authenticating administrators, 207–215
category and product administration,

226–244
configuring HatShop for SSL, 205
department administration, 215–226

business tier, 222–224
data tier, 224–226
presentation tier, 216–222

enforcing SSL connections, 206
obtaining SSL certificate, 205
overview of pages and templates for, 200
previewing, 200–202
product detail administration, 244–262

business tier, 254–257
data tier, 257–262
presentation tier, 245–253

setting up, 202–215

tasks achieved using, 199
using secure connections, 203–205

Catalog class
administering categories, 237
administering departments, 223
administering product details, 247, 254
administering products, 237
AssignProductToCategory method, 254
DeleteProduct method, 254
description, 81
FlagStopWords method, 179, 181
GetCategories method, 254
GetCategoriesForProduct method, 254
GetCategoriesInDepartment method, 137
GetCategoryDetails method, 137
GetDepartmentDetails method, 136
GetDepartments method, 87, 95, 136
GetProductDetails method, 142
GetProductInfo method, 254
GetProductsInCategory method, 139
GetProductsOnCatalog method, 141
GetProductsOnDepartment method, 141
HowManyPages method, 137
MoveProductToCategory method, 254
product reviews, 540
RemoveProductFromCategory method,

254
Search method, 179, 181
SetImage method, 254
SetProductDisplayOption method, 254
SetThumbnail method, 254
writing code for business tier, 87, 94

catalog.php file, 92
catalog_add_department function, 226
catalog_assign_product_to_category

function, 261
catalog_count_products_in_category

function, 129
catalog_count_products_on_catalog

function, 133
catalog_count_products_on_department

function, 131
catalog_count_search_result function, 176,

178
catalog_create_product_review function,

538, 540
catalog_delete_department function, 225,

226
catalog_delete_product function, 258, 296
catalog_flag_stop_words function, 176, 178
catalog_get_categories function, 259
catalog_get_categories_for_product

function, 260
catalog_get_categories_list function, 127
catalog_get_category_details function, 128
catalog_get_departments function, 224, 225

■INDEX 595

Find it faster at http://superindex.apress.com
/

648XIndex.qxd 11/22/06 2:46 PM Page 595

catalog_get_departments_list function, 79,
80

catalog_get_department_details function,
127

catalog_get_products_in_category function,
129

catalog_get_products_on_catalog function,
133

catalog_get_products_on_department
function, 131

catalog_get_product_details function, 134
catalog_get_product_info function, 259, 260
catalog_get_product_reviews function, 538,

539
catalog_get_recommendations function, 342,

343, 344
catalog_move_product_to_category

function, 261
catalog_remove_product_from_category

function, 258, 259
catalog_search function, 177, 178
catalog_set_image function, 261
catalog_set_product_display_option

function, 260
catalog_set_thumbnail function, 261
catalog_update_department function, 225
catch keyword see try ... catch block
categories

catalog_count_products_in_category
function, 129

catalog_get_categories_list function, 127
catalog_get_category_details function, 128
catalog_get_products_in_category

function, 129
categories, departments, and products, 58
displaying category details, 143–148
displaying list of categories, 149–152
GetCategoriesInDepartment method, 137
GetCategoryDetails method, 137
GetProductsInCategory method, 139
HatShop categories admin page, 202
many-to-many relationship with

products, 111
previewing product catalog, 60

CategoriesList class, 152
categories_list template, 149–152
category administration, 226–244
category table

adding categories, 116
creating, 113–114
fields, 113
populating, 115, 118

category_category_id_seq
creating category table, 114

category_id field
category table, 113
product_category table, 120

certificates, 203
character data type, 67

obtaining SSL certificate, 205
character varying data type, 67, 68
checkout

integrating PayPal shopping cart and,
192–197

Checkout button, 197
checkout page

creating, 412–421
updating, 495, 498

CheckoutInfo class
init method, 449
updating checkout page, 496

checkout_info template, 414–421
class constructor, PHP, 42
class naming conventions, 27
client-server architecture, 20
Close method, DatabaseHandler class, 89
closing connections to PostgreSQL server, 82,

83
CNP (Card Not Present) transactions, 507
COALESCE function, PostgreSQL, 275
code

code downloads, 55
designing the code, 14
using Smarty to separate layout from,

21–23
code editor, getting, 29
Coding phase

Waterfall method, project management,
585

coding standards, 27–28
columns

autonumbered columns, 68–69
data types, 66–68
default values, 68
ID column, 65
NOT NULL columns, 68
SEQUENCE structure, 69

comments
maintainability of code, 27
Smarty template engine, 43

components
flexible architecture, 15

config.php file
adding products to custom shopping cart,

285
building first HatShop page, 39
configuring HatShop for SSL, 205
implementing order pipeline, 463
implementing skeleton of admin.php, 211
shopping cart business tier, 277

configs folder
building first HatShop page, 40
installing Smarty, 33

■INDEX596

648XIndex.qxd 11/22/06 2:46 PM Page 596

connections
closing connections, 89
connecting to PostgreSQL server, 82–87
executing SQL commands through

connection, 86
linking to secured/unsecured pages,

103–106
PDO class constructor, 83
persistent connections, 82
using secure connections, 203–205

constraints
foreign key, 112–113, 120
primary key, 64–66, 120

constructors, 42
private constructor, 93

Continue Shopping button, 159
cookies

HTTP authentication, 207
session variables, 136
shopping cart business tier, 282

costs
e-commerce site reducing, 5

COUNT aggregate function, 340
CREATE FUNCTION statement, 78, 80
CreateAudit method

implementing order pipeline, 459, 465,
468, 469

implementing PsCheckFunds class, 480
implementing PsCheckStock class, 481
implementing PsInitialNotification class,

478
CreateOrder method, 312, 313, 428, 448
CreateProductReview method, 540
CreateXml method, 373
credit card payment gateways, 506–507

Authorize.net, 506, 524–535
DataCash, 506, 508–524
testing using “magic” numbers, 507, 523

credit card transactions, 505–535
basic principles, 507
Card Not Present transactions, 507
gateway providers, 505
payment gateways, 506–507
transaction types, 507
working with Authorize.net, 524–535
working with DataCash, 508–524
X.25 protocol, 505

credit cards
authorization, 454
encryption, 356
implementing PsCheckFunds class, 479
SecureCard class storing information,

366–376
setting authentication details, 471–472

Cross-Selling, 335

CSS (Cascading Style Sheets), 43
creating department template, 143
creating departments_list template, 96

curl library
exchanging XML data with DataCash, 512
installing PHP 5 on Unix/Linux, 581
installing PHP 5 on Windows, 574

currval function, 77
customer accounts functionality

adding to HatShop, 376–412
business tier, 383–388
data tier, 379–383
presentation tier, 388–412

Customer class
GetCustomersList method, 435

customer details management, 353
adding customer accounts functionality,

376–412
creating checkout page, 412–421
implementing encryption functionality,

360–366
implementing hashing functionality,

357–360
implementing security classes, 356–376
storing credit card information, 366–376
storing customer accounts, 354–356

customer notification
designing order pipeline, 454, 455
sending emails to customers, 473

customer order confirmation email, 490
customer orders, 303

adding orders to customer accounts,
425–429

administering orders, 314–334
implementing order placement system,

303–314
storing, 425

customer reviews see product reviews
customer shipping notification email, 492
customer table, building, 355, 356
customers

building e-commerce site to get more, 4
considerations when building

e-commerce site, 5, 6
e-commerce project cycle, 589
increasing customer spend, 4
maintaining customer relationships, 591
using e-commerce to learn about, 4

customer_add function, 381
customer_address template, 388, 400–406
customer_credit_card template, 388, 406–410
customer_details template, 388, 394–400
customer_get_customer function, 381
customer_get_customers_list function, 432
customer_get_login_info function, 380
customer_get_shipping_regions function,

382

■INDEX 597

Find it faster at http://superindex.apress.com
/

648XIndex.qxd 11/22/06 2:46 PM Page 597

customer_list type, 432
customer_logged template, 388, 391–394
customer_login template, 388, 388–391
CUSTOMER_SERVICE_EMAIL value, 463
customer_update_account function, 381–382
customer_update_address function, 383
customer_update_credit_card function, 382

■D
data, 108
data access abstraction layer, PDO, 24, 26
Data Encryption Standard (DES), 361
data tables, 63–70

see also table relationships
adding gist index to, 172
autonumbered columns, 68–69
category table, 113–114
customer table, 355–356
data types, 66–68
default values, 68
department table, 70–74
indexes, 70
joining, 123
junction tables, 111
NOT NULL columns, 68
orders table, 305, 306, 308
order_detail table, 305, 306, 308
primary keys, 64–66
product table, 118–119
product_category table, 120–121
relational databases, 108
search vectors, 172
SEQUENCE structure, 69
shipping_region table, 355–356
UNIQUE constraint, 66

data tier
administering departments, 224–226
administering product details, 257–262
customer accounts functionality, 379–383
description, 16
displaying order details, 325–327
displaying pending orders, 317–319
e-commerce project cycle, 590
logic of product recommendations,

337–341
modifying for order administration,

430–434
paging, 125
product recommendations, 342–344
product reviews, 538–540
searching product catalog, 171–178
shopping cart, 271–277
shopping cart administration page, 297
shopping cart recommendations, 344–346
storing data tier logic, 26

storing orders begin, 308
storing orders end, 311
updating Orders Admin page, 498–499

data types, 66–68
database

implementing tax and shipping charges,
443–447

order administration modifications,
429–434

database abstraction layer, PDO, 24, 26
database connections see connections
database design

understanding e-commerce project cycle,
590

database diagrams, using, 121
database functions, 78–81

see also functions, PostgreSQL
writing new database functions, 126–134

database integrity
foreign keys, 112

database object naming conventions, 28
database queries

getting short product descriptions, 122,
129

joining data tables, 123
showing results page by page, 125–126,

129
database tier see data tier
DatabaseHandler class, 81, 87

creating and using, 88–95
Execute method, 87, 90
GetAll method, 87, 90, 95
GetOne method, 87, 91
GetRow method, 87, 91, 94
Prepare method, 86, 87, 89

databases
communicating with, 74–81
creating HatShop database, 52–55
creating new data tables, 305–306, 308
data integrity rules, 65
RDBMS, 23
storing orders, 305–308
using PostgreSQL to store web site data,

23–26
database_handler.php file

creating DatabaseHandler class, 88
using DatabaseHandler class, 92

DataCash, 508–524
credit card payment gateways, 506
credit card test numbers, 523
exchanging XML data with, 511–520
fulfillment request, 510–511
fulfillment response, 511
integrating with HatShop, 520–523
pre-authentication request, 508–509

■INDEX598

648XIndex.qxd 11/22/06 2:46 PM Page 598

pre-authentication response, 509–510
return codes for DataCash server, 509

DataCashRequest class
exchanging XML data with DataCash, 512,

517
datacash_request.php

exchanging XML data with DataCash, 512
integrating DataCash with HatShop, 523

DataFormat method, 561–562
$dbh variable, 84
$db_host variable, 84
$db_name variable, 84
$db_pass variable, 84
$db_user variable, 84
DEBUGGING constant, 51
debug_backtrace function, PHP, 50
DECLARE section

creating PostgreSQL types and functions,
81

Decrypt method, 366
DecryptData method, 372, 374
default values, 68

SET DEFAULT keywords, 115
DELETE statement, SQL, 77
DeleteDepartment method, 222
DeleteProduct method, 254
department administration, 215–226

business tier, 222–224
data tier, 224–226
presentation tier, 216–222

Department class
creating department template, 147

department table
creating, 70–74
designing, 68

department template, 143–148
creating, 144, 146

departments
catalog_count_products_on_department

function, 131
catalog_get_department_details function,

127
catalog_get_products_on_department

function, 131
categories, departments, and products, 58
displaying department and category

details, 143–148
dynamically generated list of, 95
GetCategoriesInDepartment method, 137
GetDepartmentDetails method, 136
GetProductsOnDepartment method, 141
HatShop departments admin page, 201
previewing product catalog, 60

departments list
business tier, 81
components, 61
implementing, 60
previewing product catalog, 58

departments_list template
creating, 95–103
displaying Amazon.com products in

HatShop, 566
department_id field, category table, 113
department_list type, 79

creating PostgreSQL types and functions,
81

DES (Data Encryption Standard), 361
DESC option, ORDER BY clause, 175
description field

category table, 113
product table, 118

descriptions
getting short product descriptions, 122,

129
SHORT_PRODUCT_DESCRIPTION_LENG

TH constant, 135
design

considerations when building
e-commerce site, 6, 7

designing for growth, 14–20
developing software solutions, 583
long-term requirements, 14
phased development of e-commerce site,

7–9
three-tier architecture, 15–20, 215

designing the code, 14
Digital Signature Algorithm (DSA), 361
dirname(__FILE__)

building first HatShop page, 39
discounted_price field, product table, 118
display field, product table, 118
DISTINCT clause, SQL, 132
DOMDocument class, 373
downloads

HatShop web site, 55
PHP, 21

DSA (Digital Signature Algorithm), 361
dynamic web content

using PHP to generate, 21

■E
e-commerce project cycle, 589–591
e-commerce site

advertising the site, 4
basic site framework, 7
building to make money, 5
compared with ordinary shopping, 4

■INDEX 599

Find it faster at http://superindex.apress.com
/

648XIndex.qxd 11/22/06 2:46 PM Page 599

considerations when building
backups, 6
e-commerce tutorial, 7
risks and threats, 6

creating shopping cart, 8
design considerations, 7
order pipeline functionality, 453
phased development, 7–9
processing orders, 8
reasons for building, 3–5

getting additional customers, 4
increasing customer spend, 4
reducing cost of fulfilling orders, 5

e-commerce tutorial, 7
EasyTemplate template engine, 23
ECS (Amazon E-Commerce Service)

Access Key ID, 549
accessing, 549–558

using REST, 551–556
using SOAP, 556–558

adding ECS communication code to
business tier, 559, 563

Amazon Associate ID, 550, 551
ASIN (Amazon.com Standard Item

Number), 552
creating ECS account, 549–550
documentation web site, 549
integrating with HatShop, 558–568
official ECS web site, 549
response groups, 552
Super Hats from Amazon, 555

editor
getting code editor, 29

Emacs editor, 29
emails

customer order confirmation email, 490
customer shipping notification email, 492
order completion error email, 495
sending emails to customers and

suppliers, 473
ship goods email, 491
stock check email, 490

Encrypt method, 366
EncryptData method, 372, 374
encryption

implementing functionality in business
tier, 360–366

enctype attribute
implementing admin_product template,

252
END keyword

creating PostgreSQL types and functions,
81

error messages
order completion error email, 495
PHP, 44

error-handling functions, PHP, 84

ErrorHandler class
GetBacktrace method, 50
Handler method, 44, 45, 50
handling and reporting errors, 44
implementing, 45–49
SetHandler method, 50

errors
advantages of exceptions over errors, 85
handling and reporting errors, 44–51
handling runtime errors, 84
implementing ErrorHandler class, 45–49
PHP errors, 84
serious error types, 44

error_handler.php file
implementing ErrorHandler class, 46, 48

error_log method, PHP, 50
escaping special characters, 118

integrating PayPal shopping cart and
checkout, 197

exact-match search, 169
Exception class, 85
exception handling

try ... catch block, 84
exceptions

advantages of exceptions over errors, 85
catching, 86
handling runtime errors, 84
throw keyword, 85

exec method, PDO, 87
Execute method, DatabaseHandler class, 87,

90
execute method, PDOStatement, 86, 90
explode function

testing Authorize.net, 531
ExtractXml method, 373
Extreme Programming (XP) method, 588
E_NOTICE error message type, 51
E_USER_ERROR errors, 94
E_USER_NOTICE errors, 51, 94
E_WARNING errors, 44, 51
E_XYZ errors types, 44

■F
Featured products, 335
fetch method, PDOStatement, 86, 91
fetchAll method, PDOStatement, 86, 90
fields see columns
file_get_contents function, 554, 563
first_page_contents template, 162–163
FlagStopWords method, 179, 181
flexibility

using PDO, 24
flexible architecture, 15
foreign keys, 112–113

many-to-many relationships, 120
one-to-many relationships, 114, 115

■INDEX600

648XIndex.qxd 11/22/06 2:46 PM Page 600

frameworks
see also architecture
template engines, 22

FROM clause, 75
front page contents, displaying, 162–163
fulfillment

credit card transaction type, 507
fulfillment request, DataCash, 510–511

MakeXmlFulfill method, 518
fulfillment response, DataCash, 511
functions

creating, 79–81
database functions, 78
error handling functions, 84
passing parameters by reference, 140

functions, list of
see also methods, list of
catalog_add_department, 226
catalog_assign_product_to_category, 261
catalog_count_products_in_category, 129
catalog_count_products_on_catalog, 133
catalog_count_products_on_department,

131
catalog_count_search_result, 176, 178
catalog_create_product_review, 538, 540
catalog_delete_department, 225, 226
catalog_delete_product, 258, 296
catalog_flag_stop_words, 176, 178
catalog_get_categories, 259
catalog_get_categories_for_product, 260
catalog_get_categories_list, 127
catalog_get_category_details, 128
catalog_get_departments, 224, 225
catalog_get_departments_list, 79, 80
catalog_get_department_details, 127
catalog_get_products_in_category, 129
catalog_get_products_on_catalog, 133
catalog_get_products_on_department,

131
catalog_get_product_details, 134
catalog_get_product_info, 259, 260
catalog_get_product_reviews, 538, 539
catalog_get_recommendations, 342, 343,

344
catalog_move_product_to_category, 261
catalog_remove_product_from_category,

258, 259
catalog_search, 177, 178
catalog_set_image, 261
catalog_set_product_display_option, 260
catalog_set_thumbnail, 261
catalog_update_department, 225
COALESCE, 275
COUNT, 340
currval, 77
customer_add, 381
customer_get_customer, 381

customer_get_customers_list, 432
customer_get_login_info, 380
customer_get_shipping_regions, 382
customer_update_account, 381–382
customer_update_address, 383
customer_update_credit_card, 382
debug_backtrace, 50
explode, 531
file_get_contents, 554, 563
md5, 283
move_uploaded_file, 253
NOW, 273
NULLIF, 275
ob_start, 210
orders_create_audit, 458, 459
orders_get_audit_trail, 498, 499
orders_get_orders_between_dates, 430
orders_get_orders_by_customer_id, 431
orders_get_orders_by_status, 431
orders_get_order_details, 325
orders_get_order_info, 325–326, 431, 446
orders_get_order_short_details, 432
orders_get_shipping_info, 447
orders_set_auth_code, 471
orders_set_date_shipped, 472
orders_update_order, 325, 326, 327, 429,

433, 498
orders_update_status, 470
phpinfo, 31
rand, 283
rank, 175
setweight, 172
set_error_handler, 44, 50
sha1, 212
shopping_cart_add_product, 271–273
shopping_cart_count_old_carts, 301
shopping_cart_create_order, 308–313, 426,

427
shopping_cart_delete_old_carts, 301
shopping_cart_empty, 308–311
shopping_cart_get_products, 271, 274, 275
shopping_cart_get_recommendations,

344, 345, 346
shopping_cart_get_saved_products, 271,

275, 276
shopping_cart_get_total_amount, 271,

276
shopping_cart_move_product_to_cart,

272, 277
shopping_cart_remove_product, 271, 273,

274
shopping_cart_save_product_for_later,

272, 276, 277
shopping_cart_update, 271, 273
simplexml_load_string, 563

■INDEX 601

Find it faster at http://superindex.apress.com
/

648XIndex.qxd 11/22/06 2:46 PM Page 601

smarty_function_load_departments_list,
96

smarty_modifier_prepare_link, 103
soapCall, 557
substring, 122
to_tsvector, 172
trigger_error, 51, 94, 557
uniqid, 283
urlencode, 530

■G
gateway providers

credit card payment gateways, 506–507
credit card transactions, 505

GetAll method, 87, 90, 95
GetAmazonDataWithRest method, 563
GetAmazonDataWithSoap method, 563
GetAuditTrail method, 500
GetBacktrace method, 50
GetByCustomerId method, 434
GetCartId method, 283
GetCartProducts method, 283
GetCategories method, 254
GetCategoriesForProduct method, 254
GetCategoriesInDepartment method, 137
GetCategoryDetails method, 137, 148
GetCurrentPipelineSection method, 487, 493
GetCurrentPipelineSection method, 466
GetCustomerAddressAsString method, 473
GetCustomersList method, 435
GetDataWithRest function, 560, 562
GetDataWithSoap function, 560, 562
GetDepartmentDetails method, 136, 148
GetDepartments method, 87, 95, 136
GetDepartmentsWithDescriptions method,

222
GetHandler method, 88
GetMailBody method

implementing PsCheckStock class, 481
implementing PsFinalNotification class,

486
implementing PsInitialNotification class,

479
implementing PsShipGoods class, 484

GetOne method, 87, 91
GetOrderAsString method, 473
GetOrderShortDetails method, 434
GetProductDetails method, 142
GetProductInfo method, 254
GetProductReviews method, 540
GetProducts method, 559, 562, 568
GetProductsInCategory method, 139
GetProductsOnCatalog method, 141
GetProductsOnDepartment method, 141
GetRequest method, 513, 518

GetResponse method, 514, 518, 529–531
GetRow method, 87, 91, 94
GetShippingInfo method, 448
gist engine/index, 172
GROUP BY clause, SQL, 301

■H
Handler method, ErrorHandler class, 44, 45,

50
Hash method, 357
hashing, 207, 212

implementing functionality in business
tier, 357–360

hatshop alias, 31
HatShop categories admin page, 202
HatShop customer account scheme, 354–356
hatshop database

adding functions, 308–311
adding orders_get_shipping_info

function, 447
adding support for product reviews to, 538
catalog_create_product_review function,

538
catalog_get_product_reviews function,

538
creating HatShop database, 53
creating shopping_cart table, 270
implementing custom shopping cart, 267
orders_create_audit function, 459
orders_get_audit_trail function, 498
orders_set_auth_code function, 471
orders_set_date_shipped function, 472
orders_update_status function, 470

HatShop departments admin page, 201
hatshop folder, 46
HatShop shopping cart

cart_saved_product type, 275
implementing custom shopping cart, 268
Save for Later feature, 268
shopping_cart_add_product function,

271–273
shopping_cart_get_products function,

271, 274–275
shopping_cart_get_saved_products

function, 271, 275–276
shopping_cart_get_total_amount

function, 271, 276
shopping_cart_move_product_to_cart

function, 272, 277
shopping_cart_remove_product function,

271, 273–274
shopping_cart_save_product_for_later

function, 272, 276–277
shopping_cart_update function, 271, 273

■INDEX602

648XIndex.qxd 11/22/06 2:46 PM Page 602

HatShop web site
adding customer accounts functionality,

376–412
implementing business tier, 383–388
implementing data tier, 379–383
implementing presentation tier begin,

388–412
authenticating administrators, 207–215
building first page, 37–43
categories, departments, and products, 58
code downloads, 55
configuring HatShop for SSL, 205
creating PostgreSQL database, 52–55
designing for growth, 14–20
designing order pipeline, 454
displaying Amazon.com products in,

564–568
enforcing SSL connections, 206
getting code editor, 29
handling and reporting errors, 44–51
implementing site skeleton, 34–43
integrating Amazon Super Hats

department, 548
integrating Authorize.net with, 532–535
integrating DataCash with, 520–523
integrating ECS with, 558–568

business tier, 559–563
presentation tier, 564–568

login page, 200
naming conventions, 27
phased development, 10
PHP version requirement for, 571
preparing hatshop virtual folder, 29–32
previewing product catalog, 59
product catalog, 57–167
product reviews, 537–545
required software, 28
searching product catalog, 169–187

see also searching product catalog
second stage of development, 9
starting the HatShop project, 28–43
structure of web pages in HatShop, 35
Super Hats from Amazon, 555
technologies used, 26
three-tier architecture, 17, 19

hatshop.css file
building first HatShop page, 38
creating categories_list template, 149
creating department template, 143
creating departments_list template, 96
creating products_list template, 154
creating reviews template, 544
creating search_box template, 183
creating search_results template, 186
displaying Amazon.com products in

HatShop, 565

displaying custom shopping cart details,
295

displaying custom shopping cart
summary, 289

implementing skeleton of admin.php, 208
integrating PayPal shopping cart and

checkout, 195
updating checkout page, 497

hatshopadmin role, 52, 54
header template

building first HatShop page, 38
how Smarty template engine works, 43

hosting solution
e-commerce project cycle, 591

HowManyPages method, 137
HTML

mixing PHP logic with HTML, 21
template engine separating from

presentation logic, 22
HTTP protocol

authentication, 207
linking to secured/unsecured pages,

103–106
security, 203

httpd.conf file, 29, 31
HTTPS protocol

enforcing SSL connections, 206
linking to secured/unsecured pages,

103–106
security, 203

HTTP_SERVER_PORT constant, 105, 106

■I
ID column, 65
image field, product table, 118
images folder, HatShop, 37
Images response group, 554
inCategoryID parameter, 129
indentation of code, 28
index template

building first HatShop page, 37, 40
creating departments_list template, 100
creating search_box template, 183
displaying custom shopping cart

summary, 287
how Smarty template engine works, 42–43
integrating PayPal shopping cart and

checkout, 192, 194
index.php file

building first HatShop page, 40
creating categories_list template, 151
creating department template, 145, 146
creating departments_list template, 100
creating first_page_contents template, 163
creating product template, 163, 166
creating products_list template, 159
creating search_results template, 186

■INDEX 603

Find it faster at http://superindex.apress.com
/

648XIndex.qxd 11/22/06 2:46 PM Page 603

displaying custom shopping cart details,
290

displaying custom shopping cart
summary, 287

how Smarty template engine works, 41
updating checkout page, 498
using DatabaseHandler class, 93

indexes, 70
disadvantage of, 70
PRIMARY KEY column, 66
UNIQUE column, 66

init method
AdminOrders class, 438
CheckoutInfo class, 449
ProductsList class, 161, 185, 195

injection attacks see SQL injection attacks
inProductsPerPage parameter, 129
INSERT statement, SQL, 76–77

adding categories to category table, 116
inShortProductDescriptionLength

parameter, 129
installations

Smarty template engine, 32–34
installations on Unix/Linux, 577–582

Apache, 577–578
installing pgAdmin III on Linux, 579–580
PHP, 580–582
PostgreSQL, 578–580

installations on Windows, 571–577
Apache, 573–574

SSL-enabled, 571–573
PHP, 574–575
PostgreSQL, 576–577

inStartItem parameter, 129
integer data type, 67
interfaces, 467
Internet Payment Service Provider web sites,

190
IPipelineSection interface

designing order pipeline, 455
implementing order pipeline, 462, 467
implementing PsInitialNotification class,

478
interfaces and method signatures, 467

IS_WARNING_FATAL constant, 51

■J
JavaScript

using in Smarty template, 194
JOIN clause, 123
joining data tables, 123

catalog_get_products_in_category
function, 129

catalog_get_products_on_department
function, 131

junction tables
many-to-many relationship, 111, 120

■K
keywords

AS, 122
BEGIN, 81
CASCADE, 115
END, 81
LANGUAGE, 78, 80
LIMIT, 125, 318
NO ACTION, 115
OFFSET, 125
RESTRICT, 115
SET DEFAULT, 115
SET NULL, 115
SETOF, 80

■L
LANGUAGE keyword, 78, 80
layout

using Smarty to separate layout from
code, 21–23

libcurl/libxml2 libraries
installing PHP 5 on Unix/Linux, 581

life cycle models, software development,
584–589

LIKE operator, WHERE clause, 171
LIMIT keyword, SQL, 125, 318
linking tables

many-to-many relationship, 111
links

linking to secured/unsecured pages,
103–106

Linux
installing pgAdmin III on, 579–580

literal elements
using JavaScript in Smarty template, 194

LoadEncryptedDataAndDecrypt method,
372

LoadPlainDataAndEncrypt method, 372
load_admin_cart.php, 299
load_admin_categories.php, 229
load_admin_departments.php, 218
load_admin_login.php, 212
load_admin_order_details.php

order pipeline, 457, 463, 489
updating checkout page, 495
updating Orders Admin page, 502

load_admin_product.php, 247
load_admin_products.php, 234
load_amazon_products_list.php, 565
load_cart_details.php, 290
load_cart_summary.php, 288
load_categories_list.php, 150
load_checkout_info.php, 457, 495, 496
load_department.php, 144, 147

■INDEX604

648XIndex.qxd 11/22/06 2:46 PM Page 604

load_departments_list.php
creating departments_list template, 99,

102
displaying Amazon.com products in

HatShop, 567
using Smarty plugins, 96

load_product.php, 164, 286
load_products_list.php

adding products to custom shopping cart,
285

creating products_list template, 157, 160
creating search_results template, 184
integrating PayPal shopping cart and

checkout, 195
load_reviews.php, 543
load_search_box.php, 182, 183
localhost mail account

error handling, 51
logic

storing data tier logic, 26
three-tier architecture, 19
using Smarty plugins, 96

logins
HatShop login page, 200

logouts
implementing skeleton of admin.php, 215

long-term requirements, 14

■M
“magic” credit card details

testing Authorize.net, 530
testing integration of DataCash with

HatShop, 523
MailAdmin method, 467, 469
MailCustomer method, 473
MailSupplier method, 473, 481
maintainability

commenting code, 27
database functions, 78
naming and coding standards, 27

MakeXmlFulfill method, 513, 518
MakeXmlPre method, 512, 517
many-to-many relationship, 110, 111, 112

how it works, 120
mcrypt library, 361

installing PHP 5 on Unix/Linux, 580
installing PHP 5 on Windows, 574

md5 function, 283
method signatures

interfaces and, 467
methods

naming conventions, 27
private methods, 139
static methods, 93

methods, list of
see also functions, list of
AddDepartment, 222

AdminMail, 468
AssignProductToCategory, 254
Close, 89
CreateAudit, 459, 465, 468, 469, 478, 480,

481
CreateOrder, 312, 313, 428, 448
CreateProductReview, 540
CreateXml, 373
DataFormat, 561–562
Decrypt, 366
DecryptData, 372, 374
DeleteDepartment, 222
DeleteProduct, 254
Encrypt, 366
EncryptData, 372, 374
error_log, PHP, 50
exec, 87
execute, 86, 87, 90
ExtractXml, 373
fetch, 86, 91
fetchAll, 86, 90
FlagStopWords, 179, 181
GetAll, 87, 90, 95
GetAmazonDataWithRest, 563
GetAmazonDataWithSoap, 563
GetAuditTrail, 500
GetBacktrace, 50
GetByCustomerId, 434
GetCartId, 283
GetCartProducts, 283
GetCategories, 254
GetCategoriesForProduct, 254
GetCategoriesInDepartment, 137
GetCategoryDetails, 137, 148
GetCurrentPipelineSection, 487, 493
GetCurrentPipelineSection, 466
GetCustomerAddressAsString, 473
GetCustomersList, 435
GetDataWithRest, 560, 562
GetDataWithSoap, 560, 562
GetDepartmentDetails, 136, 148
GetDepartments, 87, 95
GetDepartmentsWithDescriptions, 222
GetHandler, 88
GetMailBody, 479, 481, 484, 486
GetOne, 87, 91
GetOrderAsString, 473
GetOrderShortDetails, 434
GetProductDetails, 142
GetProductInfo, 254
GetProductReviews, 540
GetProducts, 559, 562, 568
GetProductsInCategory, 139
GetProductsOnCatalog, 141
GetProductsOnDepartment, 141
GetRequest, 513, 518
GetResponse, 514, 518, 529–531

■INDEX 605

Find it faster at http://superindex.apress.com
/

648XIndex.qxd 11/22/06 2:46 PM Page 605

GetRow, 87, 91, 94
GetShippingInfo, 448
Handler, 44, 45, 50
Hash, 357
HowManyPages, 137
init, AdminOrders, 438
init, CheckoutInfo, 449
init, ProductsList, 161, 185, 195
LoadEncryptedDataAndDecrypt, 372
LoadPlainDataAndEncrypt, 372
MailAdmin, 467, 469
MailCustomer, 473
MailSupplier, 473, 481
MakeXmlFulfill, 513, 518
MakeXmlPre, 512, 517
MoveProductToCategory, 254
OpenPayPalWindow, 194–195
Prepare, 86, 87, 89
Process, 465, 467, 478, 479, 482, 498
RemoveProductFromCategory, 254
Search, 179, 181, 187
SetCartId, 282, 283
SetDateShipped, 472
SetHandler, 50
SetImage, 254
SetOrderAuthCodeAndReference, 471
SetProductDisplayOption, 254
SetRequest, 529, 530
SetThumbnail, 254
UpdateDepartment, 222
UpdateOrder, 434–435
UpdateOrderStatus, 470

mhash library
installing PHP 5 on Unix/Linux, 580
installing PHP 5 on Windows, 574

middle tier see business tier
modelling tools

using database diagrams, 121
“module access_module ...” error, 578
MoveProductToCategory method, 254
move_uploaded_file function, PHP, 253

■N
n-Tier Architecture

why not use n-Tier Architecture, 19
name field

category table, 113
product table, 118

naming conventions
HatShop web site, 27
Smarty plugin files, 96

naming standards, 27–28
navigation logic

catalog administration, 202
networks

gateway providers, 505

NO ACTION keywords
how one-to-many relationship works, 115

noise words see stop-words
NOT NULL columns, 68
NOW function, PostgreSQL, 273
NULL values

NOT NULL columns, 68
primary keys, 65
SET NULL keywords, 115

NULLIF function, PostgreSQL, 275
numeric data type, 67

■O
ob_start function, 210
OfferSummary response group, 554
OFFSET keyword, SQL, 125
one-to-many relationship, 109, 114
one-to-one relationship, 109
opening connections to PostgreSQL server,

82, 83
OpenPayPalWindow function, JavaScript,

194–195
OpenSSL

installing SSL-enabled Apache on
Unix/Linux, 577

Opera
opening secured web page in Opera, 204

OR (|) Boolean operator
using search vectors for searching, 173

order administration, 314–315, 429
business tier modifications, 434–435
database modifications, 429–434
displaying pending order details, 325–334
displaying pending orders, 316–324
implementing tax and shipping charges,

443–452
presentation tier modifications, 435–439,

441
setting up Orders Administration page,

316
shipping issues, 442
tax issues, 441, 442

ORDER BY clause, SQL, 76
COUNT aggregate function, 340
rank function, 175
showing query results page by page, 125

order completion error email
testing order pipeline, 495

order details
displaying, 325
implementing the business tier, 327–334
implementing the data tier, 325–327

order pipelines
implementing pipeline sections, 477–486

PsCheckFunds class, 479–480
PsCheckStock class, 480–481
PsFinalNotification class, 485

■INDEX606

648XIndex.qxd 11/22/06 2:46 PM Page 606

PsInitialNotification class, 478–479
PsShipGoods class, 483–484
PsShipOk class, 484
PsStockOk class, 482
PsTakePayment class, 482

retrieving customer address, 473
retrieving order details, 473
sending emails to customers and

suppliers, 473
setting credit card authentication details,

471–472
setting order shipment date, 472
testing pipeline, 487–495
updating checkout page, 495–498
updating status of orders, 470

order placement system
implementing, 303–314

business tier, 312
data tier, 308–311
presentation tier, 312–314

storing orders in database, 305–308
order processing pipelines

description, 453
designing, 454–458
implementing, 458–469
order pipeline functionality, 453
pipeline tasks, 454
transactions and, 453

OrderProcessor class
designing order pipeline, 455, 457
implementing order pipeline, 458, 460,

465
orders

considerations when building
e-commerce site, 6

e-commerce site reducing costs, 5
order processing considerations, 8

ORDERS ADMIN link, 314, 316
Orders Administration page, 314

setting up, 316
updating Orders Admin page, 498–503

implementing business tier, 500
implementing data tier, 498–499
implementing presentation tier,

500–503
Orders class

GetByCustomerId method, 434
GetOrderShortDetails method, 434
GetShippingInfo method, 448
UpdateOrder method, 434, 435

orders table
creating, 305, 306, 308
designing order pipeline, 455

orders_create_audit function, 458, 459
orders_get_audit_trail function, 498, 499
orders_get_orders_between_dates function,

430

orders_get_orders_by_customer_id function,
431

orders_get_orders_by_status function, 431
orders_get_order_details function, 325
orders_get_order_info function, 325–326,

431, 446
orders_get_order_short_details function, 432
orders_get_shipping_info function, 447
orders_set_auth_code function, 471
orders_set_date_shipped function, 472
orders_update_order function, 325, 327

creating, 326
creating new function, 433
dropping, 429
updating Orders Admin page, 498

orders_update_status function, 470
order_detail table, 305, 306, 308
order_done template, 497
order_error template, 497
order_info type, 446
order_processor.php, 460
ORDER_PROCESSOR_EMAIL value, 463
output buffering

implementing skeleton of admin.php, 210
overloading

database functions, 79

■P
Page class

building first HatShop page, 40
how Smarty template engine works, 42

page.php file
building first HatShop page, 39
creating departments_list template, 97

pages
displaying front page contents, 162–163
GetProductsInCategory method, 140
HowManyPages method, 137
linking to secured/unsecured pages,

103–106
page_link session variable

creating products_list template, 159, 161
paging, 125–126, 129

products_list template, 153
PRODUCTS_PER_PAGE constant, 135

parameters, passing by reference, 140
Pascal casing, 27
password hashing, 207, 356
PasswordHasher class, 357, 359
payment gateways

credit card payment gateways, 506–507
payment service providers

Internet Payment Service Provider web
sites, 190

payments
designing order pipeline, 455

■INDEX 607

Find it faster at http://superindex.apress.com
/

648XIndex.qxd 11/22/06 2:46 PM Page 607

PayPal
button generators, 192
creating PayPal account, 191
e-commerce site considerations, 8
getting started with, 190–191
links and resources, 191
Single Item Purchases feature, 197–198,

304
PayPal Developer Network, 191
PayPal shopping cart

considerations for phased development, 8
implementing custom shopping cart, 267,

285
integrating shopping cart and checkout,

192–197
PayPalDev forum, 191
PDO (PHP Data Objects) extension

connecting to PostgreSQL, 82–87
database abstraction layer, 24, 26
handling runtime errors, 84
implementing database integration using,

24–26
using PHP PDO for database operations,

83–84
PDO class, 83

exec method, 87
prepare method, 86, 89

pdo library
installing PHP 5 on Windows, 574

PDOStatement class
execute method, 86, 90
fetch method, 86, 91
fetchAll method, 86, 90

PECL, 24
pending orders

displaying, 316
implementing business tier, 319–320
implementing data tier, 317–319
implementing presentation tier, 320–324

performance
database functions, 78
HowManyPages method, 138, 139
indexes, 70
linking to secured/unsecured pages,

103–106
paging large result sets, 125
prepared statements, 87
primary key ID column, 66
searching using WHERE with LIKE, 171
session variables, 136

$persistent variable
PDO class constructor, 84

persistent connections, 82
pgAdmin III utility

creating category table, 114
creating department table, 71
creating HatShop database, 52–55

creating PostgreSQL types and functions,
79–81

installing on Linux, 579–580
PostgreSQL interface, 24

PGP (Pretty Good Privacy), 361
phased development

basic site framework, 7
creating shopping cart, 8
designing e-commerce site, 7–9
HatShop web site, 10

PHP (PHP Hypertext Preprocessor)
class constructor, 42
downloading, 21
error messages, 44
factors leading to success, 21
handling runtime errors, 84
implementing database integration using

PDO, 24–26
installing on Unix/Linux, 580–582
installing on Windows, 574–575
mcrypt library, 361
mixing PHP logic with HTML, 21
RDBMS available for, 23
separating presentation logic from HTML,

22
server-side scripting languages, 21
using PDO for database operations, 83–84
using PHP to generate dynamic web

content, 21
version requirement for HatShop, 571

PHP community, 21
PHP Designer 2006 editor, 29
PHP errors, 84
php files

Smarty components, 36
PHP PDO see PDO (PHP Data Objects)

extension
PHP SOAP extension, 556
phpEclipse editor, 29
phpinfo function, 31
phpLib template engine, 23
pipelines see order processing pipelines
Place Order button

adding to presentation tier, 312
functionality of, 304
implementing functionality, 313, 314
implementing presentation tier, 312

PL/pgSQL
database functions, 78

plugins see Smarty plugin files
portability

using PDO, 24
ports

linking to secured/unsecured pages, 105
PostgreSQL

accessing from PHP code, 24
communicating with, 26

■INDEX608

648XIndex.qxd 11/22/06 2:46 PM Page 608

connecting to, 82–87
creating HatShop database, 52–55
creating PostgreSQL functions and types,

79–81
data types, 66–68
installing on Unix/Linux, 578–580
installing on Windows, 576–577
other interfaces, 24
pgAdmin III interface, 24
psql text-based interface, 24
three-tier architecture and, 26
using PHP PDO for database operations,

83–84
using PostgreSQL to store web site data,

23–26
PostgreSQL server

opening and closing connections to, 82–83
pre-authentication request, DataCash,

508–509
MakeXmlPre method, 517

pre-authentication response, DataCash,
509–510

pre-authorization
credit card transaction type, 507

Prepare method, 86, 87, 89
prepared statements, 86

preventing SQL injection attacks, 87
prepare_link Smarty modifier

creating categories_list template, 152
linking to secured/unsecured pages, 103,

105
presentation logic

template engine separating from HTML,
22

presentation tier
adding customer accounts functionality,

388–412
adding PlaceOrder button, 312
adding shopping cart recommendations,

347–350
administering departments, 216–222
administering product details, 245–253
description, 15
displaying department and category

details, 143–148
displaying front page contents, 162–163
displaying list of categories, 149–152
displaying list of departments, 95–103
displaying pending orders, 320–324
displaying product details, 163–166
displaying product lists, 153–161
e-commerce project cycle, 590
implementing, 142–166
implementing order placement

functionality, 313–314
implementing tax and shipping charges,

448–452

integrating ECS with HatShop, 564–568
modifying for order administration,

435–439, 441
paging, 125
product reviews, 541–545
searching product catalog, 181–187
shopping cart, 284–295
shopping cart administration page, 299
storing orders, 312
updating Orders Admin page, 500–503

Pretty Good Privacy (PGP), 361
price field, product table, 118
primary keys, 64–66

autonumbered columns, 68
how many-to-many relationship works,

120
ID column, 65
NULL values, 65, 68

PRIOR_AUTH_CAPTURE transaction type
working with Authorize.net, 524, 525, 531

private class attribute names, 27
private constructor, 93
private keys, 360
private methods, 139
Process method, OrderProcessor class

implementing order pipeline, 465–467
implementing PsCheckFunds class, 479
implementing PsInitialNotification class,

478
implementing PsStockOk class, 482
updating Orders Admin page, 498

product administration, 226–244
product catalog

appearance, 58
catalog administration page

category administration, 226–244
department administration, 215–226
product administration, 226–244
product detail administration, 244–262
setting up, 202–215

catalog_count_products_in_category
function, 129

catalog_count_products_on_catalog
function, 133

catalog_count_products_on_department
function, 131

catalog_get_categories_list function, 127
catalog_get_category_details function, 128
catalog_get_departments_list function,

79–80
catalog_get_department_details function,

127
catalog_get_products_in_category

function, 129
catalog_get_products_on_catalog

function, 133

■INDEX 609

Find it faster at http://superindex.apress.com
/

648XIndex.qxd 11/22/06 2:46 PM Page 609

catalog_get_products_on_department
function, 131

catalog_get_product_details function, 134
categories, 58
creating category table, 113–114
creating department table, 70–74
creating departments_list template,

95–103
creating department_list type, 79
creating product table, 118–119
creating product_category table, 120–121
GetProductsOnCatalog method, 141
implementing data tier functions, 126–134
implementing departments list, 60
implementing presentation tier, 142–166
previewing, 58–60
searching product catalog, 169–187

see also searching product catalog
storing data, 62
three-tier architecture, 61
writing code for business tier, 135–142

Product class
creating product template, 166

product detail administration, 244–262
business tier, 254–257
data tier, 257–262
presentation tier, 245–253

product recommendations, 335
implementing business tier, 346, 347
implementing data tier

adding product recommendations,
342–344

adding shopping cart
recommendations, 344–346

understanding logic of, 337–341
implementing presentation tier, 347–350
increasing sales with dynamic

recommendations, 335
product reviews, 537–545

catalog_create_product_review function,
538

catalog_get_product_reviews function,
538

implementing business tier, 540
implementing data tier, 538–540
implementing presentation tier, 541–545
reviews template, 541

product table, 118–119
adding gist index to, 172

product template, 163–166
adding products to custom shopping cart,

286
creating, 163, 166
updating, 347–350

products
adding products to custom shopping cart,

285–286

categories, departments, and products, 58
considerations when building

e-commerce site, 5
deleting products from shopping cart, 296
displaying product details, 163–166
displaying product lists, 153–161
GetProductDetails method, 142
GetProductsInCategory method, 139
GetProductsOnCatalog method, 141
GetProductsOnDepartment method, 141
getting short descriptions, 122, 129
many-to-many relationship with

categories, 111
PRODUCTS_PER_PAGE constant, 135
SHORT_PRODUCT_DESCRIPTION_LENG

TH constant, 135
showing query results page by page,

125–126, 129
ProductsList class

creating products_list template, 160
creating search_results template, 184

products_list template, 153–161
adding products to custom shopping cart,

285
creating, 154, 160
creating search_results template, 186
defining product list constants, 135
displaying search results, 170
integrating PayPal shopping cart and

checkout, 192, 195
PRODUCTS_PER_PAGE constant

creating products_list template, 161
defining product list constants, 135, 136
HowManyPages method, 138

product_category table, 120–121
joining data tables, 123

product_id field
product table, 118
product_category table, 120
shopping_cart table, 271

Program Design phase
Waterfall method, project management,

585
project management, 583–591

developing software solutions, 583
e-commerce project cycle, 589–591
Extreme Programming (XP) method, 588
maintaining customer relationships, 591
Rapid Application Development (RAD)

method, 588
selecting method to use, 589
software development life cycle models,

584
Spiral method, 586–588
theory behind, 584–589
traditional method, 584–586
Waterfall method, 584–586

■INDEX610

648XIndex.qxd 11/22/06 2:46 PM Page 610

PsCheckFunds class, 457, 479–480
integrating Authorize.net with HatShop,

532
integrating DataCash with HatShop, 520

PsCheckStock class, 457, 480–481
PsDummy class, 455, 458, 462, 468
PsFinalNotification class, 458, 485
PsInitialNotification class, 457, 478–479
PSPad editor, 29
psql, PostgreSQL interface, 24
PsShipGoods class, 457, 483–484
PsShipOk class, 458, 484
PsStockOk class, 457, 482
PsTakePayment class, 457, 482

integrating Authorize.net with HatShop,
532, 533

integrating DataCash with HatShop, 520,
522

ps_check_funds.php, 479
integrating Authorize.net with HatShop,

532
integrating DataCash with HatShop, 520

ps_check_stock.php, 480
ps_dummy.php, 462
ps_final_notification.php, 485
ps_initial_notification.php, 478
ps_ship_goods.php, 483
ps_ship_ok.php, 484
ps_stock_ok.php, 482
ps_take_payment.php, 482

integrating Authorize.net with HatShop,
533

integrating DataCash with HatShop, 522
public class attribute names, 27
public keys, 360

■Q
quantity field, shopping_cart table, 271
queries see database queries
quotes

coding standards, 28
escaping special characters, 118

■R
RAD (Rapid Application Development)

method, 588
rand function, 283
rank function, 175
RC2 (Ron’s Code, or Rivest’s Cipher), 361
RDBMS (Relational Database Management

System)
see also relational databases
description, 23
SQL, 74–78

records, relational databases, 63
reference, passing parameters by, 140
referential integrity, 115

refunds
credit card transaction type, 507

relational data, 108
table relationships and, 109–112

relational databases
see also RDBMS
foreign keys, 112–113, 114, 115, 120
introduction, 108–109
joining data tables, 123
many-to-many relationship, 110–112
one-to-many relationship, 109
one-to-one relationship, 109
primary keys, 64–66, 68, 120
relational data, 108
using database diagrams, 121

relative links
linking to secured/unsecured pages, 105

reliability, 15
RemoveProductFromCategory method, 254
Request response group, 554
requirements

long-term requirements, 14
Spiral method, project management, 586
Waterfall method, project management,

584
response groups, 552

learning more about, 553
XML response of Web Service request, 553

REST (Representational State Transfer), 549
accessing ECS using REST, 551–556

RESTRICT keyword, 115
reusability, 15
review table

data tier for product reviews, 538
reviews see product reviews
reviews template, 541–545
Rijndael, 361, 362
Rivest’s Cipher, 361
Rivest-Shamir-Adleman (RSA), 361
Ron’s Code, 361
root certificates, web security, 203
rows, relational databases, 109
RSA (Rivest-Shamir-Adleman), 361
runtime errors, handling, 84

■S
Sales Rank response group, 554
scalable architecture, 15
SciTe editor, 29
SDLC models, 584–589
Search method, Catalog class

creating search_results template, 187
searching product catalog, 179, 181

Search query string parameter
creating search_box template, 183

search strings, 173

■INDEX 611

Find it faster at http://superindex.apress.com
/

648XIndex.qxd 11/22/06 2:46 PM Page 611

search vectors
adding gist index to tables, 172
adding new values to tables, 173
data structures enabling searching,

172–173
description, 172
setweight function, 172
stop-words, 172
to_tsvector function, 172
using for searching, 173–174
writing database search code, 175

searches
all-words search, 169
any-words search, 169
exact-match search, 169

searching product catalog, 169–187
business tier, 179–181
creating search box, 181–183
data tier, 171–178
designing search feature, 170
displaying search results, 170, 184–187
presentation tier, 181–187
using tsearch2 module, 172–178

data structures enabling searching,
172–173

searching database, 173–174
sorting results by relevance, 174–178

using WHERE with LIKE, 171
writing code, 175–178

search_box template, 181–183
search_results template, 184–187
Secret Access Key, Amazon, 550
SecureCard class

implementing, 366–376
secure_card.php, 357

secured connections
linking to secured/unsecured pages,

103–106
security

credit card transaction protocols, 505
database functions, 78
gateway providers, 505
HTTP/HTTPS protocols, 203
organizations for web security, 203
setting up catalog administration page,

202
SSL (Secure Socket Layer) connections,

203
using secure connections, 203–205

security certificates, 203
security classes, implementing, 356
SELECT statement, SQL

* wildcard, 74–76
DISTINCT clause, 132
FROM clause, 75
LIMIT clause, 318
ORDER BY clause, 76

showing query results page by page, 125
WHERE clause, 75

removing WHERE clause, 76
SEQUENCE structure, 69
sequences

adding categories to category table, 116
category_category_id_seq, 114
creating product table, 119
manually adding values to, 118

serial data type, 67, 69
currval function, 77

server-side scripting languages, 21
session handling, 136
session variables, 136
SET DEFAULT keywords, 115
SET NULL keywords, 115
SetCartId method, 282, 283
SetDateShipped method, 472
SetHandler method, 50
SetImage method, 254
SETOF keyword, 80
SetOrderAuthCodeAndReference method,

471
SetProductDisplayOption method, 254
SetRequest method, 529, 530
SetThumbnail method, 254
setweight function, 172
set_error_handler function, 44, 50
sha1 function, 212
ship goods email, 491
shipping

designing order pipeline, 455
implementing PsShipGoods class, 483
implementing PsShipOk class, 484
setting order shipment date, 472

shipping issues
business tier modifications, 447–448
database modifications, 443–447
order administration, 442
presentation tier modifications, 448–452

shipping_region table, 355–356
shopping cart

adding products to custom shopping cart,
285–286

administering shopping cart, 296–301
administration page, 296–301
business tier, 277–283
considerations for phased development, 8
data tier, 271–277
deleting products from shopping cart, 296
designing shopping cart, 270
displaying custom shopping cart

summary, 287
displaying shopping cart summary, 269
generating cart ID, 283
HatShop shopping cart, 268

■INDEX612

648XIndex.qxd 11/22/06 2:46 PM Page 612

implementing custom shopping cart,
267–301

integrating PayPal shopping cart and
checkout, 192–197

presentation tier, 284–295
storing shopping cart information,

270–295
shopping cart template, 284
ShoppingCart class

CreateOrder method, 312, 428, 448
GetCartId method, 283
GetCartProducts method, 283
SetCartId method, 282, 283

shopping_cart table
creating, 270–271
removing old records from, 296
storing shopping cart information,

270–271
shopping_cart.php file, 277
shopping_cart_add_product function,

271–273
shopping_cart_count_old_carts function,

301
shopping_cart_create_order function

adding to hatshop database, 308–311
called by CreateOrder method, 312, 313
changing, 426, 427

shopping_cart_delete_old_carts function,
301

shopping_cart_empty function, 308–311
shopping_cart_get_products function, 271,

274, 275
shopping_cart_get_recommendations

function, 344, 345, 346
shopping_cart_get_saved_products function,

271, 275, 276
shopping_cart_get_total_amount function,

271, 276
shopping_cart_move_product_to_cart

function, 272, 277
shopping_cart_remove_product function,

271, 273, 274
shopping_cart_save_product_for_later

function, 272, 276, 277
shopping_cart_update function, 271, 273
SHORT_PRODUCT_DESCRIPTION_LENGTH

constant
defining product list constants, 135, 136

SimpleXML extension
exchanging XML data with DataCash, 511
ExtractXml method, 373

simplexml_load_string function, 563
Single Item Purchases feature, PayPal,

197–198, 304

site.conf file
building first HatShop page, 37
how Smarty template engine works, 43

SITE_ROOT constant, 39
site_title variable, 43
Small response group, 554
Smarty Componentized Template

see also Smarty templates
description, 36
illustrated, 22
implementing HatShop site skeleton,

34–43
structure of web pages in HatShop, 35

Smarty design templates
description, 36
illustrated, 22
storing logic behind, 96

Smarty modifier
linking to secured/unsecured pages, 105

Smarty plugins
description, 36
illustrated, 22
load_admin_cart.php, 299
load_admin_categories.php, 229
load_admin_departments.php, 218
load_admin_login.php, 212
load_admin_order_details.php, 457, 463,

489, 495, 502
load_admin_product.php, 247
load_admin_products.php, 234
load_amazon_products_list.php, 565
load_cart_details.php, 290
load_cart_summary.php, 288
load_categories_list.php, 150
load_checkout_info.php, 457, 495, 496
load_department.php, 144, 147
load_departments_list.php, 96, 99, 102,

567
load_product.php, 164, 286
load_products_list.php, 157, 160, 184, 195,

285
load_reviews.php, 543
load_search_box.php, 182, 183
naming conventions, 96
using, 96

Smarty template engine
comments, 43
displaying custom shopping cart details,

290
displaying custom shopping cart

summary, 288
displaying Amazon.com products in

HatShop, 565
escaping special characters, 197
how it works, 41
installing, 32–34
reason for choosing, 23

■INDEX 613

Find it faster at http://superindex.apress.com
/

648XIndex.qxd 11/22/06 2:46 PM Page 613

shopping cart administration page, 299
using JavaScript in, 194
using Smarty to separate layout from

code, 21–23
Smarty templates

admin, 200, 211
admin_cart, 300
admin_categories, 200, 202, 227–229, 244
admin_departments, 200, 216–222
admin_login, 200, 212, 214
admin_menu, 200, 213, 215
admin_orders, 314, 316, 320–324, 435
admin_order_details, 314, 325, 327–334,

436, 463, 489, 500, 501, 502
admin_product, 200, 246–253
admin_products, 200, 232–234
amazon_products_list, 564
cart_details, 290, 293, 347–350
cart_summary, 287, 289
categories_list, 149–152
checkout_info, 414–421
customer_address, 388, 400–406
customer_credit_card, 388, 406–410
customer_details, 388, 394–400
customer_logged, 388, 391–394
customer_login, 388, 388–391
department, 143–148
departments_list, 95–103, 566
first_page_contents, 162–163
header, 38, 43
index, 37, 40, 42–43, 100, 183, 192, 194, 287
order_done, 497
order_error, 497
product, 163–166, 286, 347–350
products_list, 135, 153–161, 170, 186, 192,

195, 285
reviews, 541–545
search_box, 181–183
search_results, 184–187
shopping cart, 284

$smarty.config variable, 43
smarty_function_load_departments_list

function, 96
smarty_modifier_prepare_link function, 103
SMTP (Simple Mail Transfer Protocol), 51
SOAP (Simple Object Access Protocol)

accessing ECS using SOAP, 556–558
description, 549
PHP SOAP extension, 556

soap library
installing PHP 5 on Windows, 574

soapCall function, 557
software development life cycle models,

584–589
software solutions, developing, 583
special characters, escaping, 118

Spiral method
project management, 586–588

SQL (Structured Query Language)
see also PostgreSQL
commands, 74
communicating with databases, 74–81
communicating with PostgreSQL, 26
database engine dialects, 23
introduction, 74–78
PostgreSQL functions and types, 78–81

SQL commands
DELETE statement, 77
executing, 86
INSERT statement, 76–77
SELECT statement, 74–76
UPDATE statement, 77

SQL injection attacks
database functions, 78
prepared statements preventing, 87

SQL queries
prepared statements, 86

SSL (Secure Socket Layer) connections
authenticating digital signatures, 203
configuring HatShop for SSL, 205
enforcing SSL connections, 206, 421–423
importance of, 571
installing SSL-enabled Apache

on Unix/Linux, 577–578
on Windows, 571–573

obtaining SSL certificate, 205
organizations for web security, 203
selective enforcement, 206
setting up Apache, 203
using secure connections, 203
XAMPP package, 204

standards, naming and coding, 27–28
statements

nonprepared statements, 87
prepared statements, 86

static methods, 93
stock check email, 490
stock checking

designing order pipeline, 454
stop-words

catalog_flag_stop_words function, 176
FlagStopWords method, 179, 181
search vectors, 172
writing database search code, 178

storing customer accounts, 354
HatShop customer account scheme,

354–356
strings

using quotes, 28
Subscription ID, Amazon, 549
substring function, 122
Super Hats from Amazon, 555
supplier notification, 473

■INDEX614

648XIndex.qxd 11/22/06 2:46 PM Page 614

SUPPLIER_EMAIL value, 463
symmetric encryption, 360

common algorithms, 361
SymmetricCrypt class, 357

Decrypt/Encrypt methods, 366
implementing, 362– 366

■T
table relationships

foreign keys, 112–113, 114, 115, 120
many-to-many relationship, 110–112
one-to-many relationship, 109, 114
one-to-one relationship, 109
primary keys, 64–66, 68, 120
relational data and, 109–112

tables see data tables
tax issues

business tier modifications, 447–448
database modifications, 443–447
order administration, 441–442
presentation tier modifications, 448–452

TCP/IP protocol
credit card transactions, 505

technologies
choosing technologies, 20
HatShop web site, 26

template engines
EasyTemplate template engine, 23
phpLib template engine, 23
Smarty template engine, 22
TemplatePower template engine, 23
Yapter template engine, 23

TemplatePower template engine, 23
templates folder

building first HatShop page, 40
installing Smarty, 33

templates_c folder
building first HatShop page, 40
installing Smarty, 33

testing phase
e-commerce project cycle, 590

Testing phase
Waterfall method, project management,

585
test_authorize_net.php, 527
test_datacash.php, 515, 519
test_rest.php, 554
test_soap.php, 556
text data type, 67
three-tier architecture, 15–20

business tier, 15
constraint on access between tiers, 16
data tier, 16
design considerations, 215
HatShop web site, 17, 19
interacting with, 18
logic for each tier, 19
PostgreSQL and, 26

presentation tier, 15
product catalog, 61
why not use fewer tiers, 20
why not use n-Tier Architecture, 19

throw keyword, 85
thumbnail field, product table, 118
timestamp data type, 67
to_tsvector function, 172
tpl files

Smarty components, 36
traditional method

project management, 584–586
transactions

credit card transactions, 505–535
order processing pipelines, 453

trigger_error function, PHP, 51, 94, 557
Triple DES (3DES), 361
trusted certification

certificate signer not found, 204
security certificates, 203

try ... catch block
advantages of exceptions over errors, 85
catching exceptions, 86
database connections, 84

tsearch2 module
adding gist index to table, 172
rank function, 175
search vectors, 172
searching product catalog using, 172–178

data structures enabling searching,
172–173

searching database, 173–174
sorting results by relevance, 174–178

writing database search code, 175
tutorial, e-commerce, 7
types

creating PostgreSQL types and functions,
79–81

■U
uniqid function, 283
UNIQUE constraint, 66
Unix/Linux

installing Apache 2 on, 577–578
installing PHP 5 on, 580–582
installing PostgreSQL on, 578–580

Up-Selling, 335
UPDATE statement, SQL, 77
UpdateDepartment method, 222
UpdateOrder method, 434, 435
UpdateOrderStatus method, 470
urlencode function, 530
user interface see presentation tier
USE_SSL constant

configuring HatShop for SSL, 205
enforcing SSL connections, 206
linking to secured/unsecured pages, 105

■INDEX 615

Find it faster at http://superindex.apress.com
/

648XIndex.qxd 11/22/06 2:46 PM Page 615

■V
varchar data type, 67
variables

naming conventions, 28
session variables, 136
variables loaded from config files, 43

verification
trusted certification authority, 203

VeriSign
obtaining SSL certificate, 205

View Cart button
implementing custom shopping cart, 267
integrating PayPal shopping cart and

checkout, 192–194
shopping cart presentation tier, 284

View Details button
Orders Administration page, 315

virtual folder
preparing hatshop virtual folder, 29–32

VIRTUAL_LOCATION constant, 105

■W
Waterfall method

project management, 584–586
web browsers

authenticating digital signatures, 203
web content

using PHP to generate dynamic web
content, 21

web pages
opening secured web page in Opera, 204
structure of web pages in HatShop, 35

web prototype
e-commerce project cycle, 590

web services, 547
ECS (Amazon E-Commerce Service)

accessing ECS, 549–558
integrating ECS with HatShop, 558–568

XML response of Web Service request, 552,
553

web sites
designing for growth, 14–20
implementing HatShop site skeleton,

34–43
Webmonkey e-commerce tutorial, 7
Website Payments Standard Integration

Guide, 191
WHERE clause

importance in DELETE/UPDATE
statements, 77

searching using WHERE with LIKE, 171
SELECT statement, 75

removing WHERE clause, 76
Windows

installing Apache on, 573–574
SSL-enabled Apache, 571–573

installing PHP 5 on, 574–575
installing PostgreSQL on, 576–577

WSDL (Web Services Definition Language)
accessing ECS using SOAP, 557

■X
X.25 protocol, 505
XAMPP package, 204
XML data

exchanging with DataCash, 511–520
XML request

DataCash fulfillment request, 510
DataCash pre-authentication request, 509

XML response
DataCash fulfillment response, 511
DataCash pre-authentication response,

510
Web Service request, 552, 553

■Y
Yapter template engine, 23

■Z
Zend Studio editor, 29

■INDEX616

648XIndex.qxd 11/22/06 2:46 PM Page 616

	Beginning PHP and PostgreSQL E-Commerce: From Novice to Professional
	Table of Content
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Appendix A
	Appendix B
	Index

